
From SuÆx Trees to SuÆx Ve
tors

�

Elise Prieur and Thierry Le
roq

ABISS

University of Rouen

76281 Mont-Saint-Aignan, Fran
e

e-mail: felise.prieur,thierry.le
roqg�univ-rouen.fr

Abstra
t. We present a �rst formal setting for suÆx ve
tors that are spa
e

e
onomi
al alternative data stru
tures to suÆx trees. We give two linear algo-

rithms for
onverting a suÆx tree into a suÆx ve
tor and
onversely. We enri
h

suÆx ve
tors with formulas for
ounting the number of o

urren
es of repeated

substrings. We also propose an alternative implementation for suÆx ve
tors

that should outperform the existing one.

Keywords: SuÆx tree, suÆx ve
tor, repeats.

1 Introdu
tion

A suÆx ve
tor is an alternative data stru
ture to a suÆx tree. A suÆx ve
tor, for

a string y,
an store, in a redu
ed spa
e, the same information as in a suÆx tree

of y. SuÆx ve
tors have been introdu
ed by Monostori [4, 5, 6℄ in order to dete
t

plagiarism. The suÆx ve
tor of the string y
onsists in a su

ession of boxes lo
ated

at some positions on the string y. These boxes are equivalent to the nodes of the suÆx

tree of y. Monostori gave an \on-line" linear
onstru
tion algorithm of an extended

suÆx ve
tor and a linear algorithm to
ompa
t a ve
tor.

We are the �rst to give a formal setting for suÆx ve
tors. To do that we des
ribe

two linear algorithms to
onvert a suÆx tree into a suÆx ve
tor and
onversely. We

also supply suÆx ve
tors with
ounters of the number of o

urren
es of repeated

substrings for a given length. From pra
ti
al experien
es, we propose an alternative

physi
al implementation for the suÆx ve
tors that should outperform the one pro-

posed by Monostori. This arti
le is organized as follows: Se
tion 2 introdu
es the

di�erent notations and qui
kly re
alls suÆx trees; Se
tion 3 introdu
es suÆx ve
tors;

Se
tion 4 shows the
onversion from a suÆx tree to a suÆx ve
tor; Se
tion 5 gives

the
onversion from a suÆx ve
tor to a suÆx tree; Se
tion 6 presents a method for

ounting the number of o

urren
es of repeated substrings in a string; Se
tion 7 dis-

usses the suÆx ve
tor implementation and �nally Se
tion 8 gives our
on
lusions

and perspe
tives.

2 Notations

Let A be a �nite alphabet. Throughout the arti
le we will
onsider a string y 2 A

�

of

length n: y = y[0::n� 1℄. We append to y the symbol $ as a terminator whi
h does

not belong to A. From now on, y is a string of length n+ 1 �nishing with $.

37

Pro
eedings of the Prague Stringology Conferen
e '05

The suÆx tree T (y) of y is a linear size index stru
ture that
ontains all the

suÆxes of y from the empty one to y itself. It
an be
onstru
ted by
onsidering

the suÆx trie of y (tree
ontaining all the suÆxes of y whi
h edges are labeled by

exa
tly one letter) where all internal nodes with only one
hild are removed and

where remaining su

essive edge labels are
on
atenated. The leaves of the suÆx tree

ontain the starting position of the suÆx they represent.

The total length of all the suÆxes of y
an be quadrati
, the linear size of the suÆx

tree is thus obtained by representing edge labels by pairs (position; length) referen
ing

fa
tors y[position::position+ length� 1℄ of y. The terminator $ ensures that no suÆx

of y is an internal fa
tor of y and thus T (y) has exa
tly n + 1 leaves. Ea
h internal

node has at least two
hildren, leading to at most n internal nodes and thus a linear

number of nodes overall. This also gives a linear number of edges. Ea
h edge requires

a
onstant spa
e. Altogether the suÆx tree T (y) of y
an be stored in linear size.

Figure 1(a) presents T (aatttatttatta$).

There exist several linear time suÆx tree
onstru
tion algorithms [3, 7, 1℄ that

extensively use the notion of suÆx links.

Ea
h node p of the tree is identi�ed with the substring obtained by
on
atenating

the labels on the unique path from the root to the node p. We represent the existen
e

of the edge from node p to node q with label (i; `) by Æ(p; (i; `)) = q. We also
onsider

Target(p; a) whi
h
an be de�ned as Æ(p; (i; `)) for y[i℄ = a and ` > 1. For a 2 A

and u 2 A

�

, if au is a node of T (y) then s(au) = u is the suÆx link of the node au.

For instan
e, in Figure 1:

� node 7 in the tree is identi�ed with atttatt,

� the edge going from node 3 to node 7 is Æ(att; (4; 4)) = atttatt,

� and Target(att; t) = Æ(att; (4; 4)) = atttatt.

The right position of the �rst o

urren
e of the string u in y is denoted by

rpos(u; y), for instan
e rpos(att; aatttatttatta$) = 3.

3 SuÆx ve
tors

3.1 Extended suÆx ve
tors

The suÆx ve
tor V(y) of y is a linear representation of the suÆx tree T (y)
onsisting

in a su

ession of boxes. These boxes
ontain the same information as the nodes of

the tree, so that all the repeated substrings of y are represented in V(y).

