
In
remental String Corre
tion: Towards

Corre
tion of XML Do
uments

Ahmed Cheriat

�

, Agata Savary

y

, B�eatri
e Bou
hou,

and M��rian Halfeld Ferrari

Universit�e Fran�
ois Rabelais de Tours - LI/Campus de Blois, Fran
e

3 pla
e Jean Jaur�es - 41000 Blois, Fran
e

ahmed.
heriat�etu.univ-tours.fr

fagata.savary, beatri
e.bou
hou, miriang�univ-tours.fr

Abstra
t. We de�ne a problem of an in
remental string-to-string
orre
tion

with respe
t to a regular grammar. A user is given a valid word whi
h may

be updated through one or more editing operations. If the resulting word is

invalid we propose
orre
tion
andidates that take not only the in
orre
t word

but also the initial valid word into a

ount. The method is based on the error

distan
e matrix
al
ulation as proposed by [9℄. It has been developed in view of

in
remental XML do
ument
orre
tion (as opposed to
orre
tion from s
rat
h).

Experimental results show a good performan
e of our algorithm despite its

exponential theoreti
al
omplexity.

1 Introdu
tion

We introdu
e an in
remental string-to-string
orre
tion method with respe
t to a

regular grammar. Given an initial
orre
t (valid) word A (i.e. a word a

epted by a

regular grammar), a user
an adapt this word to his needs by proposing one or more

elementary operations (updates) on it under the
ondition that the resulting word B

remains valid. If however B happens to be invalid (e.g. due to user's mistake when

performing updates) the system should guess the user's intention and propose a set

of plausible
orre
tions. Thus, we are not willing to sear
h for all nearest neighbors

of B in the di
tionary but only those that might result from A through a sequen
e of

operations whi
h are similar (but not identi
al) to the updates proposed by the user.

Our solution is to explore the �nite-state automaton
orresponding to the gram-

mar in order to �nd valid words that are as
lose as possible to both A and B. Thus,

we bene�t from the a
hievements of the string-to-string
orre
tion domain ([11℄, [3℄),

as well as of their due to the �nite-state representation of grammar or lexi
on ([9℄),

while providing some new ideas fo
used on in
rementality.

The motivation for the in
remental string-to-string
orre
tion
omes from the

area of XML-do
ument validation and
orre
tion. The validity of ea
h node in su
h

a do
ument is des
ribed by one or more regular expressions. When a user wishes to

�

Supported by R�egion Centre, Fran
e

y

Partly supported by the IUT of Blois, Fran
e

201

Pro
eedings of the Prague Stringology Conferen
e '05

modify a valid do
ument but performs an invalid update on a node we may start with

lo
ally
orre
ting this node's
losest neighborhood using the in
remental string-to-

string approa
h. Thus, some good parts of the proposed
orre
tion tree may remain

un
hanged with respe
t to the initially valid XML-tree, whi
h spares
omputation

time and spa
e.

As we pla
e ourselves in a database
ontext, updates are not treated one by one

but grouped into sequen
es, or transa
tions. Thus, we are interested in the validity

of the resulting word only at the end of ea
h transa
tion. If the word turns out to be

invalid we try to
orre
t it with respe
t to the whole sequen
e of updates appearing

in the transa
tion.

The paper is organized as follows. In Se
tion 2, we resume some related work in

the string-to-string
orre
tion domain. Then, in Se
tion 3, we
onsider some parti
-

ularities of our approa
h. Our in
remental string
orre
tion method is des
ribed in

Se
tion 4. In Se
tion 5 we dis
uss the
omplexity of our algorithm together with some

experimental results. Finally, Se
tion 6
on
ludes the paper, and gives some ideas of

our future work.

2 String-to-String Corre
tion with Respe
t to a

Regular Grammar: State of the Art

The de�nition of the string-to-string
orre
tion problem aims at the formalization of

the intuitive notion of similarity between two strings. As Wagner and Fis
her ([11℄)

put it, the edit distan
e between two strings A and B is the minimum
ost of all

sequen
es of elementary edit operations (insertions, omissions and repla
ements) on

letters whi
h transform A into B. These operations may be written as rewriting rules

of the form a ! b where a and b are single letters and/or empty strings (�) and

(a; b) 6= (�; �). Ea
h edit operation a! b is assigned any non negative
ost
(a! b).

We say that a! b takes A to B if A = �a� and B = �b� .

An edit sequen
e S is a sequen
e s

1

; s

2

; : : : ; s

m

, where s

i

is an edit operation for

ea
h 0 � i � m. Ea
h edit operation s

i+1

applies to the string resulting from the

appli
ation of the pre
eding edit operation s

i

. We say that S takes word A to word

B if a sequen
e of strings A

0

; A

1

; : : : ; A

m

exists su
h that A = A

0

, B = A

m

and s

i

takes A

i�1

to A

i

for ea
h 0 � i � m. The
ost
(S) of an edit sequen
e S is the sum

of
osts of all edit operations appearing in S.

Note that, with Wagner and Fis
her, an edit sequen
e
ontains no referen
e to the

word positions at whi
h the edit operations operate. Due to this fa
t, the result of an

edit sequen
e may be ambiguous. Moreover, a further edit operation may operate on

a letter resulting from a former operation. For example, the appli
ation of the edit

sequen
e (a ! b; b !
) to the word abb may result in any of the following words:

bb, b
b, bb
.

Furthermore, Wagner and Fis
her ([11℄) propose a useful model of a tra
e whi
h

is a visualization of a
lass of edit operation sequen
es as in the example on Figure 1.

A line leading from position i of the sour
e string A to position j of the target string

B indi
ates that A[i℄ should be repla
ed by B[j℄ (if A[i℄ 6= B[j℄) or that A[i℄ should

remain un
hanged in B (if A[i℄ = B[j℄). Chara
ters of A untou
hed by any line are

to be deleted and
hara
ters of B untou
hed by any line are to be inserted.

