
Inremental String Corretion: Towards

Corretion of XML Douments

Ahmed Cheriat

�

, Agata Savary

y

, B�eatrie Bouhou,

and M��rian Halfeld Ferrari

Universit�e Fran�ois Rabelais de Tours - LI/Campus de Blois, Frane

3 plae Jean Jaur�es - 41000 Blois, Frane

ahmed.heriat�etu.univ-tours.fr

fagata.savary, beatrie.bouhou, miriang�univ-tours.fr

Abstrat. We de�ne a problem of an inremental string-to-string orretion

with respet to a regular grammar. A user is given a valid word whih may

be updated through one or more editing operations. If the resulting word is

invalid we propose orretion andidates that take not only the inorret word

but also the initial valid word into aount. The method is based on the error

distane matrix alulation as proposed by [9℄. It has been developed in view of

inremental XML doument orretion (as opposed to orretion from srath).

Experimental results show a good performane of our algorithm despite its

exponential theoretial omplexity.

1 Introdution

We introdue an inremental string-to-string orretion method with respet to a

regular grammar. Given an initial orret (valid) word A (i.e. a word aepted by a

regular grammar), a user an adapt this word to his needs by proposing one or more

elementary operations (updates) on it under the ondition that the resulting word B

remains valid. If however B happens to be invalid (e.g. due to user's mistake when

performing updates) the system should guess the user's intention and propose a set

of plausible orretions. Thus, we are not willing to searh for all nearest neighbors

of B in the ditionary but only those that might result from A through a sequene of

operations whih are similar (but not idential) to the updates proposed by the user.

Our solution is to explore the �nite-state automaton orresponding to the gram-

mar in order to �nd valid words that are as lose as possible to both A and B. Thus,

we bene�t from the ahievements of the string-to-string orretion domain ([11℄, [3℄),

as well as of their due to the �nite-state representation of grammar or lexion ([9℄),

while providing some new ideas foused on inrementality.

The motivation for the inremental string-to-string orretion omes from the

area of XML-doument validation and orretion. The validity of eah node in suh

a doument is desribed by one or more regular expressions. When a user wishes to

�

Supported by R�egion Centre, Frane

y

Partly supported by the IUT of Blois, Frane

201

Proeedings of the Prague Stringology Conferene '05

modify a valid doument but performs an invalid update on a node we may start with

loally orreting this node's losest neighborhood using the inremental string-to-

string approah. Thus, some good parts of the proposed orretion tree may remain

unhanged with respet to the initially valid XML-tree, whih spares omputation

time and spae.

As we plae ourselves in a database ontext, updates are not treated one by one

but grouped into sequenes, or transations. Thus, we are interested in the validity

of the resulting word only at the end of eah transation. If the word turns out to be

invalid we try to orret it with respet to the whole sequene of updates appearing

in the transation.

The paper is organized as follows. In Setion 2, we resume some related work in

the string-to-string orretion domain. Then, in Setion 3, we onsider some parti-

ularities of our approah. Our inremental string orretion method is desribed in

Setion 4. In Setion 5 we disuss the omplexity of our algorithm together with some

experimental results. Finally, Setion 6 onludes the paper, and gives some ideas of

our future work.

2 String-to-String Corretion with Respet to a

Regular Grammar: State of the Art

The de�nition of the string-to-string orretion problem aims at the formalization of

the intuitive notion of similarity between two strings. As Wagner and Fisher ([11℄)

put it, the edit distane between two strings A and B is the minimum ost of all

sequenes of elementary edit operations (insertions, omissions and replaements) on

letters whih transform A into B. These operations may be written as rewriting rules

of the form a ! b where a and b are single letters and/or empty strings (�) and

(a; b) 6= (�; �). Eah edit operation a! b is assigned any non negative ost (a! b).

We say that a! b takes A to B if A = �a� and B = �b� .

An edit sequene S is a sequene s

1

; s

2

; : : : ; s

m

, where s

i

is an edit operation for

eah 0 � i � m. Eah edit operation s

i+1

applies to the string resulting from the

appliation of the preeding edit operation s

i

. We say that S takes word A to word

B if a sequene of strings A

0

; A

1

; : : : ; A

m

exists suh that A = A

0

, B = A

m

and s

i

takes A

i�1

to A

i

for eah 0 � i � m. The ost (S) of an edit sequene S is the sum

of osts of all edit operations appearing in S.

Note that, with Wagner and Fisher, an edit sequene ontains no referene to the

word positions at whih the edit operations operate. Due to this fat, the result of an

edit sequene may be ambiguous. Moreover, a further edit operation may operate on

a letter resulting from a former operation. For example, the appliation of the edit

sequene (a ! b; b !) to the word abb may result in any of the following words:

bb, bb, bb.

Furthermore, Wagner and Fisher ([11℄) propose a useful model of a trae whih

is a visualization of a lass of edit operation sequenes as in the example on Figure 1.

A line leading from position i of the soure string A to position j of the target string

B indiates that A[i℄ should be replaed by B[j℄ (if A[i℄ 6= B[j℄) or that A[i℄ should

remain unhanged in B (if A[i℄ = B[j℄). Charaters of A untouhed by any line are

to be deleted and haraters of B untouhed by any line are to be inserted.

