
Compressed Pattern Mat
hing in JPEG Images

Shmuel T. Klein

1

and Dana Shapira

2

1

Dept. of Computer S
ien
e

Bar Ilan University

Ramat-Gan 52900, Israel

e-mail: tomi�
s.biu.a
.il

2

Dept. of Computer S
ien
e

Ashkelon A
ademi
 College

Ashkelon, Israel

e-mail: shapird�a
ad.ash-
ollege.a
.il

Keywords: Data Compression, JPEG, Hu�man

Abstra
t. The possibility of applying 
ompressed mat
hing in JPEG en
oded

images is investigated and the problems raised by the s
heme are dis
ussed. A

part of the problems 
an be solved by the use of some auxiliary data whi
h

yields various time/spa
e tradeo�s. Finally, approa
hes to deal with extensions

su
h as allowing s
aling or rotations are suggested.

1 Introdu
tion

The paradigm of 
ompressed pattern mat
hing has re
ently gotten a lot of attention.

The idea of the 
ompressed mat
hing was �rst introdu
ed in the work of Amir and

Benson [1℄ as the task of performing pattern mat
hing in a 
ompressed text without

de
ompressing it. For a given text T and pattern P and 
omplementary en
oding

and de
oding fun
tions, E and D respe
tively, our aim is to sear
h for E(P ) in E(T ),

rather than the usual approa
h whi
h sear
hes for the pattern P in the de
ompressed

text D(E(T )). Amir and Benson deal with a run-length en
oded two-dimensional

pattern, but most works address the problem of �nding one-dimensional patterns in

�les 
ompressed by various methods, su
h as Hu�man 
oding [9℄, Lempel-Ziv [13℄, or

spe
ially adapted methods [11, 8℄.

We 
on
entrate here on two-dimensional 
ompressed mat
hing in whi
h the given

text is an image en
oded by the standard JPEG baseline s
heme [6℄ and the pattern


onsists of a given image fragment we are looking for. In a more general setting, a


olle
tion of images 
ould be given, and the subset of those in
luding at least one 
opy

of the pattern is sought. An example for the former 
ould be an aerial photograph of

a 
ity in whi
h a 
ertain building is to be lo
ated, an example for the more general


ase 
ould be a set of pi
tures of fa
es of potential suspe
ts, whi
h have to be mat
hed

against some known identifying feature like a nose or an eyebrow.

Baseline JPEG uses a stati
 Hu�man 
ode, without whi
h 
ompressed mat
hing

would not always be possible, sin
e our underlying assumption is that all o

urren
es

125



Pro
eedings of the Prague Stringology Conferen
e '05

of the pattern are en
oded by the same binary sequen
e. This is not the 
ase for

dynami
 Hu�man 
oding or for arithmeti
 
oding. Lempel-Ziv methods are also

adaptive, but for them 
ompressed mat
hing is possible be
ause all the fragments of

the pattern appear in the text, though not ne
essarily in the same order as in the

pattern.

In a �rst approa
h, we a

ept as simplifying assumption that only exa
t 
opies of

the pattern are to be found. Returning to the example of the aerial pi
ture, it would

of 
ourse also be interesting to lo
ate the given building if the pattern presents it in

a di�erent angle than it appears in the larger image, or at another s
ale, or even only

partially, be
ause it 
ould have been o

luded by a 
loud when the pi
ture has been

taken. The 
orresponding pattern mat
hing problems, allowing rotations, s
aling and

o

lusions, are more diÆ
ult and have been treated in [2, 3℄.

In the next se
tion, we review the basi
 ingredients of the JPEG algorithm, then

turn in Se
tion 3 to the method we suggest for 
ompressed mat
hing in JPEG �les.

The main problem to be dealt with is one of syn
hronization and alignment, so we

explore in Se
tion 4 the possibility of using auxiliary �les to solve su
h alignment

problems. The last se
tion deals with extensions to rotations and s
aling.

