Reordering Finite Automata States for Fast String
Recognition

E. Ketcha Ngassam®, Derrick G. Kourie?, and Bruce W. Watson®

® School of Computing, University of South Africa,
Pretoria 0003, South Africa
b Department of Computer Science, University of Pretoria,
Pretoria 0002, South Africa

e-mail: “ngassek@unisa.ac.za, ’{dkourie, bwatson}@cs.up.ac.za

Abstract. The spatial and temporal locality of reference on which cache mem-
ory relies to minimize cache swaps, is exploited to design a new algorithm for
finite automaton string recognition. It is shown that the algorithm, referred
to as the state reordering algorithm, outperforms the traditional table-driven
algorithm for strings that tend to repeatedly access the same set of states.

Keywords: Automata, Implementation, Performance, State Reordering, Cache
Locality of Reference

1 Introduction

Traditionally, finite automata (FAs) are implemented using the table-driven (TD) al-
gorithm extensively discussed in [1]. In this case, the processing time of the recognizer
is memory load dependant in the sense that for automata of considerable size!, the
time taken to process a string not only depends on the length of the string but also
on the time taken to do a lookup in the transition matrix.

In [2, 3], we reported on investigations based on hardcoded FAs which appeared
to be faster than the TD algorithm, but only for automata of relatively small sizes?.
Further investigations revealed that, although memory load and string length are
major processing time factors, the kind of string being tested for acceptance is also
critical. In effect, no matter the size of the string being tested for acceptance and
the size of the automaton upon which the recognizer relies, a string that drives the
automaton into a set of ‘sink’ states throughout the recognition process is always
processed at optimum due to computer’s cache memory [4]. In such kinds of strings,
the hardcoded algorithm outperforms its TD counterpart. This is explained by the
fact that the instructions that makeup the hardcoded algorithm always remain in
cache—hence the fast processing speed. In this regard, cache memory plays an im-
portant role in determining the efficiency of FA-based string recognition algorithms.

'In this paper, we use automaton size to mean the number of states of the automaton. The two
terms are used interchangeably.

In fact experiments revealed that hardcoded algorithm is faster than TD for FAs of size up to
about 360 states on an Intel Pentium 4. This was true for alphabet sizes of up to about 50 symbols.

69

Proceedings of the Prague Stringology Conference 05

Cache memory operation is based on what is sometimes referred to as the principle
of temporal and spatial locality of reference. Since data/instructions are fetched from
memory in blocks, the temporal locality of reference refers to the premise that there
is a strong chance that the same data/instruction will be used in the near future.
Similarly, spatial locality of reference refers to the premise that there is a strong
chance that other data within a given block will be fetched in the immediate future.
These two principles are of importance in the design and implementation of efficient
algorithms. Moreover, the nature of the cache itself guarantees that data found in
cache is processed faster than data residing in the main memory. Page swaps into
cache occur when data being sought is not in cache and the cache is full. In this case,
a policy such as that of LRU (least recently used) data is normally used to determine
what is to be swapped out. For more information on cache, refer to [5].

In this paper, we provide an alternative algorithm for string recognition, referred
to as the State Reordering (SR) algorithm that makes use of the spatial and temporal
locality principles. The algorithm reorders the states of the original automaton ac-
cording to the string being processed. Only states needed are reorganized in memory.

In certain circumstances, the reordering increases the probability of reusing the
chunks of data already present in the cache. The evidence suggests that our algorithm
will outperform the TD algorithm for large automata when processing long sequences
that exercise a limited number of states. The provision is that the strings are long
enough to amortize the cost of reordering the states. This would be the case, for
example, in a network intrusion detection system, where a continuous stream of data
is being processed by an FA-based system.

The structure of the rest of this paper is as follows. In Section 2 we present and
explain the SR algorithm. Section 3 assesses it from a theoretical perspective. Section
4 deals with the experimental comparison of SR and TD. Finally, in section 5, the
conclusion and further directions for this work are offered.

