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Abstrat. Traditional Approximate Pattern Mathing (e.g. Hamming distane

errors, edit distane errors) assumes that various types of errors may our to

the data, but an impliit assumption is that the order of the data remains

unhanged.

Over the years, some appliations identi�ed types of \errors" were the data re-

mains orret but its order is ompromised. The earliest example is the \swap"

error motivated by a ommon typing error. Other widely known examples suh

as transpositions, reversals and interhanges are motivated by biology.

We propose that it is time to formally split the onept of \errors in data" and

\errors in address" sine they present di�erent algorithmi hallenges solved by

di�erent tehniques. The \errors in address" model, whih we all asynhronous

pattern mathing, sine the data does not arrive in a synhronous sequential

manner, is rih in problems not addresses hitherto.

We will onsider some reasonable metris for asynhronous pattern mathing,

suh as the number of inversions, or the number of generalized swaps, and

show some eÆient algorithms for these problems. As expeted, the tehniques

needed to solve the problems are not taken from the standard pattern mathing

\toolkit".

1 Motivation

Historially, approximate pattern mathing grappled with the hallenge of oping with

errors in the data. The traditional Hamming distane problem assumes that some

elements in the pattern are erroneous, and one seeks the text loations where this

number of errors is small enough [17, 14, 4℄, or eÆiently alulating the Hamming

distane at every text loation [1, 16, 4℄. The edit distane problem adds to the

assumption that some elements of the text are deleted, or that noise is added at some

text loations [18, 11℄. Indexing and ditionary mathing under these errors has also

been onsidered [15, 12, 21, 10℄.

Impliit in all these problems is the assumption that there may indeed be errors

in the ontent of the data, but the order of the data is inviolate. Data may be
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lost or noise may appear, but the relative position of the symbols is unhanged. Data

does not move around. Even when don't ares were added [13℄, when non-standard

models were onsidered[6, 20, 2℄ the order of the data was assumed to be ironlad.

Nevertheless, some non-onforming problems have been gnawing at the walls of

this assumption. The swap error, motivated by the ommon typing error where two

adjaent symbols are exhanged [19, 3℄, does not assume error in the ontent of the

data, but rather, in the order. The data ontent is, in fat, assumed to be orret.

Reently, the advent of omputational biology has added more problems of order

error to our repertoire. In evolution, one envisions a whole piee of genome to \de-

tah" and \reonnet" in a di�erent loation, or two piees of genome to \exhange"

plaes. These phenomena, of ourse, are assumed to take plae simultaneously with

traditional data ontent errors, however, their nature is rearrangement of the data,

rather than orruption of its ontents.

It turns out that the overall problem of adding these new rearrangement operators

to the ontent hanging operators is extremely diÆult. Thus more simpli�ed prob-

lems were onsidered in the literature. The rearrangement operators were isolated

and handled separately. Reversals [7℄, transpositions [5℄, and blok interhanges [9℄

were explored. The edit distane problem under these new operations is still too

diÆult, therefore the sorting permutation version of these problems was researhed.

This researh diretion led to interesting paths. First, the tools and tehniques

used were di�erent from the traditional pattern mathing tools. The results also

seem more varied. The sorting by reversal problem is NP-hard [8℄. It is still open

whether the sorting by transposition problem an be eÆiently solved determinis-

tially. Christie [9℄ gives an O(n

2

) algorithm for the sorting by blok interhange

problem.

In this paper, for the �rst time, we expliitely identify and formalize this di�erent

pattern mathing paradigm, that of errors in the order rather than error in the

ontent of the data. The advantages in formalizing this paradigm are:

1. Identifying the types of problems and tehniques required, rather than than

re-inventing ad-ho solutions.

2. Understanding the theoretial underpinnings of the problem.

3. Generalizing to other possible rearrangements and possibly providing more gen-

eral solutions.

One of the immediate understandings from a formal model de�nition of errors

in order, is that one needs to onsider appropriate distane measures. The error in

ontent measures are not neessarily meaningful in these irumstanes. We onsider

some generi error distanes, suh as minimum L

1

and L

2

distane on the address

of the data. We also illustrate the fat that more spei� distane measures are

neessary for spei� appliations.

The main ontributions of this researh are: We give a formal framework of rear-

rangement operators and the distane measure they de�ne. We also provide eÆient

algorithms for several natural operators and distane measures. It is exiting to point

out that some tehniques we use are totally new to pattern mathing. This reinfores

the realization that this new model is needed, as well as gives hopes to new researh

diretions and paths in the �eld of pattern mathing.

32



Asynhronous Pattern Mathing { Metris (Extended Abstrat)

2 The New Model

We begin by an illustration of di�erent appliations requiring di�erent rearrangement

operators.

