
A Spa
e EÆ
ient Bit-Parallel Algorithm for the

Multiple String Mat
hing Problem

Domeni
o Cantone and Simone Faro

Dipartimento di Matemati
a e Informati
a, Universit�a di Catania, Italy

e-mail: f
antone, farog�dmi.uni
t.it

Abstra
t. Finite (nondeterministi
) automata are very useful building blo
ks

in the �eld of string mat
hing. This is parti
ularly true in the
ase of multiple

pattern mat
hing, where the use of fa
tor-based automata
an redu
e substan-

tially the number of
omputational steps when the patterns have large
ommon

fa
tors.

Dire
t simulation of nondeterministi
 automata
an be performed very eÆ-

iently using the bit-parallelism te
hnique, though this is not ne
essarily true

for fa
tor-based automata.

In this paper we present an algorithm for the multiple string mat
hing problem,

based on the bit-parallel simulation of nondeterministi
 fa
tor-based automata

whi
h satisfy a parti
ular ordering
ondition. We also show how to enfor
e

su
h
ondition by suitably modifying a minimal initial automaton, through

equivalen
e preserving transformations. The resulting automaton turns out

to be smaller than the
orresponding maximal automata used by existing bit-

parallel algorithms, as they do not take any advantage of
ommon fa
tors in

patterns.

Keywords: multiple string mat
hing, bit-parallelism, text sear
hing.

1 Introdu
tion

Given a set P = fP

1

; : : : ; P

r

g of patterns and a text T , all strings over a �nite alphabet

� of size �, the multiple pattern mat
hing problem is to determine all the positions

where any of the patterns in P o

urs in T . This problem arises naturally in many

appli
ations, and several algorithms exist to solve it. For example, the UNIX fgrep

and egrep programs support multi-pattern mat
hing through the -f option. The

worst
ase
omplexity of multiple pattern mat
hing is
(n) and it has been a
hieved

by the Aho-Corasi
k algorithm [AC75℄. From a pra
ti
al point of view, the best

average
omplexity bound for multi-pattern mat
hing algorithms isO(n log

�

(rm)=m),

where m is the minimum length of any pattern in P. Su
h bound has been rea
hed,

for instan
e, by the Dawg-Mat
h algorithm [CCG

+

93℄ and by the Multi-BDM

algorithm [CR94℄. We
ite also that the Boyer-Moore strategy has been extended

to multi-pattern mat
hing, su
h as in the Commenz-Walter [CW79℄ and in the

Wu-Manber [WM91℄ algorithms.

109

Pro
eedings of the Prague Stringology Conferen
e '05

In this paper we are mainly interested on automata based solutions of the pattern

mat
hing problem, and on their implementation by bit-parallelism. In general, (non-

deterministi
) automata allow to handle
lasses of
hara
ters and multiple patterns

in a simple, eÆ
ient, and
exible way, leading to algorithms whi
h are asymptoti
ally

optimal both in spa
e and time [KMP77, AC75℄.

The bit-parallelism te
hnique [BYG92℄
onsists in exploiting the intrinsi
 paral-

lelism of the bit operations inside a
omputer word. It
an be pro�tably used for the

simulation of �nite automata even in their nondeterministi
 form.

The paper is organized as follows. After introdu
ing in Se
tion 2 the basi
 nota-

tions used in the paper, in Se
tion 3 we survey the most signi�
ant algorithms for the

single and multiple pattern mat
hing problem whi
h make use of fa
tor-based deter-

ministi
 �nite automata. Then, in Se
tion 4 we des
ribe the bit-parallelism te
hnique

and dis
uss some of the single and multi-pattern mat
hing algorithms based on it.

Existing algorithms in the multi-pattern
ase do not take any parti
ular advantage of

the presen
e of large
ommon fa
tors in the patterns. Thus, in Se
tion 5 we present

a new solution for the multi-pattern mat
hing problem whi
h eÆ
iently mixes the

advantages in spa
e obtained from fa
tor-based automata with the simpli
ity and

exibility of bit-parallelism. Finally, we draw our
on
lusions and propose some hints

for future work in Se
tion 6.

2 Basi
 De�nitions and Terminology

We introdu
e here the basi
 notations and terminology used in the paper. A string

P of length m is represented as an array P [0 :: m � 1℄. Thus P [i℄ will denote the

(i + 1)-st
hara
ter of P , for i = 0; : : : ; m� 1. We denote the length of P by jP j. In

addition, if P = fP

1

; P

2

; : : : ; P

r

g is a set of strings, we denote by size(P) the sum of

the lengths of its strings, namely size(P) =

P

r

i=1

jP

i

j.

For any two strings P and P

0

, we write P

0

A P to indi
ate that P

0

is a proper

suÆx of P , P

0

� P to indi
ate that P

0

is a proper pre�x of P , and P:P

0

to denote

the
on
atenation of P

0

to P . Given a set of patterns P = fP

1

; P

2

; : : : ; P

r

g in an

alphabet �, the trie T asso
iated with P is a rooted dire
ted tree, whose edges are

labeled by single
hara
ters of �, su
h that (i) distin
t edges out of a same node are

labeled by distin
t
hara
ters, (ii) all paths in T from the root are labeled by pre�xes

of the strings in P, (iii) for ea
h string P in P there exists a path in T from the root

whi
h is labeled by P .

If we do not insist on property (i) above, we obtain a more relaxed form of trie,

whi
h we
all nondeterministi
 trie. Sin
e all tries
onsidered in this paper are non-

deterministi
, for the sake of simpli
ity we will refer to them just as \tries."

For any node p in a trie T , we denote by lbl(p) the string whi
h labels the path

from the root of T to the node p and put len(p) = jlbl(p)j, i.e., len(p) is the length

of the path from the root of T to p. Additionally, for any edge (p; q) in T , we denote

the label of (p; q) by lbl(p; q). We also denote by
hildren

T

(p) the set of the
hildren

of p in the trie T .