2 The JPEG standard

JPEG [6℄ is a lossy image 
ompression method. In a �rst step, the pi
ture is split

into a sequen
e of blo
ks of size 8� 8 pixels. Ea
h blo
k is then 
ompressed by the

following sequen
e of transformations:

1. Applying a Dis
rete Cosine Transform (DCT) [14℄ to the set of 64 values of the

pixels in the blo
k;

2. Applying Quantization to the DCT 
oeÆ
ients, thereby produ
ing a set of 64

smaller integers. This step 
auses a loss of information but makes the data more


ompressible;

3. Applying an entropy en
oder to the quantized DCT 
oeÆ
ients. Baseline JPEG

uses Hu�man 
oding in this step, but the JPEG standard spe
i�es also arith-

meti
 
oding as possible alternative.

The de
ompression pro
ess just reverses the a
tions and their order. It �rst applies

Hu�man de
oding, then dequantizes the 
oeÆ
ients, and �nally uses an inverse DCT

to obtain a set of values. Be
ause of the quantization step, the re
onstru
ted set

in
ludes only approximated values.

The 
oeÆ
ient in position (0,0) (left upper 
orner) is 
alled the DC 
oeÆ
ient and

the 63 remaining values are 
alled the AC 
oeÆ
ients. In prin
iple, the DC 
oeÆ
ient

should store a measure of the average of the 64 pixel values of the given blo
k, but

sin
e there is usually a strong 
orrelation between the DC 
oeÆ
ients of adja
ent

blo
ks, what is a
tually stored is the di�eren
e between the average in this blo
k and

the average in the previous one.

Baseline JPEG uses two di�erent Hu�man trees to en
ode the data. The �rst

en
odes the lengths in bits (1 to 11) of the binary representations of the values in the

DC �elds. The se
ond tree en
odes information about the sequen
e of AC 
oeÆ
ients.

126



Compressed Pattern Mat
hing in JPEG Images

As many of them are zero, and most of the non-zero values are often 
on
entrated in

the upper left part of the 8�8 blo
k, the AC 
oeÆ
ients are s
anned in a �xed zig-zag

order, pro
essing elements on a diagonal 
lose to the upper left 
orner before those

on su
h diagonals further away from that 
orner; that is, the order is given by (0,1),

(1,0), (2,0), (1,1), (0,2), (0,3), (1,2), et
. The se
ond Hu�man tree en
odes pairs of

the form (n; `), where n (limited to the range 0 to 15) is the number of elements that

are 0, pre
eding a non-zero element in the given order, and ` is the length in bits (1

to 10) of the binary representation of the non-zero quantized AC value. The se
ond

tree in
ludes also 
odewords for End of Blo
k (EOB), whi
h is used when no non-zero

elements are left in the s
anning order, and for a sequen
e of 16 
onse
utive 0s in the

AC sequen
e (ZRL). The Hu�man trees used in baseline JPEG are stati
, and 
an

be found in [15℄.

Ea
h 8�8 blo
k is then en
oded by an alternating sequen
e of Hu�man 
odewords

and binary integers (ex
ept that the 
odewords for EOB and ZRL are not followed

by any integer), the �rst 
odeword belonging to the �rst tree and relating to the DC

value, the other 
odewords en
oding the (n; `) pairs for the AC values, with the last


odeword in ea
h blo
k representing EOB. Figure 1(a) brings an example blo
k of

quantized values, with the DC value in boldfa
e in the upper left 
orner. The upper

part of Figure 1(b) shows the en
oding of this blo
k, with elements to be Hu�man

en
oded appearing in parentheses, and the elements 
orresponding to DC (the value

of whi
h we assume to be 5) bold fa
ed; the binary translation of the en
oding, with

framed Hu�man 
odewords, is shown underneath.

20 1 0 0 0 0 0 0

0 3 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

(a) Typi
al JPEG blo
k

(3) 5 (0,1) 1 (2,2) 3 (4,2) -2 (EOB)

100 101 00 1 11111001 11 1111111000 01 1010

(b) En
oding of JPEG blo
k

Figure 1: Example of JPEG blo
k and its en
oding

JPEG en
odes the blo
ks row by row, from left to right, and 
on
atenates the

en
oded blo
ks. A small header en
odes the number of rows and 
olumns, so there

is no need to en
ode an end-of-row indi
ator spe
i�
ally. A
tually, to simplify the

dis
ussion and the examples, our des
ription refers to only one 
omponent, the lumi-

nan
e, of JPEG en
oding, whi
h 
orresponds to bla
k and white images. JPEG also

supports 
olor images, where ea
h 
olor pixel is split into several 
omponents (RGB

or YUV).

