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Abstract. We present a first formal setting for suffix vectors that are space
economical alternative data structures to suffix trees. We give two linear algo-
rithms for converting a suffix tree into a suffix vector and conversely. We enrich
suffix vectors with formulas for counting the number of occurrences of repeated
substrings. We also propose an alternative implementation for suffix vectors
that should outperform the existing one.
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1 Introduction

A suffix vector is an alternative data structure to a suffix tree. A suffix vector, for
a string y, can store, in a reduced space, the same information as in a suffix tree
of y. Suffix vectors have been introduced by Monostori [4, 5, 6] in order to detect
plagiarism. The suffix vector of the string y consists in a succession of boxes located
at some positions on the string . These boxes are equivalent to the nodes of the suffix
tree of y. Monostori gave an “on-line” linear construction algorithm of an extended
suffix vector and a linear algorithm to compact a vector.

We are the first to give a formal setting for suffix vectors. To do that we describe
two linear algorithms to convert a suffix tree into a suffix vector and conversely. We
also supply suffix vectors with counters of the number of occurrences of repeated
substrings for a given length. From practical experiences, we propose an alternative
physical implementation for the suffix vectors that should outperform the one pro-
posed by Monostori. This article is organized as follows: Section 2 introduces the
different notations and quickly recalls suffix trees; Section 3 introduces suffix vectors;
Section 4 shows the conversion from a suffix tree to a suffix vector; Section 5 gives
the conversion from a suffix vector to a suffix tree; Section 6 presents a method for
counting the number of occurrences of repeated substrings in a string; Section 7 dis-
cusses the suffix vector implementation and finally Section 8 gives our conclusions
and perspectives.

2 Notations

Let A be a finite alphabet. Throughout the article we will consider a string y € A* of
length n: y = y[0..n — 1]. We append to y the symbol $ as a terminator which does
not belong to A. From now on, y is a string of length n + 1 finishing with $.
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The suffix tree 7 (y) of y is a linear size index structure that contains all the
suffixes of y from the empty one to y itself. It can be constructed by considering
the suffix trie of y (tree containing all the suffixes of y which edges are labeled by
exactly one letter) where all internal nodes with only one child are removed and
where remaining successive edge labels are concatenated. The leaves of the suffix tree
contain the starting position of the suffix they represent.

The total length of all the suffixes of y can be quadratic, the linear size of the suffix
tree is thus obtained by representing edge labels by pairs (position, length) referencing
factors y[position..position+ length — 1] of y. The terminator $ ensures that no suffix
of y is an internal factor of y and thus T (y) has exactly n + 1 leaves. Each internal
node has at least two children, leading to at most n internal nodes and thus a linear
number of nodes overall. This also gives a linear number of edges. Each edge requires
a constant space. Altogether the suffix tree 7 (y) of y can be stored in linear size.
Figure 1(a) presents 7 (aatttatttatta$).

There exist several linear time suffix tree construction algorithms [3, 7, 1] that
extensively use the notion of suffix links.

Each node p of the tree is identified with the substring obtained by concatenating
the labels on the unique path from the root to the node p. We represent the existence
of the edge from node p to node ¢ with label (i, ¢) by §(p, (i,£)) = q. We also consider
TARGET(p, a) which can be defined as d(p, (¢,¢)) for y[i] = a and £ > 1. For a € A
and u € A*, if au is a node of T (y) then s(au) = u is the suffix link of the node au.

For instance, in Figure 1:

e node 7 in the tree is identified with atttatt,
e the edge going from node 3 to node 7 is §(att, (4,4)) = atttatt,
e and TARGET(att,t) = d(att, (4,4)) = atttatt.

The right position of the first occurrence of the string u in y is denoted by
rpos(u, y), for instance rpos(att,aatttatttatta$) = 3.

3 Suffix vectors

3.1 Extended suffix vectors

The suffix vector V(y) of y is a linear representation of the suffix tree 7 (y) consisting
in a succession of boxes. These boxes contain the same information as the nodes of
the tree, so that all the repeated substrings of y are represented in V(y).