202

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

g c

b c

x

dA :

B : a

a

Figure 1: A tra
e between ab
d and axg

1

2

1

2

2

b

3

2

1

0

0

ε

0

1

2

3

3

2

1

2

3

a

4

3

2

2

4

a

5

4

3

2

5

b

6

5

4

3

6

a

2

1

1

1

1

a

a

b

ε

b

Figure 2: Edit distan
e matrix between bab and abaaba

Ea
h tra
e T re
eives a non negative
ost de�ned as follows:

ost(T) =

X

(i;j)2T

(
(A[i℄! B[j℄)) +

X

i2I

(
(A[i℄! �)) +

X

j2J

(
(�! B[j℄))

where I and J are the sets of positions in A and B, respe
tively, untou
hed by

any line in T. For instan
e, if we assume that
(a! b) = 1 for a 6= b then the tra
e

on Figure 1 has
ost 3.

It is further shown in [11℄ that a
orresponden
e exists between edit sequen
es

and tra
es:

� for every tra
e T from A to B, there is an edit sequen
e S taking A to B su
h

that
(S) =
ost(T)

� for every edit sequen
e S taking A to B, there is a tra
e T from A to B su
h

that
ost(T) �
(S)

Thus, looking for the minimum
ost edit sequen
e taking A to B is equiva-

lent to looking for the minimum
ost tra
e from A to B. This minimum
ost in

both
ases determines the edit distan
e between A and B. It
an be obtained by

a dynami
 programming method whi
h
al
ulates an edit distan
e matrix H. For

0 � i � jAj and 0 � j � jBj, element H[i; j℄
ontains the edit distan
e between

the pre�xes A[1 : i℄ and B[1 : j℄ of A and B (where X[i : j℄ represents the subword

X

i

; X

i+1

; : : : ; X

j�1

; X

j

). The matrix may be
al
ulated
olumn per
olumn. Thus,

ea
h new element is dedu
ed from its three top-left-hand neighbor elements whi
h

have been
al
ulated previously. The bottom right-hand element of the whole matrix

ontains the edit distan
e between the two strings A and B. It is obtained with a

time
omplexity of O(jAj � jBj).

For example, the distan
e matrix on Figure 2 obtained by the above algorithm,

with
(a! b) = 1 for a 6= b, indi
ates that the edit distan
e between strings bab and

abaaba is 3.

Note that there may be more than one minimum
ost tra
e (and thus more than

one minimum
ost edit sequen
e) between two words. In the above example, two su
h

tra
es exist as shown on Figure 3.

203

Pro
eedings of the Prague Stringology Conferen
e '05

a b

b aa b a

a b

b aa b a

b

a

b

a

(a) (b)

Figure 3: Two possible minimum
ost tra
es between bab and abaaba

Lowran
e and Wagner ([7℄) extended the de�nition of the string-to-string
or-

re
tion problem to the
ase of four elementary editing operations on letters: the

previous three operations were
ompleted by a transposition of two adja
ent letters.

Thus, tra
es
an
ontain
rossing lines. However, the
ost fun
tion was restri
ted to

the
ase when all insertions, all deletions, all repla
ements, and all transpositions have

the same
osts W

I

, W

D

, W

C

, W

S

, respe
tively. An eÆ
ient solution (O(jAj � jBj)) for

the edit distan
e
al
ulation was proposed in
ase when W

I

+W

D

� 2W

S

.

The addition of the transposition as the fourth elementary operation makes the

mathemati
al model of the problem more
omplex. An elementary operation may

still be represented as a rewriting rule of the type
(a ! b). However, the a and

b symbols have now to be seen as sequen
es of letters rather than single letters. In

the
lass of all possible sequen
es the
hoi
e of allowing only rules of type xy ! yx

seems very appli
ation-oriented. Note that with [7℄ the editing operations may still

a
t on arbitrary positions in the sour
e string, and in an arbitrary order (e.g.
a
an

be obtained from ab
 by two operations: deletion of b and transposition of a and
).

Du and Chang ([3℄) modi�ed this distan
e measure and renamed it to error dis-

tan
e by assigning
ost 1 to ea
h editing operation and by admitting that errors o

ur

in linear order from left to right so that a later operation may not
an
el the e�e
t

of an earlier operation. For example, two
hanges may not operate on the same word

position while inversions o

ur only between letters that are adja
ent in the original

word and remain adja
ent in the erroneous word (e.g. the error distan
e between

ab
 and
a is 3). The linear order of editing operations in an edit sequen
e implies

that ea
h operation is assigned an integer
orresponding to the
urrent word position

it operates on. For example, the edit sequen
e (D(1); C(1;
); T (2)) (i.e. deletion of

letter at position 1,
hange of letter at position 1 to
, and transposition of letters

at positions 2 and 3) applied to abba results in
ab. Due to the equal
ost of ea
h

editing operation, the error distan
e be
omes a metri
, i.e. a fun
tion satisfying four

properties: non-negative values, re
exivity, symmetry, and triangular inequality.

The model simpli�
ation proposed by Du and Chang allows a substantial gain

of eÆ
ien
y to the algorithm of the error distan
e
al
ulation. While in [7℄ the

al
ulation of element H[i; j℄ of the matrix needs, in the worst
ase, an a

ess to ea
h

element of the previously
al
ulated part of the matrix (to the left and above H[i; j℄),

with the linear error distan
e of Du and Chang this is no longer the
ase: H[i; j℄ is

al
ulated on the basis of its four neighbors only (H[i�1; j℄, H[i; j�1℄, H[i�1; j�1℄,

and H[i� 2; j � 2℄). The matrix
al
ulation has been further simpli�ed due to some

of its dis
overed properties.

Also in [3℄ the string-to-string
orre
tion is applied to the problem of �nding, for

a word, all its nearest neighbors in a di
tionary. A distan
e threshold is one of the

parameters of this problem. A nearest neighbor of X must stay within the error

distan
e from X whi
h is no bigger than the threshold. The di
tionary is represented

204

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

in no parti
ular form. A distan
e matrix has to be
onstru
ted from s
rat
h for ea
h

new di
tionary word with respe
t to the erroneous word. A
ut-o�
riterion has been

dis
overed whi
h allows to stop the
al
ulation of the matrix in its early stage as

soon as it turns out that the error distan
e between two
urrent strings ex
eeds the

threshold. However, this
al
ulation remains
ostly as it is roughly proportional to

the number of words in the di
tionary.

