
Reordering Finite Automata States for Fast String

Re
ognition

E. Ket
ha Ngassam

a

, Derri
k G. Kourie

b

, and Bru
e W. Watson

b

a

S
hool of Computing, University of South Afri
a,

Pretoria 0003, South Afri
a

b

Department of Computer S
ien
e, University of Pretoria,

Pretoria 0002, South Afri
a

e-mail:

a

ngassek�unisa.a
.za,

b

fdkourie, bwatsong�
s.up.a
.za

Abstra
t. The spatial and temporal lo
ality of referen
e on whi
h
a
he mem-

ory relies to minimize
a
he swaps, is exploited to design a new algorithm for

�nite automaton string re
ognition. It is shown that the algorithm, referred

to as the state reordering algorithm, outperforms the traditional table-driven

algorithm for strings that tend to repeatedly a

ess the same set of states.

Keywords: Automata, Implementation, Performan
e, State Reordering, Ca
he

Lo
ality of Referen
e

1 Introdu
tion

Traditionally, �nite automata (FAs) are implemented using the table-driven (TD) al-

gorithm extensively dis
ussed in [1℄. In this
ase, the pro
essing time of the re
ognizer

is memory load dependant in the sense that for automata of
onsiderable size

1

, the

time taken to pro
ess a string not only depends on the length of the string but also

on the time taken to do a lookup in the transition matrix.

In [2, 3℄, we reported on investigations based on hard
oded FAs whi
h appeared

to be faster than the TD algorithm, but only for automata of relatively small sizes

2

.

Further investigations revealed that, although memory load and string length are

major pro
essing time fa
tors, the kind of string being tested for a

eptan
e is also

riti
al. In e�e
t, no matter the size of the string being tested for a

eptan
e and

the size of the automaton upon whi
h the re
ognizer relies, a string that drives the

automaton into a set of `sink' states throughout the re
ognition pro
ess is always

pro
essed at optimum due to
omputer's
a
he memory [4℄. In su
h kinds of strings,

the hard
oded algorithm outperforms its TD
ounterpart. This is explained by the

fa
t that the instru
tions that makeup the hard
oded algorithm always remain in

a
he|hen
e the fast pro
essing speed. In this regard,
a
he memory plays an im-

portant role in determining the eÆ
ien
y of FA-based string re
ognition algorithms.

1

In this paper, we use automaton size to mean the number of states of the automaton. The two

terms are used inter
hangeably.

2

In fa
t experiments revealed that hard
oded algorithm is faster than TD for FAs of size up to

about 360 states on an Intel Pentium 4. This was true for alphabet sizes of up to about 50 symbols.

69

Pro
eedings of the Prague Stringology Conferen
e '05

Ca
he memory operation is based on what is sometimes referred to as the prin
iple

of temporal and spatial lo
ality of referen
e. Sin
e data/instru
tions are fet
hed from

memory in blo
ks, the temporal lo
ality of referen
e refers to the premise that there

is a strong
han
e that the same data/instru
tion will be used in the near future.

Similarly, spatial lo
ality of referen
e refers to the premise that there is a strong

han
e that other data within a given blo
k will be fet
hed in the immediate future.

These two prin
iples are of importan
e in the design and implementation of eÆ
ient

algorithms. Moreover, the nature of the
a
he itself guarantees that data found in

a
he is pro
essed faster than data residing in the main memory. Page swaps into

a
he o

ur when data being sought is not in
a
he and the
a
he is full. In this
ase,

a poli
y su
h as that of LRU (least re
ently used) data is normally used to determine

what is to be swapped out. For more information on
a
he, refer to [5℄.

In this paper, we provide an alternative algorithm for string re
ognition, referred

to as the State Reordering (SR) algorithm that makes use of the spatial and temporal

lo
ality prin
iples. The algorithm reorders the states of the original automaton a
-

ording to the string being pro
essed. Only states needed are reorganized in memory.

In
ertain
ir
umstan
es, the reordering in
reases the probability of reusing the

hunks of data already present in the
a
he. The eviden
e suggests that our algorithm

will outperform the TD algorithm for large automata when pro
essing long sequen
es

that exer
ise a limited number of states. The provision is that the strings are long

enough to amortize the
ost of reordering the states. This would be the
ase, for

example, in a network intrusion dete
tion system, where a
ontinuous stream of data

is being pro
essed by an FA-based system.

