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Abstra
t. For 
ertain problems (for example, 
omputing repetitions and re-

peats, data 
ompression appli
ations) it is not ne
essary that the suÆxes of a

string represented in a suÆx tree or suÆx array should o

ur in lexi
ographi
al

order (lexorder). It thus be
omes of interest to study possible alternate order-

ings of the suÆxes in these data stru
tures, that may be easier to 
onstru
t or

more eÆ
ient to use. In this paper we 
onsider the \re
onstru
tion" of a suÆx

array based on a given reordering of the alphabet, and we des
ribe simple time-

and spa
e-eÆ
ient algorithms that a

omplish it.

Keywords: suÆx array, suÆx tree, lexi
ographi
 order, alphabet, string

1 Introdu
tion

We use a small example to introdu
e the main ideas. Consider the string

1 2 3 4 5 6

x = a b a a b $

whose suÆx tree T

x

is shown in Figure 1 (the 
onventional sentinel $ is a lexi
o-

graphi
ally least letter introdu
ed to ensure that every suÆx of x is represented as a

leaf node of T

x

).

Ignoring the sentinel suÆx, a preorder traversal of T

x

allows the suÆx array of x

to be read o� in lexorder from the leaf nodes:

1 2 3 4 5

pos = 3 4 1 5 2

(1)

with the lengths (l
ps) of the 
orresponding longest 
ommon pre�xes (LCPs) read

o� from the internal nodes:

l
p = 0 1 2 0 1:
(2)

Let us 
all the usual suÆx array (for example, (1)) the lexi
ographi
al suÆx array

of x (LSA(x)), of 
ourse unique and well-de�ned for every string x on an ordered
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Figure 1: The suÆx tree T

x

of x = abaab

alphabet. More generally, we may de�ne a valid suÆx array of x (VSA(x)) to be

any reordering of LSA(x) that 
an be obtained by reordering the subtrees of T

x

, then

reading o� the terminal nodes (ex
ept the sentinel suÆx) in a preorder traversal. For

our example string x = abaab, there are a
tually 16 VSAs of x:

34152; 34125; 31452; 31425

41352; 41325; 14352; 14325

52341; 25341; 52314; 25314

52413; 25413; 52143; 25143

Observe that of 
ourse for a string x = x[1::n℄ of length n, there are altogether n!

permutations of LSA(x); in our example 16 out of the 5! = 120 permutations are

a
tually VSAs. Note that if all the letters of x are distin
t, then there will be n!

distin
t VSAs of x.

Finally we de�ne a 
onsistent suÆx array of x (CSA(x)) to be a VSA that

is determined by an ordering (reordering) of the alphabet. In our example, there are

just two CSAs of x:

34152 (for $ < a < b) and 52413 (for $ < b < a):

In this paper we present algorithms to 
ompute the CSA(x) determined by a spe
i�ed

ordering of the alphabet, given the LSA. As explained below, we think of this resear
h

as an initial step in gaining an understanding of how to 
ompute a CSA or a VSA

dire
tly, without intermediate steps that depend on the LSA or the suÆx tree.

SuÆx arrays (LSAs) were introdu
ed in 1990 [MM90, MM93℄ as a more spa
e-

eÆ
ient alternative to suÆx trees; at the same time an O(n logn) algorithm was

des
ribed for their 
onstru
tion. In 1997 a linear-time suÆx tree 
onstru
tion algo-

rithm was proposed [F97℄, e�e
tive in the normal 
ase that the alphabet is indexed

| that is, essentially, a �nite integer alphabet. In 2003, based on [F97℄, three di�er-

ent groups of resear
hers independently dis
overed linear-time re
ursive algorithms to


ompute the LSA [KA03, KS03, KSPP03℄, also on an indexed alphabet. It turns out,

however, that, largely as a 
onsequen
e of their re
ursive nature, these algorithms are

generally slower in pra
ti
e [PST05℄ than two other 
lasses of LSA 
onstru
tion algo-

rithms whose worst-
ase behaviour is supralinear: dire
t 
omparison algorithms
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and pre�x doubling algorithms. Dire
t 
omparison algorithms make use of a pointer


opying method introdu
ed in [BW94℄ to eÆ
iently sort suÆxes one letter at a time

[IT99, S00, MF04℄; although their worst-
ase time requirement 
an therefore be as