202

Inremental String Corretion: Towards Corretion of XML Douments

g c

b c

x

dA :

B : a

a

Figure 1: A trae between abd and axg

1

2

1

2

2

b

3

2

1

0

0

ε

0

1

2

3

3

2

1

2

3

a

4

3

2

2

4

a

5

4

3

2

5

b

6

5

4

3

6

a

2

1

1

1

1

a

a

b

ε

b

Figure 2: Edit distane matrix between bab and abaaba

Eah trae T reeives a non negative ost de�ned as follows:

ost(T) =

X

(i;j)2T

((A[i℄! B[j℄)) +

X

i2I

((A[i℄! �)) +

X

j2J

((�! B[j℄))

where I and J are the sets of positions in A and B, respetively, untouhed by

any line in T. For instane, if we assume that (a! b) = 1 for a 6= b then the trae

on Figure 1 has ost 3.

It is further shown in [11℄ that a orrespondene exists between edit sequenes

and traes:

� for every trae T from A to B, there is an edit sequene S taking A to B suh

that (S) = ost(T)

� for every edit sequene S taking A to B, there is a trae T from A to B suh

that ost(T) � (S)

Thus, looking for the minimum ost edit sequene taking A to B is equiva-

lent to looking for the minimum ost trae from A to B. This minimum ost in

both ases determines the edit distane between A and B. It an be obtained by

a dynami programming method whih alulates an edit distane matrix H. For

0 � i � jAj and 0 � j � jBj, element H[i; j℄ ontains the edit distane between

the pre�xes A[1 : i℄ and B[1 : j℄ of A and B (where X[i : j℄ represents the subword

X

i

; X

i+1

; : : : ; X

j�1

; X

j

). The matrix may be alulated olumn per olumn. Thus,

eah new element is dedued from its three top-left-hand neighbor elements whih

have been alulated previously. The bottom right-hand element of the whole matrix

ontains the edit distane between the two strings A and B. It is obtained with a

time omplexity of O(jAj � jBj).

For example, the distane matrix on Figure 2 obtained by the above algorithm,

with (a! b) = 1 for a 6= b, indiates that the edit distane between strings bab and

abaaba is 3.

Note that there may be more than one minimum ost trae (and thus more than

one minimum ost edit sequene) between two words. In the above example, two suh

traes exist as shown on Figure 3.

203

Proeedings of the Prague Stringology Conferene '05

a b

b aa b a

a b

b aa b a

b

a

b

a

(a) (b)

Figure 3: Two possible minimum ost traes between bab and abaaba

Lowrane and Wagner ([7℄) extended the de�nition of the string-to-string or-

retion problem to the ase of four elementary editing operations on letters: the

previous three operations were ompleted by a transposition of two adjaent letters.

Thus, traes an ontain rossing lines. However, the ost funtion was restrited to

the ase when all insertions, all deletions, all replaements, and all transpositions have

the same osts W

I

, W

D

, W

C

, W

S

, respetively. An eÆient solution (O(jAj � jBj)) for

the edit distane alulation was proposed in ase when W

I

+W

D

� 2W

S

.

The addition of the transposition as the fourth elementary operation makes the

mathematial model of the problem more omplex. An elementary operation may

still be represented as a rewriting rule of the type (a ! b). However, the a and

b symbols have now to be seen as sequenes of letters rather than single letters. In

the lass of all possible sequenes the hoie of allowing only rules of type xy ! yx

seems very appliation-oriented. Note that with [7℄ the editing operations may still

at on arbitrary positions in the soure string, and in an arbitrary order (e.g. a an

be obtained from ab by two operations: deletion of b and transposition of a and).

Du and Chang ([3℄) modi�ed this distane measure and renamed it to error dis-

tane by assigning ost 1 to eah editing operation and by admitting that errors our

in linear order from left to right so that a later operation may not anel the e�et

of an earlier operation. For example, two hanges may not operate on the same word

position while inversions our only between letters that are adjaent in the original

word and remain adjaent in the erroneous word (e.g. the error distane between

ab and a is 3). The linear order of editing operations in an edit sequene implies

that eah operation is assigned an integer orresponding to the urrent word position

it operates on. For example, the edit sequene (D(1); C(1;); T (2)) (i.e. deletion of

letter at position 1, hange of letter at position 1 to , and transposition of letters

at positions 2 and 3) applied to abba results in ab. Due to the equal ost of eah

editing operation, the error distane beomes a metri, i.e. a funtion satisfying four

properties: non-negative values, reexivity, symmetry, and triangular inequality.

The model simpli�ation proposed by Du and Chang allows a substantial gain

of eÆieny to the algorithm of the error distane alulation. While in [7℄ the

alulation of element H[i; j℄ of the matrix needs, in the worst ase, an aess to eah

element of the previously alulated part of the matrix (to the left and above H[i; j℄),

with the linear error distane of Du and Chang this is no longer the ase: H[i; j℄ is

alulated on the basis of its four neighbors only (H[i�1; j℄, H[i; j�1℄, H[i�1; j�1℄,

and H[i� 2; j � 2℄). The matrix alulation has been further simpli�ed due to some

of its disovered properties.

Also in [3℄ the string-to-string orretion is applied to the problem of �nding, for

a word, all its nearest neighbors in a ditionary. A distane threshold is one of the

parameters of this problem. A nearest neighbor of X must stay within the error

distane from X whih is no bigger than the threshold. The ditionary is represented

204

Inremental String Corretion: Towards Corretion of XML Douments

in no partiular form. A distane matrix has to be onstruted from srath for eah

new ditionary word with respet to the erroneous word. A ut-o� riterion has been

disovered whih allows to stop the alulation of the matrix in its early stage as

soon as it turns out that the error distane between two urrent strings exeeds the

threshold. However, this alulation remains ostly as it is roughly proportional to

the number of words in the ditionary.