The stru
ture of the rest of this paper is as follows. In Se
tion 2 we present and

explain the SR algorithm. Se
tion 3 assesses it from a theoreti
al perspe
tive. Se
tion

4 deals with the experimental
omparison of SR and TD. Finally, in se
tion 5, the

on
lusion and further dire
tions for this work are o�ered.

2 The State Reordering Algorithm

In this se
tion, we present the new SR algorithm and provide a theoreti
al analysis

of the algorithm based on strings of
onsiderable length. The
onditions under whi
h

the algorithm appears to be most eÆ
ient are also dis
ussed. We further the analysis

by providing a
lass of strings that
an bene�t from our algorithm provided that the

set of states visited remains un
hanged.

pro
 tdRe
ognizer(table; inString)

; state; index : = 0; 0

do (index < inString:length()) ^ (state � 0)!

state; index : = table[state℄[inString[index℄℄; index + 1

od

Figure 1: Table-driven string re
ognizer

It is
lear from the pseudo
ode of the TD algorithm (see Figure 1) that its a

ess

70

Reordering Finite Automata States for Fast String Re
ognition

to the transition table in memory is entirely dependent on the string being examined.

Sin
e data is fet
hed by the pro
essor from memory in
hunks, the arbitrary organi-

zation of the table's entries results in frequent
a
he misses in the next
y
le. Put

di�erently, the probability of �nding the desired datum from the
a
he is relatively

low. The pro
essor is then for
ed to perform a page swap in order to get the desired

entry. This approa
h may result in ineÆ
ien
ies when the table is
onsiderably large.

Figure 2 provides a high-level spe
i�
ation of the SR algorithm. Just as in �gure

1, the transition table and the input string (inString) are provided as parameters.

Also provided as parameters are: the start address (start) where information about

reordered states is stored; and an indi
ation of the amount of spa
e to be reserved for

ea
h reordered state (size). By a reordered state, we mean a state (as represented

by a row in the original transition table) whose information have been
opied (and

modi�ed | see below) into a spe
ially reserved pla
e in memory, indi
ated by the

dynami
 two-dimensional array, srTable. The main loop
onsists of an alternation-

(i.e. if-) statement, and an assignment statement to in
rement the value of the
urrent

index into inString. The loop
ondition
orresponds identi
ally to that of the TD

algorithm. The alternation statement has two guards: the �rst deals with a transition

to the next state when the
urrent state has not yet been reordered; and the se
ond

deals with a transition from a reordered state.

The algorithm uses an auxiliary array, srMap. The invariant of the algorithm's

main loop:

8i : [0; n) � srMap[i℄ = k ^ k � 0, k 2 [0; pos) ^ isReordered(i; k; index� 1)

arti
ulates the nature of srMap, namely that the i

th

entry of srMap is a positive

value, k, if and only if k indexes an entry in srTable (i.e. k 2 [0; pos)) and that \the

k

th

entry is a reordered state that
orresponds to the i

th

row in the original transition

table". The predi
ate isReordered(i; k; index � 1) is an assertion that
orresponds

to the words in quotes in the previous senten
e, as will be dis
ussed below.

The variable pos holds the index of the next srTable entry to be
reated in

memory. Thus, the �rst statement of the �rst guarded
ommand assigns pos to

srMap[state℄, where state is the
urrent state, and the next symbol to be a

essed

is inString[index℄. The variable nextB points to the next memory address where

spa
e for the entry srTable[pos℄ is to be allo
ated. The se
ond statement of the �rst

guarded
ommand allo
ates the required memory for the srTable[pos℄ entry, and the

third statement
opies the transition table values for row state over into a row at

srTable[pos℄.

However, ea
h entry srTable[k℄[j℄ is required to have the following property: if its

value, say m, is less than the total number of states, n, this should be
onstrued to

mean that if symbol j is en
ountered when in reordered state k, then a transition is to

be made to state m where m is not a reordered state. However, if m is indeed greater

or equal to the total number of states, then this should be
onstrued to mean that

the transition in reordered state k upon en
ountering symbol j is to the reordered

state in srTable[m � n℄. Thus, ea
h time a reordered state is added into memory,

it is ne
essary to
he
k all reordered state entries to re-establish this property. An

inner double loop in the �rst guarded
ommand a
hieves this obje
tive. Note that

the predi
ate isReordered(i; k; index� 1) is
onsistent with this property required of

srTable entries. It relies on the existen
e of a set visited(p) whi
h designates the set

of all states visited when re
ognizing the �rst p elements of the string inString.