Monostori did not give any formal definition of the suffix vectors, he only gave
a linear time construction algorithm. We will now give a description of the suffix
vectors.

There is a correspondence between the lines of the boxes of the suffix vector and
the nodes of the suffix tree. Let B; be the box of the suffix vector at position j of
the string y. The box B, is considered as an array with & lines and 3 columns. The
first column contains the depth of the node, the second one contains the natural edge.
The natural edge of a node p in a box B; is the position of the box containing the
node ¢ such that TARGET(p, y[j + 1]) = ¢.
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Figure 1: (a) Suffix tree of the string aatttatttatta$. The edges are labelled by
pairs (position, length) and the substrings represented by the pairs. The label of the
edge from node 0 to leaf 0 corresponds to the substring atttatttatta$. (b) Suffix
vector of aatttatttatta$. Suffix links are represented by dashed arrows.

The third column of a box B; contains the edge lists L. Each edge L[g] of L is
stored as a pair (b, e). We use b = L[g].b and e = Llg|.e, b is the beginning of the edge
(the position of the first character) and e the end of the edge (the position of the box
containing the target node). So a box is characterized by: Blh,0] = depth, Blh, 1] =
ne, B[h,2] = L for each 0 < h < k — 1.

Inside a box, there are implicit suffix links from node represented by depth d to
node represented by depth d —1. The depth of the deepest node is also stored in each
box. Monostori pointed out in [4] that the depths in a box are continuous.

The root of the suffix tree is represented by a specific box in the suffix vector.

Example

In the box Bj in the vector of Figure 1(b), the first line indicates that there exists
a node representing a substring u of length 3 with rpos(u,y) = 3, so u = att. Its
natural edge is 7, this means that there is an edge from u such that TARGET (u, y[4])
is a node in B7. The length of this edge is 4 (7-3), so this is the node of depth 7 in
B; which recognizes atttatt.

The list of edges Bj[1,2] contains 12 — 13. This means that there is one edge
(different of the natural edge) going out from this node, its label begins at position
12 and ends at position 13. The end position is equal to the length of y, so this edge

leads to a leaf.
1

We now present an example of utilization of a suffix vector. Let y be the string
aatttatttatta$ and z be the string tatt. We use the suffix vector of y (Figure 1(b))
to know whether x is a substring of y. In the edge list of the root, there is an edge
labeled (2,2) and y[2] = t, so we follow it and go to the box at position 2. This box
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has only one line. As y[3] # a, we do not follow the natural edge. The only edge in
B»[0, 2] begins at position 5, y[5] = a so we can follow it. It leads to the box Bs. As
we have already read the prefix ta of x, we consider the line representing the node of
depth 2. Since y[6] = t, we follow the natural edge which leads to the box at position
7, so its length is 2. As y[6..7] = tt, we have found one occurrence of x in y.

3.2 Compact suffix vectors

We introduce here the notion of compact suffix vector. A suffix vector can be com-
pacted when, for lines h; and hs of the box at position j, the edge list of line h; is
included in the edge list of line hy: Bj[hy,2] C B,[hs,2]. In this case, we just need to
store the list of the line h, and create a link between the two lists. These boxes are
called reduced boxes. They contain the number of nodes. To compact a suffix vector,
Monostori established three rules (see [4]). These three compaction rules are:

Rule A the node with depth d — 1 has the same number of edges as the node with
depth d and these are the same edges. In this case we simply set their first edge
pointers to the same position.

Rule B the node with depth d — 1 has the same edges as the node with depth d plus
some extra edges. In this case, the list of edges of the node with depth d — 1

contains its own edges and a pointer to the list of edges of the node with depth
d.

Rule C the node with depth d — 1 has different edges to the node with depth d. In
this case, all the edges must be represented in a separate list.

These rules are illustrated in Figure 2. Monostori gave a linear time algorithm for
compacting an extended suffix vector.