Given a (nondeterministi
) trie T relative to a set of patterns P = fP

1

; P

2

; : : : ; P

r

g

over an alphabet �, we
an naturally asso
iate with T the following
anoni
al non-

deterministi
 �nite automaton (NFA)

b

T = (Q

T

; q

0

; F

T

; Æ

T

), where:

110

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

� Q

T

is the set of nodes of T (set of states);

� q

0

2 Q

T

is the root of T (initial state);

� F

T

=

Def

fq 2 Q

T

j lbl(q) 2 Pg (set of �nal or terminal states);

� Æ

T

: Q

T

� �!P(Q

T

), with

Æ

T

(q;
) =

Def

�

fp 2 Q

T

j lbl(q):
 = lbl(p)g if q 6= q

0

fp 2 Q

T

j lbl(q):
 = lbl(p)g [fq

0

g if q = q

0

;

for q 2 Q

T

,
 2 �, and where P(�) is the powerset operator (transition fun
-

tion).

Thus the words node and state will often be used inter
hangeably. Likewise, we

will often identify a trie T with its
orresponding NFA

b

T .

3 Automata Based String Mat
hing Algorithms

Automata play a very important role in the design of eÆ
ient pattern mat
hing al-

gorithms. For instan
e the well known Knuth-Morris-Pratt algorithm [KMP77℄

uses a deterministi
 automaton that sear
hes a pattern in a text by performing its

transitions on the text
hara
ters. The main result relative to the Knuth-Morris-

Pratt algorithm is that its automaton
an be
onstru
ted in O(m)-time and -spa
e,

whereas pattern sear
h takes O(n)-time, thus rea
hing the best bound for a pattern

mat
hing algorithm (as usual, m and n denote the length of the pattern and text,

respe
tively). In the
ase of multiple pattern mat
hing, the Aho-Corasi
k algo-

rithm [AC75℄ has been the �rst having a linear behavior. It is also based on the au-

tomata approa
h and
an be viewed mu
h as a generalization of theKnuth-Morris-

Pratt algorithm to the multi-pattern
ase. In parti
ular, the Aho-Corasi
k au-

tomaton is a trie T for the set of patterns P, with a failure fun
tion f : Q

T

! Q

T

whi
h is followed when no transition is possible on a text
hara
ter. The fun
tion f

is de�ned on ea
h node u 2 Q

T

in su
h way that:

� lbl(f(u)) A lbl(u), and

� len(f(u)) � len(p), for ea
h p 2 Q

T

su
h that lbl(p) A lbl(u) .

The Aho-Corasi
k automaton
an be
onstru
ted in linear time and spa
e [CR94℄.

Automata based solutions have been also developed to design algorithms whi
h

have optimal sublinear performan
es on average. For instan
e, several algorithms

have been developed to extend to the multiple pattern mat
hing
ase the eÆ
ient

Boyer-Moore strategy [BM77℄. Among them, we
ite the Commenz-Walter al-

gorithm [CW79℄ whi
h extends the Horspool algorithm [Hor80℄ through a suÆx

based approa
h. The Commenz-Walter algorithm starts by reading the text ba
k-

wards from position j, initially set to ` = minfjP

k

j : P

k

2 Pg. Then
hara
ters are

mat
hed against the labels of the trie T for the set P

r

of the reverse patterns. When

a �nal state is rea
hed, an o

urren
e is reported. If no mat
hing is possible with

the
urrent
hara
ter, then position j is shifted by the minimum nonnull depth in T

111

Pro
eedings of the Prague Stringology Conferen
e '05

of an edge labeled by the previous read
hara
ter T [j℄. If no edge in T is labeled by

T [j℄, then j is in
reased by `.

Another type of automaton,
alled suÆx automaton (or Dawg, for Dire
ted

A
y
li
 Word Graph), has been introdu
ed for the single pattern mat
hing prob-

lem in [CCG

+

93, CCG

+

94, CR94, Raf97℄ and later generalized to the multi-pattern

ase. A suÆx automaton for a set P of patterns is a trie for the set P

r

that re
ognizes

all the suÆxes of the patterns in P.

For instan
e, the Reverse-Fa
tor algorithm [CCG

+

94℄, for the single pattern

mat
hing problem,
omputes shifts whi
h mat
h pre�xes of the pattern, rather than

suÆxes, using the smallest suÆx automaton of the reverse of the pattern. Despite its

quadrati
 worst-
ase time
omplexity, the Reverse-Fa
tor algorithm is very fast in

pra
ti
e. Other optimal sublinear algorithms on average, like Ba
kward-DAWG-

Mat
h (BDM) and Turbo-BDM [CCG

+

94, CR94℄, have been obtained with this

approa
h, and have been also extended to multiple pattern mat
hing in [CCG

+

93,

CR94, Raf97℄.

4 String Mat
hing and Bit-Parallelism

In general, it is mu
h easier to
onstru
t a nondeterministi
 automaton rather than a

deterministi
 one, due to its simpli
ity and regularity. Thus, it would be desirable to

be able to simulate eÆ
iently the parallel
omputation of an NFA. This
an be done

using the bit-parallelism te
hnique [BYG92℄. Su
h te
hnique
onsists in exploiting

the intrinsi
 parallelism of the bit operations inside a
omputer word. In favorable

ases it allows to
ut down the overall number of operations by a fa
tor of !, where !

is the number of bits in a
omputer word. For this reason, although string mat
hing

algorithms based on bit-parallelism are usually simple and have very low memory

requirements, they generally work well only with patterns of moderate length.

In the
ontext of string mat
hing, su
h te
hnique has been espe
ially used to speed-

up algorithms based on automata. The simulation is
arried out by representing an

automaton as an array of L bits, where L+1 is the number of states of the automaton.

The initial state does not need to be represented, be
ause it is always a
tive. Bits

orresponding to a
tive states are set to 1, whereas bits
orresponding to ina
tive

states are set to 0.

To simulate eÆ
iently an NFA using the bit-parallelism te
hnique, its states must

be mapped into the positions of a bit-ve
tor by a suitable bije
tion.

In the
ase of a trie (or better, the NFA asso
iated with it), we su

eded to

simulate it eÆ
iently provided that the bije
tion is a weakly safe topologi
al ordering,

in a sense whi
h will be explained later.

For the time being, we just re
all that a topologi
al ordering of a trie T is a

bije
tion � : Q

T

! f0; : : : ; jQ

T

j � 1g, whi
h agrees with the edges of T , namely

su
h that �(p) < �(q) whenever (p; q) is in T . It is
onvenient to asso
iate with �

its inverse � : f0; : : : ; jQ

T

j � 1g ! Q

T

, whi
h is assumed to map ea
h position of a

bit-ve
tor to the
orresponding state of T .