71

Pro
eedings of the Prague Stringology Conferen
e '05

fAssume n is the number of states and a is the alphabet sizeg

pro
 srRe
ognizer(table; inString; start; size)

; srMap[0::n� 1℄ : = �1

;nextB; state; index; pos : = start; 0; 0; 0

f Invariant , (8i : [0; n) � srMap[i℄ = k ^ k � 0,

k 2 [0; pos) ^ isReordered(i; k; index� 1)

isReordered(i; k; p) , 8j : [0; a) �m = srTable[k℄[j℄)

((m < n ^ table[i℄[j℄ = m, m =2 visited(p))

_ (m � n, 9r : [0; n) � srMap[r℄ = m� n ^ r 2 visited(p)))

g

;do (index < inString:length() ^ state � 0)!

if state < n!

srMap[state℄ : = pos

; srTable[pos℄ : = mallo
(nextB; size)

; srTable[pos℄[0::a� 1℄ : = table[state℄[0::a � 1℄

; k; j : = 0; 0

do k � pos!

do j < a!

m : = srTable[k℄[j℄

; if m < n ^ srMap[m℄ < 0! skipfm =2 visited(index)g

[℄ m < n ^ srMap[m℄ � 0! srTable[k℄[j℄ : = srMap[m℄ + n

[℄ m � n! skipfm already updatedg

f i

; j : = j + 1

od

; k : = k + 1

od

; state; pos; nextB : = srTable[pos℄[inString[index℄℄; pos + 1; nextB + size

[℄ state � n! state : = srTable[state � n℄[inString[index℄℄

f i

; index : = index + 1

od

Figure 2: The state reordering string re
ognizer

The double loop is followed by assignments to update state, pos and nextB. If this

new value of state turns out to be in the interval [0; n) then it represents a transition

to a non-reordered state, and will be dealt with in the next loop iteration by the �rst

guard, in the way just des
ribed. However, if state turns out to be � n then it will

be dealt with in the next iteration by the se
ond guard.

This se
ond guard uses srTable to perform the re
ognition of the string being

tested for a

eptan
e, as if it were the transition table in the
onventional TD al-

gorithm, but
orre
ting, of
ourse, for the o�set by n in the state's value. In fa
t,

at every iteration of the loop, whenever the next state is a reordered one, then this

72

Reordering Finite Automata States for Fast String Re
ognition

se
ond guard's statement is exe
uted, followed by the �nal statement to in
rement

the index value.

The SR algorithm is thus subdivided into two parts: the reordering se
tion, rep-

resented by the �rst guard's body, in whi
h a state that has not been
reated is

reordered|i.e. inserted into the srTable; and what we shall
all the hot-spot se
tion,

represented by the se
ond guard.

At �rst sight, the SR algorithm might appear to be less eÆ
ient than the TD

version, due to the various tests that have to be made at ea
h iteration as well as to

the work done to
reate new \reordered" states. The SR algorithm would obviously

be at a disadvantage in
ases where, for a relatively large number of loop iterations,

the reordering path is followed, sin
e the time taken to allo
ate and
opy memory will

hamper the overall pro
essing time. However, as a result of reordering, previously

used states are organized
ontiguously in memory in the same order in whi
h they are

�rst traversed. This
ould be advantageous if it redu
ed the number of
a
he misses

in iterations where the hot-spot is exe
uted. We defer further dis
ussion about these

matters to se
tion 3

A pra
ti
al example of the SR algorithm is shown in the subse
tion below.

2.1 An illustrative example

Consider an automaton M(s

0

;�; Q; F; Æ) where s

0

= 0, � = fa; b;
g,

Q = F = f0; 1; 2; 3; 4; 5; 6g, and Æ de�ned by a two-dimensional array, given below.

