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Säıd Abdeddäım
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Preface

The Prague Stringology Conference 2006 (PSC’06) was held at the Department of
Computer Science and Engineering of the Czech Technical University in Prague,
Czech Republic, on August 28–30, 2006. The conference focused on stringology and
related topics. Stringology is a discipline concerned with algorithmic processing of
strings and sequences.

The papers submitted were reviewed by the program committee and twenty were
selected for presentation at the conference, based on originality and quality. This
volume contains not only these selected papers but also abstract of one invited talk
devoted to dist tables.

PSC’06 is the eleventh event of the Prague Stringology Club. In the years 1996–
2000 the Prague Stringology Club Workshops (PSCW’s) and the Prague Stringology
Conferences (PSC’s) in 2001–2005 preceded this conference. The proceedings of these
workshops and the conferences had been published by Czech Technical University in
Prague and are available on WWW pages of the Prague Stringology Club. Selected
contributions were published in special issues of the journal Kybernetika, the Nordic
Journal of Computing, the Journal of Automata, Languages and Combinatorics, and
the International Journal of Foundations of Computer Science.

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of the Prague Stringology Club is to study algorithms on strings
and sequences with emphasis on finite automata theory. The first event organized by
the Prague Stringology Club was the workshop PSCW’96 featuring only a handful
invited talks. However, since PSCW’97 the papers and talks are selected by a rigorous
peer review process. The objective is not only to present new results in stringology,
but also to facilitate personal contacts among the people working on these problems.

I would like to thank all those who had submitted papers for PSC’06 as well as the
reviewers. Special thanks goes to all the members of the program committee, without
whose efforts it would not have been possible to put together such a stimulating pro-
gram of PSC’06. Last, but not least, my thanks go to the members of the organizing
committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2006
Jan Holub
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Can Dist Tables Be Merged in Linear Time

An Open Problem

(Invited Talk)

Gad M. Landau

Department of Computer Science
Faculty of Social Sciences

University of Haifa
31905 Haifa, Israel

landau@cs.haifa.ac.il

Dist tables are key players in the computation of dynamic programming tables
in o(n2) time. Given two strings A and T , dist(A, T ) stores the scores of the edit
distances between T and all substrings of A. Given dist(A, T ) and dist(B, T ) (strings
A and B are each of length m and T is of length n) the best known algorithms that
compute dist(AB, T ) run in O(nm) time or O(n1.5) time. We will discuss the use of
dist tables and Schmidt and Tiskin’s Algorithms as well as some thoughts on possible
directions to answering the open problem.
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An Asymptotic Lower Bound for the

Maximal-Number-of-Runs Function

Frantisek Franek⋆ and Qian Yang

Department of Computing & Software
Faculty of Engineering
McMaster University
Hamilton, Ontario
Canada L8S 4K1

franek@mcmaster.ca, yangq6@univmail.cis.mcmaster.ca

Abstract. An asymptotic lower bound for the maxrun function ρ(n) = max {number
of runs in string x | all strings x of length n} is presented. More precisely, it is shown
that for any ε > 0, (α−ε)n is an asymptotic lower bound, where α = 3

1+
√

5
≈ 0.927. A

recent construction of an increasing sequence of binary strings “rich in runs” is modified
and extended to prove the result.

Keywords: run, lower bound, asymptotic lower run, maximum number of runs

1 Introduction

An important structural characteristic of a string over an alphabet is its periodicity.
Repetitions (tandem repeats) have always been in the focus of the research into
periodicities. The notion of runs captures maximal repetitions which themselves are
not repetitions and allows for a succinct notation ([5]). Even though it had been
known that there could be O(n log n) of repetitions in a string of length n ([1]), it
was shown in 2000 by Kolpakov and Kucherov that number of runs was linear in
the length of the input string ([4]). Their proof was existential and thus did not
specify the constants of linearity. The behaviour of the maxrun function ρ(n) =
max{number of runs in string x | all strings x of length n} became an interest
of study to many. Smyth et al. (e.g. [3], [6], [2]) presented a set of conjectures about
ρ(n):

1. ρ(n) < n,
2. ρ(n+1) ≤ ρ(n)+2,
3. ρ(n) = ρ2(n), the maxrun function for binary strings.

Just recently, Rytter improved the upper bound of ρ(n) to 6.3n (see [7]).

[3] introduced a construction of an increasing sequence {xn : n < ∞} of binary

strings “rich in runs” so that limn→∞
r(xn)
|xn| = α, where α = 3

1+
√

5
≈ 0.927 and

r(x) = number of runs in x. Although any such sequence does not establish a lower
bound (not even an asymptotic one), it has been “viewed” as such. The assumption
underneath that view is that ρ(n) behaves “reasonably”, i.e. that ρ(n) does not

exhibit wild jumps up, or equivalently, that
ρ(n)

n
does not exhibit wild oscillations,

⋆ Supported in part by a research grant from the Natural Sciences and Engineering Research Council
of Canada.
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which is generally expected to be the case (cf. the second conjecture). However, since
the “reasonable behaviour” of ρ(n) is yet to be established, we modify and extend
the method from [3] to provide formally a family of true asymptotic lower bounds
arbitrarily close to αn by proving

Theorem: For any ε > 0 there is a positive integer N so that for any n ≥ N ,
ρ(n) ≥ (α−ε)n.

2 Basic notation, facts, and methods

A run R in a string x is a four-tuple of positive integers (s, p, e, t), where

1. s is the starting position of R.
2. p is the size of its period.
3. e ≥ 2 is its exponent, i.e. the maximal value e so that x[s..s+p−1] =

x[s+p..s+2p−1] = · · · = x[s+(e−1)p..s+ep−1].
4. The period of R, x[s..s+p−1] itself is not a repetition.
5. The square part of the run R, x[s..s+p−1] = x[s+p..s+2p−1] is left-maximal,

i.e. x[s−1..s+p−2] 6= x[s+p−1..s+2p−2].
6. t is the tail of R and indicates how far to the right the run can be extended,

i.e. t is a maximal number so that for any 0 < t′ ≤ t, x[s+t′..s+t′+p−1] =
x[s+t′+p..s+t′+2p−1] = · · · =
x[s+t′+(e−1)p..s+t′+ep−1].

Not too much is known about the behaviour of the maxrun function:

• For any n, ρ(n+2) ≥ ρ(n)+1.
Take a string x of length n with r(x) = ρ(n). Take a letter c that does not occur in
x. Then xcc is a string of length n+2 and ρ(n+2) ≥ r(xcc) = r(x)+1 = ρ(n)+1.

• For any n, ρ(n+1) ≤ ρ(n)+⌊n
2
⌋.

Take a string x of length n+1 with r(x) = ρ(n+1). There can be at most
⌊n

2
⌋ squares starting at position 1. Then ρ(n) ≥ r(x[2..n+1]) ≥ r(x)−⌊n

2
⌋ ≥

ρ(n+1)−⌊n
2
⌋.

• For some n, ρ(n+1) = ρ(n).
Established by computations, it is not clear if this as an asymptotic property (for
instance, ρ(33) = 27 while ρ(34) = 27).

• For some n, ρ(n+1) = ρ(n)+2.
Established by computations, it is not clear if this as an asymptotic property (for
instance, ρ(13) = 8 while ρ(14) = 10).

Note that the function
ρ(n)

n
may thus not be monotonic. It is not even clear whether

limn→∞
ρ(n)

n
exists, as

ρ(n)

n
may be oscillating with a non-decreasing magnitude.

In [3] a special concatenation operator ◦ for binary strings was introduced:

x[1..n] ◦ y[1..m] =

{
x[1..n]y[2..m] = x[1..n−1]y[1..m] if x[n] = y[1],

x[1..n−1]y[2..m] if x[n] 6= y[1].

Morphism g was defined by

g(x) =





010010 if x = 0

101101 if x = 1

g(x[1..n]) = g(x[1]) ◦ g(x[2]) ◦ · · · ◦ g(x[n]) if |x| > 1.

(1)

4
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The strings 010010 and 101101 were selected as they provide in the concatenation
one extra run:
r(g(0) ◦ g(0)) = 6 = 2r(g(0))+2, the same for g(1) ◦ g(1), r(g(0) ◦ g(1)) = 5 =
r(g(0))+r(g(1))+1, the same for r(g(1)◦g(0)). Let us remark that a computer search
carried to the length of 20 did not discover any better pair of strings with such
properties.

An important aspect of the morphism is that it “preserves” the runs in x: it is a
bit tedious to prove and thus not included in the paper, but any left-maximal square
in x induces a square in g(x). It follows that every run in x induces a run in g(x). It
is also important to show that two distinct runs in x do not get “glued” together by
g.

Let us fix a string x. Let λ(x) denote the number of pairs 00 or 11 in x. We can
calculate the length of g(x):

|g(x)| = 6|x|−λ(x)−2(|x|−λ(x)−1) = 4|x|+λ(x)+2 (2)

the number of pairs 00 or 11 in g(x):

λ(g(x)) = |x| (3)

the number of runs in g(x):

r(g(x)) = r(x)+2|x|+(|x|−1) = r(x)+3|x|−1 (4)

|x
i
| |x

i+1
|

Figure 1. ρ(n) function between |xi| and |xi+1|

In [3] a sequence of strings was generated inductively from a starting string, for
instance: x0 = 0, x1 = g(0) = 010010, and xi+1 = g(xi) for i ≥ 1. Then |xi+1| =
4|xi|+|xi−1|+2 according (2) and r(xi+1) = r(xi)+3|xi|−1 according to (4). It is not

hard to show that the limit limi→∞
|xi|

|xi+1| exists and β = limi→∞
|xi|

|xi+1| = −2+
√

5.

The limit limi→∞
r(xi)
|xi| also exists and α = limi→∞

r(xi)
|xi| = β(α+3) giving α = 3

1+
√

5
.

The sequence {|xi| : i < ∞} is only “probing” the domain of the function ρ(n)
and r(xi) is “pushing” the value of ρ(n) above αn in these “probing” points (see
Figure 1). Since the size of xi+1 is more than 4 times the size of xi, the gaps between
|xi| and |xi+1| are getting bigger and bigger.

5
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The basic idea of establishing an asymptotic lower bound for ρ(n) is to start
similar sequences from various “starting” strings to cover the domain of ρ(n) densely
enough with the “probing” points to get any n close to some “probing” point and
hence the value of ρ(n) close to αn. To be able to do so, we must change a bit the
way the sequences are generated. The details of this are in the next section.

3 The proof of the theorem

Let ε > 0 be given. We have to find N so that for any n ≥ N , ρ(n) ≥ (α−ε)n.

First we will chose and fix three parameters k, δ, and R that we will use throughout
the proof. These parameters depend on the given ε: choose and fix a positive integer
k so that α

k+1
< ε; choose and fix a positive real δ so that δ ≤ k+1

k
(ε− α

k+1
). It follows

that k
k+1

(α−δ) ≥ α−ε. Let R be the smallest integer so that
(

k+1
k

)R ≥ 5.

Consider an increasing sequence Sa,b of positive integers with two integer parameters
a and b defined by n0(a, b) = a, n1(a, b) = 4a+b, and ni+2(a, b) = 4ni+1(a, b)+ni(a, b)

for i ≥ 0. It is not hard to show that limi→∞
ni(a,b)

ni+1(a,b)
exists and that

limi→∞
ni(a, b)

ni+1(a, b)
= −2+

√
5

Importantly, ranges of such sequences are “tied” together based on the parameters,
i.e. for any integer t ≥ 1 and any i

ni(ta, tb) = tni(a, b). (5)

For 0 ≤ j < R, set

a(j) = 3(k+1)jk(R−j) and b(j) =
a(j)

3
= (k+1)jk(R−j). (6)

It follows that k+1
k

a(j) = a(j+1), k+1
k

b(j) = b(j+1), and b(j) ≥ 3.

Based on the morphism g(x) (see (1)) we define a new morphism h(x) by removing
the last 2 letters from g(x):

if g(x) = y[1..n], then h(x) = y[1..n−2] (7)

We use the term string s ends with a square to indicate that s has a left-maximal
square as its suffix. We call a string good if it ends with at most one square.
Claim: (a) if x is good, then h(x) is good

(b) if x ends with 011, then h(x) ends with 011
(c) if x is good, then r(g(x)) ≥ r(h(x)) ≥ r(g(x)) − 2.

(the claim will be proven after completing the proof of the theorem)

Now we are in the position to define the “probing” sequences.
For any 0 ≤ j < R we define a sequence of binary strings {xi(j) : i < ∞} by:

x0(j) = (011)b(j)

and for any i ≥ 0,
xi+1(j) = h(xi(j))

6
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where b(j) is defined in (6). From (2) and (4) it follows that for any i ≥ 0,

|x0(j)| = 3b(j) = a(j),

|x1(j)| = 4a(j)+b(j), and

|xi+2(j)| = 4|xi+1(j)|+|xi(j)|.

Thus, the sequence {|xi(j)| : i < ∞} is the Sa(j),b(j) sequence and so

limi→∞
|xi(j)|

|xi+1(j)| = −2+
√

5.

Since our starting string x0(j) is good as it equals (011)b(j) and b(j) ≥ 3, according
to the Claim, every xi(j) is good and ends with 011, and

r(g(xi(j))) ≥ r(xi+1(j)) ≥ r(g(xi(j)))−2

and so

lim
i→∞

r(xi(j))

|xi(j)|
= α.

Therefore, for any 0 ≤ j < R there is a positive integer Ij so that for any i ≥ Ij,

ρ(|xi(j)|)
|xi(j)|

≥ r(xi(j))

|xi(j)|
≥ α−δ.

Let I = max{Ij : 0 ≤ j < R}. Then for any i ≥ I and any 0 ≤ j < R,

ρ(|xi(j)|)
|xi(j)|

≥ r(xi(j))

|xi(j)|
≥ α−δ. (8)

From (5) and (6) it follows, that for any i and any 0 ≤ j < R,

ni(a(j), b(j)) =
(k+1

k

)
ni(a(j−1), b(j−1)) = · · · =

(k+1

k

)j
ni(a(0), b(0)).

Set N = max{nI(a(j), b(j)) : 0 ≤ j < R}. This is the N we were searching for.

If n ≥ N , then for some i ≥ I,

ni(a(0), b(0)) < n ≤ ni+1(a(0), b(0)).

Then there is 0 ≤ j < R−1 so that

(k+1

k

)j
ni(a(0), b(0)) < n ≤

(k+1

k

)j+1
ni(a(0), b(0))

[
since

(
k+1

k

)R ≥ 5, then
(

k+1
k

)R
ni(a(0), b(0)) ≥ ni+1(a(0), b(0))

]
.

It follows that

ni(a(j), b(j)) < n ≤ k+1

k
ni(a(j), b(j)).

Now we can estimate the value of
ρ(n)

n
using (8):

ρ(n)

n
≥ ρ(ni(a(j), b(j))

n
≥ k

k+1

ρ(ni(a(j), b(j))

ni(a(j), b(j))
≥ k

k+1
(α−δ) ≥ α−ε.

Thus ρ(n) ≥ (α−ε)n. ⊓⊔

7
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Proof. (of Claim)
Let us assume that x ends with 011. Then g(x) ends with 010010110101101, and so
h(x) ends with 0100101101011. Consider all runs in g(x) that may be “destroyed”
by removing the last 2 letters from g(x):

(a) If x ends with a square, then the square may induce a left-maximal square in
g(x) and it will be “destroyed”. Since x is good, there may be at most 1 such run
destroyed.

(b) g(x) ends with square 101|101 that will get destroyed.
(c) The run 01011|01011|01 in g(x) becomes a left-maximal square suffix in h(x).

No other runs in g(x) are affected. Hence h(x) is good and at most 2 runs in g(x)
are destroyed. ⊓⊔

4 Conclusion and further research

We showed that the expectation of αn being a lower bound for the maxrun function
ρ(n) is valid by proving that there is a whole family of asymptotic lower bounds arbi-
trarily close to αn. The further research will include trying to push the lower bound
higher up to see whether the conjecture ρ(n) < n holds. This will involve finding
novel ways of creating strings “rich in runs” as the approach with concatenation ◦
seems to give as much as it could.
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Abstract. We consider a problem defined on strings and inspired by the way DNA
encodes amino-acids as triplets of nucleotides. Given a string s on an alphabet Σ, a
word-length k and a budget D, we want to determine the smallest number of distinct k-
mers that can be left in s, if we are allowed to replace up to D letters of s. This problem
has several parameters, and we discuss its complexity under all sorts of restrictions on
the parameters values. We prove that some versions of the problem are polynomial,
while the others are NP-hard.

Keywords: De Bruijn graphs, codons, string algorithms, parametrized complexity.

1 Introduction

In the problem studied in this paper, we consider a string s, of length n, over some
alphabet Σ. For 1 ≤ k ≤ n, we call a string of length k a k-mer. Note that there
are altogether |Σ|k possible k-mers, and that s possesses (as substrings) at most
n− k + 1 distinct k-mers. Trivially, there are strings exhibiting only one k-mer (e.g.,
s = 00000000), while s = 1110100011 is a shortest string exhibiting all possible binary
3-mers (for results about the the problem of building a shortest string which possesses
all possible k-mers see [2,6,5]).

Now, suppose we are allowed to replace up to D letters in s, so as to obtain a new
string t. What is the smallest possible number of distinct k-mers that can be left in
t?

For instance, assume Σ = {0, 1} and

s = 011010011.

There are 6 different 3-mers in s, namely, 011, 110 101, 010, 100, 001. If we are
allowed to flip up to D = 2 letters, we can obtain the new string

t = 010010010,

which has only 3 distinct 3-mers, i.e., 010, 100 and 001.
The problem of flipping the right bits, so as to destroy the largest possible number

of k-mers (i.e., to leave the fewest possible number of them) has the natural appeal
for combinatorial mathematicians, in that it is a cute and challenging combinatorial
question. We were inspired to study this problem by considering the way genes encode
proteins in an organism’s genome [4]. We will briefly discuss the situation here, but,
before doing so, we remark that the applications of this paper’s results to biology are
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just marginal. Our interest in the problem is purely on its theoretical aspects, and
we will not focus on its practical applications.