Rule B d

Rule A

RuleC  d-3 —>|ED>E||

Figure 2: Representation of the compaction rules

Example

In the vector of Figure 1, we note that, in the boxes at positions 5 and 7, only the
depths differ between the lines. So these boxes could be compacted storing only the
first line and the number of lines. The result of the compaction of this suffix vector
is shown Figure 3.
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Figure 3: Compact suffix vector of the string aatttatttatta$.

4 Converting a suffix tree into a suffix vector

4.1 Method

We first outline the principle of the conversion of a suffix tree into an extended suffix
vector by giving some propositions. The first one establishes the correspondence
between an internal node in the suffix tree and a line in a box in the extended suffix
vector.

Proposition 4.1. Let p be an internal node of T (y) such that y[j — d + 1..j] is the
first occurrence of the substring represented by p. This implies that there exists a box
at position j in the suffiz vector V(y) and a line h in B; such that B;[h,0] = d.

Proof

Let u € T(y) be a node of the suffix tree of the string y, u is a substring of y.
When u is a node it means that it has at least two occurrences in y, this implies that
u is represented in V(y) since all the repeated substrings of y are represented in V(y).

We denote by j = rpos(u,y) the right position of the first occurrence of u in y.
So, there exists a box B; at position j in the vector. In this box, there exists a line
h such that B;[h,0] = |u|. If u=y[j — d + 1..j], we have B;[h,0] = d.

Line h is such that among all the substrings w € T (y) such that rpos(w,y) = j,
u is the (h + 1)-th longest one. =

Example

In the tree of Figure 1, node 5 can be identified with the substring v = tta of y
for which rpos(u,y) = 5. This node verifies Proposition 4.1 since the first line of the
box Bs in the vector represents a node of depth 3 (B5[0,0] = 3 and |tta| = 3).
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The next proposition establishes the correspondence between an edge in the suffix
tree and either the natural edge or one edge in an edge list of the suffix vector.

Proposition 4.2. Let (i,¢) be an edge of T (y) such that 6(p, (i,£)) = q where p and
q are nodes of the suffiz tree. Node p is such that y[j —d+1..7] is the first occurrence
of the substring represented by p. Two cases can arise:

1. (i,0) is the natural edge of p (y[i] = y[j + 1]), then Bjlh, 1] =j+{;

2. (i,£) is an edge such that y[i] # y[j + 1] then there exists a pair (b,e) in B;lh, 2]
such thatb=1 ande=1i+(— 1.

Proof
Node p satisfies Proposition 4.1.

1. The natural edge:

Considering the substring u = y[j — d+ 1..j] the edge beginning with the letter
y[j + 1] gives that there exists a node at position rpos(TARGET (u, y[j +1]),y) =
J 4+ £. The number j + ¢ is either the length of y (so the edge leads to a
leaf) or the right position of the substring u - y[j + 1..7 + ¢]. In the latter
case, after Proposition 4.1, there exists a box at position j + ¢. Thus, j + £ is
obtained following the natural edge of the node at line i in B;. This implies
that Bj[h,1] = j + /.

2. The others edges:

Considering TARGET(u, y[i]) = ¢ such that rpos(TARGET(u, y[i]),y) =i+ —1
with y[i] # y[j + 1]. The number i 4+ ¢ — 1 is either the length of y (so the
edge leads to a leaf) or the right position of the substring w - y[i..i + ¢ — 1].
In the latter case, after Proposition 4.1, there exists a box at position i + ¢/ —
1. Then, in box B; there exists an edge Llg] € B,[h,2] such that L{g].e =
rpos(TARGET(u, y[i]),y) = i + £ — 1 and L[g].b = L[g].e — |TARGET(u, y[7])| +
1+ |u| =1

Example

In the tree of Figure 1(a), there is an edge going out from node 5 beginning with
y[6] = t and labeled by (6,2). This node can be identified with the substring u = tta
of y for which rpos(u,y) = 5. It is represented by the first line of Bs. We have
rpos(TARGET(tta, y[6]),y) = rpos(ttatt,y) = 7 so Bs[0,1] = 7. This is the natural
edge, this verifies Proposition 4.2 since B;[0,1] =5+ 2 = j + /.