Monostori did not give any formal de�nition of the suÆx ve
tors, he only gave

a linear time
onstru
tion algorithm. We will now give a des
ription of the suÆx

ve
tors.

There is a
orresponden
e between the lines of the boxes of the suÆx ve
tor and

the nodes of the suÆx tree. Let B

j

be the box of the suÆx ve
tor at position j of

the string y. The box B

j

is
onsidered as an array with k lines and 3
olumns. The

�rst
olumn
ontains the depth of the node, the se
ond one
ontains the natural edge.

The natural edge of a node p in a box B

j

is the position of the box
ontaining the

node q su
h that Target(p; y[j + 1℄) = q.

38

From SuÆx Trees to SuÆx Ve
tors

(a)
R

0
(0, 1)a

0

3

2

3′

(2, 1)t

(3, 1)t

(2, 2)tt

(1, 13)

7′

2 6
(8, 6)tatta$

(4, 4)tatt

(12, 2)a$

7′′

3 7

5

10

(8, 6)tatta$

(5, 1)a

(6, 2)tt

(12, 2)a$

(13, 1)$

4
8

7′′′

(8, 6)tatta$

(12, 2)a$

7

51

9

(12, 2)a$

(4, 4)tatt

(8, 6)tatta$

(12, 2)a$

5′
11

(5, 1)a

(6, 2)tt

(13, 1)$

12

(13, 1)$

13

(13, 1)$
(b)

Root 0 − 0|2 − 2|13 − 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|3|5 − 5

7|13|12 − 13
6|13|12 − 13
5|13|12 − 13
4|13|12 − 13

3|7|12 − 13
2|7|5 − 5

3|7|13 − 13
2|7|13 − 13

1|13|2 − 3|13 − 13

1

Figure 1: (a) SuÆx tree of the string aatttatttatta$. The edges are labelled by

pairs (position; length) and the substrings represented by the pairs. The label of the

edge from node 0 to leaf 0
orresponds to the substring atttatttatta$. (b) SuÆx

ve
tor of aatttatttatta$. SuÆx links are represented by dashed arrows.

The third
olumn of a box B

j

ontains the edge lists L. Ea
h edge L[g℄ of L is

stored as a pair (b; e). We use b = L[g℄:b and e = L[g℄:e, b is the beginning of the edge

(the position of the �rst
hara
ter) and e the end of the edge (the position of the box

ontaining the target node). So a box is
hara
terized by: B[h; 0℄ = depth; B[h; 1℄ =

ne; B[h; 2℄ = L for ea
h 0 6 h 6 k � 1.

Inside a box, there are impli
it suÆx links from node represented by depth d to

node represented by depth d�1. The depth of the deepest node is also stored in ea
h

box. Monostori pointed out in [4℄ that the depths in a box are
ontinuous.

The root of the suÆx tree is represented by a spe
i�
 box in the suÆx ve
tor.

Example

In the box B

3

in the ve
tor of Figure 1(b), the �rst line indi
ates that there exists

a node representing a substring u of length 3 with rpos(u; y) = 3, so u = att. Its

natural edge is 7, this means that there is an edge from u su
h that Target(u; y[4℄)

is a node in B

7

. The length of this edge is 4 (7-3), so this is the node of depth 7 in

B

7

whi
h re
ognizes atttatt.

The list of edges B

3

[1; 2℄
ontains 12 � 13. This means that there is one edge

(di�erent of the natural edge) going out from this node, its label begins at position

12 and ends at position 13. The end position is equal to the length of y, so this edge

leads to a leaf.

We now present an example of utilization of a suÆx ve
tor. Let y be the string

aatttatttatta$ and x be the string tatt. We use the suÆx ve
tor of y (Figure 1(b))

to know whether x is a substring of y. In the edge list of the root, there is an edge

labeled (2; 2) and y[2℄ = t, so we follow it and go to the box at position 2. This box

39

Pro
eedings of the Prague Stringology Conferen
e '05

has only one line. As y[3℄ 6= a, we do not follow the natural edge. The only edge in

B

2

[0; 2℄ begins at position 5, y[5℄ = a so we
an follow it. It leads to the box B

5

. As

we have already read the pre�x ta of x, we
onsider the line representing the node of

depth 2. Sin
e y[6℄ = t, we follow the natural edge whi
h leads to the box at position

7, so its length is 2. As y[6::7℄ = tt, we have found one o

urren
e of x in y.

3.2 Compa
t suÆx ve
tors

We introdu
e here the notion of
ompa
t suÆx ve
tor. A suÆx ve
tor
an be
om-

pa
ted when, for lines h

1

and h

2

of the box at position j, the edge list of line h

1

is

in
luded in the edge list of line h

2

: B

j

[h

1

; 2℄ � B

j

[h

2

; 2℄. In this
ase, we just need to

store the list of the line h

2

and
reate a link between the two lists. These boxes are

alled redu
ed boxes. They
ontain the number of nodes. To
ompa
t a suÆx ve
tor,

Monostori established three rules (see [4℄). These three
ompa
tion rules are:

Rule A the node with depth d� 1 has the same number of edges as the node with

depth d and these are the same edges. In this
ase we simply set their �rst edge

pointers to the same position.