A gene can be seen as a string over the alphabet {A,C,G,T}. The letters {A,C,G,T}
are called nucleotides. Each substring of 3 consecutive nucleotides is called a codon, as
it encodes for a particular amino-acid. The amino-acids are the basic constituents of
proteins, and a protein is a chain of amino-acids, determined by the gene’s sequence.
A gene has 3 possible (open) reading frames (ORFs). I.e., depending on where we start
to read, we may obtain a particular set of codons. At ORF number i, for i = 1, 2, 3,
one reads all the codons that start at positions j, where (j = i) mod 3. For instance,
the 3 ORFs of the gene TACAGATAAGATACA are as follows:

T A C A G A T A A G A T A C A
ORF1 ↑ ↑ ↑ ↑ ↑
ORF2 ↑ ↑ ↑ ↑ ↑
ORF3 ↑ ↑ ↑ ↑ ↑
giving rise to the following codons: ORF1 = {TAC,AGA, TAA,GAT,ACA},

ORF2 = {ACA,GAT,AAG,ATA}, ORF3 = {CAG,ATA,AGA, TAC}. Altogether,
the distinct codons that we see in this gene are

{TAC,AGA, TAA,GAT,ACA,AAG,ATA,CAG}.

The number of distinct amino-acids a protein consists of is related to its complex-
ity. Hence, we can consider a “complex” gene as one which shows the use of a large
number of distinct codons (therefore relating the number of codons to the informa-
tion content of the gene). Since DNA undergoes random mutations during time, the
change of some of the nucleotides in the gene may result in a new sequence which
displays much fewer codons than it originally did. Hence, we are led to formulate the
question of how few different codons can still be present, in the worst case, after a
certain number of mutations have taken place.

1.1 Notation and paper organization

Let s be the input string over an alphabet Σ. We denote by n = |s| the length of
s, and by σ = |Σ| the alphabet size. For a given k ∈ N, we denote by K = Σk the
set of all k-mers over Σ. Furthermore, for a string x, we define its support, denoted
by K(x) ⊆ K, as the set of all k-mers which are substrings of s. For a string x, and
1 ≤ i ≤ j ≤ |x|, we denote by x[i, · · · , j] the substring of x from position i to position
j. If i = j, we shorthand x[i] = x[i, · · · , i] to represent the i-th character of x. Finally,
given two strings x and y of the same length, we denote by dH(x, y) their Hamming
distance, i.e., the number of positions in which they differ.

The problem studied in this paper can be stated as follows:

“KMER”: given s ∈ Σn, a length k ∈ N for k-mers, and a budget D ∈ N,
find a string t ∈ Σn such that dH(s, t) ≤ D and |K(t)| is minimum.

Notice that this problem has four parameters:

1. The string length n;
2. The alphabet size σ;
3. The k-mer length k;
4. The budget D.

10
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σ free σ bounded σ free σ bounded
k free k free k bounded k bounded

n free 1 2 3 4

NP-hard NP-hard NP-hard POLY
D free for σ = 2 for k = 2 O(n)
n bounded 5 6 7 8

IMP. IMP. IMP. IMP.
D free
n free 9 10 11 12

POLY POLY POLY POLY
D bounded O(k σD nD+1) O(k nD+1) O(σD nD+1) O(nD+1)
n bounded 13 14 15 16

IMP. IMP. IMP. O(1)
D bounded

Table 1. Parameterized complexity of “KMER”

In the remainder of the paper we will address the complexity of the problem
when one or more of these parameters are limited to take some bounded values. For
instance, when reasoning about genes and DNA sequences, it is σ = 4 and k = 3.

In Section 2 we characterize all possible cases for (n, σ, k,D), classifying them as
either polynomial or NP-hard. In Section 3 we consider the polynomial cases of the
problem “KMER”, arising when D is bounded (as shown in Section 3.1) and when
σ and k are both bounded (as shown in Section 3.2). In Section 4 we address the
NP-hard cases of the problem, which happen when n and D are unbounded and at
most one of σ and k is bounded. Finally, we draw some conclusions in Section 5.

2 Parameterized complexity

The problem has four parameters: the string length n, the alphabet size σ, the k-mer
size k, and the budget D. We may consider all possibilities in which some of the
parameters are bounded by constants (denoted as “bounded” in Table 1), and some
depend on the input (denoted as “free” in Table 1). All the cases are described in
Table 1.

Before analyzing the cases, we make the following remark:

Remark 1. We can always assume
(i) D ≤ n;
(ii) k ≤ n;
(iii) σ ≤ n.

Proof. Remarks (i) and (ii) are obvious. As for Remark (iii), we can reason as follows.
Let α be any symbol occurring in s. Let t′ be obtained from t by replacing with α each
symbol which does not occur in s. It is not difficult to see that dH(s, t′) ≤ dH(s, t) and
|K(t′)| ≤ |K(t)|. Hence, t′ is an optimal solution as well. Therefore, we can restrict
Σ to the symbols originally in s and hence σ ≤ n. ⊓⊔

We have the following situation:

– Cells 1, 2, 3: These cases are NP-hard, as shown in the Section 4 (in particular,
the problem is NP-hard even for σ = 2 or for k = 2).

11
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– Cell 4: This case is polynomial, as described in Section 3.2. The complexity is
O(2σk

σk+1n) = O(n).
– Cells 5, 6, 7, 8: Because of Remark 1(i), these cases are impossible (denoted by

“IMP.” in the table).
– Cells 9, 10, 11, 12: All these cases are polynomial, as described in Section 3.1. The

intuition is that, in these cases, there are only a polynomial number of possible
solutions, which can be checked exhaustively.

– Cells 13, 15: Because of Remark 1(iii) these are impossible cases (when n is
bounded by a constant, also σ is bounded by a constant).

– Cell 14: This case is impossible by Remark 1(ii).
– Cell 16: This case is trivial. There is only a finite number of possible problem

instances.

3 Polynomial cases

3.1 The case for D fixed

Theorem 2. When D is bounded by a constant, while n is free, the problem“KMER”
can be solved in polynomial time.

Proof. Notice that there are
(

n
D

)
= O(nD) possible choices for the letters of s to

flip, and σD possible ways to flip each one. Hence, there are only O(σDnD) possi-
ble solutions, which is O(nD) when σ is fixed, and O(n2D) otherwise (because of
Remark 1(iii)). Since there are only a polynomial number of solutions, and each so-
lution value can be clearly computed in polynomial time (see Remark 3 here below),
the enumeration of all possible solutions solves “KMER” in polynomial time. ⊓⊔

Remark 3. Given a string t of length n, the number of different k-mers occurring in
t can be computed in O(kn) time.

Proof. To count the k-mers, we scan the string t from left to right, and insert each
k-mer in a trie T , initially empty. The branches of T are associated to the symbols
of Σ and each leaf of T will represent a k-mer of t. A k-mer describes a path in T
to a (possibly non-existing) leaf. Each time a new k-mer x is inserted in T , the path
is followed in T up to the point p where it is no longer possible. If this happens at a
leaf, then x was already present in T . Otherwise, p is an internal node. From p, we
create the new branches that will lead to a new leaf (corresponding to x), and we
increase a leaf counter (which eventually counts all k-mers). Notice that the insertion
in T has cost O(k). ⊓⊔

The complexity of the algorithms for all cases when D is fixed are reported in
Table 1, cells 9–12.

3.2 The case for σ and k fixed

In this section we prove that, when k and σ are both bounded, the problem “KMER”
is polynomially solvable. In order to do so, we start by introducing the following
auxiliary problem, which we call FEAS(A):

FEAS(A): Consider an instance of “KMER” and a given set of k-mers A ⊆
K. Does there exist a string t′ such that dH(s, t′) ≤ D and K(t′) ⊆ A?

12
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Figure 1. The Shift Register Graph G3

In the remainder of the section we will prove the following lemma (actually, we
obtain a slightly stronger result, i.e., we show how to find t′ such that K(t′) ⊆ A and
dH(s, t′) is minimum):

Lemma 4. The problem FEAS(A) can be solved in polynomial time.

We now use Lemma 4 to derive the following theorem.

Theorem 5. For fixed k and σ, the problem “KMER” is polynomially solvable.

Proof. For fixed k and σ, there are O(1) k-mers, and O(1) possible supports for the
solutions (i.e., O(1) possible subsets A of k-mers such that the solution has all its
k-mers in A). For each A, enumerated by non-decreasing cardinality, we check in
polynomial time (by Lemma 4) if there is a solution t′ with support A. We stop as
soon as the answer is “yes”, and t′ is then the optimal solution to “KMER”. ⊓⊔

Note that, as |K| = σk, the above procedure requires to examine, in the worst-

case, O(2σk

) possible supports. Hence, although polynomial, the algorithm suggested
is of little practical use.

We now devote the rest of this section to proving Lemma 4.
The Shift Register Graph, also called De Bruijn Graph, (SRG, [1]) Gk, for a given

k, is a directed graph with node set K, and arcs from i to j whenever i[2, · · · , k] =
j[1, · · · , k − 1] (G3 is depicted in Figure 1). For A ⊆ K, we denote by Gk[A] the
subgraph of Gk induced by the vertices in A. With a slight abuse of notation, we
write (i, j) ∈ Gk[A] to assert that (i, j) is an arc of Gk[A].

We now describe a Dynamic Programming recurrence for the solution of FEAS(A).
For i ∈ A and h = 1, . . . , n−k+1, define V (i, h) to be the minimum Hamming distance
between s[1, · · · , h + k − 1] and any string which has all its k-mers in A and ends
with k-mer i. We are interested in finding V (A) := mini∈A V (i, n − k + 1). We have
the following recurrence, for 1 < h ≤ n − k + 1 and i ∈ A,

V (i, h) = min
i′ : (i′,i)∈Gk[A]

(V (i′, h − 1) + dH(i[k], s[h + k − 1])) . (1)

The boundary conditions are that V (i, 1) = dH(i, s[1, · · · , k]) for all i ∈ A. The
complexity of this Dynamic Program is |A| × n × O(σ), where O(σ) is the time of
computing the min in (1). In fact, given i ∈ A and a tree T whose leaves are all
kmers of A, built as in the proof of Remark 3, each i′ such that (i′, i) ∈ Gk[A] can be
found as a leaf of T which has the same parent as i. Hence, one only needs to step
up one level from i to its parent p, and follow each branch from p to another leaf.

From the above discussion, it follows that the overall time needed to solve
“KMER” when σ and k are fixed is O(2σk

σk+1n).

13
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4 NP-hard cases

In this section we show that the problem “KMER” is NP-hard: For completeness,
we restate here the problem “KMER”:

INSTANCE: An alphabet Σ, an integer k, a string s over Σ, an integer D.
PROBLEM: Find a string t ∈ Σ|s| with dH(s, t) ≤ D and having the smallest
possible number of distinct k-mers.

4.1 NP-hardness for fixed k

Theorem 6. The “KMER”Problem is NP-hard already for k = 2.

The reduction we propose is from the following problem, called “Compact Bi-
partite Subgraph”:

INSTANCE: A bipartite graph G = (U, V ; E), an integer φ, an integer λ.
PROBLEM: Find a set of nodes X ⊆ U∪V with |X| ≤ φ and |E(G[X])| ≥ λ.

Notice that the NP-hardness of the above problem follows trivially from the NP-
completeness of “Balanced Complete Bipartite Subgraph”. The “Balanced
Complete Bipartite Subgraph” problem, also named “GT24” in Garey and
Johnson [3], is the following problem.

INSTANCE: A bipartite graph G = (U, V ; E), an integer K.
QUESTION: Are there two sets U ′ ⊆ U and V ′ ⊆ V with |U ′| = |V ′| = K
and such that (u, v) ∈ E(G[U ′ ∪ V ′]) for each u ∈ U ′ and v ∈ V ′?

And, clearly, the answer to the above question is “yes” if and only if there exists
a set of nodes X ⊆ U ∪ V such that |X| ≤ 2K and |E(G[X])| ≥ K2. (For the “only
if”, notice that if such an X exists then, necessarily, |X ∩ U | = |X ∩ V | = K).

Proof. (Theorem 6) Here we give a reduction from “Compact Bipartite Sub-
graph” to “KMER”. Let A, B be two special symbols and consider Σ = U ∪ V ∪
{A,B}. Set D := |E| −λ and let M := D + 1 play the role of a sufficiently big value.
Consider the following string s = s(G,M), where the product of two strings denotes
their concatenation (and powers are defined accordingly)

s =

(∏

v∈V

(Bv)M

)
B2M

(∏

u∈U

(uB)M

)
 ∏

(u,v)∈E

(BBuAvBB)


 . (2)

A word of explanation is in order to better agree on what the above “simplified”
expression for s actually represents: In our intentions, the string s should be consid-
ered as uniquely defined. In practice, we refer to implicit orderings of the elements
in U , in V , and in E, so that a writing like

∏
v∈V (Bv) uniquely defines a string over

V ∪{B}. More precisely, where v1, . . . , vn is an ordering of V , then
∏

v∈V (Bv) should
be understood as a shorthand for

∏n
i=1(Bvi).

Lemma 7. There exists a string t ∈ Σ|s| with dH(s, t) ≤ D and with at most 1 +
2|U | + 2|V | + φ distinct 2-mers if and only if there exists X ⊆ U ∪ V with |X| ≤ φ
and such that |E(G[X])| ≥ λ.

14



Flipping Letters to Minimize the Support of a String

Proof: Assume given an X ⊆ U ∪ V with |X| ≤ φ and such that |E(G[X])| ≥ λ.
Consider the following string t, where S(u,v) := BBuAvBB if (u, v) ∈ E(G[X]), and
S(u,v) := BBuBvBB if (u, v) ∈ E \ E(G[X]):

t =

(∏

v∈V

(Bv)M

)
B2M

(∏

u∈U

(uB)M

)
 ∏

(u,v)∈E

S(u,v)


 .

Notice that |t| = |s| and dH(s, t) = |E| − |E(G[X])| ≤ |E| − λ = D. Moreover, any
2-mer appearing in t will fall into one of the following categories:

– the single 2-mer BB;
– the 2|U | + 2|V | 2-mers of the form zB and Bz for z ∈ U ∪ V ;
– the |X ∩ U | 2-mers of the form uA with u ∈ X ∩ U ;
– the |X ∩ V | 2-mers of the form Av with v ∈ X ∩ V .

Hence, the number of distinct 2-mers in t is 1+2|U |+2|V |+ |X| ≤ 1+2|U |+2|V |+φ,
as stated.

Conversely, let t be any string such that |t| = |s| and dH(s, t) ≤ D. Then the
2-mer BB certainly appears in t since B2M , which is a substring of s, contains M
disjoint occurrences of BB. Similarly, for each node z ∈ U ∪ V , the 2-mers zB and
Bz certainly appear in t. We are assuming that besides these 1 + 2|U | + 2|V | 2-
mers, string t contains at most φ other 2-mers. Let X be made by those u ∈ U
such that the 2-mer uA occurs in t plus the set of those v ∈ V such that the 2-mer
Av occurs in t. Hence, |X| ≤ φ. Remember that the string s contains the substring∏

(u,v)∈E(BBuAvBB). Since dH(s, t) ≤ D, it follows that |E \ E(G[X])| ≤ D, and

hence that |E(G[X])| ≥ |E| − D = λ. ⊓⊔

4.2 NP-hardness for fixed |Σ|

In this subsection we prove the following.

Theorem 8. The “KMER”problem is NP-hard already for |Σ| = 2.

A noticeable property of the proposed reduction is that it constructs instances
with k = O(log n), which allows us to infer the following result.

Theorem 9. No algorithm solves the “KMER” problem in O(nPOLY (k)) time unless
NP ⊆ DTIME (nPOLY (log n)). This negative result holds also for |Σ| = 2.

Theorem 9 gives strong evidence that there is no space for improving the O(n|Σ|k)

approach of Section 3.2. Indeed, an O(2|Σ|knPOLY (|Σ|,k)) algorithm would imply an
O(nPOLY (k)) algorithm when |Σ| = 2, and NP ⊆ DTIME (nPOLY (log n)) would follow.

The general approach of the reduction is the same as described in Subsection 4.1
In particular, the reduction will be again from “Compact Bipartite Subgraph”.

The reduction. As in Subsection 4.1, let D := |E| −λ and let M := D +1 play the
role of a sufficiently big value. We now work with Σ = {0, 1}. Before explaining how
to construct s, t and k, we point out that in the construction given in Subsection 4.1
the fact that certain k-mers had to be present in every string t with dH(s, t) ≤ D
played a key role. We hence start the derivation of the reduction to be given here
with the consideration that it is relatively easy to build a string s0 which contains M

15
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disjoint copies of each substring s′ in {0, 1}k such that either s′[1] = 1 or s′[k] = 1.

Indeed, s0 :=
(∏

σ∈{0,1}k−1 1kσ1k
)M

will do the job. Notice also that s0 contains no

k-mer which both starts and ends with 0. Let h = ⌈log2 |U ∪ V |⌉. Then, to each
node z ∈ U ∪ V we can associate a unique binary string f(z) ∈ {0, 1}h, called the
short encoding of z. To each node z ∈ U ∪ V we also associate the long encoding
of z, denoted by f ′(z) ∈ {0, 1}2h+1, defined as f ′(z)[1] = 0, f ′(z)[2i] = f(z)[i] and
f ′(z)[2i + 1] = 1 for each i = 1, 2, . . . , h. When s is a string we denote by [s]R the
reverse of string s. Take k = 2h + 2. Consider the following string s = s(G,M)

s = s0

∏

(u,v)∈E

(1k 0 f ′(u) 0 [f ′(v)]R 0 1k).

Lemma 10. There exists a string t ∈ Σ|s| with dH(s, t) ≤ D and with at most
3 · 2k−2 + φ distinct k-mers if and only if there exists X ⊆ U ∪ V with |X| ≤ φ and
such that |E(G[X])| ≥ λ.