In the early appliations of the approximate string mathing ([4℄), suh as the

automatized orretion of omputer programs, the voabulary size was small (number

of all key words and variable names in a program). Solutions as the one by [3℄ ould

then be applied with no problem of robustness.

As soon as the same string-to-string orretion algorithms were to be used for

spelling orretion of natural language texts the voabulary size often proved to be

a bottlenek ([6℄) whih required additional ditionary redution tehniques. How-

ever, an extensive development of �nite-state methods for natural language proessing

enabled a very time and spae-eÆient representation of large voabularies. Further-

more, the dynami programming method ould be applied in the proess of a �nite-

state ditionary aess, thus providing a fast algorithm of searhing for the nearest

neighbors of a string in a ditionary. This tehnique was announed already by [10℄

for the 3-operation edit distane, but [9℄ was probably the �rst to extend it to the

4-operation error distane and test it extensively on large natural language voabu-

laries. In his algorithm, when a word is searhed for in a �nite-state lexion, a part

of the error matrix is alulated only one for all lexion words that have the same

ommon pre�x. This optimization, in addition to the ut-o� riterion of [3℄, provides

an algorithm that rapidly �nds, for a given word, all its t-distant neighbors in the

ditionary.

More reent approahes to approximate string searh in a �nite-state ditionary,

suh as [8℄ whih uses so-alled Levenshtein automata and a \bakward" ditionary,

allow a further inrease in speed of the string-to-string orretion.

A string of symbols may be viewed as a trivial ase of a tree whose depth is 1 and

whose leaves are the elements of the string. Thus, the formalization of the string-

to-string orretion problem naturally inspired researh on the tree-to-tree orretion

problem ([2℄). Note that the diversity of the possible hoies of elementary editing

operations is even bigger in ase of a tree as one an onsider hanges not only on

the siblings' level but also on some anestors' level. The most appropriate hoie

depends on the intuitive notion of tree proximity for the partiular appliation. In

our appliation, trees are XML douments whih must be validated and orreted

against their DTDs or XML shemata. However, ompared to other tree orretion

approahes, our approah is to propose an inremental orretion method as desribed

in the following setion.

3 Inremental String-to-String Corretion with Re-

spet to a Regular Grammar

The distane measure between two strings admitted in our approah is a simpli�ed

version of the edit distane by Wagner and Fisher ([11℄) and of the error distane by

Du and Chang ([3℄). On the one hand, we allow only three elementary operations:

205

Proeedings of the Prague Stringology Conferene '05

an insertion, a deletion, and a replaement of a single letter. On the other hand, we

admit ost 1 for eah of these operations.

The originality of our approah is due to three fats. Firstly, the de�nition of an

edit operation (whih we also all an update) and of an edit sequene (a sequene of

updates) is partiular. We attribute to eah operation a word position it applies to as

is the ase with Du and Chang ([3℄). However, all of these positions, numbered from

0 to the length of the word minus 1, onern the same initial word. For instane, the

update sequene (insert(a; 0); replae(; 1); insert(d; 3)) takes the initial word abb to

aabd

1

. This de�nition of the word position is inspired by researh on inremental

XML validation by [1℄. Note that this approah allows no later operation in a sequene

to anel the e�et of an earlier operation, as is the ase with [3℄.

Seondly, we plae ourselves in a database ontext in whih updates are not treated

one by one but grouped into sequenes, or transations. That is beause, given

a sequene of n updates, a word may beome inorret after i < n updates, but

its validity may be re-established after all the n updates. For example, given the

simple regular grammar abd+bed, the initial valid word abd, and the edit sequene

(delete(a; 0); insert(e; 3)), the resulting word is valid (bed) and does not need any

orretion. If however we try to proess the updates one by one we'll have to propose

orretions for the intermediate invalid word bd, whih is useless for the user.

Thirdly, we wish to perform an inremental string-to-string orretion in the on-

text of a human-omputer interation. A user is given an initial orret word A (i.e.

a word valid with respet to a regular grammar). He/she may adapt this word to his

needs (or, in other words, onstrut a new word inrementally, or evolutionarily) by

proposing one or more updates on this word under the ondition that the resulting

word B remains valid. If however B happens to be invalid (e.g. due to the user's

ignorane with respet to the validity of words) the system should guess the user's in-

tention and propose a set of plausible orretions. Thus, we are not willing to searh

for all nearest neighbors of B in the language desribed by the grammar but only

those that might result from A through a sequene of operations whih are similar

(but not idential) to the updates proposed by the user. This approah, as opposed

to a validation from srath (where A is not taken into aount), allows to possibly

limit the omputation time and spae, as well as the number of orretion andidates

proposed to the user.

In our approah, the orretion of words is done with respet to a regular gram-

mar represented by a �nite-state automaton. Thus, we an fully bene�t from the

optimizations o�ered by Oazer's appliation ([9℄) of Du and Chang's approah ([3℄).

Note that there is no need in [9℄ for the ditionary to be a �nite set of words. It may

as well be represented by a regular expression reognizing an in�nite set of words.

Consider the following example :

� the ditionary is desribed by the regular expression ab

�

+ db

�

� the initial valid word is A = ab

� the sequene of updates proposed by the user is U = (insert(b; 3); insert(b; 3)),

i.e. two insertions of b at the end of the string

� the invalid word resulting from A by the appliation of U is B = abbb

In the above ase the nearest neighbors of B (of distane 2) are : C

1

= ab, C

2

= abb,

C

3

= abbb and C

4

= dbbb. However, C

2

and C

3

are more plausible orretion

1

Insertions are done before the letter on the orresponding position as is the ase with [3℄.