3 Pure 
ompressed mat
hing

We are given an image T of n � k pixels, in whi
h a two-dimensional pattern P of

size m � ` pixels should be found. Sin
e JPEG works with 8 � 8 pixel blo
ks, we

127



Pro
eedings of the Prague Stringology Conferen
e '05

assume that n and k are multiples of 8. The 
ompressed mat
hing starts by en
oding

the pattern using the same JPEG algorithm as the one used for the original image.

Even then we 
annot assure that a pattern 
an be lo
ated, as the 8 � 8 blo
ks of

the pattern are not ne
essarily aligned with those of the image. The sear
h pro
ess

has therefore to be repeated 64 times, positioning, for ea
h mat
hing attempt, the

leftmost uppermost pixel of the �rst 8� 8 blo
k in the pattern at the ith pixel in the

jth row, 1 � i; j � 8. Figure 2 is an example of how the pattern 
ould be partitioned:

there will usually be a frame at the border of the pattern (the darker area in Figure 2)


orresponding to 8� 8 blo
ks that �t only partially. The pixels in this frame will not

parti
ipate in the mat
hing pro
ess, so the pattern is a
tually restri
ted to an area of

full 
ontiguous 8� 8 blo
ks (the white area in Figure 2). For the rest of this paper,

let m and ` then represent the dimensions of the restri
ted pattern, that is, m and `

are also multiples of 8.

Figure 2: Example of partition of the pattern into 8� 8 blo
ks

The �rst blo
k is JPEG en
oded, yielding one DC value and a sequen
e of AC

values. Sin
e DC elements are en
oded relative to pre
eding blo
ks, the DC value

of this �rst blo
k 
annot be lo
ated, so the mat
hing starts only from the beginning

of the sequen
e of AC values. These are 
al
ulated for ea
h blo
k independently,

therefore if the pattern-blo
k does appear as a blo
k in the image T , the en
oded

sequen
e of AC values will appear in the en
oded image E(T ). The DC values of the

se
ond and subsequent blo
ks in the �rst row of 8� 8 blo
ks of P 
an be evaluated

based on the DC values of the pre
eding blo
ks, hen
e the �rst part of the en
oded

pattern to be sear
hed for in E(T ) 
onsists of the sequen
e of AC values followed by

the `=8� 1 en
oded 8� 8 blo
ks of the �rst row.

The 
ompressed mat
hing paradigm raises then several problems. First, suppose

that the binary sequen
e en
oding the �rst part of the pattern is indeed lo
ated. This

does not ne
essarily mean that an o

urren
e of the en
oded elements is found, as

the beginning of the Hu�man 
odewords might not be syn
hronized. Consider, for

example, the blo
k (2) 3 (0,2) �3 (EOB), to be lo
ated in a sequen
e of several

blo
ks identi
al to those of the example in Figure 1(b). Figure 3 shows that the

pattern (after having stripped the DC values) will be found erroneously 
rossing the

blo
k boundaries in E(T ).

The same problem was noted in [9℄, and in [10℄ in an appli
ation to parallel

de
oding of a JPEG �le when several pro
essors are available. For long enough

patterns, the tenden
y of Hu�man 
odes to resyn
hronize after errors may suggest

that false alarms as those in the above example might be rare, but in our appli
ation,

the rows of the pattern may be short. Moreover, the problem in the JPEG 
ase is

more severe than for plain Hu�man de
oding. For the latter, on
e syn
hronization

has been regained, the remainder of the en
oded �le is 
orre
t. In JPEG �les, on

128



Compressed Pattern Mat
hing in JPEG Images

�2 (EOB) (3) 5 (0,1)

� � � 0 1 1 0 1 0 1 0 0 1 0 1 0 0 � � �

(0,2) �3 (EOB)

Figure 3: Example of false alignment

the other hand, 
onsisting of both Hu�man 
odewords and integer en
odings, the

fa
t that a given bit is the last in a 
odeword for both the 
orre
t and the erroneous

de
oding does not imply that both de
odings will 
ontinue identi
ally. Referring again

to Figure 3, the 
odewords for (3) and �3 end at the same bit, whi
h is nevertheless

not a syn
hronization point.