For later purposes, given a topologi
al ordering � of T , it is also
onvenient to

asso
iate to ea
h edge (p; q) in T its �-interval [�(p); �(q)[, also denoted by Int

�

(p; q).

The length �(q) � �(p) of the �-interval [�(p); �(q)[will be denoted by jInt

�

(p; q)j.

112

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

Noti
e that sin
e � is a topologi
al ordering of T , then jInt

�

(p; q)j � 1, for ea
h edge

(p; q) in T .

4.1 Sear
hing for a Single Pattern

In the
ase of single pattern mat
hing, the trie T asso
iated with a given pattern P

of length m is linear. Thus, the
orresponding NFA

b

T is obtained from T just by

adding a self-loop on its initial state, labeled by all symbols of the alphabet �, to

allow the s
an to begin at any position in the text. Plainly, in this
ase we have only

one possible topologi
al ordering of T , whose inverse �

1

is re
ursively de�ned by:

�

1

(i) =

�

Æ

T

(q

0

; P [0℄) if i = 0

Æ

T

(�

1

(i� 1); P [i� 1℄) if 1 � i � m� 1 :

Thus, for i = 0; 1; : : : ; m� 1, state �

1

(i) is simulated by the i-th bit of a bit-ve
tor.

The initial state does not need to be represented, be
ause it is always a
tive. Fig-

ure 1(A) shows the nondeterministi
 �nite automaton whi
h re
ognizes the pattern

P = aababb.

The �rst result,
on
erning single pattern mat
hing algorithms using the bit-

parallelism te
hnique, is due to Baeza-Yates and Gonnet [BYG92℄. Their algorithm,

named Shift-And, maintains, for ea
h symbol
 of the alphabet �, a bit mask B[
℄

whose i-th bit is set to 1, provided that P [i℄ =
, where P is the pattern. The
urrent

on�guration of the automaton is maintained in a bit mask D, whi
h is initialized to

0

L

, sin
e initially all (noninitial) states are ina
tive. Moreover a �nal-state bit-mask

M = 10

L�1

maintains the position of the �nal state of the automaton, whereas an

initial-state bit-mask I = 0

L�1

1 maintains the position of the node adja
ent to the

initial state.

While s
anning a text T from left to right, the Shift-And algorithm simulates

automaton transitions by the following basi
 shift-and operation, for ea
h position j:

D = ((D� 1) j I) & B[T [j℄℄ :

If the �nal state is a
tive, i.e. D & M 6= 0

L

, a mat
hing is reported at position j.

It turns out that the Shift-And algorithm has an O(dmn=!e) worst-
ase running

time and requires O(dL=!e)-spa
e.

Other algorithms based on bit-parallelism use a Boyer-Moore strategy, to sim-

ulate a right to left s
an of the pattern. For instan
e, the BNDM algorithm is the

bit-parallel implementation of the Reverse-Fa
tor algorithm. It is based on the

nondeterministi
 version of the smallest suÆx automaton of the reverse of the pattern

P . Unlike the Shift-And algorithm,
hara
ters of text and pattern are
ompared

from right to left until the entire pattern is read or no transition by the automaton

is possible. Then the pattern is shifted by ` positions to the right, where ` is the

length of the last mat
hed pre�x. Despite its quadrati
 worst-
ase running time, the

BNDM algorithm performs well in pra
ti
al
ases.

4.2 Sear
hing for Multiple Patterns

Existing algorithms that sear
h for a set P = fP

1

; : : : ; P

r

g of patterns, using bit-

parallelism, simulate the behavior of the maximal trie of P. This is the trie T of

113

Pro
eedings of the Prague Stringology Conferen
e '05

Figure 1: (A) An NFA whi
h re
ognizes the pattern P = aababb. (B)

An NFA obtained from the maximal trie T of the set of patterns P =

faaabb; aabba; abaab; ababbg. (C) The parallel topologi
al ordering of T . (D) The

sequential topologi
al ordering of T .

P obtained from the linear tries T

1

; T

2

; : : : ; T

r

for the patterns P

1

; P

2

; : : : ; P

r

, respe
-

tively, by merging the roots of T

1

; T

2

; : : : ; T

r

in a single node. Plainly, the number

of states of T is given by jT j =

P

r

i=1

jT

i

j � r + 1 = size(P) + 1, so that it
an be

represented by a bit-ve
tor of L = size(P) bits. For instan
e, Figure 1(B) shows the

maximal trie relative to the set of patterns P = faaabb; aabba; abaab; ababbg. Two

di�erent topologi
al orderings have been used in literature to simulate a maximal

trie of a set of pattern P. A �rst arrangement, �

par

, has been proposed in [WM91℄,

under the restri
tion that all patterns in the set P have the same length. Given a

set P = fP

1

; P

2

; : : : ; P

r

g of r distin
t patterns of the same length m, the topologi
al

ordering �

par

of the trie T relative to P is obtained just by interleaving the NFAs of

the patterns of P in a parallel fashion. More pre
isely, the inverse �

par

of �

par

an be

re
ursively de�ned by

�

par

(kr + j) =

�

Æ

T

j+1

(q

0

; P

j+1

[0℄) if k = 0

Æ

T

j+1

(�

par

((k � 1)r + j); P

j+1

[k℄) if 1 � k � m� 1 ;

with 0 � j � r � 1. Figure 1(C) shows the parallel topologi
al ordering of the NFA

of Figure 1(B). Using su
h arrangement, it is possible to sear
h for patterns in P just

as in the
ase of a single pattern. The only di�eren
e with the single pattern
ase is

that the shift is not by a single bit, but by r bits (sin
e
onse
utive nodes are r bits

apart in the parallel arrangement). Moreover, we need to use the new initial-state

and �nal-state masks I = 0

r(m�1)

1

r

and M = 1

r

0

r(m�1)

, respe
tively. Figure 2 (left

side) shows the
ode of an implementation of the Shift-And algorithm, based on a

parallel ordering of the maximal trie for a set P of patterns having the same length.