Rule B the node with depth d�1 has the same edges as the node with depth d plus

some extra edges. In this
ase, the list of edges of the node with depth d � 1

ontains its own edges and a pointer to the list of edges of the node with depth

d.

Rule C the node with depth d� 1 has di�erent edges to the node with depth d. In

this
ase, all the edges must be represented in a separate list.

These rules are illustrated in Figure 2. Monostori gave a linear time algorithm for

ompa
ting an extended suÆx ve
tor.

d−2

d−1

d−3

dRule B

Rule A

Rule C

depths

Figure 2: Representation of the
ompa
tion rules

Example

In the ve
tor of Figure 1, we note that, in the boxes at positions 5 and 7, only the

depths di�er between the lines. So these boxes
ould be
ompa
ted storing only the

�rst line and the number of lines. The result of the
ompa
tion of this suÆx ve
tor

is shown Figure 3.

40

From SuÆx Trees to SuÆx Ve
tors

Root 0 − 0|2 − 2|13 − 13

0 1 2 3 4 5 6 7 8 9 10 11 12 13

a a t t t a t t t a t t a $

1|3|5 − 5 7|13|12 − 13 4

3|7|12 − 13

2|7|5 − 5

3|7|13 − 13 2

1|13|2 − 3|13 − 13

Figure 3: Compa
t suÆx ve
tor of the string aatttatttatta$.

4 Converting a suÆx tree into a suÆx ve
tor

4.1 Method

We �rst outline the prin
iple of the
onversion of a suÆx tree into an extended suÆx

ve
tor by giving some propositions. The �rst one establishes the
orresponden
e

between an internal node in the suÆx tree and a line in a box in the extended suÆx

ve
tor.

Proposition 4.1. Let p be an internal node of T (y) su
h that y[j � d + 1::j℄ is the

�rst o

urren
e of the substring represented by p. This implies that there exists a box

at position j in the suÆx ve
tor V(y) and a line h in B

j

su
h that B

j

[h; 0℄ = d.

Proof

Let u 2 T (y) be a node of the suÆx tree of the string y, u is a substring of y.

When u is a node it means that it has at least two o

urren
es in y, this implies that

u is represented in V(y) sin
e all the repeated substrings of y are represented in V(y).

We denote by j = rpos(u; y) the right position of the �rst o

urren
e of u in y.

So, there exists a box B

j

at position j in the ve
tor. In this box, there exists a line

h su
h that B

j

[h; 0℄ = juj. If u = y[j � d+ 1::j℄, we have B

j

[h; 0℄ = d.

Line h is su
h that among all the substrings w 2 T (y) su
h that rpos(w; y) = j,

u is the (h+ 1)-th longest one.

Example

In the tree of Figure 1, node 5
an be identi�ed with the substring u = tta of y

for whi
h rpos(u; y) = 5. This node veri�es Proposition 4.1 sin
e the �rst line of the

box B

5

in the ve
tor represents a node of depth 3 (B

5

[0; 0℄ = 3 and jttaj = 3).

41

Pro
eedings of the Prague Stringology Conferen
e '05

The next proposition establishes the
orresponden
e between an edge in the suÆx

tree and either the natural edge or one edge in an edge list of the suÆx ve
tor.

Proposition 4.2. Let (i; `) be an edge of T (y) su
h that Æ(p; (i; `)) = q where p and

q are nodes of the suÆx tree. Node p is su
h that y[j�d+1::j℄ is the �rst o

urren
e

of the substring represented by p. Two
ases
an arise:

1. (i; `) is the natural edge of p (y[i℄ = y[j + 1℄), then B

j

[h; 1℄ = j + `;

2. (i; `) is an edge su
h that y[i℄ 6= y[j+1℄ then there exists a pair (b; e) in B

j

[h; 2℄

su
h that b = i and e = i+ `� 1.

Proof

Node p satis�es Proposition 4.1.

1. The natural edge:

Considering the substring u = y[j� d+1::j℄ the edge beginning with the letter

y[j+1℄ gives that there exists a node at position rpos(Target(u; y[j+1℄); y) =

j + `. The number j + ` is either the length of y (so the edge leads to a

leaf) or the right position of the substring u � y[j + 1::j + `℄. In the latter

ase, after Proposition 4.1, there exists a box at position j + `. Thus, j + ` is

obtained following the natural edge of the node at line h in B

j

. This implies

that B

j

[h; 1℄ = j + `.

2. The others edges:

Considering Target(u; y[i℄) = q su
h that rpos(Target(u; y[i℄); y) = i+ `� 1

with y[i℄ 6= y[j + 1℄. The number i + ` � 1 is either the length of y (so the

edge leads to a leaf) or the right position of the substring u � y[i::i + ` � 1℄.

In the latter
ase, after Proposition 4.1, there exists a box at position i + ` �

1. Then, in box B

j

there exists an edge L[g℄ 2 B

j

[h; 2℄ su
h that L[g℄:e =

rpos(Target(u; y[i℄); y) = i + ` � 1 and L[g℄:b = L[g℄:e � jTarget(u; y[i℄)j+

1 + juj = i.