The se
ond problem is that the en
oded pattern does not appear 
onse
utively

in the en
oded image (unless k = `), but with gaps 
orresponding to the en
oding

of (k� `)=8 blo
ks. The pattern is therefore partitioned into m=8 sub-patterns, ea
h


orresponding to a row of `=8 blo
ks, and with the �rst DC value of ea
h sub-pattern

eliminated. If the sub-patterns are lo
ated using some pattern mat
hing algorithm,

we 
annot 
on
lude with 
ertainty that the pattern has been found. In addition to

the above problem of possible false alignments, one 
annot know if ea
h of the gaps

are indeed the en
oding of (k� `)=8 blo
ks, even if the sub-patterns are found in the

required order and even if all of them are true mat
hes.

One of the possible solutions 
ould be, on
e the �rst row of the pattern has been

found, to 
ontinue de
ompressing the image, keeping a 
ount of the de
oded blo
ks.

In other words, pattern mat
hing would only be used for the �rst row of the pattern,

then the image would be de
oded sequentially. In fa
t, one does not really need

full de
oding: the Hu�man 
odewords in the JPEG �le indi
ate the length in bits

of the integers following the 
odewords, and for our purpose, these integers 
an be

simply skipped. This solution 
ould, however, not really be 
onsidered as 
ompressed

mat
hing, sin
e, depending on the position of the �rst o

urren
e of the pattern in the

en
oded �le, large parts of it, possibly almost the whole original �le, are de
ompressed.

The third problem relates to the fa
t that there are possibly many o

urren
es of

the pattern, perhaps even overlapping ones. In images this might be more frequent

than for plain texts, be
ause large areas 
ould represent some uniform ba
kground

(a blue sky, dark parts in the shadow, et
.), and therefore 
onsist of many identi
al

blo
ks. If ea
h of the rows of the pattern is lo
ated several times, we need to mat
h

somehow their o

urren
es to 
he
k whether indeed we have an o

urren
e of the

whole pattern. This might be a diÆ
ult task even if we ignore the problem of 
ertain

o

urren
es being false mat
hes.

We therefore 
on
lude that 
ompressed pattern mat
hing in JPEG �les is hard to

a
hieve, unless we keep some auxiliary data, as suggested in the following se
tion.

4 Compressed mat
hing with auxiliary data

The task would be mu
h easier if one would know, for a given position in the JPEG

en
oded �le, the index of the 
orresponding 8� 8 blo
k in the original �le. A step in

this dire
tion would be using syn
hronizing 
odewords (see [7℄), for example at the

129



Pro
eedings of the Prague Stringology Conferen
e '05

end of ea
h en
oded row, but this would require a 
hange in the en
oding standard, for

example to JPEG-2000 [12℄ whi
h has syn
hronizing 
odewords built-in. In fa
t, the


ode used in baseline JPEG is not really a Hu�man 
ode, be
ause it is not 
omplete:

there is, e.g., no 
odeword 
onsisting only of 1's. This 
an be exploited to devise a

syn
hronizing sequen
e: the longest sequen
e of 1's that 
an appear is of length 29,

in the en
oding of (10,10) 1023 (15,10), whi
h is translated into 1111111111001111

1111111111 1111111111111110. Therefore a sequen
e of 30 
onse
utive 1's is syn
hro-

nizing. This syn
hronizing sequen
e 
ould be inserted at the end of ea
h row, whi
h


ould therefore be dete
ted without de
oding. Alternatively, instead of wasting 30

bits for syn
hronization, one of the 
odewords 
ould be repla
ed by this string of 1's,

for example the 
odeword 1010 for EOB. This would in
rease ea
h en
oded blo
k by

26 bits, but false mat
hes are then easily dete
ted. Nevertheless, 26 bits for ea
h 8�8

blo
k, whi
h are generally en
oded by a few hundred bits or less, might be too high

a pri
e to pay.

4.1 Building an index

Instead of modifying the JPEG �le, one 
ould 
onstru
t a table S, a
ting as an index,

that would be stored in addition to the original 
ompressed �le. S(i) would be the

bit-position, within the JPEG image, of the beginning of the en
oding of the AC

sequen
e in the ith blo
k, that is the index of the bit following the DC value. The

size of ea
h entry in S would be dlog

2

jE(T )je, where jxj refers to the size of x in bits,

so that a 3 byte entry 
ould a

ommodate a 
ompressed image of size up to 2MB.