mu
h as �(n

2

logn), they generally have low spa
e requirements and exe
ute very fast

in pra
ti
e. On the other hand, pre�x doubling algorithms make use of a te
hnique

introdu
ed in [KMR72℄ to roughly double the length of the suÆxes sorted at ea
h

step [MM93, LS99, BK03℄; their worst-
ase time bound is thus only O(n logn) and

they also tend to exe
ute qui
kly in pra
ti
e. Of the algorithms tested in [PST05℄,

that of Manzini & Ferragina [MF04℄ appears to hold an advantage, both in the use

of spa
e and time, over that of Burkhardt & K�arkk�ainen [BK03℄ in se
ond pla
e, but

algorithms more re
ently des
ribed [SS05, M05℄ may be still more eÆ
ient.

The 
urious (to us, at least) fa
t is that to date the most eÆ
ient known way to


ompute any VSA is to �rst 
ompute the LSA(x). In [FSXH03℄ we have des
ribed

algorithms that essentially 
ompute VSAs, but these algorithms are not as fast as the

best LSA 
onstru
tion algorithms, even though LSA 
onstru
tion in general requires

fewer 
onditions to be satis�ed. It seems to us that VSA 
onstru
tion should be in

some sense easier than LSA 
onstru
tion, but as things stand the opposite is true.

In this paper we will suppose that LSA(x) has been 
omputed for x = x[1::n℄

based on an ordering (A; <) of the alphabet A. Then we show how to 
onstru
t

CSA(x) = LSA

0

(x)

determined by a reordering (A; <

0

) of A. In Se
tion 2 we des
ribe two �(n)-time

algorithms to handle a spe
ial 
ase that arose in a re
ent paper [FS05℄: reverse

lexorder, where for any letters �; � 2 A,

� < �() � <

0

�: (3)

Se
tion 3 presents an eÆ
ient algorithm for the general 
ase: an arbitrary permutation

of the order of the alphabet. Finally, Se
tion 3 presents 
on
lusions and outlines future

work.

2 Reversing the Order of the Alphabet

As dis
ussed in the Introdu
tion, we assume that (3) holds, and we use LSA[1::n℄

to denote the suÆx array 
orresponding to (A; <), LSA

0

[1::n℄ for the suÆx array


orresponding to (A; <

0

). Re
all that a border of a string x is any proper pre�x of x

that is also a suÆx. We de�ne the right border array � = �[1::n℄ of x as follows:

for every i 2 1::n, �[i℄ = j () j is the length of the longest border of x[i::n℄. � 
an

be 
omputed in �(n) time and 
onstant spa
e using a straightforward variant of the

standard (left) border array algorithm [S03, ex. 1.3.10℄. Observe that �[i℄ is the l
p

not only of u = x[n�[i℄+1::n℄ and v = x[i::n℄, but also of every suÆx w of x that

lies between u and v in lexorder.

For te
hni
al reasons to simplify the presentation of the following lemmas and

algorithms, we modify slightly the array �: �[i℄ 6= 0 is not the length of the longest

border of x[i::n℄, but the index of the suÆx of x that is the longest border, i.e.

�[i℄ = j 6= 0 if and only if x[j::n℄ is the longest border of x[i::n℄ (see Figure 2).

The algorithms for reverse lexorder are then a 
onsequen
e of the following lem-

mas:
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�[1℄ 0;

for i 1 to n�1 do

if �[n�i+1℄ = 0 then


 0

else


 n+1��[n�i+1℄

while 
 > 0 and x[n�i℄ 6= x[n�
℄

if �[n�
+1℄ = 0 then


 0

else


 n+1��[n�
+1℄

if x[n�i℄ = x[n�
℄ then

�[n�i℄ n�


else

�[n�i℄ 0

Figure 2: Computing �[1::n℄ for input string x[1..n℄

Lemma 1. Let j = LSA[i℄ for some i 2 1::n.