In the early appli
ations of the approximate string mat
hing ([4℄), su
h as the

automatized
orre
tion of
omputer programs, the vo
abulary size was small (number

of all key words and variable names in a program). Solutions as the one by [3℄
ould

then be applied with no problem of robustness.

As soon as the same string-to-string
orre
tion algorithms were to be used for

spelling
orre
tion of natural language texts the vo
abulary size often proved to be

a bottlene
k ([6℄) whi
h required additional di
tionary redu
tion te
hniques. How-

ever, an extensive development of �nite-state methods for natural language pro
essing

enabled a very time and spa
e-eÆ
ient representation of large vo
abularies. Further-

more, the dynami
 programming method
ould be applied in the pro
ess of a �nite-

state di
tionary a

ess, thus providing a fast algorithm of sear
hing for the nearest

neighbors of a string in a di
tionary. This te
hnique was announ
ed already by [10℄

for the 3-operation edit distan
e, but [9℄ was probably the �rst to extend it to the

4-operation error distan
e and test it extensively on large natural language vo
abu-

laries. In his algorithm, when a word is sear
hed for in a �nite-state lexi
on, a part

of the error matrix is
al
ulated only on
e for all lexi
on words that have the same

ommon pre�x. This optimization, in addition to the
ut-o�
riterion of [3℄, provides

an algorithm that rapidly �nds, for a given word, all its t-distant neighbors in the

di
tionary.

More re
ent approa
hes to approximate string sear
h in a �nite-state di
tionary,

su
h as [8℄ whi
h uses so-
alled Levenshtein automata and a \ba
kward" di
tionary,

allow a further in
rease in speed of the string-to-string
orre
tion.

A string of symbols may be viewed as a trivial
ase of a tree whose depth is 1 and

whose leaves are the elements of the string. Thus, the formalization of the string-

to-string
orre
tion problem naturally inspired resear
h on the tree-to-tree
orre
tion

problem ([2℄). Note that the diversity of the possible
hoi
es of elementary editing

operations is even bigger in
ase of a tree as one
an
onsider
hanges not only on

the siblings' level but also on some an
estors' level. The most appropriate
hoi
e

depends on the intuitive notion of tree proximity for the parti
ular appli
ation. In

our appli
ation, trees are XML do
uments whi
h must be validated and
orre
ted

against their DTDs or XML s
hemata. However,
ompared to other tree
orre
tion

approa
hes, our approa
h is to propose an in
remental
orre
tion method as des
ribed

in the following se
tion.

3 In
remental String-to-String Corre
tion with Re-

spe
t to a Regular Grammar

The distan
e measure between two strings admitted in our approa
h is a simpli�ed

version of the edit distan
e by Wagner and Fis
her ([11℄) and of the error distan
e by

Du and Chang ([3℄). On the one hand, we allow only three elementary operations:

205

Pro
eedings of the Prague Stringology Conferen
e '05

an insertion, a deletion, and a repla
ement of a single letter. On the other hand, we

admit
ost 1 for ea
h of these operations.

The originality of our approa
h is due to three fa
ts. Firstly, the de�nition of an

edit operation (whi
h we also
all an update) and of an edit sequen
e (a sequen
e of

updates) is parti
ular. We attribute to ea
h operation a word position it applies to as

is the
ase with Du and Chang ([3℄). However, all of these positions, numbered from

0 to the length of the word minus 1,
on
ern the same initial word. For instan
e, the

update sequen
e (insert(a; 0); repla
e(
; 1); insert(d; 3)) takes the initial word abb to

aa
bd

1

. This de�nition of the word position is inspired by resear
h on in
remental

XML validation by [1℄. Note that this approa
h allows no later operation in a sequen
e

to
an
el the e�e
t of an earlier operation, as is the
ase with [3℄.

Se
ondly, we pla
e ourselves in a database
ontext in whi
h updates are not treated

one by one but grouped into sequen
es, or transa
tions. That is be
ause, given

a sequen
e of n updates, a word may be
ome in
orre
t after i < n updates, but

its validity may be re-established after all the n updates. For example, given the

simple regular grammar ab
d+b
ed, the initial valid word ab
d, and the edit sequen
e

(delete(a; 0); insert(e; 3)), the resulting word is valid (b
ed) and does not need any

orre
tion. If however we try to pro
ess the updates one by one we'll have to propose

orre
tions for the intermediate invalid word b
d, whi
h is useless for the user.

Thirdly, we wish to perform an in
remental string-to-string
orre
tion in the
on-

text of a human-
omputer intera
tion. A user is given an initial
orre
t word A (i.e.

a word valid with respe
t to a regular grammar). He/she may adapt this word to his

needs (or, in other words,
onstru
t a new word in
rementally, or evolutionarily) by

proposing one or more updates on this word under the
ondition that the resulting

word B remains valid. If however B happens to be invalid (e.g. due to the user's

ignoran
e with respe
t to the validity of words) the system should guess the user's in-

tention and propose a set of plausible
orre
tions. Thus, we are not willing to sear
h

for all nearest neighbors of B in the language des
ribed by the grammar but only

those that might result from A through a sequen
e of operations whi
h are similar

(but not identi
al) to the updates proposed by the user. This approa
h, as opposed

to a validation from s
rat
h (where A is not taken into a

ount), allows to possibly

limit the
omputation time and spa
e, as well as the number of
orre
tion
andidates

proposed to the user.

In our approa
h, the
orre
tion of words is done with respe
t to a regular gram-

mar represented by a �nite-state automaton. Thus, we
an fully bene�t from the

optimizations o�ered by O
azer's appli
ation ([9℄) of Du and Chang's approa
h ([3℄).

Note that there is no need in [9℄ for the di
tionary to be a �nite set of words. It may

as well be represented by a regular expression re
ognizing an in�nite set of words.