Example

In the tree of Figure 1(a), there is an edge going out from node 5 beginning with

y[6℄ = t and labeled by (6; 2). This node
an be identi�ed with the substring u = tta

of y for whi
h rpos(u; y) = 5. It is represented by the �rst line of B

5

. We have

rpos(Target(tta; y[6℄); y) = rpos(ttatt; y) = 7 so B

5

[0; 1℄ = 7. This is the natural

edge, this veri�es Proposition 4.2 sin
e B

5

[0; 1℄ = 5 + 2 = j + `.

Node 5 in the suÆx tree possesses only one edge beginning by a
ara
ter in

A n fy[6℄g labeled by (13; 1), rpos(Target(tta; $); y) = 13 (this is a leaf) and

jTarget(tta; $)j � 1 � jttaj = 0. The se
ond part of Proposition 4.2 holds be-

ause in the box we have: B

5

[1; 2℄ = L su
h that L has one element de�ned by

L[0℄:e = 13 and L[0℄:b = 13.

In the next proposition, the spe
ial
ase of the root is pro
essed.

42

From SuÆx Trees to SuÆx Ve
tors

Tree2Ve
t(T (y))

. R is the root of the tree T (y)

1 AddRoot(R;V(y))

2 for ea
h
hild node p of R su
h that p is not a leaf do

3 Push(S; p)

4

�

while not Sta
k-Empty(S) do

5 p Pop(S)

6 AddNode(p;V(y))

7 for ea
h
hild node q of p su
h that q is not a leaf do

8 Push(S; q)

9

� �

return V(y)

Figure 4: Algorithm
onverting a suÆx tree into a suÆx ve
tor.

Proposition 4.3. Ea
h edge (i; `) going out from the root of the tree is represented

by the pair (i; i + ` � 1) in the edge list of the spe
i�
 box of the root of the suÆx

ve
tor.

Proof

Similar to the proof of Proposition 4.1.

The next two propositions show the
orresponden
e for the suÆx links.

Proposition 4.4 (Theorem 5.1 of [4℄). Let s(u) = v be a suÆx link in T (y) su
h

that rpos(u; y) = rpos(v; y) then u and v are represented in the same box of V(y).

Proposition 4.5. Let s(u) = v be a suÆx link in T (y) su
h that i = rpos(u; y) 6=

rpos(v; y) = j then s(B

i

) = B

j

.

Proof

The suÆx links are only de�ned from internal nodes to internal nodes. After

Proposition 4.1, node u is represented in the box at position i and node v in the box

at position j.

4.2 Algorithm

We now des
ribe the algorithm to get a suÆx ve
tor from a suÆx tree. For ea
h node

p of T (y), we need to know the value rpos(p; y). This
an be
omputed if ea
h node

p stores its length jpj and the position of the �rst o

urren
e of p whi
h
orresponds

to the number of the smallest leaf in the subtree rooted at p. This algorithm is based

on a depth-�rst sear
h of the suÆx tree. It ensures the visit of all the nodes of the

suÆx tree. We use a sta
k S to visit the nodes (see Figure 4).

First, the algorithm pro
esses the root be
ause, in the ve
tor, the root is not

represented as the other nodes. The fun
tion AddRoot,
alled line 1 in Figure 4,

adds all the edges going out from the root of the tree in the root list of the suÆx

ve
tor. It is des
ribed Figure 5.

43

Pro
eedings of the Prague Stringology Conferen
e '05

AddRoot(R;V(y))

. LR is the list representing the root of V(y)

1 LR �

2 for ea
h edge (i; `) going out from R do

3 Insert((i; i + `� 1); LR)

�

Figure 5: Algorithm adding the root of a suÆx tree into a suÆx ve
tor.

AddNode(p;V(y))

1 j rpos(p; y)

2 if �B

j

then

3 Create(B

j

)

4 h 0

5 else h k

. k is the number of lines in B

j

6 k k + 1

7

�

B

j

[h; 0℄ jpj

8 for ea
h edge (i; `) going out from p do

9 if y[i℄ = y[j + 1℄ then

. this is the natural edge

10 B

j

[h; 1℄ j + `

11 else Insert((i; i + `� 1); B

j

[h; 2℄)

12 if j 6= rpos(s(p); y) then

13 s(B

j

) B

rpos(s(p);y)

� �

Figure 6: Algorithm adding a node of a suÆx tree into a suÆx ve
tor.

44

From SuÆx Trees to SuÆx Ve
tors

Then, for ea
h node p of the tree, we add its equivalent in the ve
tor: we insert

a line in a box at position rpos(p; y) in the ve
tor and if the box does not exist, we

reate it with the
orre
t line. This fun
tion is detailed in Figure 6.

Theorem 4.1. The algorithm Tree2Ve
t(T (y))
orre
tly
omputes V(y) in time

O(jyj)

Proof

The
orre
tness of the algorithm
omes from Propositions 4.1 to 4.5.

Ea
h node and ea
h edge of the suÆx tree are pro
essed only on
e. The operations

per node and per edge take a
onstant time. Sin
e the number of edges and nodes of

the suÆx tree is linear, the result on the running time follows.