Node 5 in the suffix tree possesses only one edge beginning by a caracter in
A\ {y[6]} labeled by (13,1), rpos(TARGET(tta,$),y) = 13 (this is a leaf) and
|TARGET(tta, $)| — 1 — |tta] = 0. The second part of Proposition 4.2 holds be-
cause in the box we have: Bs[1,2] = L such that L has one element defined by
L[0].e = 13 and L[0].b = 13.

In the next proposition, the special case of the root is processed.
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TREE2VECT(T (y))
> R is the root of the tree T (y)
ADDROOT(R, V(y))
for each child node p of R such that p is not a leaf do
| PusH(S,p)
while not STACK-EMPTY(S) do
p < Pop(9)
ADDNODE(p, V(y))
for each child node ¢ of p such that ¢ is not a leaf do
| PusH(S, q)
return V(y)

© 00~ O Ui W N~

Figure 4: Algorithm converting a suffix tree into a suffix vector.

Proposition 4.3. Each edge (i,{) going out from the root of the tree is represented
by the pair (i,i + ¢ — 1) in the edge list of the specific box of the root of the suffix
vector.

Proof
Similar to the proof of Proposition 4.1.

The next two propositions show the correspondence for the suffix links.

Proposition 4.4 (Theorem 5.1 of [4]). Let s(u) = v be a suffix link in T (y) such
that rpos(u,y) = rpos(v,y) then u and v are represented in the same box of V(y).

Proposition 4.5. Let s(u) = v be a suffiz link in T (y) such that i = rpos(u,y) #
rpos(v,y) = j then s(B;) = B;.

Proof

The suffix links are only defined from internal nodes to internal nodes. After
Proposition 4.1, node u is represented in the box at position 7 and node v in the box
at position j.

4.2 Algorithm

We now describe the algorithm to get a suffix vector from a suffix tree. For each node
p of T(y), we need to know the value rpos(p,y). This can be computed if each node
p stores its length [p| and the position of the first occurrence of p which corresponds
to the number of the smallest leaf in the subtree rooted at p. This algorithm is based
on a depth-first search of the suffix tree. It ensures the visit of all the nodes of the
suffix tree. We use a stack S to visit the nodes (see Figure 4).

First, the algorithm processes the root because, in the vector, the root is not
represented as the other nodes. The function ADDROOT, called line 1 in Figure 4,
adds all the edges going out from the root of the tree in the root list of the suffix
vector. It is described Figure 5.
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ADDROOT(R, V(y))
> LR is the list representing the root of V(y)
1 LR+ o
2 for each edge (i,/) going out from R do
3 | INSERT((3,i 4/ —1),LR)

Figure 5: Algorithm adding the root of a suffix tree into a suffix vector.

ADDNODE(p, V(y))

j < rpos(p, y)

if ﬂBj then

CREATE(B;)

h <+ 0

else h «+ k
> k is the number of lines in B;
kE+—Fk+1

B; [, 0] < |p|

for each edge (i, /) going out from p do
if y[i] = y[j + 1] then

> this is the natural edge

11 | else INSERT((i,i+ ¢ — 1), B;[h,2])

12 if j # rpos(s(p),y) then

13| $(B)) < Brpos(s(r) )

[a—y

U= W N

Nelie ol el

Figure 6: Algorithm adding a node of a suffix tree into a suffix vector.
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Then, for each node p of the tree, we add its equivalent in the vector: we insert
a line in a box at position rpos(p,y) in the vector and if the box does not exist, we
create it with the correct line. This function is detailed in Figure 6.

Theorem 4.1. The algorithm TREE2VECT(T (y)) correctly computes V(y) in time
O(lyl)

Proof

The correctness of the algorithm comes from Propositions 4.1 to 4.5.

Each node and each edge of the suffix tree are processed only once. The operations
per node and per edge take a constant time. Since the number of edges and nodes of
the suffix tree is linear, the result on the running time follows.

[

5 Converting a suffix vector into a suffix tree

5.1 Method

We now show the conversion from an extended suffix vector to a suffix tree. The next
proposition deals with the internal nodes.