2 The State Reordering Algorithm

In this section, we present the new SR algorithm and provide a theoretical analysis
of the algorithm based on strings of considerable length. The conditions under which
the algorithm appears to be most efficient are also discussed. We further the analysis
by providing a class of strings that can benefit from our algorithm provided that the
set of states visited remains unchanged.

proc tdRecognizer(table,inString)
s state, index : = 0,0
do (index < inString.length()) A (state > 0) —
state, index : = table[state][inString[index]], index + 1
od

Figure 1: Table-driven string recognizer

It is clear from the pseudocode of the TD algorithm (see Figure 1) that its access

70

Reordering Finite Automata States for Fast String Recognition

to the transition table in memory is entirely dependent on the string being examined.
Since data is fetched by the processor from memory in chunks, the arbitrary organi-
zation of the table’s entries results in frequent cache misses in the next cycle. Put
differently, the probability of finding the desired datum from the cache is relatively
low. The processor is then forced to perform a page swap in order to get the desired
entry. This approach may result in inefficiencies when the table is considerably large.

Figure 2 provides a high-level specification of the SR algorithm. Just as in figure
1, the transition table and the input string (inString) are provided as parameters.
Also provided as parameters are: the start address (start) where information about
reordered states is stored; and an indication of the amount of space to be reserved for
each reordered state (size). By a reordered state, we mean a state (as represented
by a row in the original transition table) whose information have been copied (and
modified — see below) into a specially reserved place in memory, indicated by the
dynamic two-dimensional array, srT'able. The main loop consists of an alternation-
(i.e. if-) statement, and an assignment statement to increment the value of the current
index into inString. The loop condition corresponds identically to that of the TD
algorithm. The alternation statement has two guards: the first deals with a transition
to the next state when the current state has not yet been reordered; and the second
deals with a transition from a reordered state.

The algorithm uses an auxiliary array, srMap. The invariant of the algorithm’s
main loop:

Vi:[0,n) - srMapli] =k ANk >0< k€ 0,pos) AisReordered(i, k,index — 1)
articulates the nature of srMap, namely that the i entry of srMap is a positive
value, k, if and only if k indexes an entry in srTable (i.e. k € [0,pos)) and that “the
k' entry is a reordered state that corresponds to the i row in the original transition
table”. The predicate isReordered(i, k,index — 1) is an assertion that corresponds
to the words in quotes in the previous sentence, as will be discussed below.

The variable pos holds the index of the next srTable entry to be created in
memory. Thus, the first statement of the first guarded command assigns pos to
srMap|state|, where state is the current state, and the next symbol to be accessed
is inString[index|. The variable nextB points to the next memory address where
space for the entry srTable[pos] is to be allocated. The second statement of the first
guarded command allocates the required memory for the srTable[pos] entry, and the
third statement copies the transition table values for row state over into a row at
srTable[pos].

However, each entry srTable[k][j] is required to have the following property: if its
value, say m, is less than the total number of states, n, this should be construed to
mean that if symbol j is encountered when in reordered state k, then a transition is to
be made to state m where m is not a reordered state. However, if m is indeed greater
or equal to the total number of states, then this should be construed to mean that
the transition in reordered state & upon encountering symbol j is to the reordered
state in srTablem — n]. Thus, each time a reordered state is added into memory,
it is necessary to check all reordered state entries to re-establish this property. An
inner double loop in the first guarded command achieves this objective. Note that
the predicate isReordered(i, k,index — 1) is consistent with this property required of
srTable entries. Tt relies on the existence of a set visited(p) which designates the set
of all states visited when recognizing the first p elements of the string inString.

71

Proceedings of the Prague Stringology Conference '05

{Assume n is the number of states and a is the alphabet size}
proc srRecognizer(table, inString, start, size)
ssrMap[0.n—1]: = —1
inextB, state, index, pos : = start,0,0,0
{ Invariant = (Vi : [0,n) - srMap[i]| = k ANk > 0 &
k € [0, pos) A isReordered(i, k,index — 1)
isReordered(i, k,p) = Vj : [0,a) - m = srTable[k][j] =
((m < n Atable[i][j] = m < m ¢ visited(p))
V(m>n<3r:[0,n) srMap[r] =m —n Ar € visited(p)))
}
;do (index < inString.length() A state > 0) —
if state <n —
srMap|state] : = pos

; srTable[pos] : = malloc(nextB, size)
; srTablelpos][0..a — 1] : = table[state][0..a — 1]
ik,7:=0,0
do k < pos —
doj<a—

m : = srTable[k][/]
;if m < n A srMap[m] < 0 — skip{m ¢ visited(index)}

| m<nAsrMapim] >0 — srTablelk][j] : = srMap[m]+n
| m > n — skip{m already updated}
fi
jjr =741
od
ik =k+1
od
; state, pos, next B : = srTable[pos][inString[index]], pos + 1, nextB + size
| state > n — state : = srTable[state — n|[inString|index]]
fi
vindex © = index + 1
od

Figure 2: The state reordering string recognizer

The double loop is followed by assignments to update state, pos and nextB. If this
new value of state turns out to be in the interval [0, n) then it represents a transition
to a non-reordered state, and will be dealt with in the next loop iteration by the first
guard, in the way just described. However, if state turns out to be > n then it will
be dealt with in the next iteration by the second guard.