5 Converting a suÆx ve
tor into a suÆx tree

5.1 Method

We now show the
onversion from an extended suÆx ve
tor to a suÆx tree. The next

proposition deals with the internal nodes.

Proposition 5.1. Ea
h line h of a box B

j

in the suÆx ve
tor of y
an be asso
iated

to an internal node of the suÆx tree of y.

Proof

Let u be the substring of y su
h that u = y[j �B

j

[h; 0℄ + 1::j℄. If there is a line h

in a box B

j

it means that u � y[j + 1::B

j

[h; 1℄℄ and u � y[L[0℄:e::L[0℄:b℄ are fa
tors of y

with L[0℄ 2 B

j

[h; 2℄ and y[j + 1℄ 6= y[L[0℄:e℄. This means that u has two o

urren
es

in y followed by two di�erent letters whi
h implies that u represents an internal node

in T (y).

Example

In the box B

5

of Figure 1(b), B

5

[0; 0℄ = 3 indi
ates that the substring u =

y[5 � 3 + 1::5℄ = y[3::5℄ is represented in the �rst line of this box. This string is

tta, it
orresponds to node 5 in the suÆx tree of y.

The three following propositions deal with the edges.

Proposition 5.2. Ea
h value B

j

[h; 1℄ of a line h of a box B

j

in the suÆx ve
tor of

y
an be asso
iated to an edge of the suÆx tree of y.

Proof

Let u be the substring of y su
h that u = y[j � B

j

[h; 0℄ + 1::j℄. There exists an

edge in the tree su
h that Æ(u; (j+1; B

j

[h; 1℄� j)) = y[j�B

j

[h; 0℄+1::B

j

[h; 1℄℄. Thus

y[j � B

j

[h; 0℄ + 1::B

j

[h; 1℄℄ is in T (y), it
an be an internal node or a leaf.

Example

In the box B

5

of Figure 1(b), the se
ond
olumn of the �rst line means that we
an

go to position 7 following an edge starting from position 6, this edge is Æ(tta; (6; 2))

in T (y).

45

Pro
eedings of the Prague Stringology Conferen
e '05

Proposition 5.3. Ea
h pair (b; e) in a edge list of a line h of a box B

j

in the suÆx

ve
tor of y
an be asso
iated to an edge of the suÆx tree of y.

Proof

Let u be the substring of y su
h that u = y[j � B

j

[h; 0℄ + 1::j℄. There exists an

edge in the tree su
h that Æ(u; (b; e� b + 1)) = u � y[e::b℄. Thus u � y[e::b℄ is in T (y),

it
an be an internal node or a leaf.

Example

The third
olumn of the �rst line ofB

5

of Figure 1(b) has only one edge, L[0℄:b = 13

and L[0℄:e = 13 (L[0℄:e = jyj means that this edge leads to a leaf). We have to verify

that there exists an edge su
h that Æ(tta; (L[0℄:b; L[0℄:e�L[0℄:b+1)) = Æ(tta; (13; 1))

in the tree. The node 5, whi
h re
ognizes the same substring as the �rst line of B

5

,

has an edge labeled (13; 1) going out to a leaf. We showed the equivalen
e between

the node 5 in the tree and the �rst line of B

5

in the ve
tor.

Proposition 5.4. Ea
h pair (b; e) in a edge list of the root the suÆx ve
tor of y
an

be asso
iated to an edge of the suÆx tree of y.

Proof

Similar to Proposition 5.3.

The next proposition deals with the leaves.

Proposition 5.5. The leaves of the suÆx tree T (y)
an be retrieved from the suÆx

ve
tor V(y).

Proof

This is a dire
t
onsequen
e of Propositions 5.3 to 5.5 and the fa
t that there is

exa
tly one edge leading to ea
h leaf.

The two following propositions deal with the suÆx links.

Proposition 5.6 (Theorem 5.1 of [4℄). In a box B

j

of k lines the suÆx link of

the node represented by the line h points to the node represented by the line h+1 for

0 6 h < k � 1.

Proposition 5.7. In a box B

j

of k lines the suÆx link of the node represented by the

line k � 1 points to s(B

j

).

Proof

By
onstru
tion.

5.2 Algorithm

We give in this se
tion an algorithm that
omputes a suÆx tree from an extended

suÆx ve
tor for a string y. It �rst pro
esses the root box of the suÆx ve
tor and then

pro
esses sequentially ea
h remaining box of the ve
tor. For ea
h box it sequentially

pro
esses ea
h lines (see Figure 7).