Consider the following example :

� the di
tionary is des
ribed by the regular expression ab

�

+ db

�

� the initial valid word is A = ab

� the sequen
e of updates proposed by the user is U = (insert(b; 3); insert(b; 3)),

i.e. two insertions of b at the end of the string

� the invalid word resulting from A by the appli
ation of U is B = ab
bb

In the above
ase the nearest neighbors of B (of distan
e 2) are : C

1

= ab
, C

2

= abb
,

C

3

= abbb
 and C

4

= dbbb. However, C

2

and C

3

are more plausible
orre
tion

1

Insertions are done before the letter on the
orresponding position as is the
ase with [3℄.

206

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

andidates for B than C

1

and C

4

as they seem to better
orrespond to the user's

intention. Proposing C

1

whi
h is equal to the initial word A would ignore the user's

wish of modi�
ation, while C

4

= dbbb has very little in
ommon with the initial word

A that the user is supposed to adapt. Of
ourse, even if C

1

and C

4

are judged less

plausible they are never
ompletely dis
arded as in some
ases they may still best

suit the user.

The motivation for the in
remental string-to-string
orre
tion
omes from the

area of XML-do
ument validation and
orre
tion. The validity of ea
h node in su
h

a do
ument is des
ribed by a regular expression (in
ase of a DTD) or by a set of

regular expressions (in
ase of an XML s
hema). For instan
e, with [1℄ the validation

is done via a tree automaton whose translation rules are of the form a; E ! q

a

where

E is a regular expression. Ea
h transition rule indi
ates that a node having label a

and whose
hildren respe
t the s
hema rules established by E
an be assigned to state

q

a

. Thus, given a node p labeled with a in the XML tree, a bottom-up automaton

performs the validation by verifying whether the word
omposed by the
on
atenation

of the states (previously) assigned to the
hildren of p belongs to the language L(E).

When a user wishes to modify a valid do
ument but performs a set of invalid

updates (i.e. leading to an invalid tree) we may start with lo
ally validating and

orre
ting the nodes
on
erned by the updates, together with their
losest neighbor-

hood: fathers, siblings, and sons. Sin
e ea
h set of siblings may lo
ally be viewed

as a string, we redu
e a part of the tree
orre
tion to the string-to-string
orre
tion

problem. Thus, we may often obtain our �rst valid
orre
tion
andidates without

even tou
hing good parts of the whole tree (those that remain un
hanged with re-

spe
t to the initially valid XML tree) whi
h allows to spare
omputation time and

spa
e and further motivates the notion of in
rementality. Our intuition is that su
h a

shallow
orre
tion approa
h will often o�er the most plausible
orre
tion
andidates

be
ause they vary from the initially valid tree only around the points whi
h the user

him/herself wished to modify. At the same time this approa
h does not ex
lude a

deep
orre
tion ranging not only over the
losest neighbors of the updated nodes but

possibly over the whole tree.

The following se
tion des
ribes the
omputational solution of su
h in
remental

string-to-string
orre
tion whi
h may be applied lo
ally to an XML-tree on a single-

node level.

4 Solution and Algorithms

Let us
onsider an initially
orre
t word A, i.e. A appearing in the language L(E)

des
ribed by a regular expression E. A user
an update A by inserting, deleting or

repla
ing one or more symbols. If the resulting word B happens to be invalid, i.e.

B 62 L(E), we should propose a set of valid
andidate words.

We have previously mentioned that in the
ontext of in
remental
orre
tion the

proposed
andidate should express the user's intentions as to the modi�
ations of A:

it should be obtainable from A by updates similar to those the user him/herself has

performed. However, we �nd it non trivial to de�ne an eÆ
ient similarity measure

between sequen
es of updates, whi
h
onsist of in
omparable parameters - operation

types, letters, and word positions - and whi
h are non homogeneous (deletions
arry

no information about letters). Moreover, sequen
es of updates may show some degree

207

Pro
eedings of the Prague Stringology Conferen
e '05

of redundan
y (e.g. an operation is performed by one update and later
an
eled by

another update). Therefore, it is not obvious if the user's intentions are best expressed

by the updates he wished to perform or by the resulting (invalid) word he/she has

produ
ed.

Therefore, we propose an algorithm expressing the similarity of sequen
es of up-

dates via the similarity of words resulting from these updates. Thus, a valid
andidate

word is the one that is as
lose as possible to both A and B, i.e. its distan
e from

both A and B doesn't ex
eed a given threshold. We may
al
ulate the set of su
h

valid
andidates applying the O
azer's ([9℄) dynami
 programming method to two

distan
e matri
es in parallel: the one for the distan
e between A and C, and the

other between B and C. When a parti
ular
orre
tion
andidate C has been
hosen

by the user we should instru
t him/her on the right updates he/she should have done

in order to generate C from A. This right sequen
e of updates may easily be dedu
ed

from the tra
e between A and C whi
h on its turn may be generated on the basis of

the A-C distan
e matrix.

4.1 Notations

Let E be a regular expression and let M

E

= h�; Q; Æ; q

0

; F i be a deterministi
 or

a non deterministi
 �nite state automaton over an alphabet �, a �nite set of states

Q, an initial state q

0

2 Q, a set of a

epting states F � Q, and a transition relation

Æ � Q � � � Q. Let W be a �nite string (or word) of
hara
ters (or symbols):

W 2 �

�

. W is valid (
orre
t), i�W 2 L(E), where L(E) is a language de�ned by E.

In the following, we introdu
e some de�nitions of data types that will be used ahead

in this work.