Proof: The number of strings s ∈ {0, 1}k is 2k and for 2k−2 of them we have that
s[1] = s[k] = 0. Hence, there are precisely 2k − 2k−2 = 3 · 2k−2 strings s ∈ {0, 1}k

with s[1] = 1 or s[k] = 1, which account for the numbers occurring in the statement.
Assume to be given an X ⊆ U ∪ V with |X| ≤ φ and such that |E(G[X])| ≥ λ.
Consider the following string t,

t = s0

∏

(u,v)∈E

S(u,v) ,

where

S(u, v) :=

{
1k0f ′(u)0[f ′(v)]R 01k if (u, v) ∈ E(G[X])
1k0f ′(u)1[f ′(v)]R01k if (u, v) ∈ E \ E(G[X])

Notice that |t| = |s| and dH(s, t) = |E| − |E(G[X])| ≤ |E| − λ = D. Moreover,
any k-mer appearing in t falls into one of the following categories:

– the 3 · 2k−2 k-mers starting or ending with a 1 symbol;

– the |X ∩ U | k-mers of the form f ′(u)0 with u ∈ X ∩ U ;

– the |X ∩ V | k-mers of the form 0[f ′(v)]R with v ∈ X ∩ V .

Hence, the number of distinct k-mers in t is at most 3 · 2k−2 + φ, as stated.

Conversely, let t be any string such that |t| = |s| and dH(s, t) ≤ D. Then all the
3 · 2k−2 k-mers starting or ending with a 1 symbol do certainly appear in t since s
contains at least M > D disjoint occurrences of each of them.

Assume that besides these 3·2k−2 k-mers, string t contains at most φ other k-mers.
Let X be made by those u ∈ U such that the k-mer f ′(u)0 occurs in t plus the set of
those v ∈ V such that the k-mer 0[f ′(v)]R occurs in t. Hence, |X| ≤ φ. Remember that
the string s contains the substring

∏
(u,v)∈E(1k0f ′(u)0[f ′(v)]R01k). Since dH(s, t) ≤ D,

it follows that |E \ E(G[X])| ≤ D, and hence that |E(G[X])| ≥ |E| − D = λ. ⊓⊔
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5 Conclusions

In this paper we have characterized the complexity of the “KMER” problem, un-
der all possible cases for its parameters. For the solution of the NP-hard cases, we
have devised Integer Linear Programming formulations, which, for space reasons, are
not included in this extended abstract. From our first experimental results, the ILP
approach seems suitable for the solution of moderate-size instances of this problem,
while for larger-size instances a possibly different (maybe combinatorial) approach
should be sought.
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Abstract. A very fast parallel approach to pattern matching is presented. The ap-
proach is based on the bit-parallel approach and we use two-dimensional bitwise mem-
ory matrix which helps to achieve very fast parallel pattern matching algorithms. The
parallel pattern matching takes O(1) time for the exact pattern matching and O(k) for
the approximate pattern matching, where k is the number of errors.

1 Introduction

The pattern matching problem is to find all occurrences of a given pattern P =
p1p2 . . . pm in a larger text T = t1t2 . . . tn, n > m, both sequences of symbols from a
given alphabet A = a1a2 . . . a|A|.

Many different solutions of this problems are known, and we are interested in the
pattern matching using finite nondeterministic automata. A finite automaton (FA) is
a quintuple (Q,A, δ, I, F ) where Q is a finite set of states, A is a finite input alphabet,
and F ⊆ Q is a set of final states. If FA is nondeterministic (NFA), then δ is a mapping
Q × (A ∪ {ε}) 7→ P (Q) and I ⊆ Q is a set of initial states. If FA= (Q,A, δ, q0, F ) is
deterministic (DFA), then δ is a (partial) function Q×A 7→ Q and q0 is the only initial
state. We refer to NFA used for pattern matching as a pattern matching automaton
(PMA).

Hamming distance H(x, y) ≤ k is maximum k substitutions (replace operations)
required to transform string x into string y (see [4]). Levenshtein distance L(x, y) ≤ k
is maximum k operations replace, insert, or delete required to transform string x into
string y. PMA for pattern P using the Hamming distance k is a pattern matching
automaton that matches any pattern X, such that H(P,X) ≤ k. PMA for pattern P
using the Levenshtein distance k is a pattern matching automaton that matches any
pattern X, such that L(P,X) ≤ k.

The running of PMA can be simulated by the bit-parallel algorithms. This tech-
nique was introduced in [2] (“shift-and” variation), and it was improved in [1,9]
(“shift-or” variation used in this paper). It has been shown [5], that the bit-parallel
algorithms simulates NFA and we use these algorithms for the parallel pattern match-
ing.

⋆ This research has been partially supported by the Ministry of Education, Youth, and Sport of
the Czech Republic under research program MSM6840770014, by the Czech Science Foundation
as project No. 201/06/1039, and by the Czech Technical University as project No. CTU0609613
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Parallel pattern matching was quite a popular topic. We might cite a constant
time string matching algorithm [3], which has the same time complexity as our al-
gorithm for the exact pattern matching, though it does not use the bit-parallelism.
We might also cite an O(log m + k) time [8], or an O(k) time [7] algorithms for the
approximate pattern matching. These have similar time complexity to our O(k) algo-
rithm for approximate pattern matching, but our algorithm needs a smaller number
of processors.

Our algorithm needs EREW PRAM for the exact string matching and CREW
PRAM for the approximate string matching. More information for the parallel com-
putation models is e.g. in [6]. We also need a shared memory organized as a matrix of
size O(n×n) bits, where n is the length of the text. Since bit-parallel algorithms work
with a computer word of length m, where m is the length of the pattern, we need
to access a whole word in the bit-memory matrix. Here we have a strong condition.
We need to access this memory both on rows and on columns. Therefore we use two
operations to access the memory matrix. The first is MEMX [indexx][indexy] access-
ing a word in a column with index indexx starting with the bit on a row with index
indexy and the second is MEMY [indexx][indexy] accessing a word on a row with
index indexy starting with the bit in a column with index indexx. This accessibility
is enough to present a cost-optimal parallel approximate pattern matching algorithm.

A parallel algorithm is cost-optimal if its time processor product is equal to the
time of the best known sequential algorithm solving the same issue.

We use some bitwise operations in this paper. Operation or is a standard bitwise
OR operation and operation and is a standard bitwise AND operation. Operation shl
is a standard shift-left bitwise operation, and the right-most bit is set to 0. Operation
shr is a standard shift-right bitwise operation, and the left-most bit is set to 1. We
also use operation shli(x) as the operation shl performed i times on bit-vector x.

This paper is organized as follows. Section 2 explains the “shift-or” variation
of a bit-parallel algorithm. Section 3 discuss the parallel variation of thr “shift-or”
algorithm. Section 4 provides a conclusion.

2 Bit-Parallelism

Here we explain the “shift-or” variation of the bit-parallel algorithm. It uses matrices
Rl, 0 ≤ l ≤ k of size m×(n+1), and matrix D of size m×|A|, where k is the maximum
number of edit operations in pattern P . Each element rl

j,i, 0 ≤ i ≤ n contains 0, if
the edit distance between string p1p2 . . . pj and the string ending at position i in text
T is ≤ l, or 1, otherwise. Each element dj,x, 0 < j ≤ m, x ∈ A, contains 0, if pj = x,
or 1, otherwise.

In exact string matching, vectors R0
i , 0 ≤ i ≤ n, are computed as follows:

r0
j,0 = 1, 0 < j ≤ m

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
(1)

In approximate string matching using the Hamming distance, vectors Rl
i, 0 ≤ l ≤

k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 1, 0 < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
Rl

i = (shl(R0
i−1) or D[ti]) and shl(Rl−1

i−1), 0 < i ≤ n, 0 < l ≤ k
(2)
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In approximate pattern matching using the Levenshtein distance, vectors Rl
i, 0 ≤ l ≤

k, 0 ≤ i ≤ n, are computed as follows:

rl
j,0 = 0, 0 < j ≤ l, 0 < l ≤ k

rl
j,0 = 1, l < j ≤ m, 0 ≤ l ≤ k

R0
i = shl(R0

i−1) or D[ti], 0 < i ≤ n
Rl

i = (shl(Rl
i−1) or D[ti])

and shl(Rl−1
i−1 and Rl−1

i )
and (Rl−1

i−1 or V ), 0 < i ≤ n, 0 < l ≤ k

(3)

The auxiliary vector V is computed as follows:

V =




v1

v2
...

vm


 , where vm = 1 and vj = 0,∀j, 1 ≤ j < m. (4)

The term shl(Rl
i−1) or D[ti]) represents matching – position i in text T is in-

creased, the position in pattern P is increased by operation shl, and the positions
corresponding to the input symbol ti are selected by term or D[ti]. The term shl(Rl−1

i−1)
represents edit operation replace – position i in text T is increased, the position in
pattern P is increased, and edit distance l is increased. The term shl(Rl−1

i ) repre-
sents edit operation delete – the position in pattern is increased, the position in the
text is not increased, and edit distance l is increased. The term Rl−1

i−1 represents edit
operation insert – the position in the pattern is not increased, the position in the text
is increased, and edit distance l is increased. The term or V provides that no insert
transition leads from any final state.

D a b c d A \ {a, b, c, d}
a 0 1 1 1 1
d 1 1 1 0 1
b 1 0 1 1 1
b 1 0 1 1 1
c 1 1 0 1 1
a 0 1 1 1 1

Table 1. Matrix D for the pattern P = adbbca

An example of mask matrix D for the pattern P = adbbca is shown in Table 1
and an example of matrix R0 for exact pattern matching and matrix R1 for approx-
imate string matching using the Levenshtein distance k = 2, respectively, is shown in
Table 2.

3 Parallelization of the bit-parallel algorithms

This section focuses on bit-parallel simulation of the nondeterministic PMA. The
motivation is to use many processors, each with computer words long enough to
fit into a single register bit-vector m bits in length, and to make the bit-parallel
algorithms truly parallel.
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R0 − a d c a b c a a b a d b b c a
a 1 0 1 1 0 1 1 0 0 1 0 1 1 1 1 0
d 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

R1 − a d c a b c a a b a d b b c a
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 1 0 0 0 0 0 1 0 0 0 0 0 0 1 1 0
b 1 1 0 0 1 0 1 1 1 0 1 0 0 0 1 1
b 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
c 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0
a 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0

R2 − a d c a b c a a b a d b b c a
a 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
d 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
b 1 1 0 0 0 0 0 1 1 0 0 0 0 0 0 0
c 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0 0
a 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0 0

Table 2. Matrices R0, R1, and R2 for pattern matching using the Levenshtein
distance, T = adcabcaabadbbca, k = 2, P = adbbca

Now we explain the idea originating in Formula (1) using the “shift-or” algorithm.
The first bit-vectors may be computed as follows:

R0
0 = R0

0

R0
1 = shl(R0

0) or D[t1]

R0
2 = shl(R0

1) or D[t2] = shl(shl(R0
0) or D[t1]) or D[t2] =

= shl2(R0
0) or shl(D[t1]) or D[t2]

R0
3 = shl(R0

2) or D[t3] = shl(shl(R0
1) or D[t2]) or D[t3] =

= shl(shl(shl(R0
0) or D[t1]) or(D[t2])) or D[t3] =

= shl3(R0
0) or shl2(D[t1]) or shl(D[t2]) or D[t3]

Hence the following equation might be proven:

R0
i = shli(R0

0) or shli−1(D[t1]) . . . or shl(D[ti−1]) or D[ti], 1 ≤ i ≤ n (5)

Using Formula (5) we may compute the example for the pattern P = adbbca and
text T = adcbcadbbca depicted in Table 3. Note that we use the same matrix D as in
Section 2, Table 1.

The initial bit-vector, left-shifted by i = n = 11 bits, is in the first column labeled
with the symbol “-”. In each other column, except the last one, there is a bit-vector
from matrix D left-shifted by some number of bits. The or operation between all
these rows gives the result, and as we can see, a match occurs only in one position,
the same as in Table 2. We may conclude many interesting observations from this
example.
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0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

R0 − a d c a b c a a b a d b b c a OR
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1
1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
2 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1
17 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
18 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
19 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
20 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 3. Matrix R0 for pattern matching for the exact pattern, P = adbbca, T =
adcabcaabadbbca

There are only two reasons for the initial bit-vector R0
0 to have something to start

sequentially with, and to disallow a match on the prefix of the text T shorter than
pattern P .

The only interesting part of the matrix is the bold part. We can also exclude the
first m − 1 = 5 rows labeled with symbols “a, d, b, b, c” and the last m = 6 rows,
since there cannot be a match (in the exact case). Also the initial bit-vector is not
important.

We implement the shift by j-bits shlj(D[ti]) operation as a writing of one com-
puter word m-bits long into a memory in a specified position using operation
MEMX[n − j][j] ← D[ti]. Having this memory organization, there is a word on
each row of the memory MEMY [n − j][j] (a bold one in Table 3), which contains a
crucial information:

Proposition 1. The word in memory MEMY[n− j + 1][j − 1] > 0, 1 ≤ j ≤ n if and
only if tn−j+1tn−j+2 . . . tn−j+m 6= p1p2 . . . pm.

Proof. Simply from the definition of matrix D. If tn−j+i = pi then di,n−j+i = 0 or
1 otherwise, 1 ≤ j ≤ n, 1 ≤ i ≤ m. But each bit di,n−j+i is in the (j − 1)-th row,
because vector D[tn−j+i] has been shifted by j − i bits. ⊓⊔

The or operation is then a comparison, whether a computer word in a row is zero
(a match), or non-zero (a mismatch) and we may compute:

R0
i = MEMY[n − i + 1][i − 1], m ≤ i ≤ n (6)
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We are not interested in the bit-vectors R0
i , 0 < i < m − 1, because there can not be

a match.
If the access time to the memory using both MEMX and MEMY operations is

O(1), string-matching in parallel takes only O(1) parallel time using n processors.

3.1 Parallel pattern matching using the Hamming distance

The observation of Table 3 may continue. Matrix Rl no longer consists only of bit-
vectors Rl

i, 0 ≤ l ≤ k, 0 ≤ i ≤ n.
The bit-vectors R0

i computed by Formula 1 in the sequential algorithm on the
diagonal of the matrix were composed of the bit-vectors n−i+1, n−i+2, . . . , n−i+m.
However, they are slightly different: the bit-vectors computed in parallel contain more
bits set to zeros, more active states, because they were not deactivated using prefix
computation by the operation or. In exact pattern matching this was not important,
because Proposition 1 ensures at least one bit set to one if there is no match.

The advantage is that the number of bits set to 1 indicates the number of replace
operations needed for a matching.

However, using the Hamming distance this difference is most important. Since we
are going to perform “replace” operations in parallel, we could perform more than
one “replace”, each in a different position and we cannot guarantee the number of
these “replace” operations. Therefore we need vectors R0

j exactly as in the sequential
version. This ensures only one “replace” operation performed in each of k levels,
because the “replace” is only after a “match”, except the first symbol.

C0 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
9 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

Table 4. Matrices C0, and R1 for pattern matching using the Hamming distance,
T = adcbcadbbca, k = 3, P = adbbca
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C1 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 5. Matrices C1, and R2 for pattern matching using the Hamming distance,
T = adcbcadbbca, k = 3, P = adbbca

It is very easy to find the first (highest, left-most) bit set to 1 and to set all lower
bits to 1 as well. This operation can be performed as:

R0
i ← R0

i or 2⌈log2R0
i ⌉, m ≤ i ≤ n (7)

This computation is very fast, O(1) time. For example the operation log2x is com-
puted using instruction FYL2X on X86 processors.

We use the observations on this section and we can formulate the idea of parallel
pattern matching using the Hamming distance, which could be used later with the
Levenshtein distance.

We compute the corrected matrix Rl, 0 ≤ l ≤ k from each matrix Rl using Formula
7. We refer to this corrected matrix as C l. The shifted vectors D[ti], 0 ≤ i ≤ n placed
in matrix Rl are no longer in matrix C l. Thus we refer to these vectors (shown in
bold in Table 3) as C l

i .
The observation of matrix R0 revealed that each vector R0

l ,m ≤ l ≤ n contains
the bits set to 1 if a replace operation is needed. Each vector Rl

i in matrix C l refers to
a prefix successfully matched with at most l substitutions and in matrix Rl+1 we may
add one substitution more. Thus we compute each matrix Rl, 0 < l ≤ k as follows:

Rl
i = shli(Rl

0) or (shli−1(D[t1]) and C l−1
0 ) . . .

or (shl(D[ti−1]) and C l−1
i−2)

or (D[ti] and C l−1
i−1), 1 ≤ i ≤ n, 1 ≤ l ≤ k

(8)

An example of parallel pattern matching using the Hamming distance for the
pattern P = adbbca, k = 3, T = adcbcadbbca is given in Table 4, Table 5, and
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C2 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1

R3 a d c a b c a a b a d b b c a OR
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
7 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
14 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1

Table 6. Matrices C2, and R3 for pattern matching using the Hamming distance,
T = adcbcadbbca, k = 3, P = adbbca

Table 6, respectively. The first table contains matrix C0, which has been corrected by
Formula 7 from matrix R0, and matrix R1, computed by Formula 8. The second table
contains matrix C1 corrected by Formula 7 from matrix R1, and matrix R2 computed
by Formula 8. The last table contains matrix C2 corrected by Formula 7 from matrix
R2, and matrix R3 computed by Formula 8. These tables are shortened, as described
above.

3.2 Parallel pattern matching using the Levenshtein distance

Parallel pattern matching using the Hamming distance is very similar to the pattern
matching using the Levenshtein distance, though in addition we must consider the
operations “insert” and “delete”.