The number of entries is S is nk=64, the number of 8� 8 blo
ks in T .

The 
onstru
tion of su
h an index has to be done in a prepro
essing stage, and

it 
ould be argued that this 
ontradi
ts the main idea of 
ompressed mat
hing, sin
e

while building the table S one a
tually de
ompresses the whole image. Nevertheless,

the prepro
essing 
an be justi�ed in 
ertain appli
ations, for example when one large

image will be used many times for sear
hes with di�erent patterns. This is similar to

regular pattern mat
hing with a �xed large text of size n and possibly many patterns

to be looked for. Some of the fastest algorithms are then based on 
onstru
ting a suÆx

tree [16, 4℄, the size of whi
h may often ex
eed that of the text itself. Constru
tion

time is linear in n, but on
e the suÆx tree is ready, the time to lo
ate a pattern is

independent of the size of the text.

The index S 
an be used to solve some of the problems mentioned above. On
e the

en
oding of the �rst row of the pattern image has been lo
ated in E(T ) at bit o�set

y, a binary sear
h for y in S 
an de
ide in dlogn + log ke � 6 
omparisons whether

the mat
h is a true one. Similar sear
hes for the following rows of the pattern 
an

lo
ate all the rows, without de
oding.

To get a feeling about the size of the required indi
es, we have applied this idea

on the three grays
ale sample JPEG �les in Figure 4: the 
lassi
al Lenna pi
ture,

a 
hessboard with many identi
al sub-parts, and a rose. Table 1 shows the details,

giving the number of rows and 
olumns, r� 
, the size in bytes, s, of the 
ompressed

�le, and the absolute (in bytes) and relative size (in per
ent) of the index S. The size

is given by ((dr=8e � d
=8e)(log

2

(s) + 3)) =8.

If the size of S is too large, a time/spa
e tradeo� 
an be obtained by �xing an

integer parameter d and storing only every dth entry of S. The storage overhead is

130



Compressed Pattern Mat
hing in JPEG Images

Lenna Chess Rose

Figure 4: Examples of JPEG �les

File pixels jpeg size index size %

Lenna 256 � 256 30,763 2304 7.5

Chess board 150 � 150 14,112 768 5.4

Rose 227 � 149 12,089 1171 9.7

Table 1: Details on sample �les

redu
ed by a fa
tor of d, at the 
ost of in
reased sear
h time: the binary sear
h for

the bit o�set y now lo
ates the largest value is S that is still smaller or equal to y;

from there, up to d blo
ks have to be de
oded. For example, the index for the Lenna

pi
ture 
an be redu
ed to less than 1% if only every eighth blo
k is indexed, and if

one re
ords only the beginning of every row, the index redu
es to 72 bytes.

4.2 Dealing with multiple mat
hes

We now turn to the possibility of having found many mat
hes for ea
h of the rows of

the pattern. Using the table S, ea
h of the found o�sets is 
he
ked to 
orrespond to a

true mat
h and then translated to a blo
k index. Sin
e the dimensions of the image T

are known, ea
h index 
an be translated into an (r; 
) pair, denoting the indi
es of the


orresponding row and 
olumn. Let (R

i

; C

i

) be the sequen
e of n

i

(true) o

urren
es

of the ith row of the pattern,

(R

i

; C

i

) = f(r

i1

; 


i1

); (r

i2

; 


i2

); : : : ; (r

in

i

; 


in

i

)g; 1 � i � m:

The sequen
es 
an be kept in lexi
ographi
ally in
reasing order. We need to 
he
k

whether 
onse
utive rows of the pattern have appearan
es in 
onse
utive rows and

identi
al 
olumns of the image. Formally, we seek

m

\

i=1

(R

i

� i+ 1; C

i

) ;

where we use the notation A� x for a set of integers A = fa

1

; : : : ; a

n

g and an integer

x to stand for the set fa

1

� x; : : : ; a

n

� xg.