An alternative arrangement, �

seq

, has been proposed in [NR98℄. It
onsists in

114

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

Parallel-Shift-And (T , fP

1

; : : : ; P

r

g) Sequential-Shift-And (T , fP

1

; : : : ; P

r

g)

1. n = length(T) 1. n = length(T)

2. m = length(P

1

) 2. m = length(P

1

)

3. L = m

r

3. L = m

r

4. for
 2 � do B[
℄ = 0

L

4. for
 2 � do B[
℄ = 0

L

5. l = 0 5. l = 0

6. for i = 0 to m� 1 do 6. for k = 1 to r do

7. for k = 1 to r do 7. for i = 0 to m� 1 do

8. B[P

k

[i℄℄ = (B[P

k

[i℄℄ j (0

L�1

1� l + k)) 8. B[P

k

[i℄℄ = (B[P

k

[i℄℄ j (0

L�1

1� l + i))

9. l = l + r 9. l = l +m

10. I = 0

r(m�1)

1

r

10. I = (0

m�1

1)

r

11. M = 1

r

0

r(m�1)

11. M = (10

m�1

)

r

12. D = 0

L

12. D = 0

L

13. for j = 0 to n� 1 do 13. for j = 0 to n� 1 do

14. if D & M 6= 0

L

then print(j) 14. if D & M 6= 0

L

then print(j)

15. D = ((D � r) j I) & B[T [j℄℄ 15. D = ((D � 1) j I) & B[T [j℄℄

Figure 2: On the left, the Parallel-Shift-And algorithm whi
h uses a parallel

ordering of the maximal trie T of the set P, and, on the right, the Sequential-

Shift-And algorithm whi
h uses a sequential ordering of the nodes of T .

on
atenating in a sequential fashion the di�erent bran
hes of the maximal trie of a

set P of patterns. More pre
isely, given a set P = fP

1

; P

2

; : : : ; P

r

g of patterns (not

ne
essarily of the same length), the inverse �

seq

of the ordering �

seq

relative to the

maximal trie of P is re
ursively de�ned by

�

seq

�

P

h�1

j=1

jP

j

j+ i

�

=

�

Æ

T

h

(q

0

; P

h

[0℄) if i = 0

Æ

T

h

(�

seq

(

P

h�1

j=1

jP

j

j+ i� 1); P

h

[i� 1℄) if 1 � i � jP

h

j � 1 ;

with 1 � h � r.

Figure 1(D) shows the sequential topologi
al ordering of the NFA in Figure 1(B).

In this
ase, we return to single bit shifts, whereas the initial-state and �nal-state

masks are

I = (0

jP

1

j�1

1)(0

jP

2

j�1

1) � � � (0

jP

r

j�1

1)

M = (10

jP

1

j�1

)(10

jP

2

j�1

) � � � (10

jP

r

j�1

) :

On some pro
essors, shifts by a single position is faster than shift by r > 1

positions. In su
h
ases the arrangement �

seq

yields faster algorithms. Moreover, as

already observed, su
h arrangement allows to deal with sets of patterns of di�erent

lengths.

Figure 2 (right side) shows the
ode of an implementation of the Shift-And

algorithm, based on a sequential ordering of the maximal trie of a set P. Though not

ne
essary, for the sake of simpli
ity we have assumed that the patterns in P have the

same length m.

5 A new spa
e eÆ
ient approa
h

In this se
tion we propose a new approa
h to bit-parallel multiple pattern mat
hing.

Unlike existing solutions, presented in the previous se
tion, whi
h make use of the

115

Pro
eedings of the Prague Stringology Conferen
e '05

maximal trie of a set P of patterns, here we propose a solution whi
h simulates, using

bit-parallelism, a fa
tor-based automaton thus redu
ing the number of states and,

a

ordingly, the number of bits needed for its representation.

Below we introdu
e the important notion of (weakly) safe topologi
al ordering of

a trie. Then, in Se
tion 5.1 we present an eÆ
ient variant of the Shift-And al-

gorithm, based on a trie for P admitting a weakly safe topologi
al ordering. Our

proposed algorithm,
alled Multiple-Trie-Shift-And, sear
hes a text T for any

pattern in a set P in O(ndL=!e)-time, where n = jT j, L = size(P), and ! is the

size of a
omputer word. Subsequently, in Se
tion 5.2 we present an algorithm,

named Constru
t-Safe-Topologi
al-Ordering, whi
h given a (minimal) trie

T for a set P of patterns
onstru
ts another trie T

0

for P admitting a weakly safe

topologi
al ordering (in general, the size of T

0

may be larger than the size of T).

The Constru
t-Safe-Topologi
al-Ordering algorithm is based on a DFS ap-

proa
h and runs in O(L)-time and -spa
e, under suitable hypotheses.

Let �

u

be a topologi
al ordering of the subtrie T

u

of T rooted in u. Also, let (p; q)

be an edge of T

u

.

We say that (p; q) is a long-bit edge (relative to the ordering �

u

) if the length of the

�

u

-interval of (p; q) is greater than 1, i.e., in symbols, jInt

�

u

(p; q)j > 1.

1

Otherwise,

i.e. if jInt

�

u

(p; q)j = 1, we say that (p; q) is a 1-bit edge (relative to the ordering �

u

).

Additionally, if (p; q) is a long-bit edge of T

u

, we say that the label lbl(p; q) of the edge

(p; q) is an engaged symbol for the node u. It is
onvenient to de�ne the following

fun
tion and set

L

�

u

(
) =

Def

f(p; q) 2 T

u

j lbl(p; q) =
 and jInt

�

u

(p; q)j > 1g

A

�

u

=

Def

f
 2 � j L

�

u

(
) 6= ;g ;

for
 in the alphabet �, u in T , and �

u

a topologi
al ordering of T

u

. In other

words, L

�

u

(
) is the
olle
tion of long-bit edges of T

u

labeled by
, whereas A

�

u

is the

olle
tion of all engaged symbols for u.

Finally, a topologi
al ordering � of a trie T is said to be

� safe, if for ea
h
 2 �, the intervals in fInt

�

(p; q) j (p; q) 2 L

�

(
)g are pairwise

disjoint, i.e., if the �-intervals of any two distin
t long-bit egdes labeled by a

same
hara
ter are disjoint;

� weakly safe, if for ea
h
 2 �, the intervals in fInt

�

(p; q) j (p; q) 2 L

�

(
) and p 6=

root(T)g are pairwise disjoint, i.e., if the �-intervals of any two distin
t long-bit

egdes labeled by a same
hara
ter and not originating from the root of T are

disjoint.