(a) If �[j℄ > 0, then x

�

�[j℄::n

�

<

0

x[j::n℄;

(b) otherwise, if �[j℄ = 0, then

x[j::n℄ <

0

min

1�h<i

x

�

LSA[h℄::n

�

: (4)

Proof If �[j℄ > 0, then x

�

�[j℄::n

�

is a proper pre�x of x[j::n℄, so that x

�

�[j℄::n

�

<

0

x[j::n℄. If �[j℄ = 0, then for every h 2 1::i1, there exists a least nonnegative integer

q

h

� minfnj+1; nLSA[h℄+1g su
h that x

�

LSA[h℄+q

h

�

6= x[j+q

h

℄. Thus by the

de�nition of LSA, x

�

LSA[h℄+q

h

�

< x[j+q

h

℄, and so, by the de�nition of <

0

, x[j+q

h

℄ <

0

x

�

LSA[h℄+q

h

�

. Hen
e (4) holds. 2

Observe that every border of every suÆx is represented by an entry in � and

so will be 
overed by Lemma 1. Observe further that the quantities q

h

introdu
ed

in the proof for �[j℄ = 0 are a
tually l
p values for ea
h pair of suÆxes x[j::n℄ and

x

�

LSA[h℄::n

�

.

Lemma 2. Let j

1

= LSA[i

1

℄, j

2

= LSA[i

2

℄, 1 � i

1

< i

2

� n. If �[j

1

℄ = �[j

2

℄ > 0,

then

x[j

2

::n℄ <

0

x[j

1

::n℄:

Proof Sin
e i

1

< i

2

, x[j

1

::n℄ < x[j

2

::n℄; sin
e neither of these strings 
an be a pre�x

of the other, the result follows. 2

Figure 3 shows the simplest algorithm that 
omputes LSA

0

. The algorithm illus-

trates the fundamental idea of the pro
ess in a 
lear and simple way. We suppose

that the array � was 
omputed in prepro
essing, while the array NEXT[1::n℄ emu-

lates a singly-linked list equivalent to LSA

0

that is 
onstru
ted as the input LSA is

s
anned from left to right (in in
reasing lexorder): we will 
onsistently use the word
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start LSA[1℄;

for i 2 to n do

j  LSA[i℄

if �[j℄ = 0 then

| by Lemma 1 (b) j goes to start of list

NEXT[j℄ start; start j

else

| by Lemmas 1 (a) & 2, insert j next to �[j℄

j

0

 �[j℄; temp NEXT[j

0

℄

NEXT[j

0

℄ j; NEXT[j℄ temp

Figure 3: Algorithm 1 | Computing LSA

0

for Reversed Alphabet

transform to refer to the 
omputation of NEXT from LSA (and vi
e versa). We

omit the straightforward for loop that transforms NEXT into LSA

0

.

| transform LSA into NEXT

start LSA[1℄

for i 1 to n�1 do

NEXT[LSA[i℄℄ LSA[i+1℄

NEXT[LSA[n℄℄ 0


ompute � using memory storage of LSA

| reorder NEXT

prev  start; 
ur NEXT[prev℄

while 
ur 6= 0 do

if �[
ur℄ = 0 then | 
ur goes to front

NEXT[prev℄ NEXT[
ur℄; NEXT[
ur℄ start

start 
ur

else | 
ur goes next to �[
ur℄

if NEXT[�[
ur℄℄ = 
ur then

prev  
ur

else

NEXT[prev℄ NEXT[
ur℄; i NEXT[�[
ur℄℄;

NEXT[�[
ur℄℄ 
ur; NEXT[
ur℄ i

| transform NEXT to LSA

0

using memory storage of �

i 1; j  start

for i 1 to n do

LSA[i℄ j; j  NEXT[j℄

Figure 4: Algorithm 2 | Computing LSA

0

for Reversed Alphabet

Algorithm 1 has the disadvantage of using 2jxj words of working memory (the

arrays � and NEXT) for the input string x. Algorithm 2 (see Figure 4) is a bit more

elaborate; however, it is based on the same prin
iples as Algorithm 1 and uses only

jxj words of working memory (for NEXT).

Thus
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Theorem 1. Given LSA(x) for a string x = x[1::n℄, Algorithm 2 
omputes LSA

0

(x)

for a reversed alphabet in �(n) time using n words of working memory.

Proof By indu
tion. Clearly for i = 1 the entries in NEXT are in <

0

order. Suppose

that for arbitrary i 2 1::n1, the entries are in <

0

order. By Lemmas 1 and 2, the

entries must still be in <

0

order after LSA[i+1℄ has been pro
essed. 2

We note that essentially the same algorithm applies to a morphism � : A ! B

from one ordered alphabet to another provided that for every distin
t �; � 2 A,

� < �() �(�) <

0

�(�).