Proposition 5.1. Fach line h of a box Bj in the suffiz vector of y can be associated
to an internal node of the suffiz tree of y.

Proof

Let u be the substring of y such that u = y[j — B,[h, 0] 4+ 1..j]. If there is a line h
in a box B; it means that u - y[j + 1..B;[h, 1]] and u - y[L[0].e..L[0].b] are factors of y
with L[0] € B;[h,2] and y[j + 1] # y[L[0].€]. This means that u has two occurrences
in y followed by two different letters which implies that u represents an internal node

in T (y). ]

Example

In the box Bj of Figure 1(b), Bs[0,0] = 3 indicates that the substring v =
y[5 — 3 + 1..5] = y[3..5] is represented in the first line of this box. This string is
tta, it corresponds to node 5 in the suffix tree of y.

The three following propositions deal with the edges.

Proposition 5.2. Each value Bj[h,1] of a line h of a box B; in the suffiz vector of
y can be associated to an edge of the suffix tree of .

Proof

Let u be the substring of y such that u = y[j — B;[h,0] + 1..j]. There exists an
edge in the tree such that d(u, (j+1, B,[h, 1] —j)) = y[j — Bj[h, 0] +1..Bj[h, 1]]. Thus
ylj — Bj[h,0] + 1..Bj[h,1]] is in T (y), it can be an internal node or a leaf. n

Example

In the box Bj of Figure 1(b), the second column of the first line means that we can
go to position 7 following an edge starting from position 6, this edge is §(tta, (6,2))
in T (y).
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Proposition 5.3. Each pair (b,e) in a edge list of a line h of a box B; in the suffiz
vector of y can be associated to an edge of the suffix tree of y.

Proof

Let u be the substring of y such that u = y[j — Bj[h,0] + 1..j]. There exists an
edge in the tree such that §(u, (b,e — b+ 1)) = u-yle..b]. Thus w - yle..b] is in T (y),
it can be an internal node or a leaf. [

Example

The third column of the first line of By of Figure 1(b) has only one edge, L[0].b = 13
and L[0].e = 13 (L[0].e = |y| means that this edge leads to a leaf). We have to verify
that there exists an edge such that 0(tta, (L[0].b, L[0].e— L[0].b+1)) = §(tta, (13, 1))
in the tree. The node 5, which recognizes the same substring as the first line of Bs,
has an edge labeled (13,1) going out to a leaf. We showed the equivalence between
the node 5 in the tree and the first line of By in the vector.

Proposition 5.4. Fach pair (b,e) in a edge list of the root the suffix vector of y can
be associated to an edge of the suffix tree of y.

Proof
Similar to Proposition 5.3. |

The next proposition deals with the leaves.

Proposition 5.5. The leaves of the suffix tree T (y) can be retrieved from the suffic
vector V(y).

Proof
This is a direct consequence of Propositions 5.3 to 5.5 and the fact that there is
exactly one edge leading to each leaf. [

The two following propositions deal with the suffix links.

Proposition 5.6 (Theorem 5.1 of [4]). In a box B; of k lines the suffiz link of
the node represented by the line h points to the node represented by the line h+1 for
0<h<k—-1.

Proposition 5.7. In a box B; of k lines the suffiz link of the node represented by the
line k — 1 points to s(B;).

Proof
By construction. |

5.2 Algorithm

We give in this section an algorithm that computes a suffix tree from an extended
suffix vector for a string y. It first processes the root box of the suffix vector and then
processes sequentially each remaining box of the vector. For each box it sequentially
processes each lines (see Figure 7).
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VECT2TREE(V(y))
1 R < new node
2 for each (b,e) in the edge list of the root box of V(y) do
3 | p < new node at depth e — b+ 1 at position e
4 | 0(R,(be—b+1))«p
5 for j « 0 ton do
> k is the number of lines of the box B;

> p is the node previously created at depth B;[k — 1, 0] at position j

6 | g < new node at depth B;[k —1,0] + B;[k — 1,1] — j + 1 at position B[k — 1,1]
7| 55, G+ LByl 1] - j+ 1) < g