Figures 3(B)-(C) show two di�erent topologi
al orderings of the trie in Figure

3(A). In parti
ular,
on
erning the ordering �

0

relative to Figure 3(B), we have

L

�

0

(a) = f(3; 6); (8; 9)g and L

�

0

(b) = f(1; 2)g; hen
e �

0

is a weakly safe topolog-

i
al ordering sin
e �

0

(9) = 6 < 10 = �

0

(3). On the other hand, the ordering

�

00

relative to Figure 3(C) is not weakly safe, sin
e in this
ase we have L

�

00

(a) =

f(1; 8); (3; 6); (8; 9)g, L

�

0

(b) = ;, and �

00

(1) = 1 < �

00

(3) = 3 < �

00

(6) = 6 < �

00

(8) =

8, i.e. Int

�

00

(3; 6) � Int

�

00

(1; 8).

1

The notion of �

u

-interval and the notation jInt

�

u

(p; q)j have been introdu
ed just before Se
-

tion 4.1.

116

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

Figure 3: (A) The minimal trie of the set of patterns P =

fababb; abaab; aaabb; aabbag. (B) A weakly safe topologi
al ordering of the

trie in (A). (C) A topologi
al ordering of the trie in (A) whi
h is not weakly safe.

5.1 The Multiple-Trie-Shift-And Algorithm

Given a text T and a set P = fP

1

; P

2

; : : : ; P

r

g of patterns, the Multiple-Trie-

Shift-And algorithm whi
h we present below sear
hes for any pattern of P in the

text T in O(ndL=!e)-time, where n = jT j, L = size(P), and ! is the size of a

omputer word. Besides the text T , it takes as input a pair T and �, where T is a

trie for P and � is a weakly safe topologi
al ordering of T (as will be shown in the

next se
tion, su
h T and �
an be eÆ
iently
onstru
ted starting from a minimal trie

for P). The Multiple-Trie-Shift-And algorithm simulates its input automaton

T using bit-parallelism. Sin
e jQ

T

j � L + 1, in general our algorithm deals with

smaller automata than the algorithms reviewed in Se
tion 4.2.

Let T

1

; T

2

; : : : ; T

h

be the subtries of T rooted in the
hildren of root(T) and let

ff

1

; f

2

; : : : ; f

k

g be the set of �nal states of T . The algorithm initializes two bit-masks

of length L = jT j � 1, respe
tively the initial-state mask I and the �nal-state mask

M , as follows

I = (0

jQ

T

h

j�1

1) � � � (0

jQ

T

2

j�1

1)(0

jQ

T

1

j�1

1)

M = (10

�(f

k

)��(f

k�1

)�1

) � � � (10

�(f

2

)��(f

1

)�1

)(10

�(f

1

)�1

) :

Subsequently, for ea
h symbol
 2 �, theMultiple-Trie-Shift-And algorithm

initializes as shown below three more bit-masks of length L, namely B[
℄; IS [
℄ and

GS [
℄, whi
h allow to perform the automaton transitions.

For ea
h state q 2 Q

T

su
h that lbl(q)[len(q) � 1℄ =
, we set the �(q)-th bit of

B[
℄ to 1.

Let L

�

(
) = f(p

1

; q

1

); (p

2

; q

2

); : : : ; (p

t

; q

t

)g be the set of long-bit edges in � labeled

117

Pro
eedings of the Prague Stringology Conferen
e '05

Multiple-Trie-Shift-And (T , T , �)

/* Initialization */

1. n = length(T)

2. � = �

�1

3. L = jQ

T

j � 1

4. I =M = 0

L

5. for ea
h
 2 � do B[
℄ = IS [
℄ = GS [
℄ = 0

L

6. root = �(0)

7. for ea
h q 2
hildren

T

(root) do

8.
 = lbl(root ; q)

9. B[
℄ = (B[
℄ j (0

L�1

1� (�(q)� 1)))

10. for i = 1 to L do

11. p = �(i)

12. if is final(p) then M = (M j (0

L�1

1� (i� 1)))

13. if p 2
hildren

T

(root) then I = (I j (0

L�1

1� (i� 1)))

14. for ea
h q 2
hildren

T

(p) do

15.
 = lbl(p; q)

16. if �(q) > i+ 1 then

17. IS [
℄ = (IS [
℄ j (0

L�1

1� (�(q)� 1)))

18. GS [
℄ = (GS [
℄ j (0

L��(q)+�(p)+1

1

�(q)��(p)�1

� �(p)))

19. else B[
℄ = (B[
℄ j (0

L�1

1� (�(q) � 1)))

/* Sear
hing Phase */

20. D = 0

L

21. for j = 0 to n� 1 do

22. if D & M 6= 0

L

then print(j)

23. D

0

= (D � 1) & B[T [j℄℄

24. D

00

= ((((D & IS [T [j℄℄) � 1) + GS [T [j℄℄) & �GS [T [j℄℄)

25. D = (D

0

j D

00

) j (I & B[T [j℄℄)

Figure 4: TheMultiple-Trie-Shift-And algorithm for the multiple string mat
h-

ing problem.

by the symbol
, arranged in su
h a way that �(p

1

) < �(q

1

) � �(p

2

) < �(q

2

) � � � � �

�(p

t

) < �(q

t

). The mask IS [
℄ is the initial-shift bit-mask of
. It marks all nodes in

� from whi
h a long-bit edge labeled with symbol
 originates. In other words, for

ea
h edge (p; q) 2 L

�

(
), the �(p)-th bit of IS [
℄ is set to 1. More formally,

IS [
℄ = (0

L�p

t

1)(0

p

t

�p

t�1

�1

1) � � � (0

p

2

�p

1

�1

1)(0

p

1

�1

) :

Finally, the mask GS [
℄ is the gap-shift bit-mask of
. For ea
h long-bit edge

(p; q) 2 L

�

(
), the bits of GS [
℄ from position (�(p)+ 1) up to position (�(q)� 1) are

set to 1. More formally,

GS [
℄ = (0

L�q

t

+1

1

q

t

�p

t

�1

)(0

p

t

�q

t�1

+1

1

q

t�1

�p

t�1

�1

) � � � (0

p

2

�q

1

+1

1

q

1

�p

1

�1

)(0

p

1

) :

During the sear
hing phase (lines 20-25), a bit-mask D maintains the a
tive state

of the automaton. For ea
h position j of the text T , the algorithm performs three

main steps

1-bit transitions (line 22):