3 Permuting the Order of the Alphabet

In this se
tion we des
ribe an algorithm to 
ompute LSA

0

(x) in the 
ase of an arbitrary

reordering (A; <

0

) of the alphabetA. Alternatively, we may think of this reordering as

a permutation � : A ! A where for every distin
t �; � 2 A, � < �() �(�) <

0

�(�).

Essentially, our algorithm uses LSA(x) (in fa
t, as we shall see, any VSA(x) will

do) to simulate a reordering of the subtrees of the suÆx tree T

x

that is determined by

the reordering of the alphabet. In the simple example of Figure 1, the only possible

reordering (sin
e jAj = 2, ne
essarily a reversal) would result from inter
hanging two

paths in the subtree represented by a and b as well as in the subtree represented by

aab$ and ab, yielding LSA

0

(x) = 52413.

It is instru
tive to 
onsider the relationship between reversal and arbitrary re-

ordering. In Lemma 1, if we suppose that �[j℄ > 0, it is true also in the general 
ase

that x

�

�[j℄::n

�

<

0

x[j::n℄; however, Lemmas 1 (b) and 2 no longer hold, sin
e it is

no longer possible to infer the order of x[j

1

::n℄ and x[j

2

::n℄ from the order in whi
h

they o

ur in LSA(x). In other words, the set of suÆxes that have the same LCP

x

�

�[j℄::n

�


annot simply be pla
ed to the right of x

�

�[j℄::n

�

| they must now be

sorted in <

0

order based on positions �[j℄+1; �[j℄+2; : : : in ea
h suÆx.

Similarly, in the 
ase that �[j℄ = 0, (4) no longer holds: we must relo
ate suÆxes

by sorting in <

0

order the ones that have the same LCP (o

ur in the same subtree

of T

x

).

These 
omments imply that the array � is no longer useful in the general 
ase,

whereas the l
p array (for example, (2)) be
omes 
riti
al. Fortunately, like �, the l
p

array l
p[1::n℄ 
an be 
omputed in linear time, either from the LSA [KLAAP01℄ or as

a byprodu
t of LSA 
onstru
tion: thus we assume throughout this se
tion that it is

available. In fa
t, as noted above, sin
e in the general 
ase the LSA ordering provides

no information about the LSA

0

ordering, the algorithm des
ribed in this se
tion will

work just as well using any VSA(x) together with its 
orresponding (permuted) l
p

array.

Our algorithm reorders the suÆxes of x beginning with those that share the

greatest l
p values, thus equivalent to a traversal of the suÆx tree T

x

upwards from

the deepest l
p nodes. We �rst outline the 
ontrol stru
ture that our algorithm uses

to a

omplish this traversal, then go on to des
ribe the details of its implementation.

The input LSA(x) (VSA(x)) and its 
orresponding input l
p array LCP1 are being

traversed from left to right in order to identify families. In simple terms, a family

is a set of nodes in the lis NEXTthat 
orresponds to a set of links to nodes that are
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immediate 
hildren of an internal node of the 
orresponding suÆx tree. These links


an be permuted provided that the links in all subtrees have been already sorted. If

the internal node that is the root of the subtree 
orresponds to l
p `, we 
all the family

an `-family. A sta
k STACK for tra
king families is maintained by the algorithm;

if a value ` is on top of the sta
k, then an LCP[NEXT[`℄℄-family starts at position

NEXT[`℄ (for te
hni
al reason we do not store the beginning of the family on the

sta
k, but rather the previous node).

| input: x - string

| input: LSA- its suÆx array

| input: LCP1- l
p array for LSA

| input: permutation p of the alphabet

NEXT[ ℄ | auxiliary array

STACK | sta
k for keeping tra
k of families

Transform LSA to NEXT

Transform LCP1 to LCP using memory of LSA for LCP

use memory of LCP1 as memory for TAIL and initialize it

Initialize STACK and variables

while multipop()

Identify and Extra
t a family (using STACK)

Sort the family (using p)