206

Inremental String Corretion: Towards Corretion of XML Douments

andidates for B than C

1

and C

4

as they seem to better orrespond to the user's

intention. Proposing C

1

whih is equal to the initial word A would ignore the user's

wish of modi�ation, while C

4

= dbbb has very little in ommon with the initial word

A that the user is supposed to adapt. Of ourse, even if C

1

and C

4

are judged less

plausible they are never ompletely disarded as in some ases they may still best

suit the user.

The motivation for the inremental string-to-string orretion omes from the

area of XML-doument validation and orretion. The validity of eah node in suh

a doument is desribed by a regular expression (in ase of a DTD) or by a set of

regular expressions (in ase of an XML shema). For instane, with [1℄ the validation

is done via a tree automaton whose translation rules are of the form a; E ! q

a

where

E is a regular expression. Eah transition rule indiates that a node having label a

and whose hildren respet the shema rules established by E an be assigned to state

q

a

. Thus, given a node p labeled with a in the XML tree, a bottom-up automaton

performs the validation by verifying whether the word omposed by the onatenation

of the states (previously) assigned to the hildren of p belongs to the language L(E).

When a user wishes to modify a valid doument but performs a set of invalid

updates (i.e. leading to an invalid tree) we may start with loally validating and

orreting the nodes onerned by the updates, together with their losest neighbor-

hood: fathers, siblings, and sons. Sine eah set of siblings may loally be viewed

as a string, we redue a part of the tree orretion to the string-to-string orretion

problem. Thus, we may often obtain our �rst valid orretion andidates without

even touhing good parts of the whole tree (those that remain unhanged with re-

spet to the initially valid XML tree) whih allows to spare omputation time and

spae and further motivates the notion of inrementality. Our intuition is that suh a

shallow orretion approah will often o�er the most plausible orretion andidates

beause they vary from the initially valid tree only around the points whih the user

him/herself wished to modify. At the same time this approah does not exlude a

deep orretion ranging not only over the losest neighbors of the updated nodes but

possibly over the whole tree.

The following setion desribes the omputational solution of suh inremental

string-to-string orretion whih may be applied loally to an XML-tree on a single-

node level.

4 Solution and Algorithms

Let us onsider an initially orret word A, i.e. A appearing in the language L(E)

desribed by a regular expression E. A user an update A by inserting, deleting or

replaing one or more symbols. If the resulting word B happens to be invalid, i.e.

B 62 L(E), we should propose a set of valid andidate words.

We have previously mentioned that in the ontext of inremental orretion the

proposed andidate should express the user's intentions as to the modi�ations of A:

it should be obtainable from A by updates similar to those the user him/herself has

performed. However, we �nd it non trivial to de�ne an eÆient similarity measure

between sequenes of updates, whih onsist of inomparable parameters - operation

types, letters, and word positions - and whih are non homogeneous (deletions arry

no information about letters). Moreover, sequenes of updates may show some degree

207

Proeedings of the Prague Stringology Conferene '05

of redundany (e.g. an operation is performed by one update and later aneled by

another update). Therefore, it is not obvious if the user's intentions are best expressed

by the updates he wished to perform or by the resulting (invalid) word he/she has

produed.

Therefore, we propose an algorithm expressing the similarity of sequenes of up-

dates via the similarity of words resulting from these updates. Thus, a valid andidate

word is the one that is as lose as possible to both A and B, i.e. its distane from

both A and B doesn't exeed a given threshold. We may alulate the set of suh

valid andidates applying the Oazer's ([9℄) dynami programming method to two

distane matries in parallel: the one for the distane between A and C, and the

other between B and C. When a partiular orretion andidate C has been hosen

by the user we should instrut him/her on the right updates he/she should have done

in order to generate C from A. This right sequene of updates may easily be dedued

from the trae between A and C whih on its turn may be generated on the basis of

the A-C distane matrix.

4.1 Notations

Let E be a regular expression and let M

E

= h�; Q; Æ; q

0

; F i be a deterministi or

a non deterministi �nite state automaton over an alphabet �, a �nite set of states

Q, an initial state q

0

2 Q, a set of aepting states F � Q, and a transition relation

Æ � Q � � � Q. Let W be a �nite string (or word) of haraters (or symbols):

W 2 �

�

. W is valid (orret), i�W 2 L(E), where L(E) is a language de�ned by E.

In the following, we introdue some de�nitions of data types that will be used ahead

in this work.

De�nition 1. Type Tr T (a trae) is a list of pairs of integers (i; j) suh that for

eah Tr 2 Tr T if Tr = ((i

1

; j

1

); (i

2

; j

2

); : : : ; (i

n

; j

n

)) then

1. i

p

6= i

r

and j

s

6= j

t

for 1 � p; r; s; t � n

2. i

p

< i

r

i� j

p

< j

r

for 1 � p; r � n

The above de�nition reformulates the ontext-independent onditions of the trae

de�nitions by Wagner and Fisher [11℄ (no harater is touhed by more than one

line, and no two lines ross). In a partiular ontext of two words A and C, a trae

Tr

A;C

2 Tr T will always be suh that (Tr

A;C

; A; C) is a minimal ost trae in

the sense of [11℄. Thus, an extra ontext-dependent ondition, ensuring that lines

atually touh harater positions of A and B, ompletes the above de�nition:

Tr

A;C

= ((i

1

; j

1

); (i

2

; j

2

); : : : ; (i

n

; j

n

)) where

8

1�p�n

0 � i

p

� jAj � 1 and 0 � j

p

� jBj � 1

Reall that there may be several minimal ost traes between A and C.