An Example. At the Formula-one raes, ars and their designated drivers queue

behind the start line at a preise, predetermined order. Suppose that the ars arrive

at random order, and then have to rearrange into order. There is only a single passing

lane, so that at any given time only one pair of ars an swap loations. What is the

minimal number of swaps neessary in order to omplete the rearrangement? Suppose

that instead of reshu�ing ars, the ars stay in plae, and the drivers exhange ars.

To do so, the drivers meet mid way and swap keys. In this ase, multiple swaps an

our in parallel. What is the minimal number of parallel steps neessary in order to

get all the drivers in order? Customarily, rae ars and drivers are divided into groups.

Suppose that the initial queuing order determines the ordering by group, not by

spei� ar and driver. What is the minimum number of steps for the rearrangement

in this ase (sequential and parallel)?

Our new model onsiders how to eÆiently answer these and similar questions.

Rearrangement Systems and Distanes. Consider a set A and let x and y

be two n-tuples over A. We wish to formally de�ne the proess of onverting x to

y through a sequene of rearrangement operations. A rearrangement operator � is a

funtion � : [1::n℄! [1::n℄, with the intuitive meaning being that for eah i, � moves

the element urrently at loation i to loation �(i). Let � be a set of rearrangement

operators, and let w : �! R

+

be a ost funtion, assoiating a non-negative ost with

eah operator. We all the pair (�; w) a rearrangement system. Consider two vetors

x; y 2 A

n

and a rearrangement system R = (�; w), we de�ne the distane from x to y

under R. Let s = (�

1

; �

2

; : : : ; �

k

) be a sequene of rearrangement operators from �,

and let �

s

= �

1

Æ �

2

Æ � � � Æ �

k

be the omposition of the �

j

's. We say that s onverts

x into y if for any i 2 [1::n℄, x

i

= y

�

s

(i)

. That is, y is obtained from x by moving

elements aording to the designated sequene of rearrangement operations. The ost

of the sequene s is the sum of osts of the di�erent operators in s, w(s) =

P

k

j=1

w(�

j

).

The distane from x to y under R is de�ned as:

d

R

(x; y) = minfw(s)js onverts x to y g

If there is no sequene that onverts x to y then the distane is 1.

We extend the de�nition to tuples of di�erent lengths. In this ase, we de�ne the

distane between the two vetors to be the minimum distane between the shorter of

the two and the losest ontiguous subsequene of the longer.

We onsider several natural rearrangement systems and the resulting distanes.

For these systems we provide eÆient algorithms to ompute the distanes.

The Swaps Distane. We �rst onsider the set of rearrangement operators were

in eah operation the loation of exatly two entries an be swapped (as in the ar

rearrangement example above). The ost of eah swap is 1. We all the resulting

distane the swaps distane. We prove:
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Theorem 1. For tuples x and y of sizes m and n respetively (m � n) where all

entries of x are distint the swaps distane an be omputed in time O(m(n�m+1)).

The Parallel-Swaps Distane. Next we onsider the ase were in eah rear-

rangement operation multiple pairs an be swapped, but any element an partiipate

in at most one swap per operation (as in the drivers swap example above). Formally,

this orresponds to the set of all permutation with yles of length at most 2. The

ost of eah suh permutation is 1. We all the resulting distane the parallel swaps

distane, denoted by d

p-swap

(�; �). We prove:

Theorem 2. For any two tuples x and y, either d

p-swap

(x; y) =1 or d

p-swap

(x; y) �

2.

This means that for any two tuples x and y that are idential as multi-sets, it is

possible to onvert one to the other using only two parallel steps of swap operations!

We also prove:

Theorem 3. For tuples x and y of sizes m and n respetively (m � n) with k distint

entries in x, the parallel swaps distane an be omputed deterministially in time that

is the minimum of O(k

2

n logm) and O(m(n�m + 1)).

and,

Theorem 4. For tuples x and y of sizes m and n respetively (m � n), the parallel

swaps distane an be omputed randomly in expeted time that is the minimum of

O(n logm) and O(m(n�m+ 1)).

The L

1

Rearrangement Distane. Consider the set of rearrangement operations

where in eah operation exatly one element is moved. The element an be moved

to any other loation, and the ost of the operation is the distane the element is

moved. We all this the L

1

Rearrangement System and the resulting distane the L

1

Rearrangement Distane. We prove:

Theorem 5. For tuples x and y of sizes m and n respetively (m � n), the L

1

Rearrangement Distane an be omputed in time O(m(n � m + 1)). If all entries

of x are distint, then the distane an be omputed in time that is the minimum of

O(n log logm) and O(m(n�m + 1))

The L

2

Rearrangement Distane. Consider the same set of operations as in

the L

1

Rearrangement System, only that the ost of an operation is the square of the

distane. We all this the the L

2

Rearrangement System, and the resulting distane

the L

2

Rearrangement Distane. We prove:

Theorem 6. For tuples x and y of sizes m and n respetively (m � n), the L

2

Rearrangement Distane an be omputed in time that is the minimum of O(n logm)

and O(m(n�m+ 1))
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