This second guard uses srTable to perform the recognition of the string being
tested for acceptance, as if it were the transition table in the conventional TD al-
gorithm, but correcting, of course, for the offset by n in the state’s value. In fact,
at every iteration of the loop, whenever the next state is a reordered one, then this

72

Reordering Finite Automata States for Fast String Recognition

second guard’s statement is executed, followed by the final statement to increment
the index value.

The SR algorithm is thus subdivided into two parts: the reordering section, rep-
resented by the first guard’s body, in which a state that has not been created is
reordered—i.e. inserted into the srT'able; and what we shall call the hot-spot section,
represented by the second guard.

At first sight, the SR algorithm might appear to be less efficient than the TD
version, due to the various tests that have to be made at each iteration as well as to
the work done to create new “reordered” states. The SR algorithm would obviously
be at a disadvantage in cases where, for a relatively large number of loop iterations,
the reordering path is followed, since the time taken to allocate and copy memory will
hamper the overall processing time. However, as a result of reordering, previously
used states are organized contiguously in memory in the same order in which they are
first traversed. This could be advantageous if it reduced the number of cache misses
in iterations where the hot-spot is executed. We defer further discussion about these
matters to section 3

A practical example of the SR algorithm is shown in the subsection below.

2.1 An illustrative example

Consider an automaton M (so, 2, Q, F,§) where so =0, ¥ = {a, b, ¢},

Q =F =1{0,1,2,3,4,5,6}, and § defined by a two-dimensional array, given below.
This automaton is partially represented in Figure 3, in that it only shows transitions
that will be followed when the string abcbaabcbaabeba is being recognized. The strings

a

ONOgORONOEORO

a b
Figure 3: A State diagram for testing the string abcbaabcbaabcba

abcbaabcbaabeba can be processed using the SR algorithm as follows:

Initial phase:

After initialization the following holds:

table = {{6,3,1},{2,5,4},{1,1,2},{3,2,1},{4,6,0},{0,1,3},{1,3,5}}
(Thus, §(0,a) =6, 6(0,b) = 3, etc.)

inString = abcbaabcbaabeba

inString.length() = 15

srMap = {-1,-1,-1,—-1,—-1,—1, —1}.

nextB, state, index, pos := start,0,0,0

73

Proceedings of the Prague Stringology Conference '05

The first iteration:

At this stage, all the conditions to enter the loop are satisfied. Therefore, the loop is
executed. A test is made on srMap[state] to see whether the state has been created
or not. For state = 0, the first guard is selected and a new state has to be created in
memory. This results in the following:

srMap[0] = 0, that is the old state 0 will occupy the first position in the new memory
space.

The variable size represents the memory required to store a state. It depends on the
alphabet size (3 for the present example).

The instructions: srTable[pos] := malloc(nextB, size) and srTable[0][0..2] :=
table[state][0..2] are then executed to produce srTable = {{6,3,1}}

The double loop tests whether any entry in the sr7Table has been reordered to date.
None has, so srTable is left unaltered.

The new value of state is 6, pos becomes 1 and index becomes 1

Later iterations

Suppose the substring abcba has already been processed. If the double inner loop was
not part of the algorithm then srTable would simply be the following:
{{6,3,1},{1,3,5},{3,2,1},{2,5,4},{0,1,3}}. However, the double inner loop has to
make sure that the entries in the new location are distinguished from those of the old
location. Therefore, to avoid conflict of states, the double inner loop adds n = 7 to
all reordered states.
This results in: srTable = {{8,9,10},{10,9,11},{9,2,10},{2,11,4},{7,10,9}}.
Therefore, for the processing of the string up to this point, only four of the six
automaton states were visited. It can easily be seen that the remaining part of the
string, that is abcbaabcba, involves the traversal of these reordered states only. Thus
the remaining string is processed at hot-spot.

Before testing the SR algorithm empirically, it is of interest to assess theoretically
how the SR and TD algorithms are likely to perform relative to one another. Such
task is undertaken in the following subsection.