Recall Formula 3. We computed Rl
i, 0 < i ≤ n, 0 < l ≤ k in the sequential

algorithm as:

Rl
i = (shl(Rl

i−1) or D[ti])
and shl(Rl−1

i−1 and Rl−1
i )

and (Rl−1
i−1 or V ), 0 < i ≤ n, 0 < l ≤ k

(9)
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We use exactly the same logic rules for operations “insert” and “delete”, and we may
formulate for the Levenshtein distance:

Rl
i = shli(Rl

0)
or (shli−1(D[t1]) and C l−1

0 and shl(C l−1
1 ) and (shr(C l−1

0 ) or V ))
. . .
or (shl(D[ti−1] and C l−1

i−2 and shl(C l−1
i−1) and (shr(C l−1

i−2) or V ))
or (D[ti] and C l−1

i−1 and shl(C l−1
i ) and (shr(C l−1

i−1) or V )),
1 ≤ i ≤ n, 1 ≤ l ≤ k

(10)

C0 − a d c a b c a a b a d b b c a OR
3 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
7 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
9 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
13 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
15 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R1 − a d c a b c a a b a d b b c a OR
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 1 0 0 0 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1

Table 7. Matrices C0 and R1 for pattern matching using the Levenshtein distance,
T = adcbcadbbca, k = 2, P = adbbca

When computing vector Rl
i, each term C l−1

i−1 represents operation “replace” as
when using the Hamming distance. Since this bit-vector has been already shifted by
n − i + 1 positions once, that is one more than n − i shifts when computing the i-th
column, thus no further shift operation is needed to transform the sequential term
shl(Rl−1

i−1) into a parallel term.

The term (shr(C l−1
i−1) or V ) represents the operation “insert”. This vector has

been shifted too much by the same logic as the bit-vector for operation “replace”.
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Therefore we need to shift it one bit back, when transforming the sequential “insert”
term (Rl−1

i−1 or V ) into a parallel term.

The term shl(C l−1
i ) represents the operation “delete”. The bit-vector C l−1

i has
been shifted exactly enough to shift it once more for the same reason as in the
sequential algorithm.

Due to the operations “delete” and “insert” we need to shorten the original matrix
R0 less than when using the Hamming distance. We need the initial bit-vector Rl

0 de-
fined by Formula 3, which sets more states initial because of the “delete” ε-transitions
from the initial state. We also need k rows before the (m−1)-th row for the operation
“delete” and we need k rows after the (n − 1)-th row for operation “insert”.

C1 − a d c a b c a a b a d b b c a OR
3 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
8 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1
10 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
11 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1
13 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
14 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1
16 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

R2 − a d c a b c a a b a d b b c a OR
3 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
6 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0
7 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 0
8 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1
9 0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1
10 0 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1
11 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1
12 0 0 0 0 0 0 0 1 0 1 1 1 1 1 1 1 1
13 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 0
14 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1
15 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1
16 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0

Table 8. Matrices C1 and R2 for pattern matching using the Levenshtein distance,
T = adcbcadbbca, k = 2, P = adbbca

An example of parallel pattern matching using the Levenshtein distance for the
pattern P = adbbca, text T = adcbcadbbca and k = 2 is given in Table 7 and Table
8. The former table contains matrix C0 computed by Formula 7 from matrix R0 in
Table 3 and it also contains matrix R1 computed from matrix C0 by Formula 10.
The latter contains matrix C1 computed from matrix R1 by Formula 7 and it also
contains matrix R2 computed from matrix C1 by Formula 10.

27



Proceedings of the Prague Stringology Conference ’06

4 Conclusion

We have presented the idea of parallel pattern matching using bit-parallelism (the
“shift-or” variation).

We used a two-dimensional memory matrix which enabled very fast parallel pat-
tern matching. Parallel pattern matching for an exact pattern takes O(1) parallel
time, using n processors. The algorithm does not need any concurrent read or write
operation, thus it can be implemented on EREW PRAM with shared two-dimensional
memory. Since the processor-time product is O(n), it is a cost-optimal algorithm.

Parallel pattern matching using the Hamming distance with k substitutions takes
O(k) parallel time, using n processors. The algorithm also does not need any con-
current read or write operation, thus it can also be implemented on EREW PRAM
with shared two-dimensional memory. The processor-time product is equal to the
sequential time O(kn), hence this algorithm is also cost-optimal.

Parallel pattern matching using the Levenshtein distance with k substitutions
takes O(k) parallel time, using max(n+1, n−m+2k +1) processors. The algorithm
needs a concurrent read operation when reading the same bit-vector C l

i , 0 ≤ l < k, 1 ≤
i ≤ n−1, thus it can be implemented on CREW PRAM with shared two-dimensional
memory. The processor-time product is also equal to the sequential time O(kn).

Known parallel pattern matching algorithms are derived from dynamic program-
ming, which takes O(mn) sequential time and therefore these parallel pattern match-
ing algorithms are non-optimal. Parallel pattern matching derived from the bit-
parallel algorithms can provide an optimal parallel pattern matching algorithm even
when not using two-dimensional memory based on some ideas mentioned in this pa-
per.
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Abstract. We propose new algorithms for (δ, γ, α)-matching. In this string matching
problem we are given a pattern P = p0p1 . . . pm−1 and a text T = t0t1 . . . tn−1 over
some integer alphabet Σ = {0 . . . σ−1}. The pattern symbol pi matches the text symbol
tj iff |pi − tj | ≤ δ. The pattern P (δ, γ)-matches some text substring tj . . . tj+m−1 iff
for all i it holds that |pi − tj+i| ≤ δ and

∑ |pi − tj+i| ≤ γ. Finally, in (δ, γ, α)-matching
we also permit at most α length gaps (text substrings) between each matching text
symbol. The only known previous algorithm runs in O(mn) time. We give several
algorithms that improve the average case up to O(n) for small α, and the worst case
to O(min{mn, |M|α}) or O(mn log γ/w), where M = {(i, j) | |pi − tj | ≤ δ} and w is
the number of bits in a machine word. We conclude with experimental results showing
that the algorithms are very efficient in practice.

Keywords: approximate string matching, music information retrieval, bit-parallelism,
sparse dynamic programming

1 Introduction

Background and problem setting. Many notions of approximateness have been
proposed in string matching literature, usually motivated by some real problems. One
of seemingly underexplored problems with applications in music information retrieval
and molecular biology is (δ, γ, α)-matching [4] and its variations. In this problem, the
pattern p0p1 . . . pm−1 is allowed to match a substring of the text t0t1 . . . tn−1 with α-
limited gaps, and the respective pairs of matching characters’ numerical values may
differ only by δ, and the total sum of differences is limited to γ. Translating this
model into a music (melody seeking) application, we can allow for small distortions
of the original melody because the (presumably unskilled) human user may sing or
whistle the melody imprecisely. The gaps, on the other hand, allow to skip over
ornamenting notes (e.g., arpeggios), which appear especially in classical music. Other
assumptions here, that is, monophonic melody and using pitch values only (without
note durations), are reasonable in most practical cases.

Previous work. There are many algorithms that solve some restricted variant of
(δ, γ, α)-matching, such as δ-matching [3], (δ, γ)-matching [5,6] and (δ, α)-matching
[13,1,2,8]. There are also algorithms that allow transpositions and insertions and
deletions of symbols simultaneously with (δ, γ) or (δ, α)-matching [11,12]. However,
none of these algorithms can handle (δ, γ, α)-matching. We are aware of only one
algorithm for (δ, γ, α)-matching problem [4]. This is based on dynamic programming,
and runs in O(nm) time.

⋆ Supported by the Academy of Finland, grant 202281.
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Our results. We improve the basic dynamic programming based algorithm [4] to
run in O(nαδ/σ) average time. We develop a simple sparse dynamic programming
algorithm that runs in O(n) average time, and in O(min{mn, |M|α}) worst case
time, where M = {(i, j) | pi =δ tj}. Finally, we develop a bit-parallel dynamic
programming algorithm that runs in O(mn log(γ)/w + nδ) worst case time, where w
is the number of bits in computer word. The average time of this algorithm is close to
O(n log(γ)/w αδ/σ + n). The average case analyzes assume that α is small enough.

2 Preliminaries

Let the pattern P = p0p1p2 . . . pm−1 and the text T = t0t1t2 . . . tn−1 be numerical
strings, where pi, tj ∈ Σ for Σ = {0, 1, . . . , σ− 1}. The number of distinct symbols in
the pattern is denoted by σp.

In δ-approximate string matching the symbols a, b ∈ Σ match, denoted by a =δ b,
iff |a− b| ≤ δ. Pattern P (δ, α)-matches the text substring ti0ti1ti2 . . . tim−1

, if pj =δ tij
for j ∈ {0, . . . ,m − 1}, where 0 < ij+1 − ij ≤ α + 1. Finally, in (δ, γ, α)-matching we
require also that

∑ |pj − tij | ≤ γ. If string A (δ, γ, α)-matches string B, we sometimes
write A =α

δ,γ B.
In all our analysis we assume uniformly random distribution of characters in T

and P , and constant δ and σ. Note that γ < mδ, as otherwise (δ, γ, α)-matching
degenerates into (δ, α)-matching. It is also meaningless to have δ > γ.

For the bit-parallel algorithms we number the bits from the least significant bit (0)
to the most significant bit (w− 1). C–like notation is used for the bit-wise operations
of words; & is bit-wise and, | is or, ∼ negates all bits, << is shift to left, and >>
shift to right, both with zero padding.

3 Dynamic programming

A straight-forward solution to (δ, γ, α)-matching is to use dynamic programming. The
following recurrence can be used:

Di,j =

{
Di−1,j′ + |pi − tj|, pi =δ tj and 0 < j − j′ ≤ α + 1, minDi−1,j′ ≤ γ
γ + 1, otherwise.

(1)

If Dm−1,j ≤ γ, then P =α
δ,γ th . . . tj for some h. The matrix D is simple to compute in

O(αmn) time. As we are only interested in the matching text positions, the O(mn)
space complexity can be easily improved. Using row-wise computation only the cur-
rent and the previous rows need to be in memory, and hence the space complexity
is just O(n). For column-wise computation the space complexity is O(αm) as up to
α + 1 columns have to be stored.

As shown in [4] the time complexity can be improved to O(mn) using min-queue
data structures [9]. However, in practical MIR applications α is usually so small that
the simple brute-force evaluation is faster than using sophisticated data structures
that have large (constant) overhead. Instead, we propose a simple cut-off trick that
improves the average case.

3.1 Cut-off

We make the following observation: if Di...m−1,j−α...j > γ, for some i, j, then
Di+1...m−1,j+1 > γ. This is because there is no way the recurrence can introduce
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Alg. 1 DPCO(T, n, P,m, δ, γ, α).
1 for i ← 0 to α + 1 do for j ← 0 to m − 1 do D[i][j] ← γ + 1
2 for j ← 0 to m − 1 do C[j] ← −α − 1
3 D[0][0] ← |T [0] − P [0]|
4 if D[0][0] > δ then D[0][0] ← γ + 1
5 if D[0][0] ≤ γ then C[0] ← 0
6 top ← m − 1
7 for i ← 1 to n − 1 do

8 C′ ← C[0]
9 k ← i % (α + 2)
10 D[k][0] ← |T [i] − P [0]|
11 if D[k][0] > δ then D[k][0] ← γ + 1
12 if D[k][0] ≤ γ then C[0] ← i
13 for j ← 1 to top do

14 d ← |T [i] − P [j]|
15 min ← γ + 1
16 if d ≤ δ and i − C′ ≤ α + 1 then

17 k′ ← (i − 1) % (α + 2)
18 min ← D[k′][j − 1]
19 for h ← max{0, i − α − 1} to i − 2 do

20 k′ ← h % (α + 2)
21 if D[k′][j − 1] < min then min ← D[k′][j − 1]
22 D[k][j] ← min + d
23 C′ ← C[j]
24 if D[k][j] ≤ γ then

25 C[j] ← i
26 if j = m − 1 then report match
27 while top ≥ 0 and i − C[top] > α + 1 do top ← top − 1
28 if top < m − 1 then top ← top + 1

any other value for those matrix cells. In other words, if p0 . . . pi does not (δ, γ, α)-
match th . . . tj−k for any k = 0 . . . α, then the match at the position j + 1 cannot
be extended to p0 . . . pi+1. This can be utilized by keeping track of the highest row
number top of the current column j such that Dtop+1...m−1,j−α...j > γ, and computing
the next column only up to row top + 1. For this sake we maintain an array C so
that C[i] gives the largest j such that p0 . . . pi =α

δ,γ th . . . tj. This is easy to do in O(1)
time per accessed matrix cell. Alg. 1 shows the complete pseudo code.

Now consider the average time of this algorithm. Computing a single cell Di,j

costs O(α) in the worst case. However, this happens only if p0 . . . pi−1 =α
δ,γ th . . . tj′

and pi =δ tj for some j′ ≥ j − α − 1, and otherwise the cost is just O(1). Therefore
on average each cell is computed in O(αδ/σ) time. Maintaining top costs only O(n)
time in total, since it can be incremented only by one per text character, and the
number of decrements cannot be larger than the number of increments. The average
time of this algorithm also depends on the average value of top, i.e. the total time is

O(n avg(top) αδ/σ). For γ = ∞ it can be shown that avg(top) = O
(

δ
σ(1−δ/σ)α+1

)
[2].

This is O(αδ/σ) for δ/σ < 1−α−1/(α+1), so the average time is at most O(n(αδ/σ)2).
We have neglected the effect of γ, but by forcing the γ condition the time can only
improve, hence our analysis is pessimistic. In the worst case the time is O(αmn), but
this can be improved to O(mn) as in [4], the only difference being that we need m
queues, since we are computing column-wise (as opposed to row-wise in [4]).

4 Simple algorithm

In this section we will develop a variant of the Simple algorithm for (δ, α)-matching
[7]. This performs very well on small (δ, γ, α).
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Alg. 2 Simple(T, n, P,m, δ, γ, α).
1 h ← 0
2 for i ← 0 to n − 1 do

3 M [i] ← γ + 1
4 d ← |T [i] − P [0]|
5 if d ≤ δ then

6 L1[h] ← i
7 G[h] ← d
8 h ← h + 1
9 for j ← 1 to m − 1 do

10 pn ← h; h ← 0;
11 for i ← 0 to pn − 1 do

12 g ← G[i]
13 for k ← L1[i] + 1 to min(L1[i] + α + 1, n − 1) do

14 d ← |T [k] − P [j]|
15 if d ≤ δ and g + d ≤ γ then

16 if M [k] ≤ γ then

17 if g + d < M [k] then M [k] ← g + d
18 else

19 L2[h] ← k
20 h ← h + 1
21 M [k] ← g + d
22 if j = m − 1 and M [k] ≥ 0 then

23 report match
24 M [k] ← −1
25 if j < m − 1 then for i ← 0 to h − 1 do

26 k ← L2[i]
27 G[i] ← M [k]
28 M [k] ← γ + 1
29 Lt ← L1; L1 ← L2; L2 ← Lt;

The algorithm begins by computing a list L of δ-matches for p0:

L0 = {j | tj =δ p0}. (2)

This takes O(n) time (and solves the (δ, γ, α)-matching problem for patterns of length
1). The matching prefixes are then iteratively extended, subsequently computing lists:

Li = {j | pi =δ tj and Di−1,j′+|pi−tj| ≤ γ and j′ ∈ Li−1 and 0 < j−j′ ≤ α+1}. (3)

List Li can be easily computed by linearly scanning list Li−1, and checking if any of
the text characters tj′+1 . . . tj′+α+1, for j′ ∈ Li−1 δ-matches pi, and if so whether the
sum of errors is still at most γ. When some j is appended into Li, the corresponding
matrix cell Di,j is also updated to hold the sum of errors for the matching pattern
prefix p0 . . . pi. Note that we put each j only once into Li, but there can be up to
α +1 different j′ ∈ Li−1 that may cause it. In the case that j is already in Li we only
update Di,j if the new sum is smaller. This takes O(α|Li−1|) time. Alg. 2 shows the
code.

Clearly, in the worst case the total length of all the lists is
∑

i |Li| = |M|, where
M = {(i, j) | pi =δ tj}, and hence the algorithm runs in O(α|M|) worst case time.
Consider now the average case. List L0 is computed in O(n) time. The length of this
list is O(nδ/σ) on average. Hence the list L1 is computed in O(αnδ/σ) average time,
resulting in a list L1, whose average length is O(nδ/σ×αδ/σ). In general, computing
the list Li takes

O(α|Li−1|) = O(nαi(δ/σ)i) = O(n(αδ/σ)i) (4)

average time. This is exponentially decreasing if αδ/σ < 1, i.e. if α < σ/δ, and hence,
summing up, the total average time is O(n). Note that we did not use γ in this
analysis, making it pessimistic.
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4.1 Improving the worst case

As a theoretical option, we can improve the worst case of this algorithm to
O(min{mn,α|M|}). The idea is to avoid brute force handling of overlapping win-
dows of size α + 1. We make use of the min-queue data structure [9], similarly to the
concept from [4] where the min-queue was used with plain dynamic programming.

For the current cell Di+1,j, the keys in the queue are the values of Di,j′ , where
j′ ∈ {Li | 0 < j−Li < α+1}. For calculating Di+1,j it is enough to add its individual
error to the minimum sum of errors from the queue. An algorithmic challenge is
to update the queue quickly. For each processed cell only 0 or 1 values have to be
inserted to the front of the queue and from 0 to α + 1 deleted from the tail. Note
however that only O(1) cells (amortized) are inserted or deleted at each step. All the
operations can then be done in O(1) time with the min-queue data structure. This
gives O(min{mn,α|M|}) worst case time.

Finally, the O(α) factor can be removed by precomputing M. This can be done in
O(min{|M|+n, δn}) worst case time and O(n(δσp/σ+1)) average case time for inte-
ger alphabets (see Sec. 5). Having M available, we can avoid the brute force scanning
for δ-matches. M can be stored e.g. in Johnson’s data structure [10] which supports
a homogeneous sequence of insertions and successor searches in O(log log(mn/|M|))
time. This gives O(|M| log log(mn/|M|)) worst case time, but destroys the good av-
erage case because of the costly precomputation. Note that O(|M| + n) worst case
algorithm is easy to obtain by simply scanning M linearly, but this then becomes
also the average case.

5 Bit-parallel dynamic programming

We now show how the basic dynamic programming algorithm can be bit-parallelized.
The algorithm is based on the bit-parallel dynamic programming algorithm for (δ, α)-
matching [8]. All the interesting values in the matrix D are at most γ, and all other
values can be represented as any value greater than γ. Hence O(log γ) bits per ma-
trix cell is sufficient, and we can compute O(w/ log γ) cells in parallel, where w is
the number of bits in a machine word. Moreover, we show how to handle α up to
O(w/ log γ) efficiently. We obtain O(mn log γ/w) worst case time algorithm.