This automaton is partially represented in Figure 3, in that it only shows transitions

that will be followed when the string ab
baab
baab
ba is being re
ognized. The strings

0 1 2 3 4 5 6

a

b

b

a

Figure 3: A State diagram for testing the string ab
baab
baab
ba

ab
baab
baab
ba
an be pro
essed using the SR algorithm as follows:

Initial phase:

After initialization the following holds:

table = ff6; 3; 1g; f2; 5; 4g; f1; 1; 2g; f3; 2; 1g; f4; 6; 0g; f0; 1; 3g; f1; 3; 5gg

(Thus, Æ(0; a) = 6, Æ(0; b) = 3, et
.)

inString = ab
baab
baab
ba

inString:length() = 15

srMap = f�1;�1;�1;�1;�1;�1;�1g.

nextB; state; index; pos := start; 0; 0; 0

73

Pro
eedings of the Prague Stringology Conferen
e '05

The �rst iteration:

At this stage, all the
onditions to enter the loop are satis�ed. Therefore, the loop is

exe
uted. A test is made on srMap[state℄ to see whether the state has been
reated

or not. For state = 0, the �rst guard is sele
ted and a new state has to be
reated in

memory. This results in the following:

srMap[0℄ = 0, that is the old state 0 will o

upy the �rst position in the new memory

spa
e.

The variable size represents the memory required to store a state. It depends on the

alphabet size (3 for the present example).

The instru
tions: srTable[pos℄ := mallo
(nextB; size) and srTable[0℄[0::2℄ :=

table[state℄[0::2℄ are then exe
uted to produ
e srTable = ff6; 3; 1gg

The double loop tests whether any entry in the srTable has been reordered to date.

None has, so srTable is left unaltered.

The new value of state is 6, pos be
omes 1 and index be
omes 1

Later iterations

Suppose the substring ab
ba has already been pro
essed. If the double inner loop was

not part of the algorithm then srTable would simply be the following:

ff6; 3; 1g; f1; 3; 5g; f3; 2; 1g; f2; 5; 4g; f0; 1; 3gg. However, the double inner loop has to

make sure that the entries in the new lo
ation are distinguished from those of the old

lo
ation. Therefore, to avoid
on
i
t of states, the double inner loop adds n = 7 to

all reordered states.

This results in: srTable = ff8; 9; 10g; f10; 9; 11g; f9; 2; 10g; f2; 11; 4g; f7; 10; 9gg.

Therefore, for the pro
essing of the string up to this point, only four of the six

automaton states were visited. It
an easily be seen that the remaining part of the

string, that is ab
baab
ba, involves the traversal of these reordered states only. Thus

the remaining string is pro
essed at hot-spot.

Before testing the SR algorithm empiri
ally, it is of interest to assess theoreti
ally

how the SR and TD algorithms are likely to perform relative to one another. Su
h

task is undertaken in the following subse
tion.

3 A theoreti
al assessment

In
ross-
omparing these algorithms, we rely on the fa
t that data in
a
he is pro
essed

faster than the data that is in main memory. Furthermore, when data is organized

in a
ontiguous fashion and data items are a

essed sequentially, the number of page

swaps is minimized. By
ontrast, when data is a

essed in a disorganized or random

fashion, the number of
a
he swaps is high.

Now, as a matter of fa
t, ultimately neither the TD nor the SR algorithms
an of

themselves dire
tly in
uen
e the way in whi
h
a
he is used. They are \vi
tims", as

it were, of the strings that they are required to re
ognize. The following is a broad

lassi�
ation of the kinds of s
enarios that
ould arise.

1. If an input string
ontinuously drives an algorithm through a relatively small

number of states su
h that these all remain permanently in
a
he, then both

algorithms fun
tion optimally. Even if the input string is relatively long, the

74

Reordering Finite Automata States for Fast String Re
ognition

time taken to pro
ess a single symbol is optimized. Of
ourse, in su
h a
ase,

the SR algorithm is a poor one, sin
e it needlessly in
urs the initial setup
ost

during the reordering phase.

2. If the input string drives an algorithm through a somewhat larger number of

states, su
h that
a
he swaps have to be made, then the question is whether

these
a
he swaps are at a minimum. Again, this behaviour is entirely dependent

on the input string.

(a) Pathologi
al strings
ould be
onstru
ted to indu
e worst
ase behaviour

for both the TD and SR algorithms, where as many string symbols as

possible indu
e a transition to a state that is not
urrently in
a
he.

(b) Likewise, well behaved string examples
ould be
onstru
ted where state

transitions are ni
ely ordered to progress from row to row in the original

transition table.

In both these extreme situations, TD would perform better than SR, sin
e SR

would again in
ur, without any real gain, the state reordering setup
ost.