De�nition 2. Type STr T (a set of traes) desribes a set of traes of type Tr T

eah.

A partiular set of traes STr

A;C

2 STr T will be used in onnetion with a single

pair of words A and C:

STr

A;C

= fTr

1

A;C

; T r

2

A;C

; : : : ; T r

m

A;C

g where

8

i=1;:::;m

Tr

i

A;C

2 Tr Tand Tr

i

A;C

is a minimal ost trae between A and C:

208

Inremental String Corretion: Towards Corretion of XML Douments

De�nition 3. Type SCandid T(a set of andidates): desribes a list of elements

of the form (C; (ed

1

; ed

2

)), where C is a word, and ed

1

, ed

2

are two integers.

A partiular SCandid

A;B

2 SCandid T will be an ordered list used in onnetion

with a single pair of words A (valid) and B (invalid), a regular expression E, and a

threshold th. SCandid

A;B

will then desribe a set of inremental orretion andidates

for B with respet to A (see the preeding setion).

SCandid

A;B

=

((C

1

; (ed

A;C

1

; ed

B;C

1

)); (C

2

; (ed

A;C

2

; ed

B;C

2

)); : : : ; (C

k

; (ed

A;C

k

; ed

B;C

k

)));

where for eah 1 � i � k; C

i

2 L(E); and ed

A;C

i

; ed

B;C

i

are the edit distanes

between A and C

i

and between B and C

i

respetively :

The ordering of the list is based on the edit distanes of the andidates with

respet to both A and B. The best orretion andidates (found in the front of

the SCandid

A;B

list) are those that are lose to both A and B. However, a good

andidate may not be equal to A (otherwise the user's intention to modify A would

be negleted). For two andidates, if the sums of their distanes from A and B are

equal then we privilege the andidate that is loser to B (as it's B that best expresses

the update intentions of the user). These rules of the ordering of andidates may be

formally expressed as follows:

(C

i

; (ed

A;C

i

; ed

B;C

i

)) � (C

j

; (ed

A;C

j

; ed

B;C

j

)) i�

(ed

A;C

j

= 0) or

(ed

A;C

i

+ ed

B;C

i

< ed

A;C

j

+ ed

B;C

j

) or

(ed

A;C

i

+ ed

B;C

i

= ed

A;C

j

+ ed

B;C

j

) and (ed

B;C

i

< ed

B;C

j

)

De�nition 4. Type H T (edit distane matrix) is a two dimensional matrix

with indies starting from �2. A partiular matrix H

A;B

2 H T will always be used

in onnetion with two words A and B so that H

A;B

is de�ned as follows:

H

A;B

[i; j℄ =

H

A;B

[i� 1; j � 1℄, if A[i℄ = B[j℄,

= 1+ minf

H

A;B

[i� 1; j � 1℄,

H

A;B

[i� 1; j℄,

H

A;B

[i; j � 1℄g otherwise

H

A;B

[i;�1℄ = i+ 1, for 0 � i � jAj � 1

H

A;B

[�1; j℄ = j + 1, for 0 � j � jBj � 1

H

A;B

[�2; j℄ =

H

A;B

[i;�2℄ = +1, (boundary de�nition)

Note that the above formula is very similar to those used by [9℄ and [11℄ for the

edit distane alulation. However, there are some minor di�erenes: we do not allow

transpositions (ontrary to [9℄), the ost of eah elementary operation is 1 (ontrary

to [11℄), and the numbering of the edit distane matrix indies starts with -2, sine

the �rst symbol of a word is indexed by 0.

4.2 Algorithms

Our �rst algorithm omputes all valid andidate words. It ontains a reursive pro-

edure, alled Explore re, that generates new valid words starting with the pre�x C,

209

Proeedings of the Prague Stringology Conferene '05

and whose distane from the given words A and B does not exeed the threshold

th. The automaton's state q is the one that has been reahed while generating the

orretion pre�x C. New andidates are attahed to the list of those found previously

(SCandid). In its �rst all, proedure Explore re reeives, in partiular, the initial

state q

0

, an empty set of andidates SCandid, and matries H

A;C

and H

B;C

with

their two �rst olumns initialized aording to De�nition 4 with C = �.

1: proedure Explore re (A, B, C, th, H

A;C

,H

B;C

, M

E

, q, SCandid)

2: input

3: A: word (a valid word)

4: B: word (an invalid word resulting from updates of A)

5: th: integer (error threshold)

6: M

E

: FSA (M

E

= hQ;�; Æ; q

0

; F i)

7: q: state (q 2 Q of M

E

, the urrent state in the automaton)

8: input/output

9: C: word (a partial valid andidate word)

10: H

A;C

: H T (edit distane matrix between A and C)

11: H

B;C

: H T (edit distane matrix between B and C)

12: SCandid: SCandid T (set of valid andidate words)

13: begin

14: if (q 2 F and (H

A;C

[jAj � 1; jCj � 1℄ � th) and (H

B;C

[jBj � 1; jCj � 1℄ � th))

15: /** A andidate is found. Candidates are sorted aording to Def. 3 **/

16: SCandid SortInsertion(SCandid; (C; (H

A;C

[jAj � 1; jCj � 1℄;

17: H

B;C

[jBj � 1; jCj � 1℄)))

18: end if

19: for eah (a; q

0

) 2 ��Q suh that Æ(q; a) = q

0

20: C onat(C; a)