Each matrix cell is represented with

ℓ = ⌈log2(2γ + 1)⌉ (5)

bits, and number zero is represented (using ℓ bits) as 2ℓ−1−(γ+1). This representation
has been used before e.g. for (δ, γ)-matching [5]. We still need an additional bit per
cell, and hence each machine word packs

C = ⌊w/(ℓ + 1)⌋ (6)

cells, or counters. This representation solves three problems we are going to face
shortly: (i) counter overflows can be handled in parallel; (ii) it is easy to check in
parallel if some of the counters have exceeded γ; (iii) thanks to the additional bit it
is easy to compute pair-wise minima over two sets of counters in parallel.

Assume then that in the preprocessing phase we have computed a helper matrix
(whose efficient computation we will consider later) V :

Vi,j =

{
|pi − tj|, pi =δ tj
γ + 1, otherwise.

(7)
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Figure 1. Tiling the dynamic programming matrix with C = ⌊w/(ℓ + 1)⌋×1 vectors
(C = 8). The dark gray cell of the current tile depends on the light gray cells of the
two tiles in the previous row (α = 4).

The computation of D will proceed column-wise, C columns at once. We adopt the
notation DC

i,j = Di,jC...(j+1)C−1, and analogously V C for V , to make the parallelism

explicit. Assume now that α < C. The goal is then to produce DC
i,j from V C

i,j , D
C
i−1,j and

DC
i−1,j−1. DC

i,j does not depend on any other DC element, according to the definition
of D, and given our assumption that α < C. Fig. 1 illustrates.

Now, according to the recurrence, the kth counter in DC
i,j is the sum of (i) the kth

counter of V C
i,j (i.e. |pi−tjC+k|) and (ii) the minimum of the counters k−α−1 . . . k−1

in DC
i−1,j and the counter k + C − α − 1 . . . C − 1 in DC

i−1,j−1 (i.e. the gap length to
the previous match is at most α), see Fig. 1.

To compute item (ii) efficiently we assume that we have available function M(x),
that replaces each counter in x with the minima of the α + 1 previous counters in x.
The recurrence for DC then becomes:

DC
i,j = V C

i,j + (M((DC
i−1,j << w) | (DC

i−1,j−1 << (w − w % C))) >> w), (8)

where for simplicity we have assumed that M(x) can handle words of length 2w.
However, the above equation may cause counter overflow. To prevent this we use

DC
i,j = (V C

i,j + (M ′ & ∼hmsk)) | (M ′ & hmsk), (9)

instead, where

M ′ = M((DC
i−1,j << w) | (DC

i−1,j−1 << (w − w % C))) >> w, (10)

and hmsk selects the ℓth bit of each counter. That is, M ′ & ∼hmsk clears the high-
est bit of each counter, so that the result can be safely added to V C

i,j , and then
| (M ′ & hmsk) restores the highest bit. This works correctly, as if the highest bit

was set, then the sum is certainly greater than γ, and its exact value is not interesting
anymore. The (ℓ + 1)th bit is not affected by the summation as the maximum value
added is γ + 1.

Finally, to detect the possible pattern occurrences we must add our representation
of zero (2ℓ−1−(γ+1)) to each counter. If some of the counters have still not overflowed,
the corresponding text positions match. This can be detected as

q = ∼(((DC
m−1,j & ∼hmsk) + zeromsk) | DC

m−1,j) & hmsk, (11)

where zeromsk has the value 2ℓ−1 − (γ + 1) in each counter position. Each set bit in
q then indicates a pattern occurrence.
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Alg. 3 vmin(x, y,msk).
1 F ← ((x | msk) − y) & msk
2 F ← F − (F >> ℓ)
3 return (x & ∼F ) | (y & F )

Alg. 4 M(x, y, α,msk).
1 x ← (x << w) | (y << (w − w % C))
2 while α 6= 0 do

3 r ← α % 2
4 α ← ⌊α/2⌋
5 x ← vmin(x, x << ((ℓ + 1)α), msk)
6 if r = 0 then continue

7 x ← vmin(x, x << (ℓ + 1), msk)
8 return (x << (ℓ + 1)) >> w

Consider now the computation of M(x). One possible solution is to use table look-
ups to compute it in constant time. Since w can be too large to make this approach
feasible, we can precompute the answers e.g. to only w/2 or w/4 bit numbers, and
correspondingly compute M(x) in 2 or 4 pieces without affecting the time complexity
(in our tests we used at most w/2 = 16 bit numbers for computing M(x)).

Another solution is to use repeated shifting and minimization. That is, assuming
that vmin(x, y) computes pair-wise minima of the counter sets x and y, we compute
x ← vmin(x, (x << (ℓ+1)) | (γ +1)) and repeat that α times, and then perform the
final shift x ← x << (ℓ+1), which gives the desired result. The minimization can be
done in O(1) time [14], see Alg. 3. The total time for computing M(x) is then O(α).
This can be easily improved to O(log α). Without loss of generality assume that α is
a power of two. Instead of shifting one counter position at a time we first shift by α/2
counter positions, then α/4 counter positions, and so on log2 α times, performing the
minimization at each step. Alg. 4 shows the code, handling the general case as well.
This algorithm takes the counter sets DC

i−1,j and DC
i−1,j−1, that can affect the current

counters DC
i,j, as parameter. For simplicity these are handled as a concatenated single

word of 2w bits. Eq. (10) then becomes

M ′ = M(DC
i−1,j, D

C
i−1,j−1, α,msk), (12)

where msk has every (ℓ + 1)th bit set, needed at the counter minimization.
We also need to compute V efficiently. This is easy with table look-ups as we

have an integer alphabet. We first compute a table L, such that for all c ∈ Σ the list
L[c] contains all the distinct characters pi that satisfy pi =δ c. Using this table we
build a table V ′, which we will use as a terse representation of V , namely we have
that V ′[pi] = Vi. This can be done by scanning through the text, and setting the
jth counter of V ′[c] to |c − tj| for each c ∈ L[tj]. This process takes O(⌈n/C⌉σp +
m + σ + δσp + δn) = O(⌈n/C⌉σp + δn) worst case time. The probability that two
characters δ-match is at most (2δ+1)/σ, and hence the expected number of matching
pattern characters for each text character is O(δσp/σ). Therefore, the average case
complexity of the preprocessing is O(⌈n/C⌉σp +n(δσp/σ+1)). Searching clearly takes
only O(⌈n/C⌉m) = O(⌈n log γ/w⌉m) time if table look-ups are used for computing
M(x), and O(⌈n log α log γ/w⌉m) if Alg. 4 is used. For α larger than O(w/ log γ) the
search time must be multiplied by O(⌈α log γ/w⌉).

Extended patterns. We note that this algorithm can be easily adapted to handle
character classes, both in the pattern and the text. I.e. the pattern and text symbols
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can be subsets of the alphabet, that is, pi, tj ⊆ Σ. The search algorithm does not
change, we just change the definition (and preprocessing) of V :

Vi,j =

{
min |p − t|, p =δ t and p ∈ pi, t ∈ tj
γ + 1, otherwise.

(13)

5.1 Cut-off

The cut-off trick used in Sec. 3.1 obviously works for the bit-parallel algorithm as
well. More formally, we define (for DC) the maximum row topC

j for the column j as:

topC
j = argmaxi{ (MatchMsk(DC

i−1,j−1) >> ((C − α − 1)(ℓ + 1))) 6= 0 or (14)

(MatchMsk(DC
i−1,j) << (ℓ + 1)) 6= 0 }, (15)

where

MatchMsk(x) = ∼(((x & ∼hmsk) + zeromsk) | x) & hmsk. (16)

Consider first the part (14). The rationale is as follows. When we are computing DC
i,j,

only the last α + 1 counters of DC
i−1,j−1 that are at most γ can affect the counters in

DC
i,j. We therefore select the corresponding counter bits that indicate whether or not

the sum have exceeded γ. However, since we are computing C columns in parallel,
the C − 1 first counters that have a value of at most γ in DC

i−1,j (15), i.e. in the

previous row of the current set of columns, can affect the counters in DC
i,j as well.

Obviously, this second part cannot be computed at column j−1. We solve this simply
by computing the first part of topC

j after the column j − 1 have been computed, and

when processing the column j, we increase topC
j if needed according to the second

part (15).
Alg. 5 gives the pseudo code. It uses the O(log α) time algorithm for the M(·)

function. The average case running time of this algorithm depends on what is the
average value of topC . For C = 1 and γ = ∞ avg(top1) = O( δ

σ(1−δ/σ)α+1 ), see Sec. 3.1.

We are not able to analyze avg(topC) exactly, but we have trivially that avg(top1) ≤
avg(topC) ≤ avg(top1)+C−1, and hence the amortized average search time of Alg. 5
is at most O((⌈n/C⌉⌈αδ/σ⌉ + n) log α). The log α factor can be easily removed with
precomputation.

5.2 Lazy preprocessing

This can be still improved by interweaving the preprocessing and search phases, so
that we initialize and preprocess V C only for topC

j length prefixes of the pattern for

each j. At the time of processing the column j, we only know topC
j−1, so we use an

estimate ε × topC
j−1 for topC

j , where ε > 1 is a small constant. If this turns out to be
too small, we just increase the estimate and re-preprocess for the current column. The
total preprocessing cost on average then becomes only O(⌈n/C⌉σtopCδ/σ + n), where
σtopC is the alphabet size of topC length prefix of the pattern. Hence the initialization
time is at most O(⌈n/C⌉⌈αδ/σ⌉ + n) on average. This matches the search time, and
together with the preprocessing the total is O(⌈n/C⌉⌈αδ/σ⌉ + n⌈αδ/σ⌉δ/σ + n) on
average.
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Alg. 5 BPCO(T, n, P,m, δ, γ, α).
1 ℓ ← ⌈log2(2γ + 1)⌉
2 f ← (w/(ℓ + 1))
3 Qb ← (f/2)(ℓ + 1)
4 zmsk ← (1 << (ℓ + 1)) − 1
5 for i ← 0 to σ − 1 do A[i] ← 0
6 for i ← 0 to m − 1 do

7 if A[P [i]] then continue

8 A[P [i]] ← 1
9 for j ← max{0, P [i] − δ} to min{P [i] + δ, σ − 1} do

10 Lt[j] ← Lt[j] ∪ {P [i]}
11 zero ← (1 << (l − 1)) − (γ + 1)
12 hhmsk ← 0
13 for i ← 0 to f − 1 do hhmsk ← hhmsk | (1 << ((i + 1)(ℓ + 1) − 1))
14 hmsk ← hhmsk >> 1
15 b ← (n + f − 1)/f
16 for i ← 0 to σ − 1 do

17 V [i] ← 0
18 if A[i] 6= 0 then

19 for j ← 0 to b − 1 do V [i][j] ← hmsk
20 for i ← 0 to n − 1 do

21 for j ← 0 to |Lt[T [i]]| − 1 do

22 c ← Lt[T [i]][j]
23 V [c][i/f ] ← V [c][i/f ] & ∼(zmsk << ((i % f)(ℓ + 1)))
24 V [c][i/f ] ← V [c][i/f ] | (|c − T [i]| << ((i % f)(ℓ + 1)))
25 top ← m − 1
26 D1[0] ← V [P [0]][0]
27 for i ← 1 to top do

28 x ← M(D1[i − 1], hmsk, α, hhmsk)
29 D1[i] ← (V [P [i]][0] + (x & ∼hmsk)) | (x & hmsk)
30 zeromsk ← 0
31 for i ← 0 to f − 1 zeromsk ← zeromsk | (zero << (i(ℓ + 1)))
32 x ← ∼(((D1[m − 1] & ∼hmsk) + zeromsk) | D1[m − 1]) & hmsk
33 if x 6= 0 then report matches
34 k ← ((f − α − 1)(ℓ + 1))
35 for j ← 1 to b − 1 do

36 D2[0] ← V [P [0]][j]
37 if top = 0 then

38 if (∼(((D2[0] & ∼hmsk) + zeromsk) | D2[0]) & hmsk) 6= 0 then D1[0] ← hmsk; top ← top + 1
39 for i ← 1 to top do

40 x ← M(D2[i − 1], D1[i − 1], α, hhmsk)
41 D2[i] ← (V [P [i]][j] + (x & ∼hmsk)) | (x & hmsk)
42 x ← ∼(((D2[i] & ∼hmsk) + zeromsk) | D2[i]) & hmsk
43 if i = top and top < m − 1 and (x << (ℓ + 1)) 6= 0 then D1[i] ← hmsk; top ← top + 1
44 if top = m − 1 and x 6= 0 then report matches
45 do x ← (∼(((D2[top] & ∼hmsk) + zeromsk) | D2[top]) & hmsk) >> k
46 if x = 0 then top ← top − 1
47 while top ≥ 0 and x = 0
48 if top < m − 1 top ← top + 1
49 Dt ← D1; D1 ← D2; D2 ← Dt

5.3 Multiple patterns

The algorithm has relatively high preprocessing cost O(δn + σp⌈n/C⌉) in the worst
case. However, if we want to search a set of r patterns, instead of only one pattern,
the preprocessing remains essentially the same, since it depends only on the text
and the pattern alphabet. The total (worst case) preprocessing time increase only
O(δn+σp⌈n/C⌉+rm), where we have pessimistically considered that m is the length
of the longest pattern in the set, and that σp is the number of distinct symbols in the
whole pattern set. The search times have to be multiplied by r, but the amortized
preprocessing cost per pattern is considerably reduced. If r is small as compared to
σ/δ, the search cost can be reduced by “superimposing” the patterns, that is we
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define

Vi,j =

{
min |p − tj|, p =δ tj and p ∈ ph

i , h ∈ 0 . . . r − 1
γ + 1, otherwise,

(17)

where we use the notation ph
i to denote the ith symbol of the hth pattern. We then

need only one search, but the potential matches must be verified. Superimposing
works for the other algorithms as well.

5.4 Filtering

Alg. 5 is substantially more complex than its ancestor, the (δ, α)-matching algorithm
[8]. In addition to being simpler, the previous algorithm achieves greater parallelism,
the worst case search time being only O(⌈n/w⌉m). However, we note that this algo-
rithm (as any (δ, α)-matching algorithm) can be used as a filter, since it implicitly
assumes that γ = ∞. The potential occurrences have to verified, which can be done
using any of the algorithms given in this paper. The worst case time then becomes
that of the verification algorithm.

6 Experimental results

We have run experiments to evaluate the performance of our algorithms. The ex-
periments were run on Pentium4 2.4GHz with 512Mb of RAM, running GNU/Linux
2.4.20 operating system. We have implemented all the algorithms in C, and compiled
with icc 9.0.

For the text we used a concatenation of 7543 music pieces, obtained by extracting
the pitch values from MIDI files. The total length is 1,828,089 bytes. The pitch values
are in the range [0 . . . 127]. This data is far from random; the six most frequent pitch
values occur 915,082 times, i.e. they cover about 50% of the whole text, and the
total number of different pitch values is just 55. We also repeated the experiments on
uniformly random data, with σ = 128. A set of 100 patterns were randomly extracted
from the text. Each pattern was then searched for separately, and we report the
average user times.

We experimented with the following algorithms:

BP Cut-off Bit-parallel dynamic programming with cut-off, Alg. 5 (without the lazy
preprocessing);

BP Filter The (δ, α)-matching version of BP Cut-off [8] used as a filter, and Alg. 1
used for the verifications;

DP Cut-off Dynamic programming with cut-off, Alg. 1;
Simple Simple sparse dynamic programming, Alg. 2.

We omitted the results for basic dynamic programming based algorithms, since these
are orders of magnitude slower. Fig. 2 shows the timings. Simple is the clear winner
in most of the cases. BP Cut-off suffers from the large preprocessing cost, especially
if the pattern alphabet is large. The same is true for the BP Filter, but this is more
competitive in MIDI data, where the pattern alphabet is effectively very small.
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Figure 2. Execution times in seconds for m = 8 . . . 32. Note the logarithmic scale.
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7 Conclusions

We have presented new efficient algorithms for (δ, γ, α)-matching. Our algorithms
are based on aborting the computation early where the match cannot be extended
and on bit-parallelism. Besides having theoretically good worst and average case
complexities, the algorithms are shown to work well in practice.
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Abstract. A fundamental problem in music is to classify songs according to their
rhythm. A rhythm is represented by a sequence of Quick (Q) and Slow (S) symbols,
which correspond to the (relative) duration of notes, such that S = QQ. In this paper
we present a linear algorithm for locating the maximum-length substring of a music
text t that can be covered by a given rhythm r. An efficient algorithm to solve this
problem, can then be used to find which rhythm, from a given set of such rhythms,
covers the largest part of the music sequence under question, and thus best describes
that sequence.

Keywords: algorithms, music sequence

1 Introduction

The subject of musical representation for use in computer application has been stud-
ied extensively in computer science literature [2,1,4,9,13,11]. Computer assisted music
analysis [12,10] and music information retrieval [5,8,7,6] has a number of tasks that
can be related to fundamental combinatorial problems in computer science and in
particular to stringology. A survey of computational tasks arising in music informa-
tion retrieval can be found in [3]. We, in this paper, are interested in automatic music
classification which is one of the fundamental tasks in the area of computational mu-
sicology. Songs need to be classified by one or more of their characteristics, like genre,
melody, rhythm, etc. For human beings, the process of identifying those characteris-
tics seems natural. Computerized classification though is hard to achieve, given that
there does not exist a complete agreement on the definition of those features.

In this work, we will be concerned with classification by dancing rhythm. We will
define what a dancing rhythm is, and how it can be identified in a musical sequence,
a song. The musical sequences we will be considering consist of a series of onsets (or
events) that correspond to music signals, such as drum beats, guitar picks, horn hits,
etc. It is the intervals between those events, that characterize how the song is danced.
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In particular, there are two types of intervals in the dancing rhythm of a song:
quick (Q) and slow (S). Quick means that the duration between two (not necessarily
successive) onsets is q milliseconds, while the slow interval is equal to 2q. For exam-
ple, a cha-cha is given as the sequence SSQQSSSQQS while a foxtrot is given as
SSQQSSQQ, and a jive is given as SSQQSQQS.