Flatten the family

Verti
alize the family

Sort the �nal 0-family

Flatten the �nal 0-family

Transform NEXT to LSA

Transform LCP to LCP1

| output: LSA sorted a

ording to p

| output: LCP1 l
p of LSA

Figure 5: Outline of Algorithm 3 | General Reordering

The families are identi�ed simply during the s
an: as long as the values of LCP

in
rease, they are pushed on the sta
k as they represent beginnings of families. A

de
reasing value indi
ates the end of the innermost family (i.e. the one on the top of

the sta
k). After the family is sorted, it is \verti
alized", so it is now represented as a

single node in the family it is nested in and the s
an 
an 
ontinue. One would expe
t

to pop the sta
k on
e the innermost family is pro
essed. However, the situation is a bit

more 
omplex, and thus multipop() is employed to de
ide whether or not the sta
k

should be popped. The 
ontrol stu
ture of the algorithm is shown in Figure 5. The

individual steps are des
ribed in detail below, making use of the following standard

routines: Push(s) pushes s on top of STACK, Pop() pops STACK, Top() obtains the

value on the top of the sta
k STACK without popping it, Top

1

() obtains the value

next to the top of STACK without popping it.

The data stru
tures and variables

As shown in Figure 5, three arrays are used in addition to x, two of them input, only

one auxiliary. NEXT[1::n℄ emulates a singly-linked list of nodes, where ea
h node
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stores an integer value k representing the suÆx x[k::n℄. A variable start marks the

beginning of NEXT[ ℄. For instan
e,

5
 2
3
 1
4


2
 0
 1
 3
 4

1
 2
 3
 4
 5


NEXT
start
 = 5    and
 represent


The array TAIL[n℄ represents the \verti
alized" part of the list of nodes. For instan
e,

5


6


9


10


2
3


11


8


1
4


7


2
 0
 1
 3
 4

1
 2
 3
 4
 5


NEXT


start
 = 5    and


represent


6
 7
 8
 9
 10
 11

9
 0
 11
 10
 0
 0


0
 0
 8
 7
 6
TAIL
 10
 7
 11
 0
 0
 0


The end of ea
h \verti
al" tail is rea
hable in two steps: TAIL[TAIL[k℄℄ is the very

last member of the \verti
al" tail starting at the node k. Other auxiliary variables

used are: 
ur for a \pointer" to the 
urrent node in NEXT[ ℄, prev for a \pointer" to

the previous node (if prev = 0, it means that 
ur = start). LE (left end) represents

the node to whi
h the head of a family is atta
hed (LE = 0 means that the head of

the family is start), RE (right end) represents the node to whi
h the last member of

a family will point to (RE = 0 means that the last member of a family is the last

member of the NEXT list). Finally a variable type des
ribes the type of family we

are pro
essing, i.e. the l
p of all memebers of the family.

Transform input LSA to NEXT

Traverse LSA and �ll in the entries in NEXT:

start LSA[1℄;

for i 1 to n�1 do

NEXT[LSA[i℄℄ LSA[i+1℄

NEXT[n℄ 0

Transform input LCP1 to LCP

Normally, LCP[i℄ represents the l
p of two neighbouring suÆxes, x[LSA[i�1::n℄℄ and

x[LSA[i℄::n℄℄. But sin
e during the sorting the mutual positions of suÆxes 
an 
hange,

we modify the usual meaning to: LCP[i℄ represents the l
p of x[LSA[i℄::n℄℄ and its

right neighbour. Thus, we traverse LCP1 and \shift" the values one position to the

left. Sin
e LSA is no longer needed, we use its memory for LCP:
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LCP[start℄ LCP1[1℄;

for i 1 to n�1 do

LCP[LSA[i℄℄ LCP1[i+1℄

LCP[n℄ 0

Initialize TAIL

Sin
e LCP1 is no longer needed, we use its memory for TAIL. Sin
e at the beginning

we have no \verti
al" tails, all entries must be initialized to 0:

for i 1 to n do

TAIL[i℄ 0

Initialize STACK and variables

Start the traversal of NEXT and LCP. Keep traversing as long as LCP has value 0.