The following algorithm uses m pointers, one for ea
h of the sequen
es, to �nd all

the o

urren
es:

Repeat until one of the sequen
es is exhausted

�nd the smallest element (r; 
) in (R

1

; C

1

) \ (R

2

� 1; C

2

) by sequential sear
h

for i 3 to m

sear
h for an o

urren
e of (r; 
) in (R

i

� i+ 1; C

i

)

if (r; 
) is 
ommon to all m sequen
es, in
rease all m pointers by 1

131



Pro
eedings of the Prague Stringology Conferen
e '05

The sear
h in the iterative step 
an be done by binary sear
h, sin
e the sequen
es

are ordered, but this is not ne
essarily the best solution. Consider the spe
ial


ase in whi
h all n

i

are equal to n

1

, and h elements are found in the interse
tion

(R

1

; C

1

) \ (R

2

� 1; C

2

). Assume also that h > n

1

= logn

1

and that all h elements of

the interse
tion belong to the �rst halves of both (R

1

; C

1

) and (R

2

� 1; C

2

). Then

performing the interse
tion takes 2n

1


omparisons, and ea
h of the h sear
hes in ea
h

of the m�2 remaining sequen
es requires logn

1


omparisons. To redu
e this number

even by 1, the length of the sequen
e has to be 
ut at least to half, so even redu
ing

the sear
h to the remaining sequen
e after ea
h lo
ated element wouldn't help in our


ase. The total sear
h time would thus be 2n

1

+ h (m � 2) logn

1

> n

1

m. On the

other hand, s
anning the m lists sequentially 
an be done in time n

1

m.

Note that it would pay to start the pro
ess by interse
ting the two shortest lists,

rather than the two �rst, whi
h would tend to redu
e h. Moreover, the interse
tion


ould be done by binary merge [5℄ rather than linearly.

In an experiment run on ea
h of the images of Figure 4, a random 15 byte long

fragment of the en
oded �le was taken as pattern, 
orresponding to a part of a row

of the image, and o

urren
es of this pattern were sought. In ea
h 
ase, only a single

o

urren
e was found, 
orresponding to the true mat
h. This suggests that in many

real life JPEG �les, multiple mat
hes will not 
ause a problem. On the other hand,

we repeated the test with a pure bla
k bitmap �le, and found there many mat
hes,

as expe
ted.

5 Mat
hing with s
aling and rotations

Consider the problem of lo
ating the pattern P after having s
aled it by a fa
tor �

and/or rotated it by an angle 
. The one to one 
orresponden
e between 8�8 blo
ks

of pattern and image might be lost, but sin
e the DCT transforms the full blo
k as

one indivisible entity, there is no way to dete
t the en
oding of parts of the blo
k

in the JPEG �le. So instead of trying to transform the en
oded pattern, one has to

transform the pattern �rst, and then apply the en
oding.

For � < 1, both height and width of the o

urren
e of pattern P in the image T

should be � times smaller than in P . Sin
e it is the pattern that is en
oded, we get

the requested e�e
t by enlarging the pattern by a fa
tor of � = 1=� before applying

JPEG. If � is an integer, one 
ould dupli
ate ea
h pixel in ea
h row, as well as the

su
h enlarged rows � times. The resulting pattern is of lower quality than a possible

o

urren
e in the given image, so some smoothing, taking neighboring pixels into

a

ount, 
ould improve the sear
h, but the DCT will take 
are, at least partially, of

the smoothing anyway. If � is not an integer, 
ertain rational fa
tors 
an be obtained

by a pro
ess similar to the one depi
ted in Figure 5(a). For � = 1:5, transform ea
h

2� 2 blo
k into a 3� 3 blo
k, inserting the missing values (in grey) by interpolation.

If � > 1, the pattern has to be redu
ed by a fa
tor of � = 1=�. If � is an integer,

the simplest way to pro
eed is taking every �th pixel in both dimensions. A more

pre
ise way would be to 
onsider some or all translations of su
h subsets of the pattern

having their pixels � positions apart, and averaging among them the value for ea
h

pixel. For 
ertain non-integer values of �, one 
ould pro
eed similarly to the above

non-integer 
ase for �.