21: H

A;C

 AddNewColumn(H

A;C

; A; a)

22: H

B;C

 AddNewColumn(H

B;C

; B; a)

23: if ((uted(A;C;H

A;C

; th) � th) and (uted(B;C;H

B;C

; th) � th))

24: Explore re(A; B; C; th; H

A;C

; H

B;C

; M

E

; q

0

; SCandid)

25: end if

26: H

A;C

 DeleteLastColumn(H

A;C

)

27: H

B;C

 DeleteLastColumn(H

B;C

)

28: C DelLastSymbol(C)

29: end for eah

30: end

The automaton M

E

is explored in the depth-�rst order. Eah time a transition

is followed the urrent pre�x C is extended (line 20) and new olumns are added

to both distane matries (lines 21{22). That allows to hek if C may still lead to

a andidate remaining within the distane threshold from A and B (line 23). If it

does the path is followed via a reursive all (line 24), otherwise the path gets ut

o�. In eah ase the transition is �nally baked o� (lines 26-28) and a new transition

outgoing from the same state is tried out. If we arrive at a �nal state and the distane

from C to both A and B does not exeed the threshold (line 14) then C is a valid

andidate that gets inserted to the list of all andidates found so far (lines 16{17).

The insertion is done aording to De�nition 3.

Note that the validation of the extended C with respet to the threshold (line 23)

is done via the funtion uted that omputes the ut-o� edit distane between A and

210

Inremental String Corretion: Towards Corretion of XML Douments

C, and between B and C, as de�ned by [9℄. It orresponds to the minimum value of

the urrent olumn in the edit distane matrix (i.e. the olumn orresponding to the

last harater in the extended C). It has been shown by [9℄ that if this value exeeds

the threshold then there is no hane for further olumns not to exeed the threshold.

Thus, C may not be a pre�x of a valid word whose distane from A and B is lower

than the threshold.

Let's onsider, for instane, a grammar E = (aba+bab)

�

and a valid word A = bab.

If we apply the sequene of updates S = (insert(a; 1); replae(a; 2)) to A we obtain

an invalid word B = baaa. For th = 2 the above funtion returns the following list of

andidates: SCandid = ((aba; (2; 2)); (bab; (0; 2))).

Given an ordered list of orretion andidates the user may hoose the one that

best �ts his/her needs. However, we also wish to show the user how to obtain C

from A in order to let him/her avoid the same errors in future. The sequene of

updates needed to take A to C an easily be dedued from a minimum ost trae

between these two words. In the following we present a reursive funtion Trae re,

that allows the onstrution of all minimal ost traes transforming A into C.

1: funtion Traes re (A, C, H

A;C

, i, j, Tr)

2: input

3: A: word (a valid word before updates)

4: C: word (a valid andidate word)

5: H

A;C

: matrix (edit distane matrix between A and C)

6: i, j: integers (indies of the urrent element of H

A;C

)

7: Tr: Tr T (a partial trae between A and C)

8: result: STr T (a set of traes between A and C)

9: loal variable

10: STr: STr T (a set of partial traes between A and C)

11: begin

12: STr ; /* initialization */

13: if ((i 6= �1) or (j 6= �1))

14: if (H

A;C

[i; j℄ = H

A;C

[i� 1; j℄ + 1) /* deletion */

15: STr = STr [Traes re(A,C,H

A;C

,i� 1,j,Tr) end if

16: if (H

A;C

[i; j℄ = H

A;C

[i; j � 1℄ + 1) /* insertion */

17: STr = STr [Traes re(A,C,H

A;C

,i,j � 1,Tr) end if

18: if ((H

A;C

[i; j℄ = H

A;C

[i� 1; j � 1℄ + 1) and (A[i℄ 6= C[j℄)) /*replaement*/

19: STr = STr [Traes re(A,C,H

A;C

,i� 1,j � 1,HeadInsert(Tr; (i; j))

20: end if

21: if ((H

A;C

[i; j℄ = H

A;C

[i� 1; j � 1℄) and (A[i℄ = C[j℄)) /*no operation*/

22: STr = STr [Traes re(A;C;H

A;C

; i� 1; j � 1;HeadInsert(Tr; (i; j))

23: end if

24: else

25: STr = STr [fTrg

26: end if

27: return(STr)

28: end

The funtion runs over the error distane matrix from its bottom right-hand orner

to its top left-hand orner. For the urrent matrix' element (i; j) the last parameter

Tr holds all partial traes allowing to transform A[i : jAj � 1℄ to C[j : jAj � 1℄. In its

�rst all the funtion reeives an empty set of partial traes Tr, as well as i = jAj � 1

211

Proeedings of the Prague Stringology Conferene '05

and j = jCj � 1, the indies of the bottom right-hand element of the matrix, i.e. the

one that ontains the edit distane between A and C.

In order to �nd a minimum ost trae between A and B it is suÆient to reall

how the relevant elements of the error distane matrix H

A;C

have been alulated.

The relevant elements are those that diretly ontribute to the omputation of the

�nal bottom left-hand element of H

A;C

. Reall that eah element H

A;C

[i; j℄ has been

dedued in the proedure Explore re by the AddNewColumn funtion from one of its

three top left-hand neighboring elements:

1. If H

A;C

[i; j℄ is equal to H

A;C

[i� 1; j℄ + 1 it means that C[0 : j℄ an be obtained

from A[0 : i℄ by the same edit operations as those needed for transforming

A[0 : i � 1℄ to C[0 : j℄, and by an additional deletion of A[i℄ at position i.