3. Under the previous s
enario (i.e. where a large number of states are traversed),

the SR algorithm
ould potentially a
quire an advantage over the TD algorithm

if the input string exhibited the following
hara
teristi
s:

(a) the string tended to repeatedly exer
ise the same subset of states; where

(b) these states were fairly widely distributed over the transition table rows,

thus
ausing many
a
he misses under TD; but

(
) where the states were
ontiguously pla
ed in srTable be
ause the order of

their initial usage re
e
ted their later usage and order.

It is easy to see that under these
ir
umstan
es, the hot-spot of the SR algorithm

would repeatedly be exer
ised in a way that minimized
a
he swaps, while the

TD algorithm would in
ur a high number of
a
he swaps.

The
laim made in 3 is rather general. It does not attempt to quantify how many

reorderings should take pla
e, how many times the hot-spot should be exer
ised, how

long the input string should be, how rows in the transition table should be ordered,

et
. Clearly all of these fa
tors
ould in
uen
e the extent to whi
h SR improves over

TD. Indeed, at this point, it is not even
lear whether, under pra
ti
al
onditions, the

ost of state reordering is ever really likely to pay o�. In the next se
tion, experiments

are des
ribed that o�er some insights into these matters.

4 Experiments and Results

Various experiments were
ondu
ted on a 512MB Intel Pentium 4 ma
hine, having

two levels of
a
he memory (L1 and L2). The L1 data
a
he has a
apa
ity of 8KB,

with a speed of 2

s. The L2
a
he is bigger and
an hold up to 256KB of data

and instru
tions with a relative speed of approximately 6

s. Data is fet
hed from

memory in
hunks of 64 bytes. During initial program exe
ution, if referen
e is made

75

Pro
eedings of the Prague Stringology Conferen
e '05

to a data item outside of
a
he, another
hunk is fet
hed until both L1 and L2
a
he

are full. A subsequent fet
h of data not residing in either
a
he, results in a page

swap of memory data with data in the lowest
a
he. The data to be swapped out

from
a
he is determined by the \Least Re
ently Used Data" poli
y.

The SR algorithm was implemented in the NASM assembly language under the

Linux operating system. The TD algorithm was originally implemented in C++,

with the optimizer (O3) turned on. Its NASM implementation was also provided

after several early experiments. The intention was to ensure that the SR algorithm

did not enjoy some hidden advantage be
ause of being implemented in an assembler

language. It turned out that the NASM version of TD was indeed slightly faster than

its C++ implementation for automata larger than about 3000 states. However, the

di�eren
e was so small that the overall results of our �ndings apply, no matter whi
h

TD implementation is
onsidered.

For the present experiment, 100 automata of size n = 125; 250; 325; � � � ; 12500

were generated, based on 10 alphabet symbols. The transition table of ea
h automa-

ton was randomly
onstru
ted in the following sense:

� Firstly, for ea
h row, i : [0; n � 2℄, a
olumn j : [0; a) (
orresponding to some

alphabet symbol) is randomly sele
ted. This
olumn is assigned the next state

transition value i + 1. This ensures that there is at least one string of length

n � 1 that will traverse every state of the FA. We shall refer to this string as

the root string of the parti
ular automaton.

� Next, all remaining
ells of the table are assigned a random value in the range

[0; n� 1℄.

Considered graphi
ally, this means that ea
h node in the FA graph has a transition

to the next state on some random symbol, as well as a transition on ea
h of the

remaining 9 alphabet symbols to some random state.

For ea
h automaton, a random string of size n � 1 was generated. This was

repli
ated 4 times to produ
e an input string of length 4n � 4
onsisting of 4 iden-

ti
al segments. Ea
h of the algorithms was required to use the randomly generated

automaton of size n to re
ognize su
h a string, resulting in 100 runs of ea
h algorithm.

Before dis
ussing the timing results,
onsider the information presented in table 1.

The table gives an overview of the rate at whi
h state reordering was found to o

ur

when the SR algorithm was run. Data is given as a per
entage of the total number

of states in ea
h parti
ular run. The �rst
olumn relates to the full string that was

pro
essed, the se
ond
olumn, to the �rst segment, et
. Thus, after pro
essing the

�rst segment, on average a little more than 60% of the states are reordered. Note that

these observations lie in a fairly narrow band, between about 57% and 63%. As a

matter of fa
t, when the number of reordered states is plotted against the automaton

size (not provided here), a very distin
t linear trend is observed. However, in the

ase of segments 2 to 4, no obvious trend is observed in relation to automaton size.