8 TP

9 | for each pair (b,e) € Bj[k —1,2] do

10 q < new node at depth B,[k —1,0] 4+ e — b+ 1 at position e

11 d(p, (bye—b+1))<q

12 | s(p) « s(By)

13 | forh+ k—2to0do
> p is the node previously created at depth Bj;lh, 0] at position j

14 q < new node at depth B,[h,0] + B;[h,1] — j + 1 at position B;[h, 1]
15 | | 3, G+ 1Bk, 1] - j+ 1) g

16 for each pair (b,e) € B;[h,2] do

17 q < new node at depth B;[h,0] +e— b+ 1 at position e

18 d(p, (bye—b+1))<q

19 s(r) < p

20 T 4D

21 return 7 (y)

Figure 7: Algorithm converting a suffix vector into a suffix tree.

Theorem 5.1. The algorithm VECT2TREE(V(y)) correctly computes T (y) in time
O(lyl)-

Proof

The correctness of the algorithm comes from Proposition 5.1 to 5.6.

The algorithm processes each pairs of each lines of each boxes of the suffix vector
which correspond to the edges and the nodes of the suffix tree whose quantity is
linear. The only difficulty consists in retrieving a node at depth d for position j. This
can be realized by storing the largest depth in each box. All the other operations
take constant time. The result on the running time follows. [

6 Repeats

Before counting the number of repeats of the substrings of y, we explain some notions
for the counting of the number of occurrences.

6.1 Counting the number of occurrences

As mentioned before, each line of a box of V(y) is associated to a node u in 7 (y) and
thus to a substring of y. Let B; be a box of V(y), let h be a line of B;, the line h is
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associated to the substring v = y[j — B;[h,0] + 1..j]. Let nbOcc(u) be the number
of occurrences of the substring u. Let nbL(t) be the number of leaves in the subtree
rooted at the end of any edge ¢ .

Then
1 if t = |yl;
nbL(t) = ife =1l
nbOcc(v) otherwise

where v is the node in the box B; such that ¢ is the end position of the edge going
to node v.
We then deduce that

nbOcc(u) = nbL(ne) + Z nbL(L[g].e).

LlgleB;[h,2]

With this expression, it is easy to obtain a linear algorithm which adds the value
nbOcc(u) on each line of the vector. This algorithm visits the boxes of the suffix
vector from right to left and completes the lines with nbOcc(u).

6.2 Counting the number of repeats

The method described in this section allows to compute for each substring of y with
a given length lg < n, its number of occurrences in y. Let lpocc(lg) be the list of pairs
(rpos(u, y), nbOcc(u)) for all substrings u of y of length lg.

The principle is to visit all the boxes of the suffix vector and for each line A in a
box at position j such that B;[h, 0] > lg to update lpocc(lg) using nbOcc(u) where u
is the substring represented by this line.

First, we test if the depth of the deepest node of the box we are visiting is larger
than lg. In the contrary case, the visit of the box stops. For reduced boxes we only
have to take into account the deepest node, whereas in the other boxes we have to
process all the nodes whose depth is larger than [g. We now explain the two different
cases.

Reduced box Let us assume that we are processing the reduced box B; and
B;[0,0] = d > lg. This implies this line represents v = y[j — d + 1..j]. Let j" be
a position such that j —d+ 1< j' <d—k+ 1 and |y[j'..j]| = lg (k is the number of
lines represented in the box). For each possible j', let v be y[j’..j" + lg — 1], either we
add the pair (rpos(v,y), nbOcc(u)) in the list or we update nbOcc(v) with nbOcc(u)
if v is already present in Ipocc.

Extended box For each line & of the extended box B; such that B;[h,0] = d > lg.
This implies this line represents u = y[j — d + 1..j]. Let v be the prefix of length lg
of u, either we add the pair (rpos(v,y), nbOcc(u)) in the list or we update nbOcc(v)
with nbOce(u) if v is already present in Ipoce.