This is made in a simple way by shifting the mask D by one position to the

118

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

left. Then all transitions labeled with symbols di�erent from T [j℄ are deleted

by performing an and operation with the bit-mask B[T [j℄℄. More formally, the

operation that simulates 1-bit transitions is

(D � 1) & B[T [j℄℄ :

Long-bit transitions (line 23):

First, the operation (D & IS [T [j℄℄) isolates all a
tive states from whi
h long-bit

edges originate. Then the resulting mask is shifted by one position to the left

and its value is added to the value of the bit-mask GS [T [j℄℄. This has the e�e
t

that, if (p; q) 2 L

�

(T [j℄) and p is an a
tive state in D, then the �(q)-th bit of

D is set to 1 and all bits from position �(p) up to position �(q)� 1 are set to

0. However, if (p; q) 2 L

�

(T [j℄) and p is not an a
tive state in D, then all bits

from position �(p) + 1 up to position �(q) � 1 maintain their value 1. These

undesirable bits are deleted by performing an and operation with the bit-mask

�GS [T [j℄℄. More formally, long-bit transitions are simulated by the operation

((((D & IS [T [j℄℄) � 1) + GS [T [j℄℄) & �GS [T [j℄℄) :

Transitions from the initial state (line 24):

The transitions starting from the initial state are performed by
omputing an

or operation with the mask I. As in the 1-bit transition
ase, all transitions

labeled with symbols di�erent from T [j℄ are deleted by performing an and

operation with the bit-mask B[T [j℄℄. Formally, transitions from the initial state

are simulated by the following operation

(D j I) & B[T [j℄℄ :

The Multiple-Trie-Shift-And algorithm, shown in Figure 4, runs in O(n)

time if L � !, where ! is the length of a
omputer word. However if L > ! the

algorithm has a O(ndL=!e) worst-
ase time
omplexity.

In the following se
tion we des
ribe an algorithm that, given a minimal trie T for

a set P = fP

1

; P

2

; : : : ; P

r

g of patterns, it
onstru
ts another trie T

0

, equivalent to T ,

together with a weakly safe topologi
al ordering � for T

0

.

5.2 Constru
ting a Trie with a Weakly Safe Topologi
al Or-

dering

Before entering into the details of the algorithm, we need to introdu
e some further

useful
on
epts.

For ea
h node q 2 Q

T

we de�ne the set B(q) of binding symbols of q as the

olle
tion of all
hara
ters whi
h label some edge (p; p

0

) originating from a prede
essor

p of q, but su
h that p

0

does not lie on the path from the root(T) to q. In symbols

B(q) =

Def

flbl(p; p

0

) j p; p

0

2 Q

T

; lbl(p) � lbl(q) ; and lbl(p

0

) 6v lbl(q)g :

119

Pro
eedings of the Prague Stringology Conferen
e '05

In addition, for ea
h node q 2 Q

T

, we de�ne the fun
tion bind

q

: � ! f1; 2; : : :

: : : ; len(q)g su
h that for ea
h
 2 �

bind

q

(
) =

Def

8

>

>

<

>

>

:

1 + max

8

<

:

len(p)

�

�

�

�

�

�

p 2 Q

T

; lbl(p) � lbl(q) ; and

 = lbl(p; p

0

) ; lbl(p

0

) 6v lbl(q)

for some p

0

2 Q

T

9

=

;

if
 2 B(q)

0 otherwise :

Observe that, if lbl(p) � lbl(q), then len(p) < len(q) and therefore 0 � bind

q

(
) �

len(q), for
 2 �. For ea
h h 2 f1; : : : ; len(q)g we de�ne the set B

h

(q) � B(q) by

putting

B

h

(q) =

Def

f
 2 B(q) j bind

q

(
) = hg:

Next, let again q 2 Q

T

and let w = j
hildren

T

(q)j. Also, for ea
h node s 2

hildren

T

(q), let �

s

be a safe topologi
al ordering for T

s

. We say that the set

hildren

T

(q) is resolved w.r.t. the above orderings �

s

, if there exists an ordering

s

1

; s

2

; : : : ; s

w

of the
hildren of q in T su
h that the
on
atenation �

s

1

:�

s

2

: � � � :�

s

w

yields a safe topologi
al ordering �

q

for T

q

. Observe that the edge (q; s

1

) is a 1-bit

edge for �

q

, whereas the edges (q; s

i

), for i = 2; : : : ; w, are long-bit edges for �

q

.

Then, in order for �

q

to be a safe topologi
al ordering, we must have

lbl(q; s

i

) =2

i�1

[

j=1

A

�

q

(s

j

) ; for ea
h i = 1; : : : ; w :

Additionally, observe that the set B

len(q)

(s) = flbl(q; s

0

) j s

0

2
hildren

T

(q) n fsg g

de�nes the binding symbols on node s imposed by its prede
essor q, for ea
h s 2

hildren

T

(q). Thus, if A

�

q

(s) \ B

len(q)

(s) 6= ;, for some s 2
hildren

T

(q), then the

node s
ould violate some binding in B

len(q)

(s). To maintain su
h information during

its exe
ution, the algorithm in Figure 5 whi
h we are about to des
ribe performs a

suitable
oloring of the nodes. In parti
ular, for ea
h q 2 Q

T

, we de�ne the value

olor(q) whi
h
an assume the following values:

white: The
olor of a node q is white provided that it has not been already vis-

ited by the algorithm. Thus, during the initialization phase,
olor(q) is set to

white, for ea
h q 2 Q

T

.

green/red: Suppose that the visit of node q has been
ompleted and that a safe

topologi
al ordering �

q

of T

q

has been
onstru
ted. Then
olor(q) is set to

green, provided that �

q

does not violate any binding imposed by its prede
es-

sor, i.e. provided that A

�

q

\ B

len(q)�1

(q) = ;, otherwise is set to red.

The algorithm whi
h
onstru
ts a trie T

0

equivalent to a given input trie T and

su
h that T

0

is endowed with a weakly safe topologi
al ordering is shown in Figure 5.

It performs a DFS visit of the trie T , starting from root(T). When the visit of a node

q 2 Q

T

nfroot(T)g has been
ompleted, a safe topologi
al ordering �

q

for the
urrent

subtrie rooted in q has been
omputed. The pro
edure for visiting a node q 2 Q

T

works in the following 6 main steps:

Step 0 (Initialization)

During initialization,A(q) is set to ; and the ordering �

q

is indire
tly initialized

by putting �

q

(0) = q (we re
all that �

q

= �

�1

q

).