Nevertheless, the average number of reordered states de
lines steadily from about

16% in the
ase of segment 2, to almost 0% in the
ase of segment 4. Overall, about

80% of states were reordered, on average.

These results are broadly in line with expe
tation. In pro
essing the �rst n � 1

symbols, roughly 60% of the states are reordered, meaning that they are lo
ated

76

Reordering Finite Automata States for Fast String Re
ognition

Full String Segment 1 Segment 2 Segment 3 Segment 4

Maximum 95.20% 62.67% 24.80% 9.17% 2.78%

Minimum 62.42% 56.80% 0.40% 0.00% 0.00%

Average 79.06% 61.29% 16.11% 1.60% 0.06%

Table 1: Rate of Reordered State Generation

ontiguously in memory in order of �rst usage. In this sense, the data is optimized in

terms of the spatial lo
ality of referen
e prin
iple. Later segments trigger progressively

fewer state reorderings, and
onsequently spend more time in the hot-spot part of the

ode. If these later segments were to traverse the reordered states in exa
tly the

same sequen
e as the �rst segment, then the probability would be relatively high of

a

essing spatially lo
alized data, and hen
e of triggering few
a
he swaps. Of
ourse,

this will only happen in the unlikely event that segment 2 (and therefore also 3 and

4) happen to start o� in state 0.

The experiment above has not been designed to spe
i�
ally generate this \best

ase" s
enario. Rather, it is far more likely that these later segments will start o� in

some other random state. Nevertheless, on the eviden
e of table 1, an in
reasingly

large proportion of segment 2 to 4 pro
essing is via the hot-spot. In fa
t, even in the

ase of the �rst segment's pro
essing, about 40% of the iterations were through the

hot-spot. Whether this translates into time gains as a result of frequently a

essing

spatially lo
alized data (and therefore having fewer
a
he swaps),
annot be predi
ted

a priori. To this end, we require the timing data derived from running the respe
tive

algorithms.

For the purposes of re
ording timing data, ea
h algorithm was invoked 50 times

for ea
h set of input, and the pro
essing time was re
orded in
lo
k
y
les (

s).

For further analysis, we relied on the minimum of these 50 observations. (This was

be
ause the experien
e of earlier studies, whi
h had shown that o

asionally, outlier

data is generated that distorts the average and that is apparently attributable to OS

and CPU overheads.)

The results showed that state reordering is too expensive to provide su
h a short-

term payo�. In fa
t, the
ost is at least 100 times than that of making a transition.

In order to gain any advantage from the spatial and temporal lo
ality of referen
e

of the reordered states, and thus amortize the
ost of reordering, the hot-spot would

have to be exer
ised mu
h more frequently than was done by the strings of length

4n� 4.

A further experiment was therefore
ondu
ted to probe the best
ase s
enario|

one in whi
h reordered states are traversed in the same order as they were generated.

This was done by essentially repeating the previous experiment with the following

modi�
ations: strings were now of length 2n � 2 instead of 4n � 4; it was ensured

that when the n

th

symbol was en
ountered then the FA would be in state 0; and only

the time taken to pro
ess the se
ond group of n� 1 symbols was measured. Gnuplot

was used to plot the graphs of number of states against time for both TD and SR

algorithms. The results are provided in �gure 4.

The graph shows that the TD pro
essing time is super-linear in the size of the

automaton. Although the SR trend appears to be
lose to linear, there is, in fa
t, a

slight suggestion of superlinearity here as well. It is
lear that in this
ase, SR enjoys

77

Pro
eedings of the Prague Stringology Conferen
e '05

 500000

 1e+006

 1.5e+006

 2e+006

 2.5e+006

 2000 4000 6000 8000 10000 12000

Min
imu

m t
ime

 in
ccs

Number of states

State Reordering

Table-driven

Figure 4: SR and TD Performan
e: Input String is Two Repeated Segments of Length

n� 1. Time is for Se
ond Segment Only

a de�nite time advantage over TD, due to optimal
a
he utilization. For example,

at about 9000 state transitions, the SR algorithm is about 60% faster than the TD

algorithm. The graph may be thought of as SR's best
ase asymptoti
 behaviour. On

this eviden
e, therefore, state reordering is a feasible strategy under
onditions that

approximate those dis
ussed in se
tion 3, item 3. Given that more re
ent hardware

platforms have been pla
ing in
reasing emphasis on additional
a
he memory

3

, the

gains obtained by optimally exer
ising
a
he are likely to in
rease.