After that, the list Ipoce(lg) gives the number of occurrences of repeated substring
of y of length lg.
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7 Implementation

7.1 Monostori’s implementation

We now explain the representation used by Monostori to store compact suffix vectors
(section 5.4 of [4]). Each box contains the following information:

Deepest node The deepest node value is usually small so Monostori proposed to
store it in 1 or 4 bytes. The first bit is used to denote the number of bytes needed to
store the value, so the deepest node value is represented with 7 or 31 bits.

Number of nodes In a box, we also need the number of nodes value which is
smaller than the deepest node value. The number of nodes can fit into one byte when
the deepest node value is stored into one byte. So, it is not necessary to use another
bit to flag as for the depth.

Suffix link The next information stored in a box is the suffix link. If the number of
nodes is equal to the depth of the deepest node, this means that the smallest depth in
the box is 1. So the suffix link of the box is implicit to the root. In this representation,
the suffix link is stored anyway because its first bit is used to indicate if the box is a
reduced one and its second one is used to indicate if the values of the natural edges
will need 1 or 4 bytes.

Natural edges Then the natural edges are stored in an array called array of next
node pointers. We can save space by storing the length of an edge rather than the
end position. If there is one of the lengths of the natural edges of the box which need
to be stored in more than one byte, all of them are stored in 4 bytes.

Edges At last, we have to consider the representation of the edges. An edge is
represented with its start position and its length. The first edge pointer of a node
gives the memory address of the list of edges going out from this node. The first bit
of a start position of an edge indicates if this edge leads to a leaf. In this case, the
length of the edge is not stored. The next bit flags whether this is the last edge of
the list. The third one is used to indicate the number of bytes (1 or 4) required to
store the length of the edge.

7.2 Counting

Table 1 compares the space required by the suffix vector with the space required by
the suffix tree implemented with Kurtz’s method [2]. It is extracted from Table 5.1
in [4]. Here, we give the results for four files which are two English texts (book2 and
bible), one C program (progc) and one DNA sequence (ecoli). The results are
given in bytes per symbol of the input sequences.

The measures done by Monostori show that its implementation of the suffix vectors
is less efficient for DNA sequences than for large alphabets. Therefore we performed
experiments on several DNA sequences. Tables 2 to 6 give the results for five of them:

e chromosome 4 of S. cerevisiae (of length 1,531,931);
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Table 1: Comparison of space requirements of suffix vectors and suffix trees.

) File size Bytes/symbol
File name (in bytes) Comcht éu}fiﬁx Vector Bytes/symbol Kurtz
book?2 610,857 8.61 9.67
bible 4,047,393 8.53 7.27
progc 39,612 8.63 9.59
ecoli 4,638,691 12.51 12.56

e chromosome 3 of E. coli (of length 13,783,270);

e chromosome 5 of E. coli (of length 20,922,241);

e chromosome 2 of A. thaliana (of length 19,847,294);

e chromosome 4 of A. thaliana (of length 17,790,892).
For each sequence, we build its extended suffix vector and reported for each box:

e the number of nodes;

e the depth;

e the length of the natural edge minus 1 (since it is always at least equal to 1);
and for each edge list of each box:

e the next position;

e the difference between the next position and the position of the box minus 2
(since it is always at least equal to 2);

e the length of the edge minus 1 (since it is always at least equal to 1).
For all the values we counted the number of them that can fit between:
e 1 and 6 bits;

e 7 and 14 bits;

e 15 and 22 bits;

e 23 and 30 bits.

The idea is, instead of using only one flag bit and use 1 or 4 bytes for representing
the different objects, to use two flag bits and 1, 2, 3 or 4 bytes for representing them.
The tables clearly show that this approach will save a large number of bytes in all
cases. Of course, storing the difference between the next position and the position
of the box rather than the next position always enables to save storage space. The
actual total gain is not yet completely measurable since, to keep a direct access to
any node in a box, all the natural edges in a box are stored with the space necessary
for the largest natural edge. We can now present an alternative implementation.
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Table 2: Counts for chromosome 4 of S. cerevisiae. It contains 1,531,931 base pairs.