3 A theoretical assessment

In cross-comparing these algorithms, we rely on the fact that data in cache is processed
faster than the data that is in main memory. Furthermore, when data is organized
in a contiguous fashion and data items are accessed sequentially, the number of page
swaps is minimized. By contrast, when data is accessed in a disorganized or random
fashion, the number of cache swaps is high.

Now, as a matter of fact, ultimately neither the TD nor the SR algorithms can of
themselves directly influence the way in which cache is used. They are “victims”, as
it were, of the strings that they are required to recognize. The following is a broad
classification of the kinds of scenarios that could arise.

1. If an input string continuously drives an algorithm through a relatively small
number of states such that these all remain permanently in cache, then both
algorithms function optimally. Even if the input string is relatively long, the

74

Reordering Finite Automata States for Fast String Recognition

time taken to process a single symbol is optimized. Of course, in such a case,
the SR algorithm is a poor one, since it needlessly incurs the initial setup cost
during the reordering phase.

2. If the input string drives an algorithm through a somewhat larger number of
states, such that cache swaps have to be made, then the question is whether
these cache swaps are at a minimum. Again, this behaviour is entirely dependent
on the input string.

(a) Pathological strings could be constructed to induce worst case behaviour
for both the TD and SR algorithms, where as many string symbols as
possible induce a transition to a state that is not currently in cache.

(b) Likewise, well behaved string examples could be constructed where state
transitions are nicely ordered to progress from row to row in the original
transition table.

In both these extreme situations, TD would perform better than SR, since SR
would again incur, without any real gain, the state reordering setup cost.

3. Under the previous scenario (i.e. where a large number of states are traversed),
the SR algorithm could potentially acquire an advantage over the TD algorithm
if the input string exhibited the following characteristics:

(a) the string tended to repeatedly exercise the same subset of states; where

(b) these states were fairly widely distributed over the transition table rows,
thus causing many cache misses under TD; but

(c) where the states were contiguously placed in srTable because the order of
their initial usage reflected their later usage and order.

It is easy to see that under these circumstances, the hot-spot of the SR algorithm
would repeatedly be exercised in a way that minimized cache swaps, while the
TD algorithm would incur a high number of cache swaps.

The claim made in 3 is rather general. It does not attempt to quantify how many
reorderings should take place, how many times the hot-spot should be exercised, how
long the input string should be, how rows in the transition table should be ordered,
etc. Clearly all of these factors could influence the extent to which SR improves over
TD. Indeed, at this point, it is not even clear whether, under practical conditions, the
cost of state reordering is ever really likely to pay off. In the next section, experiments
are described that offer some insights into these matters.

4 Experiments and Results

Various experiments were conducted on a 512MB Intel Pentium 4 machine, having
two levels of cache memory (L1 and L2). The L1 data cache has a capacity of 8KB,
with a speed of 2ccs. The L2 cache is bigger and can hold up to 256KB of data
and instructions with a relative speed of approximately 6ces. Data is fetched from
memory in chunks of 64 bytes. During initial program execution, if reference is made

5

Proceedings of the Prague Stringology Conference '05

to a data item outside of cache, another chunk is fetched until both L1 and L2 cache
are full. A subsequent fetch of data not residing in either cache, results in a page
swap of memory data with data in the lowest cache. The data to be swapped out
from cache is determined by the “Least Recently Used Data” policy.

The SR algorithm was implemented in the NASM assembly language under the
Linux operating system. The TD algorithm was originally implemented in C++,
with the optimizer (O3) turned on. Its NASM implementation was also provided
after several early experiments. The intention was to ensure that the SR algorithm
did not enjoy some hidden advantage because of being implemented in an assembler
language. It turned out that the NASM version of TD was indeed slightly faster than
its C++ implementation for automata larger than about 3000 states. However, the
difference was so small that the overall results of our findings apply, no matter which
TD implementation is considered.

For the present experiment, 100 automata of size n = 125,250,325, ---, 12500
were generated, based on 10 alphabet symbols. The transition table of each automa-
ton was randomly constructed in the following sense:

e Firstly, for each row, i : [0,n — 2], a column j : [0,a) (corresponding to some
alphabet symbol) is randomly selected. This column is assigned the next state
transition value 7 + 1. This ensures that there is at least one string of length
n — 1 that will traverse every state of the FA. We shall refer to this string as
the root string of the particular automaton.

e Next, all remaining cells of the table are assigned a random value in the range
[0,n —1].