The paper is organized as follows. In Section 2 we describe the notation that is
used throughout the paper, and we define the terms matching and covering in musical
sequences. In Section 3 we describe in detail our algorithm for finding the largest area
in a musical sequence that is covered by a given rhythm. As will be seen, under the
restrictions we impose on our problem, the algorithms we devise run in linear time.
Finally, Section 4 contains our concluding remarks.

2 Definitions

A musical sequence t is a string t = t[1]t[2] . . . t[n], where t[i] ∈ N
+, for all 1 ≤ i ≤ n.

For example the sequence

[0, 50, 100, 200, 250, 300, 350, 400, 500, 550]

represents a sequence of events occurring at 0 milliseconds, 50 milliseconds, 100 mil-
liseconds, and so on, in the original music signal. Alternatively, we can represent
musical sequences by the duration of the events, as follows

[50, 50, 100, 50, 50, 50, 50, 100, 50]

The two definitions above are equivalent. We prefer the latter here for the sake of
clarity. The above musical sequence can then be represented graphically as shown in
the following figure.

50 50 100 50 50 50 50 100 50

0 50 100 200 250 300 350 400 500 550

A rhythm r is a string r = r[1]r[2] . . . r[m], where r[j] ∈ {Q,S}, for all 1 ≤ j ≤ m.
For example, r = QSS. Q and S correspond to intervals between events, such that
the length of an interval represented by an S is double the length of an interval
represented by Q. However, the exact length of Q or S is not a priori known. The
length m of the rhythm, in practical cases, is usually 10-13 characters and thus we
can consider it to be constant.

Let Q represent intervals of size q ∈ N
+ milliseconds, and S represent intervals of

size 2q. Then Q is said to match with the substring t[i..i′] of the musical sequence t,
if and only if

q = t[i] + t[i + 1] + . . . + t[i′]

where 1 ≤ i ≤ i′ ≤ n. If i = i′ then the match is said to be solid. Similarly, S is said
to match with t[i..i′] if and only if either of the following is true

– i = i′ and t[i] = 2q, or
– i 6= i′ and there exists i ≤ i1 < i′ such that

q = t[i] + t[i + 1] + . . . + t[i1] = t[i1 + 1] + t[i1 + 2] + . . . + t[i′]
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1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50
︸ ︷︷ ︸ ︸ ︷︷ ︸

q = 150 Q S

︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸
q = 100 Q Q S

Figure 1. Q- and S-matching in musical sequences

As with Q, the match of S is said to be solid if i = i′.
For example, consider the musical sequence shown in Figure 1. For q = 150, Q

matches with t[2..3] and S matches with t[5..9]. For q = 100, Q matches with t[1..2],
t[3] etc. and S matches with t[6..8]. However, note that for q = 100, S does not match
with t[7..9] despite the fact that

∑9
i=7 t[i] = 2q.

Consequently, a rhythm r = r[1] . . . r[m] is said to match with the substring t[i..i′]
of the musical sequence t, if and only if there exists an integer q ∈ N

+, and integers
i1 < i2 < . . . < im < im+1 such that

1. i1 = i, im+1 = i′ + 1, and
2. r[j] matches t[ij..ij+1 − 1], for all 1 ≤ j ≤ m

For instance, the rhythm r = QSS matches with t[2..5] as well as with t[5..8], in
Figure 2, for q = 50.

Finally, a rhythm r is said to cover the substring t[i..i′] of the musical sequence
t, if and only if there exist integers i1, i

′
1, i2, i

′
2, . . . , ik, i

′
k, for some k ≥ 1, such that

– r matches t[iℓ..i
′
ℓ], for all 1 ≤ ℓ ≤ k, and

– i′ℓ−1 ≥ iℓ − 1, for all 2 ≤ ℓ ≤ k

In our example, Figure 2, r = QSS covers t[2..8] for q = 50.

1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50
︸ ︷︷ ︸

r ︸ ︷︷ ︸
r

Figure 2. Matches of r = QSS in t, for q = 50

3 Maximal Coverability Algorithm

In this section, we tackle the maximal coverability problem, which is formally defined
as follows:

Problem 1. Given a musical sequence t = t[1]t[2] . . . t[n], t[i] ∈ N
+, and a rhythm

r = r[1]r[2] . . . r[m], r[j] ∈ {Q,S}, find the largest (longest) substring t[i..i′] of t that
is covered by r.

Note that the definition above is very general, allowing extreme cases like the
following: consider a musical sequence consisting of a single tone repeated every 1ms,
t = 111 . . . 1. Consider also a rhythm r consisting of Q’s and S’s. Then r will match
t in every position i regardless of the value of q, since any Q in r will match with a
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Algorithm 6 Stage 1: Computing vectors first and next
1: function FindOccurrences(t[1..n])
2: first[1..|Σ|] ← 00 . . . 0
3: next[1..n] ← 00 . . . 0
4: last[1..|Σ|] ← 00 . . . 0 ⊲ Keeps track of the last occurrence of a particular σ ∈ Σ so far
5: for i ← 1 to n do
6: if last[t[i]] = 0 then
7: first[t[i]] ← i
8: else
9: next[last[t[i]]] ← i

10: last[t[i]] ← i

11: return first, next

sequence of q 1’s, and any S in r will match with a sequence of 2q 1’s. To avoid such
cases, we introduce the following restriction for the matching of a rhythm r with a
substring t[i..i′] of t:

Restriction 1. For each match of r with a substring t[i..i′], there must exist at least
one S in r whose match in t[i..i′] is solid; that is, there exists at least one 1 ≤ j ≤ m
such that r[j] = t[k] = 2q, i ≤ k ≤ i′, for some value of q.

As explained before, the value of q is not a priori given. Therefore each σ ∈ Σ
should be considered as a candidate q, provided of course that 2σ ∈ Σ, and for that
particular q all the occurrences of the rhythm r must be identified. Equivalently, we
can consider each σ to be equal to S = 2q, provided that σ/2 ∈ Σ. In our algorithm,
we will be using the latter form. Then, for each such σ ∈ Σ, the algorithm sets
S = 2q = σ and proceeds in three stages:

– Stage 1 : Find all occurrences of S in t.
– Stage 2 : Transform the areas around all the S’s into a sequences of Q’s.
– Stage 3 : Find the maximal area covered by r, for the current q.

We next explain each of these stages in detail.

3.1 Stage 1 – Finding all occurrences

In this stage, we need to find all occurrences of S = σ, for the chosen σ, so that we
can (in Stage 2) transform the areas around each of those occurrences to sequences
of Q’s. A single scan through the input string suffices to find all occurrences of σ.
Since the stage is repeated for every distinct σ ∈ Σ, overall the algorithm would need
O(|Σ|n) time on this stage alone.

However, it is easy to speedup this stage, by collectively computing linked lists
of the occurrences of all the symbols. Given that the alphabet Σ is indexed and its
size is bounded, this can be done in O(n) time and O(n + |Σ|) space in the following
manner. Consider vectors first, of size |Σ|, and next, of size n, such that

– first[σ] = i if and only if the first occurrence of the symbol σ appears at position i
– next[i] = j if and only if t[i] = t[j] and for all k, i < k < j, t[k] 6= t[i]; if no such

j exists, then next[i] = 0

A single scan through t suffices to compute vectors first and next. Algorithm 6 shows
how this is done in detail.
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3.2 Stage 2 – Transformation

The task of this stage is to transform t, which is a sequence of integers, into a sequence
t′, over {Q,S} for the chosen q = σ/2, so that all the matches of r into t′ (and
consequently, into t) are identified. However, this transformation is ambiguous, in
several ways, as the following example demonstrates.

Consider the musical sequence shown in Figure 3(a), and let q = 50. One does not
know whether two consecutive Q’s should be transformed as QQ or S, and creating all
the possible combinations is too time consuming. Moreover, as shown in Figure 3(b)
the transformation that is generated while processing t from left to right is different
from that generated while moving from right to left.

(a)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
S Q S Q Q Q

︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q S S Q Q Q
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

(b)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

=⇒
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸
Q Q Q S Q Q Q

⇐=

Figure 3. Ambiguities in transformation

For each occurrence of the current symbol σ = 2q = S, we convert the area
surrounding that S into sequences of Q’s. Algorithm 7 gives the details.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

. . . 100 50 25 25 100 50 15 30 5 30 15 25 25 100 . . .

Figure 4. Transforming the area around t[5] = S = 100

3.3 Stage 3 – Maximal Covered Area

As soon as we get t′, a sequence over {Q,S}, transformed from t in Stage 2, our job
is to first identify all the occurrences of r in t′. To do that efficiently we exploit a
bit-masking technique as described below. We first define some notations that we use
for sake of convenience. We define St′ and Sr to indicate an S in t′ and r respectively.
Qt′ and Qr are defined analogously. We first perform a preprocessing as follows. We
construct t′′ from t′ where each St′ is replaced by 01 and each Qt′ is replaced by 1.
Note that we have to keep track of the corresponding positions of t′ in t′′. We then
construct the ’Invalid’ set I for t′′ where I includes each position of ’1’ of St′ in t′′.
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Algorithm 7 Stage 2: Transformation
1: function Transform(t[1..n],σ)
2: q ← σ/2
3: Rσ ← {}
4: i ← first[σ]
5: while i 6= 0 do
6: x ← “S′′

7: r ← 0
8: j ← i
9: while r < q and j < n do

10: j ← j + 1
11: r ← r + t[j]
12: if r = q then
13: Push Q at the back of x
14: r ← 0
15: r ← 0
16: j ← i
17: while r < q and j > 1 do
18: j ← j − 1
19: r ← r + t[j]
20: if r = q then
21: Push Q at the front of x
22: r ← 0
23: Rσ ← Rσ ∪ {x}
24: i ← next[i]

25: return Rσ

For example, if t′ = QQSQS then t′′ = 1101101 and I = 4,7. It is easy to see that
no occurrence of r can start at i ∈ I. We also construct r′ from r where each Sr

is replaced by 10 and each Qr is replaced by 0. This completes the preprocessing.
After the preprocessing is done, at each position i /∈ I of t′′ we perform a bitwise ‘or’
operation between t′′[i..i + |r′| − 1] and r′. If the result of the ‘or’ operation is all 1’s
then we report an occurrence at position i of t′′. The details are formally given in the
form of Algorithm 8.

We now discuss the correctness of Algorithm 8. We use the symbol ∼ and ≁ to
denote, respectively “matches” and “doesn’t match”. It is easy to see that for the
problem in hand we must meet the following conditions.

1. Qt′ ∼ Qr

2. Qt′Qt′ ∼ Sr

3. St′ ∼ Sr

4. St′ ≁ QrQr

All the conditions stated above are obeyed by the encoding we use as shown below.
Recall that we do bitwise or operation and that we report a match when the result
of the operation is all 1’s.

1. Qt′(= 1) and Qr(= 0) always matches: (1 or 0 = 1).
2. Qt′Qt′(= 11) always matches with Sr(= 10): (11 or 10 = 11).
3. St′(= 01) can only match with Sr(= 10) : (01 or 10 = 11).
4. Since St′(= 01) can’t give a match with QrQr(= 00): (01 or 00 = 01).

However we have a problem when the Sr and St′ are ‘miss-aligned’. We define
start(Sr) = 1 and end(Sr) = 0. Similarly, we have, start(St′) = 0 and end(St′) = 1.
Assume that we have an Sr(say Sk

r ) miss-aligned with an St′(say Sl
t′).
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Algorithm 8 Reporting Occurrences of r in t′

1: function FindMatch(t′,r)
2: Occ[1..|t′|] ← 0 0 . . . 0 ⊲ Preprocessing Step
3: I[1..|t′′|] ← 0 0 . . . 0
4: j = 1
5: for i = 1 to t′ do
6: track[j] = i
7: if t′[i] = “S” then
8: t′′[j] = “01”
9: I[j + 1] = 1 ⊲ Position j + 1 is invalid

10: j = j + 2
11: else
12: t′′[j] = “1”
13: j = j + 1

14: j = 1
15: for i = 1 to r do
16: if r[i] = “S” then
17: r′[j] = “10”
18: j = j + 2
19: else
20: r′[j] = “0”
21: j = j + 1

⊲ Matching Step
22: for i = 1 to t′′ do
23: if I[i] 6= 1 then
24: if t′[i..i + m1 − 1] or p′ = “11 . . . 1” then
25: Occ[track[i]] = 1

26: return Occ

Case 1- end(Sk
r ) is aligned with start(Sl

t′): We have end(Sk
r ) or start(Sl

t′) 0 or 0 =
0. So we have no match as required.

Case 2- start(Sk
r ) is aligned with end(Sl

t′): Unfortunately here we have start(Sk
r )

or end(Sl
t′) = 1 or 1 = 1 which may create problems. We distinguish between two

subcases. We say an Sr is ‘inside’ r (or equivalently r′) if this Sr is not the start
of r.

Case2.a- Sk
r is inside r: There must be either a Qr or another Sr (say Sj

r) just
before this Sk

r . In any case we will have either Qr(= 0) or end(Sj
r)(= 0) to

align with start(Sl
t′)(= 0) which will give 0 after the or operation and hence

we have no problem.
Case2.b- Sk

r is the start of r: In this case we have start(Sk
r ) or end(Sj

t′) = 1
which may give us a ‘false positive’ starting at this position. To exclude these
false positives we have the ‘Invalid’ set I. The main idea is that no occurrence
of the rhythm can start at end(St′). So each end(St′) is included in I. And we
check whether the position we are checking is in I or not.

Here we give an example of a ‘false positive’ as discussed above. Suppose t′ =
QQSQQ and r = SQ. Then we have t′′ = 110111 and r′ = 100. It is easy to see
that if we perform the bitwise or operation at each position of t′′ we get two matches
starting at t′′[3] and also at t′′[4]. But it is easy to verify that position 4 of t′′ doesn’t
really exist in t′. So its a ‘false positive’.

The above discussion establishes the correctness of Algorithm 8. Since the size of
the rhythm is considered constant, Algorithm 8 runs in O(|t′′|/w) time where w is
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the size of the word of the target machine. Finally, once we get the occurrences of the
rhythm r in t′ considering every choice of σ it is easy to report the maximal covered
area in linear time. In fact we can compute this area on the fly while computing all
the occurrences of r in t′ by slightly modifying Algorithm 8.

4 Open Problems

In this paper we have presented algorithms for computerized song classifications under
some specific constraints. A number of issues remain unsolved as follows:

1. Designing an algorithm that avoids the restriction that one symbol has to be solid.
2. Applying a limit on the number of “additions” in the numeric text to match a Q

and/or S.
3. Removing the dependency on m from the algorithm.
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Abstract. We present some combinatorial problems which arise in the fields of music
representation and music processing, especially in contexts such as the analysis of
the harmonic structure of chord sequences. We concern ourselves with those chord
sequences which exhibit a certain kind of regular harmonic structure, and discuss some
problems related to them. We provide also algorithms to solve some of these problems.

Keywords: music processing, harmonic structure analysis, chord sequences.

1 Introduction

Musical chord sequences, or chord progressions, possess a combinatorial structure
very rich and complex, which require efficient computational methods to be fully
understood and analyzed.

By using a convenient symbolic representation of musical notes and chords, it is
possible to apply suitable mathematical methods to discover that kind of regularity
in the harmonic structure which many chord sequences seem to exhibit [7,8].

Musical notes can be coded in various ways. A typical example is provided by
the standard MIDI representation, where notes are coded by integers [9]. Once a
particular coding of the notes is fixed, a chord can be conveniently represented by
the collection of the symbols corresponding to the notes in the chord. Notice that
in codings like the standard MIDI representation, notes that differ by one or more
octaves are represented by distinct symbols. Such kind of codings are especially ap-
propriate in the context of Music Information Retrieval, where the representation of
(monophonic) musical sequences by strings of integers gives the possibility of apply-
ing powerful string matching techniques to discover musical pattern repetitions and
melodic similarity [2,4,5,3].

However, in many cases, especially when one is interested in the interval content
of chords, it is more convenient to assume octave equivalence of notes, i.e., to regard
as equal any two notes which are one or more octaves apart [6]. In such a case,
only 12 symbols are needed to represent notes, at least in the equal temperament
system of western music. For example, let us consider the two simple chord sequences
S1 and S2 represented in Figure 1. If we assume octave equivalence, and use the
traditional naming of notes with the symbols C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B, as
shown in Figure 2, then we may represent both sequences as the following list of sets

{C, E, G}, {C, E, A}, {C, F, A}, {D, F, A}, {D, F, B}, {D, G, B}, {E, G, B} .

In fact, the corresponding chords of the sequences are made up of the same notes but
in different octaves, i.e., they differ only in the voicings. Thus the two chord sequences
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G 7
4 ˇˇˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ Chord Sequence S1

G 7
4 ˇˇˇ ˇˇˇ ˇˇˇ ˇˇ ˇ ˇˇˇ ˇˇˇ ˇˇˇ Chord Sequence S2

Figure 1. Two chord sequences related by octave equivalence. Chord sequence S1

exhibits a regular harmonic structure.

G
C

ˇ
C♯

4ˇ
D

ˇ
D♯

4ˇ
E

ˇ
F

ˇ
F♯

4ˇ
G

ˇ
G♯

4ˇ
A

ˇ
A♯

4ˇ
B

ˇ

Figure 2. The traditional naming of notes with symbols
C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B

can be really considered as two distinct variants, or voice leadings,1 of a same chord
sequence (assuming octave equivalence). However, if we regard the chords as ordered
sets of notes, we may discover some regularities in the structure of the sequence S1.
Indeed, if we order the notes of each chord from the lowest to the highest one, i.e., if
we look at the voicings of the chords, we get a representation of each chord as a string
of symbols, and the chord sequence can be conveniently represented by a matrix M
whose columns correspond to such strings:

M =




G E C A F D B

E C A F D B G

C A F D B G E


 .