De�nition 1. Type Tr T (a tra
e) is a list of pairs of integers (i; j) su
h that for

ea
h Tr 2 Tr T if Tr = ((i

1

; j

1

); (i

2

; j

2

); : : : ; (i

n

; j

n

)) then

1. i

p

6= i

r

and j

s

6= j

t

for 1 � p; r; s; t � n

2. i

p

< i

r

i� j

p

< j

r

for 1 � p; r � n

The above de�nition reformulates the
ontext-independent
onditions of the tra
e

de�nitions by Wagner and Fis
her [11℄ (no
hara
ter is tou
hed by more than one

line, and no two lines
ross). In a parti
ular
ontext of two words A and C, a tra
e

Tr

A;C

2 Tr T will always be su
h that (Tr

A;C

; A; C) is a minimal
ost tra
e in

the sense of [11℄. Thus, an extra
ontext-dependent
ondition, ensuring that lines

a
tually tou
h
hara
ter positions of A and B,
ompletes the above de�nition:

Tr

A;C

= ((i

1

; j

1

); (i

2

; j

2

); : : : ; (i

n

; j

n

)) where

8

1�p�n

0 � i

p

� jAj � 1 and 0 � j

p

� jBj � 1

Re
all that there may be several minimal
ost tra
es between A and C.

De�nition 2. Type STr T (a set of tra
es) des
ribes a set of tra
es of type Tr T

ea
h.

A parti
ular set of tra
es STr

A;C

2 STr T will be used in
onne
tion with a single

pair of words A and C:

STr

A;C

= fTr

1

A;C

; T r

2

A;C

; : : : ; T r

m

A;C

g where

8

i=1;:::;m

Tr

i

A;C

2 Tr Tand Tr

i

A;C

is a minimal
ost tra
e between A and C:

208

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

De�nition 3. Type SCandid T(a set of
andidates): des
ribes a list of elements

of the form (C; (ed

1

; ed

2

)), where C is a word, and ed

1

, ed

2

are two integers.

A parti
ular SCandid

A;B

2 SCandid T will be an ordered list used in
onne
tion

with a single pair of words A (valid) and B (invalid), a regular expression E, and a

threshold th. SCandid

A;B

will then des
ribe a set of in
remental
orre
tion
andidates

for B with respe
t to A (see the pre
eding se
tion).

SCandid

A;B

=

((C

1

; (ed

A;C

1

; ed

B;C

1

)); (C

2

; (ed

A;C

2

; ed

B;C

2

)); : : : ; (C

k

; (ed

A;C

k

; ed

B;C

k

)));

where for ea
h 1 � i � k; C

i

2 L(E); and ed

A;C

i

; ed

B;C

i

are the edit distan
es

between A and C

i

and between B and C

i

respe
tively :

The ordering of the list is based on the edit distan
es of the
andidates with

respe
t to both A and B. The best
orre
tion
andidates (found in the front of

the SCandid

A;B

list) are those that are
lose to both A and B. However, a good

andidate may not be equal to A (otherwise the user's intention to modify A would

be negle
ted). For two
andidates, if the sums of their distan
es from A and B are

equal then we privilege the
andidate that is
loser to B (as it's B that best expresses

the update intentions of the user). These rules of the ordering of
andidates may be

formally expressed as follows:

(C

i

; (ed

A;C

i

; ed

B;C

i

)) � (C

j

; (ed

A;C

j

; ed

B;C

j

)) i�

(ed

A;C

j

= 0) or

(ed

A;C

i

+ ed

B;C

i

< ed

A;C

j

+ ed

B;C

j

) or

(ed

A;C

i

+ ed

B;C

i

= ed

A;C

j

+ ed

B;C

j

) and (ed

B;C

i

< ed

B;C

j

)

De�nition 4. Type H T (edit distan
e matrix) is a two dimensional matrix

with indi
es starting from �2. A parti
ular matrix H

A;B

2 H T will always be used

in
onne
tion with two words A and B so that H

A;B

is de�ned as follows:

H

A;B

[i; j℄ =

H

A;B

[i� 1; j � 1℄, if A[i℄ = B[j℄,

= 1+ minf

H

A;B

[i� 1; j � 1℄,

H

A;B

[i� 1; j℄,

H

A;B

[i; j � 1℄g otherwise

H

A;B

[i;�1℄ = i+ 1, for 0 � i � jAj � 1

H

A;B

[�1; j℄ = j + 1, for 0 � j � jBj � 1

H

A;B

[�2; j℄ =

H

A;B

[i;�2℄ = +1, (boundary de�nition)

Note that the above formula is very similar to those used by [9℄ and [11℄ for the

edit distan
e
al
ulation. However, there are some minor di�eren
es: we do not allow

transpositions (
ontrary to [9℄), the
ost of ea
h elementary operation is 1 (
ontrary

to [11℄), and the numbering of the edit distan
e matrix indi
es starts with -2, sin
e

the �rst symbol of a word is indexed by 0.

4.2 Algorithms

Our �rst algorithm
omputes all valid
andidate words. It
ontains a re
ursive pro-

edure,
alled Explore re
, that generates new valid words starting with the pre�x C,

209

Pro
eedings of the Prague Stringology Conferen
e '05

and whose distan
e from the given words A and B does not ex
eed the threshold

th. The automaton's state q is the one that has been rea
hed while generating the

orre
tion pre�x C. New
andidates are atta
hed to the list of those found previously

(SCandid). In its �rst
all, pro
edure Explore re
 re
eives, in parti
ular, the initial

state q

0

, an empty set of
andidates SCandid, and matri
es H

A;C

and H

B;C

with

their two �rst
olumns initialized a

ording to De�nition 4 with C = �.

1: pro
edure Explore re
 (A, B, C, th, H

A;C

,H

B;C

, M

E

, q, SCandid)

2: input

3: A: word (a valid word)

4: B: word (an invalid word resulting from updates of A)

5: th: integer (error threshold)

6: M

E

: FSA (M

E

= hQ;�; Æ; q

0

; F i)

7: q: state (q 2 Q of M

E

, the
urrent state in the automaton)

8: input/output

9: C: word (a partial valid
andidate word)

10: H

A;C

: H T (edit distan
e matrix between A and C)

11: H

B;C

: H T (edit distan
e matrix between B and C)

12: SCandid: SCandid T (set of valid
andidate words)

13: begin

14: if (q 2 F and (H

A;C

[jAj � 1; jCj � 1℄ � th) and (H

B;C

[jBj � 1; jCj � 1℄ � th))

15: /** A
andidate is found. Candidates are sorted a

ording to Def. 3 **/

16: SCandid SortInsertion(SCandid; (C; (H

A;C

[jAj � 1; jCj � 1℄;