Considered graphically, this means that each node in the FA graph has a transition
to the next state on some random symbol, as well as a transition on each of the
remaining 9 alphabet symbols to some random state.

For each automaton, a random string of size n — 1 was generated. This was
replicated 4 times to produce an input string of length 4n — 4 consisting of 4 iden-
tical segments. Each of the algorithms was required to use the randomly generated
automaton of size n to recognize such a string, resulting in 100 runs of each algorithm.

Before discussing the timing results, consider the information presented in table 1.
The table gives an overview of the rate at which state reordering was found to occur
when the SR algorithm was run. Data is given as a percentage of the total number
of states in each particular run. The first column relates to the full string that was
processed, the second column, to the first segment, etc. Thus, after processing the
first segment, on average a little more than 60% of the states are reordered. Note that
these observations lie in a fairly narrow band, between about 57% and 63%. As a
matter of fact, when the number of reordered states is plotted against the automaton
size (not provided here), a very distinct linear trend is observed. However, in the
case of segments 2 to 4, no obvious trend is observed in relation to automaton size.
Nevertheless, the average number of reordered states declines steadily from about
16% in the case of segment 2, to almost 0% in the case of segment 4. Overall, about
80% of states were reordered, on average.

These results are broadly in line with expectation. In processing the first n — 1
symbols, roughly 60% of the states are reordered, meaning that they are located

76

Reordering Finite Automata States for Fast String Recognition

Full String | Segment 1 | Segment 2 | Segment 3 | Segment 4
Maximum | 95.20% 62.67% 24.80% 9.17% 2.78%
Minimum 62.42% 56.80% 0.40% 0.00% 0.00%
Average 79.06% 61.29% 16.11% 1.60% 0.06%

Table 1: Rate of Reordered State Generation

contiguously in memory in order of first usage. In this sense, the data is optimized in
terms of the spatial locality of reference principle. Later segments trigger progressively
fewer state reorderings, and consequently spend more time in the hot-spot part of the
code. If these later segments were to traverse the reordered states in ezactly the
same sequence as the first segment, then the probability would be relatively high of
accessing spatially localized data, and hence of triggering few cache swaps. Of course,
this will only happen in the unlikely event that segment 2 (and therefore also 3 and
4) happen to start off in state 0.

The experiment above has not been designed to specifically generate this “best
case” scenario. Rather, it is far more likely that these later segments will start off in
some other random state. Nevertheless, on the evidence of table 1, an increasingly
large proportion of segment 2 to 4 processing is via the hot-spot. In fact, even in the
case of the first segment’s processing, about 40% of the iterations were through the
hot-spot. Whether this translates into time gains as a result of frequently accessing
spatially localized data (and therefore having fewer cache swaps), cannot be predicted
a priori. To this end, we require the timing data derived from running the respective
algorithms.

For the purposes of recording timing data, each algorithm was invoked 50 times
for each set of input, and the processing time was recorded in clock cycles (ccs).
For further analysis, we relied on the minimum of these 50 observations. (This was
because the experience of earlier studies, which had shown that occasionally, outlier
data is generated that distorts the average and that is apparently attributable to OS
and CPU overheads.)

The results showed that state reordering is too expensive to provide such a short-
term payoff. In fact, the cost is at least 100 times than that of making a transition.
In order to gain any advantage from the spatial and temporal locality of reference
of the reordered states, and thus amortize the cost of reordering, the hot-spot would
have to be exercised much more frequently than was done by the strings of length
4dn — 4.

A further experiment was therefore conducted to probe the best case scenario—
one in which reordered states are traversed in the same order as they were generated.
This was done by essentially repeating the previous experiment with the following
modifications: strings were now of length 2n — 2 instead of 4n — 4; it was ensured
that when the n'* symbol was encountered then the FA would be in state 0; and only
the time taken to process the second group of n — 1 symbols was measured. Gnuplot
was used to plot the graphs of number of states against time for both TD and SR
algorithms. The results are provided in figure 4.