5 Con
lusion and Future Work:

In this paper, we have dis
ussed the design of an algorithm for FA string re
ognition

that attempts to leverage an advantage from the fa
t that
a
he memory relies on

the prin
iple of spatial and temporal lo
ality of referen
e. Our experiments have

suggested that the SR algorithm
ould gain an advantage over the traditional TD

algorithm for long string sequen
es that tend to revisit hot-spot states in a
ertain

order.

Two appli
ation areas that immediately suggests themselves as potentially worth

exploring are DNA analysis and network intrusion dete
tion. In the �rst
ase, one

of the
ontemporary
hallenges is the identi�
ation of so-
alled mi
ro- and/or mini-

satellites (generi
ally
alled approximate tandem repeats) in DNA strings. Here, what

is sought is repeated approximate patterns in the string. The notion of \repetition"

3

For example, the L2
a
he of Intel's Pres
ott-2M Pentium 4
hip, released in February 2005,

has 2048kB, while the Intel Intanium 2 pro
essor, targeted for release in November 2005, will have

a 3MB of L3
a
he.

78

Reordering Finite Automata States for Fast String Re
ognition

intuitively
orresponds to the idea of pro
essing within a hot-spot, as dis
ussed ear-

lier. In the latter
ase, one would imagine that s
anning a stream of network data

for se
urity brea
hes involves, for the most part, the traversal of hot-spot states that

should qui
kly pass the data down the line. Again, this seems like a possible appli-

ation domain for the SR algorithm. However, a fuller investigation of appropriate

appli
ation domains for SR is a matter left for future resear
h.

The algorithm was implemented in NASM on an Intel Pentium 4 ma
hine. Intel

o�ers many data prefet
hing instru
tions for performan
e enhan
ement [6℄ that have

not been used in the algorithm. These instru
tions should be analyzed in the future

in the hope of speeding up even further the SR implementation.

The algorithm suggested in this paper is part of a set of algorithms under in-

vestigation. The aim is to pa
kage these in a dynami
 framework for implementing

FAs with a view to enhan
ing performan
e [4℄. We are
urrently investigating a

mixed-mode implementation as an alternative to the SR and hard
oded implementa-

tions explored to date. On
e all the algorithms under investigation have been tested,

the �nal design of the dynami
 framework will be proposed as well as a toolkit for

eÆ
iently pro
essing FAs.

Referen
es

[1℄ Ket
ha Ngassam, E. Hard
oding Finite Automata. MSC Dissertation. University

of Pretoria, 2003.

[2℄ Ket
ha Ngassam, E., Watson, B. W. and Kourie, D.G. Preliminary Experiments

in Hard
oding Finite Automata. Poster paper, CIAA, Santa Barbara, 299{300,

September 2003.

[3℄ Ket
ha Ngassam, E., Watson, B. W. and Kourie, D.G. Hard
oding Finite State

Automata Pro
essing. SAICSIT, Johannesburg, 111{121, September 2003.

[4℄ Ket
ha Ngassam, E., Watson, B. W. and Kourie, D.G. A Framework for the Dy-

nami
 Implemenation of Finite Automata for Performan
e Enhan
ement. Prague

Stringology Conferen
e, Prague, August 2004.

[5℄ Hannessy, J. L., Patterson D. A. Computer Ar
hite
ture: A Quantitative Ap-

proa
h. Morgan Kaufmann Publishers, 3rd Edition, 2003.

[6℄ Intel Corporation. The Intel Opimization Referen
e Manual.

http://www.intel.
om/design/pentiumiii/manuals/, 2002.

[7℄ Thompson, K. Regular Expression Sear
h Algorithm. Communi
ations of the

ACM. Volume 11, No 6, 323{350, 1968.

[8℄ Knuth, D.E., Morris Jr., J.H. and Pratt, V. R Fast Pattern Mat
hing in Strings.

SIAM J. Comput. Volume 6, No 1, 323{350, 1977.

[9℄ Yao, A C. The Complexity of Pattern Mat
hing for a Random String. SIAM J.

COmput., 8(3),pp. 368-387, 1979.

79

Pro
eedings of the Prague Stringology Conferen
e '05

[10℄ Gerber, R., The Software Optimization Cookbook: High-Performan
e Re
ipes for

the Intel Ar
hite
ture. Intel Corporation, 2002.

80