Push on STACK prev of the �rst non-zero node.

prev  0; 
ur start

while LCP[i℄ = 0

prev  
ur; 
ur NEXT[
ur℄

Push(prev)

type LCP[
ur℄

Identify and Extra
t a family

Note that we are now inside a loop (see Figure 5), and thus the use of the term


ontinue means to transfer the 
ow of 
ontrol to the top of the loop.

if LCP[
ur℄ = type then

prev  
ur; 
ur NEXT[
ur℄; 
ontinue

if LCP[
ur℄ > type then | a new family starts

Push(prev)

prev  
ur; 
ur NEXT[
ur℄; 
ontinue

if LCP[
ur℄ < type then | a family ends

LE  Top(); RE  NEXT[
ur℄; NEXT[
ur℄ 0

Thus we have just identi�ed an innermost family of type LCP[
ur℄ starting at

NEXT[LE℄ and ending at 
ur. Note that we \severed" the link between 
ur and

RE (we \extra
ted" the family from the list NEXT).

Sort the family

Note that sorting the family a

ording to the letter at position type is the same as

sorting links of an internal node of a suÆx tree. We will dis
uss the a
tual sorting

separately. We are assuming that from refers to the head of the family, while to to its

last member. Prior to sorting the family, we must remember the LCP[to℄ value, thus

last LCP[to℄. After the sorting of the family, we must modify the LCP a

ordingly:

for i from to to

if LCP[i℄ < type then

LCP[i℄ type

LCP[to℄! last
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Flatten the family

As indi
ated, some nodes in the NEXT list might have \verti
al" tails. At this stage

we \
atten" the family so there are no \verti
al" tails any more. The pro
ess is simple:

if NEXT[a℄ = b, then we make NEXT[a℄ to be the �rst element in the \verti
al" tail,

while NEXT[
℄ b, where 
 is the last element in the \verti
al" tail. Thus:

for i from to to

if TAIL[i℄ 6= 0 then

b NEXT[i℄; NEXT[i℄ TAIL[i℄

NEXT[TAIL[TAIL[i℄℄℄ b

TAIL[TAIL[i℄℄ 0; TAIL[i℄ 0

Verti
alize the family

To prevent resorting or retraversing the family whi
h just has been 
attened during

the subsequent sort (of the family this family is nested in), we leave only the head of

the family in the NEXT list, and make the rest of the family into a \verti
al" tail of

the head. Thus, in all subsequent sorts only the head will be used and thus further

traversal of the family is prevented.

TAIL[from℄ = NEXT[from℄

NEXT[from℄ 0

TAIL[TAIL[from℄℄ to

multipop()

As a te
hni
ality, in its �rst invo
ation multipop() returns true . Thus, we 
an

assume, that we just �nished pro
essing a family of type type. We have to de
ide

if we 
ontinue with the s
an, pop the sta
k, or pro
ess another family. The role of

multipop() is to make all these de
isions. It returns true if the s
an is to 
ontinue,

or false if the s
an is to terminate.

What situations 
an happen is best visualized on the suÆx tree | the grey triangle

represents the family of links that was just sorted. There are 7 possible 
ases that

we denote A1, ..., A4, and B1, ..., B3. Cases A1, ..., A4 
on
ern situations when

only one item is on the sta
k (representing the family we just sorted), while 
ases B1,

..., B3 
on
ern situations when more than one item are on the sta
k. The s
hemati


depi
tion of the 
ases follows:

0


n


Case   A1


0


Case   A2


n
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0


n


Case   A3


m


n


Case   A4


k


m


n


Case   B1


k


n


Case   B2


m


represents either an internal node of the suffix tree,


or a leaf.


m


n


Case   B3


k


The variable famend represents the \pointer" to the very last element in the family

just pro
essed.

Cases A1, ..., A3

These are treated alike and re
ognized alike. The re
ognition is based on the fa
t

that the sta
k has only one item and LCP[famend℄ = 0. The a
tion is to pop the

sta
k, forward the s
an and then the s
an is 
ontinued:
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Pop(); prev  
ur; 
ur NEXT[
ur℄

if 
ur=0 then return false

type LCP[
ur℄

while type = 0 do

prev  
ur; 
ur NEXT[
ur℄; type LCP[
ur℄

if type=0 then

prev  
ur; return false

Push(prev)

return true

Case A4

The re
ognition is based on the fa
t that the sta
k has only one item and

LCP[famend℄ > 0. The a
tion is not to pop the sta
k (as the n-family just pro
essed

starts at the same position as the m-family to be pro
essed), the s
an is forwarder

and then the s
an is 
ontinued, but the type is de
reased a

ordingly (to m):

type LCP[famend℄

prev  
ur


ur NEXT[
ur℄

return true

For 
ases B1, ..., B3 we have to determine type1, the type of the family that is on the