17: H

B;C

[jBj � 1; jCj � 1℄)))

18: end if

19: for ea
h (a; q

0

) 2 ��Q su
h that Æ(q; a) = q

0

20: C
on
at(C; a)

21: H

A;C

 AddNewColumn(H

A;C

; A; a)

22: H

B;C

 AddNewColumn(H

B;C

; B; a)

23: if ((
uted(A;C;H

A;C

; th) � th) and (
uted(B;C;H

B;C

; th) � th))

24: Explore re
(A; B; C; th; H

A;C

; H

B;C

; M

E

; q

0

; SCandid)

25: end if

26: H

A;C

 DeleteLastColumn(H

A;C

)

27: H

B;C

 DeleteLastColumn(H

B;C

)

28: C DelLastSymbol(C)

29: end for ea
h

30: end

The automaton M

E

is explored in the depth-�rst order. Ea
h time a transition

is followed the
urrent pre�x C is extended (line 20) and new
olumns are added

to both distan
e matri
es (lines 21{22). That allows to
he
k if C may still lead to

a
andidate remaining within the distan
e threshold from A and B (line 23). If it

does the path is followed via a re
ursive
all (line 24), otherwise the path gets
ut

o�. In ea
h
ase the transition is �nally ba
ked o� (lines 26-28) and a new transition

outgoing from the same state is tried out. If we arrive at a �nal state and the distan
e

from C to both A and B does not ex
eed the threshold (line 14) then C is a valid

andidate that gets inserted to the list of all
andidates found so far (lines 16{17).

The insertion is done a

ording to De�nition 3.

Note that the validation of the extended C with respe
t to the threshold (line 23)

is done via the fun
tion
uted that
omputes the
ut-o� edit distan
e between A and

210

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

C, and between B and C, as de�ned by [9℄. It
orresponds to the minimum value of

the
urrent
olumn in the edit distan
e matrix (i.e. the
olumn
orresponding to the

last
hara
ter in the extended C). It has been shown by [9℄ that if this value ex
eeds

the threshold then there is no
han
e for further
olumns not to ex
eed the threshold.

Thus, C may not be a pre�x of a valid word whose distan
e from A and B is lower

than the threshold.

Let's
onsider, for instan
e, a grammar E = (aba+bab)

�

and a valid word A = bab.

If we apply the sequen
e of updates S = (insert(a; 1); repla
e(a; 2)) to A we obtain

an invalid word B = baaa. For th = 2 the above fun
tion returns the following list of

andidates: SCandid = ((aba; (2; 2)); (bab; (0; 2))).

Given an ordered list of
orre
tion
andidates the user may
hoose the one that

best �ts his/her needs. However, we also wish to show the user how to obtain C

from A in order to let him/her avoid the same errors in future. The sequen
e of

updates needed to take A to C
an easily be dedu
ed from a minimum
ost tra
e

between these two words. In the following we present a re
ursive fun
tion Tra
e re
,

that allows the
onstru
tion of all minimal
ost tra
es transforming A into C.

1: fun
tion Tra
es re
 (A, C, H

A;C

, i, j, Tr)

2: input

3: A: word (a valid word before updates)

4: C: word (a valid
andidate word)

5: H

A;C

: matrix (edit distan
e matrix between A and C)

6: i, j: integers (indi
es of the
urrent element of H

A;C

)

7: Tr: Tr T (a partial tra
e between A and C)

8: result: STr T (a set of tra
es between A and C)

9: lo
al variable

10: STr: STr T (a set of partial tra
es between A and C)

11: begin

12: STr ; /* initialization */

13: if ((i 6= �1) or (j 6= �1))

14: if (H

A;C

[i; j℄ = H

A;C

[i� 1; j℄ + 1) /* deletion */

15: STr = STr [Tra
es re
(A,C,H

A;C

,i� 1,j,Tr) end if

16: if (H

A;C

[i; j℄ = H

A;C

[i; j � 1℄ + 1) /* insertion */

17: STr = STr [Tra
es re
(A,C,H

A;C

,i,j � 1,Tr) end if

18: if ((H

A;C

[i; j℄ = H

A;C

[i� 1; j � 1℄ + 1) and (A[i℄ 6= C[j℄)) /*repla
ement*/

19: STr = STr [Tra
es re
(A,C,H

A;C

,i� 1,j � 1,HeadInsert(Tr; (i; j))

20: end if

21: if ((H

A;C

[i; j℄ = H

A;C

[i� 1; j � 1℄) and (A[i℄ = C[j℄)) /*no operation*/

22: STr = STr [Tra
es re
(A;C;H

A;C

; i� 1; j � 1;HeadInsert(Tr; (i; j))

23: end if

24: else

25: STr = STr [fTrg

26: end if

27: return(STr)

28: end

The fun
tion runs over the error distan
e matrix from its bottom right-hand
orner

to its top left-hand
orner. For the
urrent matrix' element (i; j) the last parameter

Tr holds all partial tra
es allowing to transform A[i : jAj � 1℄ to C[j : jAj � 1℄. In its

�rst
all the fun
tion re
eives an empty set of partial tra
es Tr, as well as i = jAj � 1

211

Pro
eedings of the Prague Stringology Conferen
e '05

and j = jCj � 1, the indi
es of the bottom right-hand element of the matrix, i.e. the

one that
ontains the edit distan
e between A and C.

In order to �nd a minimum
ost tra
e between A and B it is suÆ
ient to re
all

how the relevant elements of the error distan
e matrix H

A;C

have been
al
ulated.

The relevant elements are those that dire
tly
ontribute to the
omputation of the

�nal bottom left-hand element of H

A;C

. Re
all that ea
h element H

A;C

[i; j℄ has been

dedu
ed in the pro
edure Explore re
 by the AddNewColumn fun
tion from one of its

three top left-hand neighboring elements:

1. If H

A;C

[i; j℄ is equal to H

A;C

[i� 1; j℄ + 1 it means that C[0 : j℄
an be obtained

from A[0 : i℄ by the same edit operations as those needed for transforming

A[0 : i � 1℄ to C[0 : j℄, and by an additional deletion of A[i℄ at position i.