The graph shows that the TD processing time is super-linear in the size of the
automaton. Although the SR trend appears to be close to linear, there is, in fact, a
slight suggestion of superlinearity here as well. It is clear that in this case, SR enjoys

7

Proceedings of the Prague Stringology Conference '05

2.5e+006

2e+006 [—

Table-drjven

1.5e+006 [—

Minimurm time in ccs

le+006 [~ —
State Reordelﬁir}g

500000 |- el -

L L L L L L
2000 4000 6000 8000 10000 12000
Number of states

Figure 4: SR and TD Performance: Input String is Two Repeated Segments of Length
n — 1. Time is for Second Segment Only

a definite time advantage over TD, due to optimal cache utilization. For example,
at about 9000 state transitions, the SR algorithm is about 60% faster than the TD
algorithm. The graph may be thought of as SR’s best case asymptotic behaviour. On
this evidence, therefore, state reordering is a feasible strategy under conditions that
approximate those discussed in section 3, item 3. Given that more recent hardware
platforms have been placing increasing emphasis on additional cache memory?, the
gains obtained by optimally exercising cache are likely to increase.

5 Conclusion and Future Work:

In this paper, we have discussed the design of an algorithm for FA string recognition
that attempts to leverage an advantage from the fact that cache memory relies on
the principle of spatial and temporal locality of reference. Our experiments have
suggested that the SR algorithm could gain an advantage over the traditional TD
algorithm for long string sequences that tend to revisit hot-spot states in a certain
order.

Two application areas that immediately suggests themselves as potentially worth
exploring are DNA analysis and network intrusion detection. In the first case, one
of the contemporary challenges is the identification of so-called micro- and/or mini-
satellites (generically called approximate tandem repeats) in DNA strings. Here, what
is sought is repeated approximate patterns in the string. The notion of “repetition”

3For example, the L2 cache of Intel’s Prescott-2M Pentium 4 chip, released in February 2005,
has 2048kB, while the Intel Intanium 2 processor, targeted for release in November 2005, will have
a 3MB of L3 cache.

78

Reordering Finite Automata States for Fast String Recognition

intuitively corresponds to the idea of processing within a hot-spot, as discussed ear-
lier. In the latter case, one would imagine that scanning a stream of network data
for security breaches involves, for the most part, the traversal of hot-spot states that
should quickly pass the data down the line. Again, this seems like a possible appli-
cation domain for the SR algorithm. However, a fuller investigation of appropriate
application domains for SR is a matter left for future research.

The algorithm was implemented in NASM on an Intel Pentium 4 machine. Intel
offers many data prefetching instructions for performance enhancement [6] that have
not been used in the algorithm. These instructions should be analyzed in the future
in the hope of speeding up even further the SR implementation.

The algorithm suggested in this paper is part of a set of algorithms under in-
vestigation. The aim is to package these in a dynamic framework for implementing
FAs with a view to enhancing performance [4]. We are currently investigating a
mixed-mode implementation as an alternative to the SR and hardcoded implementa-
tions explored to date. Once all the algorithms under investigation have been tested,
the final design of the dynamic framework will be proposed as well as a toolkit for
efficiently processing FAs.

References

[1] Ketcha Ngassam, E. Hardcoding Finite Automata. MSC Dissertation. University
of Pretoria, 2003.

[2] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. Preliminary Ezperiments
in Hardcoding Finite Automata. Poster paper, CTAA, Santa Barbara, 299-300,
September 2003.

[3] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. Hardcoding Finite State
Automata Processing. SAICSIT, Johannesburg, 111-121, September 2003.

[4] Ketcha Ngassam, E., Watson, B. W. and Kourie, D.G. A Framework for the Dy-
namic Implemenation of Finite Automata for Performance Enhancement. Prague
Stringology Conference, Prague, August 2004.

[5] Hannessy, J. L., Patterson D. A. Computer Architecture: A Quantitative Ap-
proach. Morgan Kaufmann Publishers, 3rd Edition, 2003.

[6] Intel Corporation. The Intel Opimization — Reference Manual.
http://www.intel.com/design/pentiumiii/manuals/, 2002.

[7] Thompson, K. Regular Expression Search Algorithm. Communications of the
ACM. Volume 11, No 6, 323-350, 1968.

[8] Knuth, D.E., Morris Jr., J.H. and Pratt, V. R Fast Pattern Matching in Strings.
SIAM J. Comput. Volume 6, No 1, 323-350, 1977.

9] Yao, A C. The Complezity of Pattern Matching for a Random String. STAM J.
COmput., 8(3),pp. 368-387, 1979.

79

Proceedings of the Prague Stringology Conference '05

[10] Gerber, R., The Software Optimization Cookbook: High-Performance Recipes for
the Intel Architecture. Intel Corporation, 2002.

80