Thus, the trae between A[0 : i℄ and C[0 : j℄ is the same as the trae between

A[0 : i� 1℄ and C[0 : j℄ (line 15) sine the letters to be deleted don't appear in

the trae.

2. If H

A;C

[i; j℄ is equal to H

A;C

[i; j � 1℄ + 1 it means that C[0 : j℄ an be obtained

from A[0 : i℄ by the same edit operations as those needed for transforming

A[0 : i℄ to C[0 : j � 1℄, and by an additional insertion of C[j℄ at position i + 1

(line 17) as insertions our before the given position. The trae between A[0 : i℄

and C[0 : j℄ is the same as between A[0 : i℄ and C[0 : j � 1℄ sine the letters to

be inserted don't appear in the trae.

3. If H

A;C

[i; j℄ is equal to H

A;C

[i � 1; j � 1℄ + 1 and A[i℄ is di�erent from C[j℄ it

means that C[0 : j℄ an be obtained from A[0 : i℄ by the same edit operations as

those needed for transforming A[0 : i� 1℄ to C[0 : j � 1℄, and by an additional

replaement of A[i℄ by C[j℄ at position i. Thus, the trae between A[0 : i℄ and

C[0 : j℄ is the same as the trae between A[0 : i� 1℄ and C[0 : j � 1℄ to whih

a replaement line of A[i℄ by C[j℄ has been added (line 19).

4. If H

A;C

[i; j℄ is equal to H

A;C

[i� 1; j � 1℄ and A[i℄ is equal to C[j℄ it means that

C[0 : j℄ an be obtained from A[0 : i℄ by the same edit operations as those

needed for transforming A[0 : i � 1℄ to C[0 : j � 1℄. Thus, the trae between

A[0 : i℄ and C[0 : j℄ is the same as the trae between A[0 : i�1℄ and C[0 : j�1℄

to whih an identity line between A[i℄ and C[j℄ has been added (line 21).

Let's onsider the same example as on page 211. For andidate aba the above fun-

tion returns the following set of minimum ost traes: f((0; 1); (1; 2)); ((1; 0); (2; 1))g.

5 Complexity and Experimental Results

Let n = min(jAj; jBj) where B is the invalid word to be orreted, resulting from a

valid word A. Let f

max

be the maximum fan-out of our automaton M

E

. Proedure

Explore re has to perform, at worst, a depth-�rst exploration of M

E

in whih the

depth of eah path omes up to n+ th (beause a word staying within the threshold

th from both A and B may not be longer than n+th). Thus, the worst-ase omplexity

of this proedure is O(f

n+th

max

).

Funtion Traes re is alled after proedure Explore re has determined the list of

all andidates. At that moment the H

A;C

matrix for a andidate C hosen by the user

does not exist any more and has to be realulated whih takes a time proportional to

jAj � jCj. Funtion Traes re has to ross the error distane matrix from the bottom

212

Inremental String Corretion: Towards Corretion of XML Douments

Regular expression Threshold Number of Number of Exeution

updates andidates time(ms)

0 0 1 1

1 2 1 1

E = (ajb)(dje) 2 3 2 10

3 4 1 1

5 3 4 10

0 0 1 1

1 2 3 1

E

0

= (ajb)

�

(dje?) 2 3 17 10

3 4 10 1

5 3 117 40

Table 1: Number of andidates and exeution time obtained for the initial word ad

when dealing with starred and non-starred regular expressions.

right-hand to the top left-hand orner in order to �nd all traes orresponding to the

given andidate. In eah position the path may only ontinue west, north or north-

west. Sine the matrix's size is no bigger than n� (n+ th), the number of all possible

reursive alls is less than

P

n+th

i=1

3

i

= 3=2 � (3

n+th�1

� 1). So the omplexity of the

trae alulation is O(n

2

+ 3

n+th

) = O(3

n+th

).

Hene, the worst-ase omplexity of �nding all andidates, and all traes for one

hosen andidate is O(f

n+th

max

)+ O(3

n+th

) = O(

n+th

) where = max(f

max

; 3).

Although the omplexity of our method seems to be disouraging, the worst ases

rarely happen in pratie. Our experimental results show that our algorithm is fast

and gives good results in most ases. Our implementation was done in Java (JRE

1.4.1) running under Windows 2000. We use a 800 MHz Celeron Pentium system

with 392 Mbytes of memory and a 40 GB hard disk with 5400 rpm.

We have performed 160 experiments by varying the regular expression, the thresh-

old, the size of the initial word, and the number of updates. The statistial measures,

hosen among those that are not disproportionately a�eted by extreme sores ([5℄),

give the following results: the median (the value separating the highest half from the

lowest half of the results) is equal to 10 ms, the mode (the most frequent result) is 1

ms, and mean exeution time of the 90% fastest runs is 44 ms.

We further examined the importane of di�erent parameters on the number of

andidates proposed by the program, and on its exeution time. We notied that the

existene of starred sub-expressions, possibly embedded (e.g. ((ab)

�

)

�

) or ranging

over a disjuntion (e.g. (ajb)

�

�

), has a ruial importane for these two results.

Table 1 presents two test sets orresponding to regular expressions with and with-

out Kleene-operators. In eah test set, we varied two parameters: the error threshold

and the number of updates. Columns 4 and 5 give the number of andidates generated

by our method, together with the time needed for this omputation.