Thus, the tra
e between A[0 : i℄ and C[0 : j℄ is the same as the tra
e between

A[0 : i� 1℄ and C[0 : j℄ (line 15) sin
e the letters to be deleted don't appear in

the tra
e.

2. If H

A;C

[i; j℄ is equal to H

A;C

[i; j � 1℄ + 1 it means that C[0 : j℄
an be obtained

from A[0 : i℄ by the same edit operations as those needed for transforming

A[0 : i℄ to C[0 : j � 1℄, and by an additional insertion of C[j℄ at position i + 1

(line 17) as insertions o

ur before the given position. The tra
e between A[0 : i℄

and C[0 : j℄ is the same as between A[0 : i℄ and C[0 : j � 1℄ sin
e the letters to

be inserted don't appear in the tra
e.

3. If H

A;C

[i; j℄ is equal to H

A;C

[i � 1; j � 1℄ + 1 and A[i℄ is di�erent from C[j℄ it

means that C[0 : j℄
an be obtained from A[0 : i℄ by the same edit operations as

those needed for transforming A[0 : i� 1℄ to C[0 : j � 1℄, and by an additional

repla
ement of A[i℄ by C[j℄ at position i. Thus, the tra
e between A[0 : i℄ and

C[0 : j℄ is the same as the tra
e between A[0 : i� 1℄ and C[0 : j � 1℄ to whi
h

a repla
ement line of A[i℄ by C[j℄ has been added (line 19).

4. If H

A;C

[i; j℄ is equal to H

A;C

[i� 1; j � 1℄ and A[i℄ is equal to C[j℄ it means that

C[0 : j℄
an be obtained from A[0 : i℄ by the same edit operations as those

needed for transforming A[0 : i � 1℄ to C[0 : j � 1℄. Thus, the tra
e between

A[0 : i℄ and C[0 : j℄ is the same as the tra
e between A[0 : i�1℄ and C[0 : j�1℄

to whi
h an identity line between A[i℄ and C[j℄ has been added (line 21).

Let's
onsider the same example as on page 211. For
andidate aba the above fun
-

tion returns the following set of minimum
ost tra
es: f((0; 1); (1; 2)); ((1; 0); (2; 1))g.

5 Complexity and Experimental Results

Let n = min(jAj; jBj) where B is the invalid word to be
orre
ted, resulting from a

valid word A. Let f

max

be the maximum fan-out of our automaton M

E

. Pro
edure

Explore re
 has to perform, at worst, a depth-�rst exploration of M

E

in whi
h the

depth of ea
h path
omes up to n+ th (be
ause a word staying within the threshold

th from both A and B may not be longer than n+th). Thus, the worst-
ase
omplexity

of this pro
edure is O(f

n+th

max

).

Fun
tion Tra
es re
 is
alled after pro
edure Explore re
 has determined the list of

all
andidates. At that moment the H

A;C

matrix for a
andidate C
hosen by the user

does not exist any more and has to be re
al
ulated whi
h takes a time proportional to

jAj � jCj. Fun
tion Tra
es re
 has to
ross the error distan
e matrix from the bottom

212

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

Regular expression Threshold Number of Number of Exe
ution

updates
andidates time(ms)

0 0 1 1

1 2 1 1

E = (ajb)
(dje) 2 3 2 10

3 4 1 1

5 3 4 10

0 0 1 1

1 2 3 1

E

0

= (ajb)

�

(dje?) 2 3 17 10

3 4 10 1

5 3 117 40

Table 1: Number of
andidates and exe
ution time obtained for the initial word a
d

when dealing with starred and non-starred regular expressions.

right-hand to the top left-hand
orner in order to �nd all tra
es
orresponding to the

given
andidate. In ea
h position the path may only
ontinue west, north or north-

west. Sin
e the matrix's size is no bigger than n� (n+ th), the number of all possible

re
ursive
alls is less than

P

n+th

i=1

3

i

= 3=2 � (3

n+th�1

� 1). So the
omplexity of the

tra
e
al
ulation is O(n

2

+ 3

n+th

) = O(3

n+th

).

Hen
e, the worst-
ase
omplexity of �nding all
andidates, and all tra
es for one

hosen
andidate is O(f

n+th

max

)+ O(3

n+th

) = O(

n+th

) where
 = max(f

max

; 3).

Although the
omplexity of our method seems to be dis
ouraging, the worst
ases

rarely happen in pra
ti
e. Our experimental results show that our algorithm is fast

and gives good results in most
ases. Our implementation was done in Java (JRE

1.4.1) running under Windows 2000. We use a 800 MHz Celeron Pentium system

with 392 Mbytes of memory and a 40 GB hard disk with 5400 rpm.

We have performed 160 experiments by varying the regular expression, the thresh-

old, the size of the initial word, and the number of updates. The statisti
al measures,

hosen among those that are not disproportionately a�e
ted by extreme s
ores ([5℄),

give the following results: the median (the value separating the highest half from the

lowest half of the results) is equal to 10 ms, the mode (the most frequent result) is 1

ms, and mean exe
ution time of the 90% fastest runs is 44 ms.

We further examined the importan
e of di�erent parameters on the number of

andidates proposed by the program, and on its exe
ution time. We noti
ed that the

existen
e of starred sub-expressions, possibly embedded (e.g. ((ab)

�

)

�

) or ranging

over a disjun
tion (e.g. (ajb)

�

�

), has a
ru
ial importan
e for these two results.

Table 1 presents two test sets
orresponding to regular expressions with and with-

out Kleene-operators. In ea
h test set, we varied two parameters: the error threshold

and the number of updates. Columns 4 and 5 give the number of
andidates generated

by our method, together with the time needed for this
omputation.