46

From SuÆx Trees to SuÆx Ve
tors

Ve
t2Tree(V(y))

1 R new node

2 for ea
h (b; e) in the edge list of the root box of V(y) do

3 p new node at depth e� b + 1 at position e

4 Æ(R; (b; e� b + 1)) p

5

�

for j 0 to n do

. k is the number of lines of the box B

j

. p is the node previously
reated at depth B

j

[k � 1; 0℄ at position j

6 q new node at depth B

j

[k � 1; 0℄ +B

j

[k � 1; 1℄� j + 1 at position B

j

[k � 1; 1℄

7 Æ(p; (j + 1; B

j

[h; 1℄� j + 1)) q

8 r p

9 for ea
h pair (b; e) 2 B

j

[k � 1; 2℄ do

10 q new node at depth B

j

[k � 1; 0℄ + e� b + 1 at position e

11 Æ(p; (b; e� b + 1)) q

12

�

s(p) s(B

j

)

13 for h k � 2 to 0 do

. p is the node previously
reated at depth B

j

[h; 0℄ at position j

14 q new node at depth B

j

[h; 0℄ +B

j

[h; 1℄� j + 1 at position B

j

[h; 1℄

15 Æ(p; (j + 1; B

j

[h; 1℄� j + 1)) q

16 for ea
h pair (b; e) 2 B

j

[h; 2℄ do

17 q new node at depth B

j

[h; 0℄ + e� b + 1 at position e

18 Æ(p; (b; e� b + 1)) q

19

�

s(r) p

20 r p

21

� �

return T (y)

Figure 7: Algorithm
onverting a suÆx ve
tor into a suÆx tree.

Theorem 5.1. The algorithm Ve
t2Tree(V(y))
orre
tly
omputes T (y) in time

O(jyj).

Proof

The
orre
tness of the algorithm
omes from Proposition 5.1 to 5.6.

The algorithm pro
esses ea
h pairs of ea
h lines of ea
h boxes of the suÆx ve
tor

whi
h
orrespond to the edges and the nodes of the suÆx tree whose quantity is

linear. The only diÆ
ulty
onsists in retrieving a node at depth d for position j. This

an be realized by storing the largest depth in ea
h box. All the other operations

take
onstant time. The result on the running time follows.

6 Repeats

Before
ounting the number of repeats of the substrings of y, we explain some notions

for the
ounting of the number of o

urren
es.

6.1 Counting the number of o

urren
es

As mentioned before, ea
h line of a box of V(y) is asso
iated to a node u in T (y) and

thus to a substring of y. Let B

j

be a box of V(y), let h be a line of B

j

, the line h is

47

Pro
eedings of the Prague Stringology Conferen
e '05

asso
iated to the substring u = y[j � B

j

[h; 0℄ + 1::j℄. Let nbO

(u) be the number

of o

urren
es of the substring u. Let nbL(t) be the number of leaves in the subtree

rooted at the end of any edge t .

Then

nbL(t) =

(

1 if t = jyj;

nbO

(v) otherwise

where v is the node in the box B

t

su
h that t is the end position of the edge going

to node v.

We then dedu
e that

nbO

(u) = nbL(ne) +

X

L[g℄2B

j

[h;2℄

nbL(L[g℄:e):

With this expression, it is easy to obtain a linear algorithm whi
h adds the value

nbO

(u) on ea
h line of the ve
tor. This algorithm visits the boxes of the suÆx

ve
tor from right to left and
ompletes the lines with nbO

(u).

6.2 Counting the number of repeats

The method des
ribed in this se
tion allows to
ompute for ea
h substring of y with

a given length lg < n, its number of o

urren
es in y. Let lpo

(lg) be the list of pairs

(rpos(u; y); nbO

(u)) for all substrings u of y of length lg.

The prin
iple is to visit all the boxes of the suÆx ve
tor and for ea
h line h in a

box at position j su
h that B

j

[h; 0℄ > lg to update lpo

(lg) using nbO

(u) where u

is the substring represented by this line.

First, we test if the depth of the deepest node of the box we are visiting is larger

than lg. In the
ontrary
ase, the visit of the box stops. For redu
ed boxes we only

have to take into a

ount the deepest node, whereas in the other boxes we have to

pro
ess all the nodes whose depth is larger than lg. We now explain the two di�erent

ases.

Redu
ed box Let us assume that we are pro
essing the redu
ed box B

j

and

B

j

[0; 0℄ = d > lg. This implies this line represents u = y[j � d + 1::j℄. Let j

0

be

a position su
h that j � d+ 1 6 j

0

6 d� k + 1 and jy[j

0

::j℄j > lg (k is the number of

lines represented in the box). For ea
h possible j

0

, let v be y[j

0

::j

0

+ lg� 1℄, either we

add the pair (rpos(v; y); nbO

(u)) in the list or we update nbO

(v) with nbO

(u)

if v is already present in lpo

.

Extended box For ea
h line h of the extended box B

j

su
h that B

j

[h; 0℄ = d > lg.

This implies this line represents u = y[j � d + 1::j℄. Let v be the pre�x of length lg

of u, either we add the pair (rpos(v; y); nbO

(u)) in the list or we update nbO

(v)

with nbO

(u) if v is already present in lpo

.

After that, the list lpo

(lg) gives the number of o

urren
es of repeated substring

of y of length lg.

48

From SuÆx Trees to SuÆx Ve
tors

7 Implementation

7.1 Monostori's implementation

We now explain the representation used by Monostori to store
ompa
t suÆx ve
tors

(se
tion 5.4 of [4℄). Ea
h box
ontains the following information:

Deepest node The deepest node value is usually small so Monostori proposed to

store it in 1 or 4 bytes. The �rst bit is used to denote the number of bytes needed to

store the value, so the deepest node value is represented with 7 or 31 bits.

Number of nodes In a box, we also need the number of nodes value whi
h is

smaller than the deepest node value. The number of nodes
an �t into one byte when

the deepest node value is stored into one byte. So, it is not ne
essary to use another

bit to
ag as for the depth.