We notie that for the same word a starred expression allows more orretion

andidates and their omputation time may be several times higher than in the ase of

a non-starred expression. The reason is that the algorithm tries to ompose di�erent

words ontaining repetitive haraters within the range of the starred part of the

213

Proeedings of the Prague Stringology Conferene '05

Label Candidate edit distane(A;C

i

) edit distane(B;C

i

)

C

1

aaaaaad 2 1

C

2

aaaaad 1 2

C

3

aaaaabd 2 2

C

4

aaaabad 2 2

C

5

aaabaad 2 2

C

6

aabaaad 2 2

C

7

abaaaad 2 2

C

8

baaaaad 2 2

Table 2: Candidates for E

0

= (ajb)

�

(dje?), A = aaaad (valid), B = aaaaaad

(invalid), and th = 2.

expression. For instane, given the regular expression E

0

= (ajb)

�

(dje?), the initial

valid word A = aaaad, the resulting invalid word B = aaaaaad, and threshold 2,

all orretion andidates are obtained by modifying the subsequene reognizable by

the subexpression (ajb)

�

while the suÆx, reognizable by (dje?), remains intat (see

Table 2).

Our intuition is that word subsequenes orresponding to starred sub-expressions,

suh as (ajb)

�

, ould be treated as bloks, so that their modi�ation is not proposed

if none of the user's updates falls within the range of the starred sub-expression. This

heuristi might allow some optimizations of our method.

6 Conlusions and Future Work

We have introdued the problem of an inremental string-to-string orretion: given a

regular grammar E, a valid word A and a sequene S of updates (insertions, deletions,

and replaements of letters) that transform A into an invalid word B, �nd all valid

words C that may result from A by sequenes of updates that are as similar as possible

to S.

It seems non trivial to de�ne an eÆient similarity measure between sequenes of

updates. Therefore, we proposed an algorithm that addresses the above problem by

expressing the similarity of sequenes of updates via the similarity of words resulting

from these updates. Thus, an inremental string orretion may be implemented

by the nearest-neighbor searh in a �nite-state automaton performed simultaneously

for both A and B within a given threshold, aording to algorithms proposed by

[11℄, [3℄ and [9℄. The reonstrution of a trae between the initial valid word and

a orretion andidate hosen by the user allows him/her to know the right update

sequene needed to obtain this andidate.

Despite an exponential worst-ase omplexity (frequent in approahes based on an

extensive �nite-state automaton exploration), our algorithm gives good experimental

results alulated over a large sample of tests with varying parameters. We think that

some optimizations, onerning both the andidate's pertinene and the exeution

time, may be done if the internal struture of the regular expression is taken into

aount, partiularly with respet to Kleene's operators. Moreover, it is also possible

214

Inremental String Corretion: Towards Corretion of XML Douments

to examine optimizations resulting from reent approahes to approximate searh in

a ditionary suh as [8℄.

Another fator worth examination is the possibility of admitting two di�erent

threshold values for the two words A and B. That seems partiularly relevant in the

ase of long sequenes of updates: if the threshold is muh lower than the number

of updates the user wished to perform then there is a small hane for a andidate

remaining within this threshold distane from A to reet the user's intentions. For

example, if the user has performed 10 updates he/she will probably not be satis�ed

with andidates the vary only by one or two operations from the initial word A.

Admitting a higher threshold with respet to A and the lowest possible threshold

with respet to B seems a good strategy that we wish to experiment on.

The de�nition of an inremental string-to-string orretion problem is inspired

by the domain of inremental XML-doument orretion, in whih an initially valid

XML-tree is taken into aount in order to limit the orretion spae to ontexts

surrounding the points of updates. Thus, naturally, our main perspetive is the

extension of the presented method to deeper tree strutures in whih not only a node's

siblings but possibly also its anestors and desendants are taken into aount.

Referenes

[1℄ B. Bouhou and M. Halfeld Ferrari Alves. Updates and Inremental Validation

of XML Douments. In 9th International Workshop on Data Base Programming

Languages (DBPL), Potsdam, Germany, 2003.

[2℄ G. Clarke D. T. Barnard and N. Dunan. Tree-to-tree Corretion for Doument

Trees. Tehnial Report 95-372, Department of Computing and Information

Siene, Queen's University, Kingston, Ontario, 1995.

[3℄ M. W. Du. and S. C. Chang. A model and a fast algorithm for multiple errors

spelling orretion. Ata Informatia, 29:281{302, 1992.

[4℄ P. A. V. Hall and G. R. Dowling. Approximate String Mathing. Computing

Surveys, 12(4):381{402, 1980.

[5℄ David C. Howell. Fundamental Statistis for the Behavioral Sienes. Library of

Congress Cataloging-in-Publiation Data, 4th ed., 1999.

[6℄ K. Kukih. Tehniques for Automatially Correting Words in Text. ACM

Computing Surveys, 24(4):377{439, 1992.

[7℄ R. Lowrane and R. A. Wagner. An Extension of the String-to-String Corretion

Problem. Journal of the ACM, 22(2):177{183, 1975.

[8℄ S. Mihov and K. U. Shulz. Fast approximate searh in large ditionaries. Com-

putational Linguistis, 30(4):451{477, 2004.

[9℄ K. Oazer. Error-tolerant Finite-state Reognition with Appliations to Morpho-

logial Analysis and Spelling Corretion. Computational Linguistis, 22(1):73{89,

1996.

[10℄ R. A. Wagner. Order-n Corretion for Regular Languages. Communiations of

the ACM, 17(5):265{268, 1974.

[11℄ R. A. Wagner and M. J. Fisher. The String-to-String Corretion Problem.

Journal of the ACM, 21(1):168{173, 1974.

215