We noti
e that for the same word a starred expression allows more
orre
tion

andidates and their
omputation time may be several times higher than in the
ase of

a non-starred expression. The reason is that the algorithm tries to
ompose di�erent

words
ontaining repetitive
hara
ters within the range of the starred part of the

213

Pro
eedings of the Prague Stringology Conferen
e '05

Label Candidate edit distan
e(A;C

i

) edit distan
e(B;C

i

)

C

1

aaaaaa
d 2 1

C

2

aaaaa
d 1 2

C

3

aaaaab
d 2 2

C

4

aaaaba
d 2 2

C

5

aaabaa
d 2 2

C

6

aabaaa
d 2 2

C

7

abaaaa
d 2 2

C

8

baaaaa
d 2 2

Table 2: Candidates for E

0

= (ajb)

�

(dje?), A = aaaa
d (valid), B = aaaaa
a
d

(invalid), and th = 2.

expression. For instan
e, given the regular expression E

0

= (ajb)

�

(dje?), the initial

valid word A = aaaa
d, the resulting invalid word B = aaaaa
a
d, and threshold 2,

all
orre
tion
andidates are obtained by modifying the subsequen
e re
ognizable by

the subexpression (ajb)

�

while the suÆx, re
ognizable by
(dje?), remains inta
t (see

Table 2).

Our intuition is that word subsequen
es
orresponding to starred sub-expressions,

su
h as (ajb)

�

,
ould be treated as blo
ks, so that their modi�
ation is not proposed

if none of the user's updates falls within the range of the starred sub-expression. This

heuristi
 might allow some optimizations of our method.

6 Con
lusions and Future Work

We have introdu
ed the problem of an in
remental string-to-string
orre
tion: given a

regular grammar E, a valid word A and a sequen
e S of updates (insertions, deletions,

and repla
ements of letters) that transform A into an invalid word B, �nd all valid

words C that may result from A by sequen
es of updates that are as similar as possible

to S.

It seems non trivial to de�ne an eÆ
ient similarity measure between sequen
es of

updates. Therefore, we proposed an algorithm that addresses the above problem by

expressing the similarity of sequen
es of updates via the similarity of words resulting

from these updates. Thus, an in
remental string
orre
tion may be implemented

by the nearest-neighbor sear
h in a �nite-state automaton performed simultaneously

for both A and B within a given threshold, a

ording to algorithms proposed by

[11℄, [3℄ and [9℄. The re
onstru
tion of a tra
e between the initial valid word and

a
orre
tion
andidate
hosen by the user allows him/her to know the right update

sequen
e needed to obtain this
andidate.

Despite an exponential worst-
ase
omplexity (frequent in approa
hes based on an

extensive �nite-state automaton exploration), our algorithm gives good experimental

results
al
ulated over a large sample of tests with varying parameters. We think that

some optimizations,
on
erning both the
andidate's pertinen
e and the exe
ution

time, may be done if the internal stru
ture of the regular expression is taken into

a

ount, parti
ularly with respe
t to Kleene's operators. Moreover, it is also possible

214

In
remental String Corre
tion: Towards Corre
tion of XML Do
uments

to examine optimizations resulting from re
ent approa
hes to approximate sear
h in

a di
tionary su
h as [8℄.

Another fa
tor worth examination is the possibility of admitting two di�erent

threshold values for the two words A and B. That seems parti
ularly relevant in the

ase of long sequen
es of updates: if the threshold is mu
h lower than the number

of updates the user wished to perform then there is a small
han
e for a
andidate

remaining within this threshold distan
e from A to re
e
t the user's intentions. For

example, if the user has performed 10 updates he/she will probably not be satis�ed

with
andidates the vary only by one or two operations from the initial word A.

Admitting a higher threshold with respe
t to A and the lowest possible threshold

with respe
t to B seems a good strategy that we wish to experiment on.

The de�nition of an in
remental string-to-string
orre
tion problem is inspired

by the domain of in
remental XML-do
ument
orre
tion, in whi
h an initially valid

XML-tree is taken into a

ount in order to limit the
orre
tion spa
e to
ontexts

surrounding the points of updates. Thus, naturally, our main perspe
tive is the

extension of the presented method to deeper tree stru
tures in whi
h not only a node's

siblings but possibly also its an
estors and des
endants are taken into a

ount.

Referen
es

[1℄ B. Bou
hou and M. Halfeld Ferrari Alves. Updates and In
remental Validation

of XML Do
uments. In 9th International Workshop on Data Base Programming

Languages (DBPL), Potsdam, Germany, 2003.

[2℄ G. Clarke D. T. Barnard and N. Dun
an. Tree-to-tree Corre
tion for Do
ument

Trees. Te
hni
al Report 95-372, Department of Computing and Information

S
ien
e, Queen's University, Kingston, Ontario, 1995.

[3℄ M. W. Du. and S. C. Chang. A model and a fast algorithm for multiple errors

spelling
orre
tion. A
ta Informati
a, 29:281{302, 1992.

[4℄ P. A. V. Hall and G. R. Dowling. Approximate String Mat
hing. Computing

Surveys, 12(4):381{402, 1980.

[5℄ David C. Howell. Fundamental Statisti
s for the Behavioral S
ien
es. Library of

Congress Cataloging-in-Publi
ation Data, 4th ed., 1999.

[6℄ K. Kuki
h. Te
hniques for Automati
ally Corre
ting Words in Text. ACM

Computing Surveys, 24(4):377{439, 1992.

[7℄ R. Lowran
e and R. A. Wagner. An Extension of the String-to-String Corre
tion

Problem. Journal of the ACM, 22(2):177{183, 1975.

[8℄ S. Mihov and K. U. S
hulz. Fast approximate sear
h in large di
tionaries. Com-

putational Linguisti
s, 30(4):451{477, 2004.

[9℄ K. O
azer. Error-tolerant Finite-state Re
ognition with Appli
ations to Morpho-

logi
al Analysis and Spelling Corre
tion. Computational Linguisti
s, 22(1):73{89,

1996.

[10℄ R. A. Wagner. Order-n Corre
tion for Regular Languages. Communi
ations of

the ACM, 17(5):265{268, 1974.

[11℄ R. A. Wagner and M. J. Fis
her. The String-to-String Corre
tion Problem.

Journal of the ACM, 21(1):168{173, 1974.

215