As to rotations, if 
 is a multiple of a right angle, say 90

Æ

, 180

Æ

or 270

Æ

, ea
h

132



Compressed Pattern Mat
hing in JPEG Images

(a) (b) (
)

Figure 5: Examples of possible rotations

8� 8 matrix 
an be transposed or reversed a

ordingly, thereby rede�ning the rows

and 
olumns of the pattern. If 
 = 45

Æ

after a s
aling of � =

p

2, as in Figure 5(b),

ea
h pattern blo
k would have to mat
h four halves of image blo
ks, but even if

there is no su
h regularity and the pattern blo
ks might interse
t a varying number

of image blo
ks in various layouts, as for example in Figure 5(
), one 
an deal with

it by rotating �rst the pattern by �
, then partitioning into blo
ks and en
oding.

Con
lusion

Sear
hing dire
tly in JPEG en
oded images seems to be a diÆ
ult task be
ause the

blo
king used, as well as the DCT applied to the blo
ks, does not allow any intera
tion

between adja
ent blo
ks. Using an index, the size of whi
h 
an be 
ontrolled in a

time/spa
e tradeo�, may alleviate some of the problems.

Referen
es

[1℄ Amir A., Benson G., EÆ
ient two-dimensional 
ompressed mat
hing, Pro
.

Data Compression Conferen
e DCC{92 , Snowbird, Utah (1992) 279{288.

[2℄ Amir A., Butman A., Cro
hemore M., Landau G.M., S
haps M., Two

dimensional pattern mat
hing with rotations, Theoreti
al Computer S
ien
e,

314(1{2) (2004) 173{187.

[3℄ Amir A., Butman A., Lewenstein M., Porat E., Real two dimensional

s
aled mat
hing, Pro
. WADS (2003) 353{364.

[4℄ Apostoli
o A., The myriad virtues of subword trees, Combinatorial Algo-

rithms on Words, NATO ASI Series Vol F12, Springer Verlag, Berlin (1985)

85{96.

[5℄ Hwang F.K., Lin S., A simple algorithm for merging two disjoint linearly-

ordered sets, SIAM Journal of Computing 1 (1972) 31{39.

[6℄ ISO/IEC 10918-1 Information Te
hnology - Digital Compression and Coding

of Continuous{Tone Still Images Requirements and Guidelines, International

Standard ISO/IEC, Geneva, Switzerland (1993).

133



Pro
eedings of the Prague Stringology Conferen
e '05

[7℄ Ferguson T.J., Rabinowitz J.H., Self-syn
hronizing Hu�man 
odes, IEEE

Trans. on Inf. Th. IT{30 (1984) 687{693.

[8℄ Klein S.T., Shapira D., A new 
ompression method for 
ompressed mat
h-

ing, Pro
. Data Compression Conferen
e DCC{2000, Snowbird, Utah (2000)

400{409.

[9℄ Klein S.T., Shapira D., Pattern Mat
hing in Hu�man En
oded Texts, In-

formation Pro
essing and Management 41 (2005) 829{841.

[10℄ Klein S.T., Wiseman Y., Parallel Hu�man De
oding with Appli
ations to

JPEG Files, The Computer Journal 46(5) (2003) 487{497.

[11℄ Manber U., A Text Compression S
heme That allows Fast Sear
hing Dire
tly

in the 
ompressed File, ACM Trans. on Inf. Sys. 15 (1997) 124{136.

[12℄ Mar
ellin M.W., Gormish M.J., Bilgin A., Boliek M.P., An Overview

of JPEG-2000, Pro
. Data Compression Conferen
e DCC-2000, Snowbird, Utah

(2000) 523{541.

[13℄ Navarro G., Raffinot M., A general pra
ti
al approa
h to pattern mat
h-

ing over Ziv-Lempel 
ompressed text, Pro
. 10th Symp. on Combinatorial Pat-

tern Mat
hing, Warwi
k, UK, July 22{24 1999, LNCS 1645, Springer Verlag,

Berlin(1999) 14{36.

[14℄ Rao K.R., Yip P., Dis
rete Cosine Transform Algorithms, Advatages, Ap-

pli
ations, A
ademi
 Press In
., London (1990).

[15℄ Walla
e G.K., The JPEG Still Pi
ture Compression Standard, Communi-


ation of the ACM 34 (1991) 30{44.

[16℄ Weiner P., Linear pattern mat
hing algorithms, Pro
. 14th Annual IEEE

Symposium on Swit
hing and Automata Theory, Washington, DC, (1973) (1{

11).

134