top of the sta
k:

if Top

1

() = 0 then

type1 LCP[start℄

else

type1 LCP[NEXT[Top

1

()℄℄

Case B1

The re
ognition is based on the fa
t that the sta
k has more than one item and

LCP[famend℄ > type1. The a
tion is not to pop the sta
k (as the n-family just

pro
essed starts at the same position as the m-family to be pro
essed), the s
an is

forwarded and then the s
an is 
ontinued, but the type is de
reased a

ordingly (to

m):

type LCP[famend℄

prev  
ur


ur NEXT[
ur℄

return true

Case B2

The re
ognition is based on the fa
t that the sta
k has more than one item and

LCP[famend℄ = type1. The a
tion is to pop the sta
k, de
rease the type, forward

the s
an and then the s
an is 
ontinued:

Pop()

type type1

prev  
ur


ur NEXT[
ur℄

if 
ur = 0 then return false

return true
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Case B3

The re
ognition is based on the fa
t that the sta
k has more than one item and

LCP[famend℄ < type1. The a
tion is to pop the sta
k, de
rease the type, without

moving forward the s
an and then the s
an is 
ontinued:

Pop()

type type1

return true

This 
on
ludes the des
ription of the algorithm. It is rather straighforward to


he
k that the algorithm (without the a
tual sorting of the families) requires O(n)

steps. The additional memory requirements are n words for the array NEXT[ ℄ and

� n words of memory for STACK. Of 
ourse, some additional memory will be

required for the a
tual sorting of the families: if the number of distin
t 
hara
ters in

the input string is � n=2, then we need � 3n=2 words of memory for STACK and for

sorting (n for STACK and � n=2 for sorting). If the number of distin
t 
hara
ters

in the input string is > n=2, then we need � 3n=2 words of memory for STACK and

sorting (< n=2 for STACK, and � n for sorting). Thus, the algorithm presented

requires in total � 2:5n words of working memory for the pro
ess and the

sorting.

C 
ode for Algorithms 1{3 and powerpoint illustration of Algorithms 2{3 are

available at [F05℄.

From the presentation of the algorithm it is 
lear that sorting the suÆx array

is as 
omplex as sorting links in the 
orresponding suÆx tree. Thus, the following

dis
usion applies to both suÆx trees and suÆx arrays. When we are to sort a family

of size k (or k links of an internal node in the suÆx tree), no matter what permutation

is given, it 
an be sorted in O(n) time using a bu
ket sort. However, this may lead

to non-linear sorting time for the whole array (or the whole tree). If the alphabet is

�xed, of 
ourse the sorting will be linear. But also for some \mild" permutations the

sorting will be linear as well. This leads us to investigate an interesting 
omputational

property of permutations that we 
all the suborder 
omplexity of the permutation:

The suborder 
omplexity � of a permutation p of n, denoted �(p), is de�ned to

be the minimal � su
h that for any 2 � k � n, it takes at most �k steps to order

any subset of n of size k. Note that �(p) � logn as any subset of n of size k 
an be

sorted in � k log k � k logn steps.

It follows that

Theorem 2. For any permutation with suborder 
omplexity �, the suÆx array of a

string 
an be re-ordered by Algorithm 3 in O(�n) time, where n is the length of the

input string.

Con
lusions and Further Resear
h

An interesting question that arises is what kind of permutations have small suborder


omplexity. Here are some examples:

� The inversion has suborder 
omplexity 1.
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� Any rotation has suborder 
omplexity 1.

� Any permutation with � transpositions has suborder 
omplexity �.

� Let p be a \mild" permutation, i.e. jp(i) � ij � �. Then p has suborder


omplexity 2�.

� Let p

1

on n

1

have suborder 
omplexity �

1

and let p

2

on n

2

have suborder 
om-

plexity �

2

, then p

1

L

p

2

has suborder 
omplexity max(�

1

; �

2

) (where p = p

1

L

p

2

is de�ned on n

1

+n

2

by p(i) = p

1

(i) for 1 � i � n

1

, and p(i) = n

1

+p

2

(i�n

1

) for

n

1

< i � n

1

+n

2

).

So the 
lass of permutations with small suborder 
omplexity seems quite interest-

ing and ri
h enough to warrant further investigation.
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