1 —6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes 501,378 129
Depth 875,852 13,924
Natural edge 369,501 6497 513,778
Next position 55 18,794 1,555,245
Difference 2539 128,375 1,443,180
Edge length 642,254 9143 922,697

Table 3: Counts for chromosome 3 of FE. coli. It contains 13,783,270 base pairs.

1 -6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 4,182,237 2283
Depth 7,978,520 172,622
Natural edge 3,697,663 32,220 4,421,259
Next position 2 18,527 4,529,723 9,302,660
Difference 36,315 439,978 | 11,548,079 1,826,540
Edge length 5,633,779 35,474 8,181,659

Table 4: Counts for chromosome 5 of E. coli. It contains 20,922,241 base pairs.

1 -6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 6,395,182 3224 4
Depth 11,998,929 288,722 40,428
Natural edge 5,456,836 121,698 5156 6,744,389
Next position 8 18,606 4,579,468 | 16,428,416
Difference 42,261 485,515 | 14,355,158 6,143,564
Edge length 8,583,613 111,606 2344 | 12,328,935

Table 5: Counts for chromosome 2 of A. thaliana. It contains 19,847,294 base pairs.

1 =6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 6,429,030 2192
Depth 11,499,363 137,572 183,616
Natural edge 5,353,725 32,671 6,434,155
Next position 61 18,470 4,630,471 | 15,624,486
Difference 37,770 426,015 | 14,124,810 5,691,893
Edge length 8,186,302 23,318 12,063,868

Table 6: Counts for chromosome 4 of A. thaliana. It contains 17,790,892 base pairs.

1 =6 bits | 7— 14 bits | 15 — 22 bits | 23 — 30 bits
Number of nodes | 5,809,708 1869
Depth 10,203,150 136,807 224,650
Natural edge 4,767,148 33,801 5,763,658
Next position 61 18,713 4,578,990 | 13,529,684
Difference 26,541 474,155 | 13,353,092 4,273,660
Edge length 7,325,278 33,235 10,768,935
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7.3 An alternative implementation

Here, we explain how to use the idea explained in section 7.2 to reduce the space.
Each box contains the following information:

Deepest node Instead of storing in 1 or 4 bytes, we could store the depth of the
deepest node in 1, 2, 3 or 4 bytes. This means that we have to use the two first bits
to indicate how many bytes we need. So the deepest node value is stored in 6, 14, 22
or 30 bits.

Number of nodes As mentioned in Section 7.1, the number of bytes needed to
store the number of nodes depends on the number of bytes of the deepest node value.
Then, if we need 6, 14, 22 or 30 bits to store this depth, we could use respectively 1,
2, 3 or 4 bytes to store the number of nodes.

Suffix link Similar to Section 7.1.

Natural edges We can use two flag bits and then 1, 2, 3, or 4 bytes for all the
values. We store the length of the natural edge minus 1 since it is always larger than
1.

Edges Instead of storing the start position of an edge, we could store the difference
between the start position and the position of the box. For a box at position j and
an edge starting at L[g].b > j, we store L[g].b — j — 2. We can use the same idea as
for the deepest node value to store L]g].b — j — 2 and the length of L[g] — 1 using 1,
2, 3 or 4 bytes.

The main idea is to reduced the space required with Monstori’s implementation for
DNA sequences by storing the data with 2 or 3 bytes instead of 4 when it is possible.
To do that we use 2 bits for the needed number of bytes. Tables 2 to 6 show that we
can reduce the space in many cases.

8 Conclusions and perspectives

We presented a first formal setting for suffix vectors that are space economical alter-
native data structures to suffix trees. We gave two linear algorithms for converting
a suffix tree into a suffix vector and conversely. We enriched suffix vectors with
formulas for counting the number of occurrences of repeated substrings. We finally
proposed an alternative implementation for suffix vectors that should outperform the
one proposed by Monostori specially for small alphabets and large sequences.

In order to really take advantage of this implementation we are studying an “on-
line” linear algorithm for directly building a compact suffix vector. This should allow
to deal efficiently with huge sequences such as human chromosomes.
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