A simple inspection of the matrix M reveals the regular structure of the chord se-
quence. Simply look at the secondary diagonal elements of each square submatrix of
M. Also, observe that any two consecutive chords of the sequence share at least two
notes, and any three consecutive chords share at least one note, so that the chords are
connected in such a way that the “transition” from a chord to a next one is gradually
achieved by a series of smooth chord-passages: from a perceptual point of view, this
translates into a pleasant sensation when the chord sequence is heard.

Notice also that if we “glue” at the left (or right) end of the matrix M a copy
of itself, we get a matrix with the very same structure of M. Musically speaking,
this property can be interpreted by saying that the chord sequence has a kind of
“circular” harmonic structure which, when heard, tends to resolve on itself, i.e., when
the chord sequence is heard for the first time, one expects that it will be played

1 Notice that in music, the usual meaning of voice leading concerns the horizontal motion of the
notes, or voices, of the chords inside a chord sequence, where a chord sequence is regarded as the
superimposition of two or more melodies played simultaneously. For us, a voice leading is simply
a sequence of chord-voicings. But from a formal point of view, the two notions are equivalent, up
to minor details (see Section 2 and [10]).
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again. This is strictly related to the phenomenon of musical expectation, which plays
a fundamental role in music composition. Thus, the ability of creating and discovering
harmonic structures similar to that of the chord sequence S1 in Figure 1 may have
important applications in the fields of automatic music composition and automatic
music analysis.

Chord sequences having a harmonic structure of the kind described above will be
referred to as regular chord progressions.

In this paper we report some preliminary results concerning an ongoing inves-
tigation on various combinatorial questions about regular chord progressions and
voicings.

1.1 Paper’s organization

The paper is organized as follows. In Section 2 we introduce some basic notions
and give a formal definition of regular chord progression. Subsequently, in Section 3
we present algorithms, based on the bit-parallelism technique, for some problems
concerning combinatorial aspects of regular chord progressions, and also we discuss
some other related questions. Then, in Section 4 we draw our conclusions. Finally, an
appendix containing some theoretical results concludes the paper.

2 Basic definitions and properties

Before entering into details, we need a bit of notations and terminology. Let Σ be a
finite alphabet. A string X of length m ≥ 0 is represented as a finite array X[0 ..m−1].
For m = 0 we obtain the empty string ε. The length of X is denoted by |X|. By X[i]
we denote the (i+1)-th symbol of X, for 0 ≤ i < |X|. Likewise, by X[i .. j] we denote
the substring of X contained between the (i + 1)-th symbol and (j + 1)-th symbol of
X, for 0 ≤ i ≤ j < |X|.

For convenience, we do not distinguish between a symbol s and the one-character
string “s”. Thus, for any two strings X and Y and any symbol s, we write X s Y for
the string Z of length |X| + |Y | + 1 such that

- Z[0 .. |X| − 1] = X,
- Z[|X|] = s, and
- Z[|X| + 1 .. |X| + |Y |] = Y .
A chord over Σ is a nonempty set C of two or more symbols of Σ. The size of

a chord C, denoted by size(C) or by |C|, is the number of symbols in C. A voicing
over Σ is a string V of symbols of Σ such that |V | ≥ 2 and V [i] 6= V [j], for all distinct
i, j ∈ {0, 1, . . . , |V | − 1}. The base chord Set(V ) of a voicing V is the collection of
the symbols occurring in V . A voicing V is said to be a voicing of a chord C if
Set(V ) = C.2 A chord progression is a sequence C = 〈C0, C1, . . . , Cn〉 of chords
with the same size.

A voice leading over Σ is a sequence V = 〈V0, V1, . . . , Vn〉 of voicings over Σ
of the same length. A voice leading V = 〈V0, V1, . . . , Vn〉 is a voice leading of a
chord progression C = 〈C0, C1, . . . , Cm〉, provided that n = m and Vi is a voicing
of the chord Ci, for i = 0, 1, . . . , n.

Let V and W be voicings over the alphabet Σ. We say that V is (immediately)
connected to W , and write V −→ W , if W = s V [0 .. |V | − 2], for some symbol

2 Thus, there are m! distinct voicings of any chord C of size m.
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s ∈ Σ. Plainly, when V −→ W , the voicings V and W must have the same length. A
voice leading V = 〈V0, V1, . . . , Vn〉 is connected if Vi −→ Vi+1, for i = 0, 1, . . . , n−1;
V is circularly connected if it is connected and in addition Vn −→ V0.

3

A voicing V is connectable to a voicing W with respect to an alphabet Σ, in
symbols V =⇒ W , if there is a connected voice leading V = 〈V0, V1, . . . , Vn〉 over Σ,
with n ≥ 1, such that V0 = V and Vn = W . In such a case, we say that the voice
leading V connects V to W (with respect to Σ).

The connectivity relation “=⇒” is an equivalence relation, as shown in the follow-
ing lemma.

Lemma 1. Let V , W , and Z be voicings over an alphabet Σ. Then

(1) V =⇒ V ;
(2) if V −→ W then W =⇒ V ;
(3) if V =⇒ W then W =⇒ V ;
(4) if V =⇒ W and W =⇒ Z, then V =⇒ Z.

Therefore the relation =⇒ is an equivalence relation.

Proof. We give only the proof of (1) and (2), since (4) is an immediate consequence
of the definition of the relation “=⇒” and (3) follows from (2) and (4).

Let V , W , and Z be voicings of the same length m, over the alphabet Σ.
Concerning (1), it can easily be verified that V is connected to V by the voice

leading 〈V0, V1, . . . , Vm〉, where V0 = V and

Vi+1 =
Def

Vi[m − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 1.

Next, let V −→ W . In order to verify (2), we distinguish two cases, according
to whether V [m − 1] = W [0] or V [m − 1] 6= W [0]. If V [m − 1] = W [0], then W is
connected to V by the voice leading 〈V0, V1, . . . , Vm−1〉, where V0 = W and

Vi+1 =
Def

Vi[m − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 2.
On the other hand, if V [m−1] 6= W [0], then W is connected to V by the voice leading
〈V0, V1, . . . , Vm〉, where V0 = W and

Vi+1 =
Def

V [m − i − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 1. ⊓⊔

A chord C is connected to a chord D, written C −→ D, if V −→ W , for some
voicings V of C and W of D.4 A chord progression C is connected (resp., circu-
larly connected) if it has a connected (resp., circularly connected) voice leading.
A chord progression C = 〈C0, C1, . . . , Cn〉 is regular if it is circularly connected and,
in addition, Ci 6= C(i+1) mod (n+1), for i = 0, 1, . . . , n. It can easily be verified that the
chord progression S1 in Figure 1 is regular.

We conclude the section with some examples.

3 Notice that if a voice leading 〈V0, V1, . . . , Vn〉 is circularly connected, then n ≥ |V0| − 1.
4 From the context it will always be clear whether the symbol “−→” denotes the connectivity

relation between voicings or between chords.
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Example 2. Given the alphabet Σ = {a, b, c, d, e}, the following strings

V1 = abcd , V2 = dabc , V3 = edab , V4 = edabc

are voicings over Σ. The voicings V1, V2, and V3 have length 4, whereas V4 has length
5. On the other hand, the strings

X = abca , Y = deece , Z = abcdf

are not voicings over Σ. Indeed, X[0] = X[3] = a, Y [1] = Y [2] = Y [4] = e, and
Z[4] = f is not a symbol of Σ (however, Z is a voicing over the extended alphabet
Σ∪{f}). Moreover, the voice leading V = 〈V1, V2, V3〉 is connected, so that the voicing
V1 is connectable to voicing V3 with respect to Σ. ⊓⊔

Example 3. The following chord progression over the alphabet Σ = {a, b, c, d, e, f}

C = 〈{f, a, c}, {a, b, c}, {c, e, b}, {c, e, b}, {f, c, e}, {f, a, c}〉

is circularly connected since it has the circularly connected voice leading

V = 〈caf , bca, ebc, ceb, fce, afc〉 .

However, C is not regular since the first and the last chord coincides.
Notice that the above voice leading V can also be represented by the matrix

M =




f a c b e c
a c b e c f
c b e c f a


 ,

whose columns correspond, from left to right, to the voicings of V , oriented from
bottom to top (as are the notes in the staff). Observe that the secondary diagonal
elements in each square submatrix of M are equal. ⊓⊔

Example 4. The chord progression

〈{a, b, c}, {a, b, f}, {a, d, f}, {b, d, f}〉

over the alphabet Σ = {a, b, c, d, e, f} is connected but not circularly connected, as
can be easily verified by trying out all of its possible connected voice leadings. ⊓⊔

3 Discovering regular structures: some algorithms

In this section we discuss some problems concerning combinatorial properties of reg-
ular chord progressions, and provide also algorithms to solve them.
We begin by addressing the following question.

Problem 5. Given a chord progression C = 〈C0, C1, . . . , Cn〉 over an alphabet Σ, a
voicing V of C0, and a voicing W of Cn, construct, if it exists, a voice leading of
C connecting V to W , i.e., a connected voice leading V = 〈V0, V1, . . . , Vn〉 such that
V0 = V , Vn = W , and Set(Vi) = Ci, for i = 0, 1, . . . , n. ⊓⊔
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We can solve Problem 5 as follows. Let m be the length of V . We show how to
construct the desired connected voice leading V of C, or determine that such a voice
leading does not exist, by a sequence of n + 1 stages. We start by setting V0 = V
(this is the initial stage 0). Next, let us suppose that at the end of stage i we have
constructed a connected voice leading Vi = 〈V0, V1, . . . , Vi〉 of Ci = 〈C0, C1, . . . , Ci〉,
with 0 ≤ i < n. Then, we form the set Si =

Def
Set(Vi[0 ..m − 2]) and check whether

Si ⊆ Ci+1. If this is the case, we prolongate the voice leading Vi with the new voicing
Vi+1 defined by

Vi+1 =
Def

c Vi[0 ..m − 2] ,

where c ∈ Ci+1 \ Si, and proceed to the next stage. Otherwise, we stop the process
and announce that there is no connected voice leading of C from V to W . If all stages
are completed successfully and, in addition, the last voicing of Vn equals W , then it
is immediate to check that Vn is a voice leading of C which connects V to W . The
correctness of the above procedure follows immediately from the observation that if
a voice leading of C connecting V to W does exist, then it is unique.

In Figure 3 we show the pseudo-code of an algorithm, named ALGO1, which
implements the above construction process.

Remark 6. Notice that during the execution of the algorithm ALGO1, the string-
variable X contains the voicings Vi, which form a connected voice leading of C from
V to W , provided that it exist. Therefore, if immediately after line 8 of ALGO1 we
add an instruction OUTPUT(X), we get as by-product the sequence V1, V2, . . . , Vk,
where k is the largest index less than or equal to n such that the chord progression
Ck = 〈C0, C1, . . . , Ck〉 has a connected voice leading starting at V . In fact, Vk =
〈V, V1, . . . , Vk〉 turns out to be a voice leading of Ck. ⊓⊔

Concerning the complexity of the algorithm ALGO1, we notice that in the worst
case we need to compute all the partial voice leadings V0,V1, . . . ,Vn; thus the total
time spent in the whole process is O(n · f(m)), where f(m) is an upper bound to
the time needed to check whether Si ⊆ Ci+1 and to construct the voicing Vi+1, for
i = 0, 1, . . . , n − 1.

If we represent sets by linear arrays, we get f(m) = O(m2), yielding an overall
running time of O(nm2).

However, if the alphabet Σ is sufficiently small to fit into a computer word, we
can conveniently use the bit-parallelism technique [1] to reduce the running time to
O(n+m). Indeed, let us assume that σ = |Σ| ≤ ω, where ω is the number of bits in a
computer word. Then, any subset of Σ can be represented by a bit mask of length σ,
which fits into a computer word. By using such a representation, the set operations
of union, intersection, and complement, as well as the set containment test, can be
executed in constant time by suitable combinations of the bitwise operations “OR”,
“AND”, and “NOT” (denoted by the symbols “∨”, “∧”, and “∼”, respectively).

More precisely, after fixing an (arbitrary) ordering

s0, s1, . . . , sσ−1

of the symbols of Σ, we use the following representations:

– a singleton {si} ⊆ Σ is represented as the bit mask B(si) = b0b1 · · · bσ−1 (of length
σ), where

bj =

{
1 if j = σ − 1 − i
0 otherwise ,
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ALGO1(C, V, W)
–It is assumed that C is a chord progression, V is a voicing of
–the first chord of C, and W is a voicing of the last chord of C.

1. m := |V|
2. n := length(C) − 1
3. S := {V[0], . . . ,V[m − 2]}
4. X := V
5. for i := 1 to n do
6. if S ⊆ C[i] then
7. - let z be such that C[i] = S ∪ {z}
8. X := z X[0 ..m − 2]
9. S := (S \ {X[m − 2]}) ∪ {z}

10. else
11. return false
12. if X 6= W then
13. return false
14. return true

Figure 3. Pseudo-code of the algorithm ALGO1 for determining whether a chord
progression C has a voice leading which connects a voicing V to a voicing W

for j = 0, 1, . . . , σ − 1 ;5

– a nonempty subset A = {si0 , si1 , . . . , sik} of Σ is represented as the bit mask

B(A) =
Def

B(si0) ∨ B(si1) ∨ · · · ∨ B(sik) ;

– the empty subset of Σ is represented by the bit mask 0σ, i.e., the string consisting
of σ copies of the bit 0;

– a chord progression C = 〈C0, C1, . . . , Cn〉 is represented as an array C[0 .. n] of
n + 1 bit masks, where C[i] = B(Ci) for i = 0, 1, . . . , n;

– a voicing V is represented as an array V[0 ..m − 1] of m bit masks, where
V[i] = B(V [i]), for i = 0, 1, . . . ,m − 1 (this amounts to represent a voicing
V = v0v1 · · · vm−1 as the ordered tuple of the bit masks corresponding to the
singletons {v0}, {v1}, . . . , {vm−1}).
It is convenient to use a queue Q to store the first m− 1 symbols (represented as

singleton bit masks) of the voicings V0, V1, . . . , Vn, as they are generated during the
construction process. More precisely, at stage i of the construction, the queue Q will
have the following configuration

B(Vi[0]) , B(Vi[1]) , . . . , B(Vi[m − 2]) ,

with the head pointing to the rightmost bit mask, B(Vi[m− 2]), and the tail pointing
to the leftmost one, B(Vi[0]). Notice that there is no need to store the last symbol
of voicing Vi, as the subsequent voicing Vi+1 is completely determined by the partial
voicing Vi[0 ..m − 2] and by the chord Ci+1. The collection Si = Set(Vi[0 ..m − 2])
can be conveniently maintained in a bit mask S, so that the test Si ⊆ Ci+1 becomes
S ∧ C[i + 1] = S. Then the construction of the voicing Vi+1 can be accomplished by
the following sequence of steps:

5 Notice that this amounts to representing the singleton {si} by the “machine integer” (1 ≪ i),
where “≪” denotes the bitwise operation of left-shifting.
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– retrieve the unique element z in Ci+1 \ Si, which will be the first symbol of Vi+1,
by setting Z := C[i + 1]∧ ∼ S (plainly, Z contains the bit mask B(z));

– retrieve the first bit mask D in Q by executing the operation dequeue(Q);
– enqueue Z in Q.

After these steps, Q will have the following configuration

Z , B(Vi[0]) , B(Vi[1]) , . . . , B(Vi[m − 3])

and Vi+1[0 ..m − 2] will be correctly stored in Q. As a final step, S will be set to
(S∧ ∼ D) ∨ Z, so as to represent the set Si+1.

Remark 7. Since each dequeue operation on Q is always followed by an enqueue oper-
ation, the queue Q may be conveniently implemented as an array Q[0 ..m− 2] of bit
masks with a pointer h, which at stage i stores the partial voicing Vi[0 ..m − 2] into
the array Q in a circular manner, starting at position h. Then a dequeue(Q) opera-
tion is just performed by retrieving the element Q[h] and the subsequent operation
enqueue(Q, Z) is simply performed by setting Q[h] to Z and then shifting circularly
the pointer h one position to the right. ⊓⊔

The complete algorithm, named ALGO2, is presented in details in Figure 4. By
inspection, it is immediate to see that ALGO2 has a O(n + m)-running time.

Remark 8. Analogously to the observation in Remark 6 relative to the algorithm
ALGO1, also algorithm ALGO2 can be adapted so as to produce as output the
longest connected voice leading starting at V (of an initial segment) of C, by using
an additional string-variable X and adding the following lines of code between lines
11 and 12:

X := decode(Z)
for j := 0 to m − 2 do

X := X decode(Q[(h + m − 2 − j) mod (m − 1)])
OUTPUT(X)

The one-argument function decode yields the symbol si, when applied to the bit mask
B(si) which represents the singleton {si}, for si ∈ Σ. The function decode admits a
simple constant-time implementation. To begin with, let us represent the alphabet Σ
as an array Σ[0 .. σ−1], so that Σ[i] = si, for i = 0, 1, . . . , σ−1. Then, if x = B(si), we
have immediately si = Σ[⌈log2 x⌉], for i = 0, 1, . . . , σ − 1. Therefore, we can just put
decode(x)=

Def
Σ[⌈log2 x⌉]. If we further assume that the symbols of the alphabet Σ are

the first σ nonnegative integers, i.e. si = i, for 0 ≤ i ≤ σ − 1, the decoding function
becomes more simply decode(x)=

Def
⌈log2 x⌉. Additionally, under such an assumption,

we have also that B(s) = (1 ≪ s), where ≪ denotes the bitwise operation of left-
shifting, implying that also the coding of a singleton {s} as the bit mask B(s) can be
performed in constant time, for any symbol s ∈ Σ.

Notice, however, that if we modify the ALGO2 algorithm so as to output a voice
leading as described above, its running time increases to O(nm), provided that log2 x
can be computed in constant time. ⊓⊔

A second question we address is the following.