SuÆx link The next information stored in a box is the suÆx link. If the number of

nodes is equal to the depth of the deepest node, this means that the smallest depth in

the box is 1. So the suÆx link of the box is impli
it to the root. In this representation,

the suÆx link is stored anyway be
ause its �rst bit is used to indi
ate if the box is a

redu
ed one and its se
ond one is used to indi
ate if the values of the natural edges

will need 1 or 4 bytes.

Natural edges Then the natural edges are stored in an array
alled array of next

node pointers. We
an save spa
e by storing the length of an edge rather than the

end position. If there is one of the lengths of the natural edges of the box whi
h need

to be stored in more than one byte, all of them are stored in 4 bytes.

Edges At last, we have to
onsider the representation of the edges. An edge is

represented with its start position and its length. The �rst edge pointer of a node

gives the memory address of the list of edges going out from this node. The �rst bit

of a start position of an edge indi
ates if this edge leads to a leaf. In this
ase, the

length of the edge is not stored. The next bit
ags whether this is the last edge of

the list. The third one is used to indi
ate the number of bytes (1 or 4) required to

store the length of the edge.

7.2 Counting

Table 1
ompares the spa
e required by the suÆx ve
tor with the spa
e required by

the suÆx tree implemented with Kurtz's method [2℄. It is extra
ted from Table 5.1

in [4℄. Here, we give the results for four �les whi
h are two English texts (book2 and

bible), one C program (prog
) and one DNA sequen
e (e
oli). The results are

given in bytes per symbol of the input sequen
es.

The measures done by Monostori show that its implementation of the suÆx ve
tors

is less eÆ
ient for DNA sequen
es than for large alphabets. Therefore we performed

experiments on several DNA sequen
es. Tables 2 to 6 give the results for �ve of them:

�
hromosome 4 of S.
erevisiae (of length 1,531,931);

49

Pro
eedings of the Prague Stringology Conferen
e '05

Table 1: Comparison of spa
e requirements of suÆx ve
tors and suÆx trees.

File name

File size

(in bytes)

Bytes/symbol

Compa
t SuÆx Ve
tor

Bytes/symbol Kurtz

book2 610,857 8.61 9.67

bible 4,047,393 8.53 7.27

prog
 39,612 8.63 9.59

e
oli 4,638,691 12.51 12.56

�
hromosome 3 of E.
oli (of length 13,783,270);

�
hromosome 5 of E.
oli (of length 20,922,241);

�
hromosome 2 of A. thaliana (of length 19,847,294);

�
hromosome 4 of A. thaliana (of length 17,790,892).

For ea
h sequen
e, we build its extended suÆx ve
tor and reported for ea
h box:

� the number of nodes;

� the depth;

� the length of the natural edge minus 1 (sin
e it is always at least equal to 1);

and for ea
h edge list of ea
h box:

� the next position;

� the di�eren
e between the next position and the position of the box minus 2

(sin
e it is always at least equal to 2);

� the length of the edge minus 1 (sin
e it is always at least equal to 1).

For all the values we
ounted the number of them that
an �t between:

� 1 and 6 bits;

� 7 and 14 bits;

� 15 and 22 bits;

� 23 and 30 bits.

The idea is, instead of using only one
ag bit and use 1 or 4 bytes for representing

the di�erent obje
ts, to use two
ag bits and 1, 2, 3 or 4 bytes for representing them.

The tables
learly show that this approa
h will save a large number of bytes in all

ases. Of
ourse, storing the di�eren
e between the next position and the position

of the box rather than the next position always enables to save storage spa
e. The

a
tual total gain is not yet
ompletely measurable sin
e, to keep a dire
t a

ess to

any node in a box, all the natural edges in a box are stored with the spa
e ne
essary

for the largest natural edge. We
an now present an alternative implementation.

50

From SuÆx Trees to SuÆx Ve
tors

Table 2: Counts for
hromosome 4 of S.
erevisiae. It
ontains 1,531,931 base pairs.

1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bits

Number of nodes 501,378 129

Depth 875,852 13,924

Natural edge 369,501 6497 513,778

Next position 55 18,794 1,555,245

Di�eren
e 2539 128,375 1,443,180

Edge length 642,254 9143 922,697

Table 3: Counts for
hromosome 3 of E.
oli. It
ontains 13,783,270 base pairs.

1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bits

Number of nodes 4,182,237 2283

Depth 7,978,520 172,622

Natural edge 3,697,663 32,220 4,421,259

Next position 2 18,527 4,529,723 9,302,660

Di�eren
e 36,315 439,978 11,548,079 1,826,540

Edge length 5,633,779 35,474 8,181,659

Table 4: Counts for
hromosome 5 of E.
oli. It
ontains 20,922,241 base pairs.

1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bits

Number of nodes 6,395,182 3224 4

Depth 11,998,929 288,722 40,428

Natural edge 5,456,836 121,698 5156 6,744,389

Next position 8 18,606 4,579,468 16,428,416

Di�eren
e 42,261 485,515 14,355,158 6,143,564

Edge length 8,583,613 111,606 2344 12,328,935

Table 5: Counts for
hromosome 2 of A. thaliana. It
ontains 19,847,294 base pairs.