120

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

Constru
t-Safe-Topologi
al-Ordering (T)

1. for ea
h q 2 Q

T

do
olor (q) =white

2. �(0) = root(T)

3. i = 1

4. for ea
h q 2
hildren

T

(root(T)) j
olor(q) = white do

5. �

q

= Visit(q; T)

6. for j = 0 to jQ

T

q

j � 1 do �(i+ j) = �

q

(j)

7. i = i+ jQ

T

q

j

8. return (�; T)

Visit (q, T)

/* Step 0 (Initialization) */

1. �

q

(0) = q, i = 1

2. A(q) = ;

/* Step 1 (Re
ursive
alls) */

3. for ea
h s 2
hildren

T

(q) j
olor (s) = white do Visit(s; T)

4. Green(q) = fs 2
hildren

T

(q) j
olor (s) = green g

5. Red(q) = fs 2
hildren

T

(q) j
olor (s) = red g

/* Step 2 (Resolving nodes of set Green(q)) */

6. if Green(q) 6= ; then

7. Let s 2 Green(q) j bind (lbl(q; s)) � bind(lbl(q; p));8 p 2 Green(q)

8. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

9. i = i+ jQ

T

s

j

10. A(q) = A(q) [A(s)

11. Green(q) = Green(q)� fsg

12. for ea
h s 2 Green(q) do

13. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

14. i = i+ jQ

T

s

j

15. A(q) = A(q) [A(s) [flbl(q; s)g

/* Step 3 (Resolving nodes of set Red(q)) */

16. for ea
h s 2 Red(q) do

17. if lbl (q; s) =2 A(q) then

18. Red(q) = Red(q)� fsg

19. for j = 0 to jQ

T

s

j � 1 do �

q

(i+ j) = �

s

(j)

20. i = i+ jQ

T

s

j

21. if A(q) = ; then A(q) = A(q) [A(s)

22. else A(q) = A(q) [A(s) [flbl(q; s)g

/* Step 4 (Pruning all remaining red nodes) */

23. for ea
h s 2 Red(q) do

24.
onstru
t a new trie T

0

for lbl(s)

25. for ea
h u 2 Q

T

0

do
olor (u) =white

26. prune T

s

from T and insert it at the end of T

0

27. merge root(T

0

) with root(T)

/* Step 5 (Setting
olor of node q) */

28. if A(q) \ B

len(q)�1

(q) = ; then
olor (q) = green

29. else
olor (q) = red

30. return �

q

Figure 5: The algorithm for
omputing a safe topologi
al ordering of the trie T .

Step 1. (Re
ursive
alls)

After initialization, all s 2
hildren

T

(q) whi
h have not been already visited

121

Pro
eedings of the Prague Stringology Conferen
e '05

are visited. Then, at the end of Step 1, it follows indu
tively that, for ea
h

s 2
hildren

T

(q), a safe topologi
al ordering �

s

has been de�ned and either

olor(s) = green or
olor(s) = red.

Step 2. (Resolving nodes of set Green(q))

Suppose Green(q) and Red(q) are the sets of, respe
tively, green and red

nodes of
hildren

T

(q). By
onstru
tion, no node in Green(q) violates any bind-

ing imposed by q. Thus, it is more
onvenient to resolve �rst the nodes in

Green(q) and later the ones in Red(q). If Green(q) 6= ;, a node s 2 Green(q)

su
h that lbl(q; s) has the largest binding value bind(lbl(q; s)) is sele
ted. In

this way all engaged edges whi
h
ould violate the binding
losest to q are elim-

inated. Then the topologi
al ordering �

s

is
on
atenated to �

q

, the edge (q; s)

be
omes a 1-bit edge in �

q

, and A(q) is set to the value A(q) [A(s).

For ea
h remaining node s 2 Green(q), the ordering �

s

is
on
atenated to �

q

, so

that all engaged nodes in �

s

be
ome engaged nodes in �

q

. Observe that, after

the �rst sele
tion, the edge (q; s) is a long-bit edge of �

q

, so that A(q) must be

set to the value A(q) [A(s) [flbl(q; s)g.

Step 3. (Resolving nodes of set Red(q))

After that all green nodes have been resolved in Step 2, nodes in Red(q) are

also resolved. In parti
ular, if Red(q) 6= ;, then an attempt is made to sele
t

a node s 2 Red(q) su
h that the symbol lbl(q; s) is not engaged in �

q

, i.e.

lbl(q; s) =2 A(q). If su
h a node s is found, the ordering �

s

is
on
atenated to

the ordering �

q

and the set A(q) of engaged nodes in �

q

is updated a

ordingly.

Step 3 is reapeted until no further node s 2 Red(q)
an be sele
ted.

Observe that, if Green(q) = ; at the beginning of Step 2, then the �rst sele
ted

node in Red(q) generates a 1-bit edge in �

q

. This
ase is tested in lines 21-22.

Step 4. (Pruning all remaining red nodes)

If Red(q) 6= ; after Step 4, ea
h subtree rooted at any node s 2 Red(q) is

�rst deta
hed from T and then re-atta
hed to T through a freshly introdu
ed

linear path labeled by lbl(s). Noti
e that Step 4
an
ause the trie T to be
ome

nondeterminsti
.

Step 5. (Setting
olor of node q)

Finally, if the engaged symbols of q violate some binding in B(q)

len(q)�1

, i.e.

A(q) \ B(q)

len(q)�1

6= ;,
olor(q) is set to red. Otherwise
olor(q) is set to

green.

At the end of the exe
ution, the modi�ed T and the fun
tion � are returned. It

turns out that �

�1

is a weakly safe topologi
al ordering of T .

Observe that there exist sets of patterns whose minimal tries admit no weakly safe

topologi
al ordering. The pruning of sub-tries in Step 4 is just intended to separate

in T those patterns whi
h
ause troubles.

Let P be a set of patterns and let T be the minimal trie for P. We evaluate the

omplexity of the algorithm in Figure 5 in terms of L = size(P).

An eÆ
ient implementation of the algorithm Constru
t-Safe-Topologi
al-

Ordering maintains, for ea
h node q 2 Q

T

, the sets B(q)

len(q)�1

and A(q) in two

122

A Spa
e EÆ
ient Bit-Parallel Algorithm for the Multiple String Mat
hing Problem

bit-ve
tors. Thus, if we assume that j
hildren

T

(q)j � !, for ea
h q 2 Q

T

, where ! is

the length of a
omputer word, the operations of set union and set interse
tion
an be

performed in
onstant time and O(jQ

T

j) spa
e. Su
h assumption is quite reasonable,

sin
e in pra
ti
al
ases the degree of a node is rarely greater than !. This is espe
ially

true if the patterns belong to a natural language where
onse
utive symbols are not

independent, rather they are strongly related in most
ases. For instan
e the symbol

\q" is almost always followed by the symbol \u", whereas in general the symbol \t"

is followed only by the symbols \a,e,h,i,l,o,r,u,y".

Additionally, if we maintain the topologi
al orderings �

q

, for ea
h node q, as

linked-lists, the operations in lines 8, 13, and 19, whi
h
on
atenate two di�erent

topologi
al orderings,
an be also performed in
onstant time.

The pro
edure Visit is
alled only on
e for ea
h node q 2 Q

T

. Sin
e ea
h node

s 2 Q

T

, with the ex
eption of the root, will enter either set Green(q) or set Red(q),

for only one node q 2 Q

T

, we have that

X

q2Q

T

(jGreen(q)j+ jRed(q)j) = jQ

T

j � 1 :

Thus the overall
omplexity of Steps 2 and 3 is O(L), sin
e jQ

T

j = O(L).

In Step 4, the pruning of a red node s
onsists in following the path from the

root of the trie to node s. Thus the overall work of Step 4 is bounded again by O(L).

Finally Step 0 and Step 5 are performed in
onstant time. Thus, it turns out that

the algorithm Constru
t-Safe-Topologi
al-Ordering has a O(L)-time and

-spa
e
omplexity.

It must be remarked that in general the algorithmConstru
t-Safe-Topologi-

al-Ordering does not
onstru
t the minimal trie T

0

, equivalent to a given trie

T , whi
h is endowed with a weakly safe topologi
al sorting. A natural variant whi
h

enfor
es minimality takes quadrati
 time.

On the other hand, some experimentations has shown that the heuristi
s embodied

in Steps 2, 3, and 4 are quite e�e
tive in keeping the returned trie
lose to minimal.

6 Con
lusion

In this paper we have presented a new algorithm for the multiple pattern mat
hing

problem, based on the bit-parallelism te
hnique. In parti
ular, our algorithm is based

on the parallel simulation of a fa
tor-based trie (not ne
essarily the optimal one) for

the input set of patterns. In fa
t, our simulation requires that the fa
tor-based trie

admits a topologi
al ordering whi
h is weakly safe, in a sense amply explained before.

The
omplexity of our algorithm is linear in the length of the text and in the size of

the set of patterns.

We have also shown how to transform a given minimal trie into a trie whi
h has

a weakly safe topologi
al ordering in linear time and spa
e in the size of the set of

patterns. The resulting trie is in general signi�
antly smaller than the maximal tries

used in the other multi-pattern mat
hing algorithms based on bit-parallelism.

Further variations and improvements are still possible. For instan
e, we expe
t

that our approa
h
an be extended to obtain a spa
e eÆ
ient version of the BNDM

algorithm for the multiple pattern mat
hing problem.

123

Pro
eedings of the Prague Stringology Conferen
e '05

An interesting open problem is to �nd other suitable topologi
al orderings on de-

terministi
 tries whi
h guarantee that they
an be easily simulated by bit-parallelism,

without any need to modify their topology.

Referen
es

[AC75℄ A. V. Aho and M. J. Corasi
k. EÆ
ient string mat
hing: an aid to bibliographi
 sear
h.

Commun. ACM, 18(6):333{340, 1975.

[BM77℄ R. S. Boyer and J. S. Moore. A fast string sear
hing algorithm. Commun. ACM,

20(10):762{772, 1977.

[BYG92℄ R. A. Baeza-Yates and G. H. Gonnet. A new approa
h to text sear
hing. Commun.

ACM, 35(10):74{82, 1992.

[CCG

+

93℄ M. Cro
hemore, A. Czumaj, L. G�asienie
, S. Jarominek, T. Le
roq, W. Plandowski,

and W. Rytter. Fast pra
ti
al multi-pattern mat
hing. Rapport 93-3, Institut Gaspard

Monge, Universit�e de Marne la Vall�ee, 1993.

[CCG

+

94℄ M. Cro
hemore, A. Czumaj, L. G�asienie
, S. Jarominek, T. Le
roq, W. Plandowski, and

W. Rytter. Speeding up two string mat
hing algorithms. Algorithmi
a, 12(4/5):247{267,

1994.

[CR94℄ M. Cro
hemore and W. Rytter. Text algorithms. Oxford University Press, 1994.

[CW79℄ B. Commentz-Walter. A string mat
hing algorithm fast on the average. In H. A. Maurer,

editor, Pro
eedings of the 6th International Colloquium on Automata, Languages and

Programming, number 71 in Le
ture Notes in Computer S
ien
e, pages 118{132, Graz,

Austria, 1979. Springer-Verlag, Berlin.

[Hor80℄ R. N. Horspool. Pra
ti
al fast sear
hing in strings. Softw. Pra
t. Exp., 10(6):501{506,

1980.

[KMP77℄ D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt. Fast pattern mat
hing in strings. SIAM

J. Comput., 6(1):323{350, 1977.

[NR98℄ G. Navarro and M. RaÆnot. A bit-parallel approa
h to suÆx automata: Fast extended

string mat
hing. In M. Fara
h-Colton, editor, Pro
eedings of the 9th Annual Symposium

on Combinatorial Pattern Mat
hing, number 1448 in Le
ture Notes in Computer S
ien
e,

pages 14{33, Pis
ataway, NJ, 1998. Springer-Verlag, Berlin.

[Raf97℄ M. RaÆnot. On the multi ba
kward dawg mat
hing algorithm (MultiBDM). In R. Baeza-

Yates, editor, Pro
eedings of the 4th South Ameri
an Workshop on String Pro
essing,

pages 149{165, Valparaiso, Chile, 1997. Carleton University Press.

[WM91℄ S. Wu and U. Manber. Fast text sear
hing with errors. Report TR-91-11, Department

of Computer S
ien
e, University of Arizona, Tu
son, AZ, 1991.

124