1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bits

Number of nodes 6,429,030 2192

Depth 11,499,363 137,572 183,616

Natural edge 5,353,725 32,671 6,434,155

Next position 61 18,470 4,630,471 15,624,486

Di�eren
e 37,770 426,015 14,124,810 5,691,893

Edge length 8,186,302 23,318 12,063,868

Table 6: Counts for
hromosome 4 of A. thaliana. It
ontains 17,790,892 base pairs.

1 { 6 bits 7 { 14 bits 15 { 22 bits 23 { 30 bits

Number of nodes 5,809,708 1869

Depth 10,203,150 136,807 224,650

Natural edge 4,767,148 33,801 5,763,658

Next position 61 18,713 4,578,990 13,529,684

Di�eren
e 26,541 474,155 13,353,092 4,273,660

Edge length 7,325,278 33,235 10,768,935

51

Pro
eedings of the Prague Stringology Conferen
e '05

7.3 An alternative implementation

Here, we explain how to use the idea explained in se
tion 7.2 to redu
e the spa
e.

Ea
h box
ontains the following information:

Deepest node Instead of storing in 1 or 4 bytes, we
ould store the depth of the

deepest node in 1, 2, 3 or 4 bytes. This means that we have to use the two �rst bits

to indi
ate how many bytes we need. So the deepest node value is stored in 6, 14, 22

or 30 bits.

Number of nodes As mentioned in Se
tion 7.1, the number of bytes needed to

store the number of nodes depends on the number of bytes of the deepest node value.

Then, if we need 6, 14, 22 or 30 bits to store this depth, we
ould use respe
tively 1,

2, 3 or 4 bytes to store the number of nodes.

SuÆx link Similar to Se
tion 7.1.

Natural edges We
an use two
ag bits and then 1, 2, 3, or 4 bytes for all the

values. We store the length of the natural edge minus 1 sin
e it is always larger than

1.

Edges Instead of storing the start position of an edge, we
ould store the di�eren
e

between the start position and the position of the box. For a box at position j and

an edge starting at L[g℄:b > j, we store L[g℄:b� j � 2. We
an use the same idea as

for the deepest node value to store L[g℄:b� j � 2 and the length of L[g℄� 1 using 1,

2, 3 or 4 bytes.

The main idea is to redu
ed the spa
e required with Monstori's implementation for

DNA sequen
es by storing the data with 2 or 3 bytes instead of 4 when it is possible.

To do that we use 2 bits for the needed number of bytes. Tables 2 to 6 show that we

an redu
e the spa
e in many
ases.

8 Con
lusions and perspe
tives

We presented a �rst formal setting for suÆx ve
tors that are spa
e e
onomi
al alter-

native data stru
tures to suÆx trees. We gave two linear algorithms for
onverting

a suÆx tree into a suÆx ve
tor and
onversely. We enri
hed suÆx ve
tors with

formulas for
ounting the number of o

urren
es of repeated substrings. We �nally

proposed an alternative implementation for suÆx ve
tors that should outperform the

one proposed by Monostori spe
ially for small alphabets and large sequen
es.

In order to really take advantage of this implementation we are studying an \on-

line" linear algorithm for dire
tly building a
ompa
t suÆx ve
tor. This should allow

to deal eÆ
iently with huge sequen
es su
h as human
hromosomes.

52

From SuÆx Trees to SuÆx Ve
tors

Referen
es

[1℄ M. Fara
h. Optimal suÆx tree
onstru
tion with large alphabets. In Pro
eedings

of the 38th IEEE Annual Symposium on Foundations of Computer S
ien
e, pages

137{143, Miami Bea
h, FL, 1997.

[2℄ S. Kurtz. Redu
ing the spa
e requirements of suÆx trees. Software Pra
ti
e &

Experien
e, 29(13):1149{1171, 1999.

[3℄ E. M. M
Creight. A spa
e-e
onomi
al suÆx tree
onstru
tion algorithm. Journal

of Algorithms, 23(2):262{272, 1976.

[4℄ K. Monostori. EÆ
ient Computational Approa
h to Identifying Overlapping Do
-

uments in Large Digital Colle
tions. PhD thesis, Monash University, 2002.

[5℄ K. Monostori, A. Zaslavsky, and H. S
hmidt. SuÆx ve
tor: Spa
e-and-time-

eÆ
ient alternative to suÆx trees. In CRPITS '02: Pro
eedings of the 25th Aus-

tralasian Computer S
ien
e Conferen
e, volume 4, pages 157{166, Melbourne,

2002. Australian Computer So
iety, In
.

[6℄ K. Monostori, A. Zaslavsky, and I. Vajk. SuÆx ve
tor: A spa
e-eÆ
ient suÆx tree

representation. In Pro
eedings of the 12th International Symposium on Algorithms

and Computation, volume 2223 of Le
ture Notes in Computer S
ien
e, pages 707{

718, Christ
hur
h, New Zealand, 2001. Springer Verlag.

[7℄ E. Ukkonen. On-line
onstru
tion of suÆx trees. Algorithmi
a, 14(3):249{260,

1995.

53