Problem 9. Given a chord progression C = 〈C0, C1, . . . , Cn〉, check whether C is regu-
lar. ⊓⊔
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ALGO2(C, V, W)
1. m := length(V)
2. n := length(C) − 1
3. for h = m − 2 down to 0 do
4. Q[h] := V[m − 2 − h]
5. S := 0σ

6. for i := 0 to m − 2 do
7. S := S ∨ V[i]
8. h := 0
9. for i := 1 to n do

10. if (C[i] ∧ S) = S then
11. Z := (C[i]∧ ∼ S)
12. D := Q[h]
13. Q[h] := Z
14. h := (h + 1) mod (m − 1)
15. S := (S∧ ∼ D) ∨ Z
16. else
17. return false
18. for j := 0 to m − 2 do
19. if Q[(h + j) mod (m − 1)] 6= W[m − 2 − j] then
20. return false
21. return true

Figure 4. An optimized variant with bit-parallelism of the ALGO1 algorithm

To solve this problem, a natural but inefficient solution could be the following one.
Let m be the size of the chords C0, C1, . . . , Cn. We start by checking that Ci 6= Ci+1,
for i = 0, 1, . . . , n − 1. Then we form all possible voicings of the first chord C0, and
for each such voicing V we run the algorithm ALGO2 to search for a connected
voice leading of C from V to the voicing W = V [1 ..m − 1] w, where w is the only
symbol of Cn not contained in C0 (if, indeed, |Cn \ C0| 6= 1, then, certainly, C would
not be regular). Since there are m! possible voicings of C0, such an approach has a
O(m!(n + m))-time complexity.

However, we note some facts. First of all, given the two distinct chords Ci and
Ci+1, we have that Ci −→ Ci+1 if and only if Ci and Ci+1 share exactly m−1 symbols.
Thus we can check easily if C0 −→ C1 −→ · · · −→ Cn −→ C0, which is a necessary
condition for the chord progression C to be regular. Thence, if we find a pair of chords
Ci and Ci+1 such that Ci −→ Ci+1 does not hold, we conclude immediately that C is
not regular. But we point out that the condition C0 −→ C1 −→ · · · −→ Cn −→ C0 is
not, in general, a sufficient condition for C to be regular. For instance, let us consider
the chords C ′ = {a, b, c}, C ′′ = {a, b, x} and C ′′′ = {a, b, d}. Although C ′ −→ C ′′ −→
C ′′′ −→ C ′ and C ′ 6= C ′′ 6= C ′′′ 6= C ′, the chord progression 〈C ′, C ′′, C ′′′〉 is not
regular.

We observe, however, that if C = 〈C0, C1, . . . , Cn〉 is regular, and we set

Xk =
m−1−k⋂

i=0

Ci , for k = 0, 1, . . . ,m − 1, 6

where Xm−1 = C0, then each of the m− 1 sets X0, X1, . . . , Xm−1, except the last one,
must be a nonempty proper subset of the set which immediately follows it; i.e., there

6 Notice that C cannot be regular unless n ≥ m − 1.
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ALGO3(C, m)
1. n := length(C) − 1
2. for i := 0 to n − 1 do
3. if C[i] = C[i + 1] then
4. return false
5. Xm−1 := C[0]
6. for k := m − 2 down to 0 do
7. Xk := Xk+1 ∩ C[m − k − 1]
8. if |Xk+1 \ Xk| = 1 then
9. - let z be such that Xk+1 = Xk ∪ {z}

10. V [k + 1] := W [k] := z
11. else
12. return false
13. - let c be such that X0 = {c}
14. V [0] := c
15. if c /∈ C[n] and |C[n] ∩ C[0]| = m − 1 then
16. - let w be such that C[n] \ C[0] = {w}
17. W [m − 1] := w
18. return ALGO1(C, V,W )
19. else
20. return false

Figure 5. The algorithm ALGO3 checks if a given chord progression C is regular.
The size of the chords in C is m.

must be m − 1 distinct symbols c0, c1, . . . , cm−2 of C0 such that

X0 = {c0} , X1 = {c0, c1} , . . . , Xm−2 = {c0, c1, . . . , cm−2}.
Additionally, if cm−1 is the symbol of C0 distinct from c0, c1, . . . , cm−2, then a circularly
connected voice leading V = 〈V0, V1, . . . , Vn〉 of C must begin necessarily with the
voicing c0c1 · · · cm−2cm−1; i.e. V0[i] = ci, for i = 0, 1, . . . ,m − 1. These considerations
are indeed immediate consequences of Theorem 19 in Appendix A. In addition, we
must also have that Cn = {c1, . . . , cm−1, w}, for some symbol w distinct from c0,
because Cn 6= C0 and Vn −→ V0, with Vn a voicing of Cn.

Then, given the chord progression C, in order to check whether C is regular,
we proceed as follows. We begin by forming the sets X0, X1, . . . , Xm−1, and check
whether |Xk+1 \ Xk| = 1, for k = 0, 1, . . . ,m − 2. If this is not the case, we conclude
immediately that C is not regular. Otherwise, we extract the symbols c0, c1, . . . , cm−1

such that ck+1 ∈ Xk+1 \Xk, for 0 ≤ k ≤ m− 2, and c0 ∈ X0, and then check whether
Cn = {c1, . . . , cm−1, w}, for some symbol w distinct from c0. If this is not the case, we
conclude again that C is not regular; otherwise we form the voicings V = c0c1 · · · cm−1

and W = c1c2 · · · cm−1w, and run the algorithm ALGO1 with inputs C, V , and W
to search for a connected voice leading of C from V to W . The resulting algorithm,
named ALGO3, is presented in Figure 5. Plainly, the time complexity of ALGO3 is
O(nm2) (at least in case in which sets are represented as linear arrays.)

However, by using the bit-parallelism technique, thus representing as usual sets
as bit masks, and voicings as arrays of bit masks, we can obtain an efficient variant
of the ALGO3 algorithm, called ALGO4. The algorithm ALGO4, shown in Figure 6,
uses the algorithm ALGO2 (the variant of ALGO1 based on bit-parallelism) as a
subroutine. It assumes that the input chord progression C is given as an array C of
bit masks representing the chords in C. By a simple inspection, it is easy to see that
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ALGO4(C, m)
1. n := length(C) − 1
2. for i := 0 to n − 1 do
3. if C[i] = C[i + 1] then
4. return false
5. X := C[0]
6. for k := m − 2 down to 0 do
7. Y := X ∧ C[m − k − 1]
8. if Y 6= 0σ and Y 6= X then
9. V[k + 1] := W[k] := X∧ ∼ Y

10. X := Y
11. else
12. return false
13. V[0] := X
14. if X ∧ C[n] = 0σ and (C[n] ∧ C[0]) ∨ X = C[0] then
15. W[m − 1] := C[n]∧ ∼ C[0]
16. return ALGO2(C,V,W)
17. else
18. return false

Figure 6. An optimized variant with bit-parallelism of the ALGO3 algorithm

the ALGO4 algorithm has an O(n + m)-running time and requires only O(m)-extra
space.

3.1 Further questions on the connectivity of chords and voicings

We discuss next a few further questions concerning the connectivity of chords and
voicings. We begin by observing that

Property 10. Any two chords of the same size can always be connected by a voice
leading. ⊓⊔

Indeed, let C ′ and C ′′ be two chords of size m, and let V0 be any voicing of C ′. We
define a connected voice leading V = 〈V0, V1, . . . , Vm〉, in such a way that

– Vi+1[1 ..m − 1] = Vi[0 ..m − 2], and
– Vi+1[0] is any symbol in C ′′ \ Set(Vi+1[1 ..m − 1]),

for i = 0, 1, . . . ,m − 2.
Since Vm is a voicing of C ′′, it follows that V is indeed a voice leading connecting

C ′ to C ′′.

We observe that in the above construction the voicing V0 of C ′ has been selected
arbitrarily. Therefore, we can conclude that the following property holds too:

Property 11. Any given chord progression C = 〈C0, C1, . . . , Cn〉 can always be embed-
ded into a connected chord progression C′ = 〈C ′

0, C
′
1, . . . , C

′
p〉, in the sense that Ci =

C ′
ki

, for some strictly increasing sequence of indices 0 ≤ ki ≤ p, for i = 0, 1, . . . , n. ⊓⊔

An interesting problem is then the following:

Open Problem 12. Find a minimal connected chord progression which extends a given
chord progression. ⊓⊔
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The connectivity relation between voicings depends on the richness of the alpha-
bet. For instance, let us consider the voicings V = abcd and W = abdc of the same
chord C = {a, b, c, d}. If we try to connect V to W by using only symbols of the
alphabet Σ = {a, b, c, d}, then we end up with the periodic voice leading

V = 〈V1, V2, V3, V4, V1, V2, V3, V4, V1, V2, V3, V4, . . .〉 ,

where V1 = V = abcd, V2 = dabc, V3 = cdab and V4 = bcda, proving that V can not
be connected to W with respect to the alphabet Σ.

However, if we are allowed to use a new symbol, say x, then it is immediate to
see that

〈abcd, xabc, cxab, dcxa, bdcx, abdc〉
is a voice leading which connects V to W (with respect to the alphabet Σ ∪ {x}).

An immediate consequence of Theorem 16 in Appendix A is the following con-
nectability test for voicings:

Given any two voicings V and W of the same length over an alphabet Σ, if
Set(V ) 6= Σ or Set(W ) 6= Σ, then V can be connected to W with respect to
Σ, otherwise V can be connected to W if and only if W is a substring of V V .

But despite the simplicity of the above test, the related optimization problem does
not seem to possess a simple and efficient algorithmic solution:

Open Problem 13. Given two voicings V and W of the same length over an alphabet
Σ, determine a shortest voice leading connecting V to W . ⊓⊔

Notice that Open Problems 12 and 13 above may have practical applications in
various musical situations, as for instance in the case in which one wants to compose a
chord progression by using certain fixed or preferred chords or chord-voicings, eventu-
ally interspacing them by some other chords, and the length of the chord progression
is constrained so as to fit within a given maximum number of available bars.

Another interesting question related to the connectivity relation between voicings,
with applications in music composition, is the following. When a composer is engaged
in assembling a harmonic progression, sometimes he or she has at hand only a limited
number of available tones to form the various chords of the progression; this is the case,
for instance, when the notes must belong to a particular scale, such as a pentatonic
scale, or a diatonic scale, or similar. In this case, the above cited Theorem 16 has the
consequence that if V and W are voicings of two distinct chords, then no additional
tone is required to connect V to W . However, the theorem does not say anything on
the fact that a voice leading V which connects V to W have to satisfy the additional
property that any two or more consecutive voicings of V must have distinct base
chords.

The ability of creating harmonic progressions with a certain degree of “dissim-
ilarity” between consecutive chords is an important issue in order for a harmonic
progression not to result too monotonous or uninteresting. From Corollary 18 in Ap-
pendix A, it follows that two extra symbols suffice to allow any two voicings V and
W of the same length to be connected by a voice leading V = 〈V0, V1, . . . , Vn〉 such
that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1. This implies also that given a chord
progression C, we can always extend C to a regular chord progression by adding at
most two new symbols. An interesting question is then the following:
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Open Problem 14. Given a chord progression C = 〈C0, C1, . . . Cn〉 and a fixed bound
k > n, determine the minimum number of new symbols we need to add in order that
C can be extended to a regular chord progression of length at most k. ⊓⊔

4 Conclusions

We have presented some combinatorial problems on strings which arise in the fields
of music processing and music analysis. We have also provided algorithms to solve
some of these problems, whereas some others have been raised but left unsolved (at
least in the sense that no efficient algorithm has been provided). We plan to address
in more details such problems in the future and to provide also efficient algorithmic
solutions to them.
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A Some theoretical results on voicings and connected chord
progressions

In this appendix we present in details some theoretical results that have been already
referenced in Section 3.

We need first some further definitions. Let Σ be an alphabet, and let X and Y
be strings over Σ. We say that X is a prefix of Y , and write X ❁ Y , if Y = X Z
for some string Z. If s is a symbol of Σ and 0 ≤ k < |X|, we denote by X(k : s) the
string obtained from X by replacing its (k + 1)-th symbol by s, so that the following
equality holds

X(k : s) = X[0 .. k − 1] s X[k .. |X| − 1] .

Moreover, we put also X(k : s) = X when k ≥ |X|.

Lemma 15. Let V be a voicing of length m over the alphabet Σ, and let s ∈ Σ \
Set(V ). Then, for each k ≥ 0, V (k : s) is a voicing and V =⇒ V (k : s).

Proof. Plainly, V (k : s) is a voicing, since s /∈ Set(V ). To show that V =⇒ V (k : s),
we set S = V (k : s) V and Vi = S[|S| − m − i .. |S| − 1 − i], for i = 0, 1, . . . , |S| − m.
Then it is easy to verify that 〈V0, V1, . . . , V|S|−m〉 is a voice leading connecting V to
V (k : s). ⊓⊔

Theorem 16. Any two voicings of the same length m over an alphabet Σ of size
larger than m are connectable in Σ.

Proof. Let V and W be two voicings of length m over an alphabet Σ of size σ > m.
We will show that V =⇒ W , by proving by induction that for each ℓ = 0, 1, . . . ,m
there is a voicing Z of length m such that V =⇒ Z and W [0 .. ℓ − 1] ❁ Z.

For ℓ = 0, it is enough to take Z = V , since V =⇒ V (by (1) of Lemma 1), and
W [0 .. ℓ − 1] = ε ❁ V .

For the inductive step, let 1 ≤ ℓ ≤ m−1, and let us assume that there is a voicing
U (of length m) such that V =⇒ U and W [0 .. ℓ − 1] ❁ U . Since |U | < σ, the set
Σ \ Set(U) is nonempty, so we can pick an s ∈ Σ \ Set(U). Let

k = min({0 ≤ i < m : U [i] = W [ℓ]} ∪ {m}) ,

Û = U(k : s) ,

Z = Û(ℓ : W [ℓ]) .

Then, by Lemma 15, the strings Û and Z are voicings of length m and, additionally,

U =⇒ Û and Û =⇒ Z hold. By the transitivity of the connectivity relation “=⇒”
(cf. Lemma 1) we have V =⇒ Z. To conclude the proof of the inductive step, we have
only to observe that W [0 .. ℓ] ❁ Z plainly holds. ⊓⊔

Remark 17. The proof of Theorem 16 suggests an algorithm to effectively construct
a voice leading V which connects any two given voicings V and W of the same length
m, over an alphabet Σ of size larger than m. Observe, however, that the voice leading
V so constructed is not, in general, the smallest possible. ⊓⊔

Corollary 18. Let V and W be voicings of length m over an alphabet Σ of size at
least m + 2. Then there is a connected voice leading 〈V0, V1, . . . , Vn〉, which connects
V to W with respect to Σ,such that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1.
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Proof. As usual, let σ = |Σ|. Since |Set(V )| = |Set(W )| < σ, there exist a, b ∈ Σ
such that a /∈ Set(V ) and b /∈ Set(W ). Let us put V ′ = V a and W ′ = W b. Then V ′

and W ′ are voicings of length m+1, and since σ > m+1, by Theorem 16, there exists
a connected voice leading U = 〈U0, U1, . . . , Un〉 such that U0 = V ′ and Un = W ′.

Next, we define a voice leading V = 〈V0, V1, . . . , Vn〉, by putting Vi = U [0 ..m−1],
for i = 0, 1, . . . , n. To begin with, notice that V0 = V and Vn = W . Moreover, since
Vi+1 = Ui+1[0] Vi[0 ..m− 2], for i = 0, 1, . . . , n− 1, it follows that V is a voice leading
which connects V to W , with respect to the alphabet Σ. It only remains to show
that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1, which we do as follows. By way of
contradiction, let us assume that Set(Vj) = Set(Vj+1), for some j ∈ {0, 1, . . . , n− 1}.
Then we would have Vj[m−1] = Vj+1[0], as Vj −→ Vj+1. But Vj[m−1] = Uj[m−1] =
Uj+1[m], as Uj −→ Uj+1, and Vj+1[0] = Uj+1[0]. Therefore, Uj+1[m] = Uj+1[0], which
is a contradiction, since Uj+1 is a voicing. ⊓⊔
Theorem 19. Let C = 〈C0, C1, . . . , Cm−1〉 be a connected chord progression, with
m = size(C0) ≥ 2, such that Ci 6= Ci+1, for i = 0, 1, . . . ,m − 2, and let 〈V0, V1, . . . ,
Vm−1〉 be a connected voice leading of C. Then

k⋂

i=0

Ci = Set(V0[0 ..m − k − 1]) ,

for k = 0, 1, . . . ,m − 1.

Proof. We begin by showing that

V0[0 ..m − k − 1] = Vi[i .. i + m − k − 1] , for 0 ≤ i ≤ k , (1)

by induction on k = 0, 1, . . . ,m − 1.
For k = 0, (1) reduces to V0 = V0, which is trivially true.
For the inductive step, let us suppose that (1) holds for some k such that 0 ≤ k ≤

m − 2. Then, in order to prove that (1) holds also for k + 1, we need to verify that
V0[0 ..m − k − 2] = Vk+1[k + 1 ..m − 1].

Since Vk −→ Vk+1, we have Vk[k ..m − 2] = Vk+1[k + 1 ..m − 1]. In addition, by
the inductive hypothesis, we have V0[0 ..m − k − 1] = Vk[k ..m − 1], which plainly
implies V0[0 ..m−k−2] = Vk[k ..m−2], by dropping the last symbol in both voicings.
Therefore we have V0[0 ..m − k − 2] = Vk+1[k + 1 ..m − 1], completing the proof of
(1).

From (1), it follows that

Set(V0[0 ..m − k − 1]) ⊆
k⋂

i=0

Set(Vi) =
k⋂

i=0

Ci ,

so that we are only left with proving the converse inclusion

k⋂

i=0

Ci ⊆ Set(V0[0 ..m − k − 1]) . (2)

Since
⋂k

i=0 Ci ⊆ C0 = Set(V0), to show (2) it is enough to prove that

Set(V0[m − k ..m − 1]) ∩
k⋂

i=0

Ci = ∅ , (3)
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which we do as follows. Let m − k ≤ h ≤ m − 1. Then 0 < m − h ≤ k, so that⋂k
i=0 Ci ⊆ Cm−h−1 ∩ Cm−h = Set(Vm−h−1) ∩ Set(Vm−h). Since Vm−h−1 −→ Vm−h, we

have Set(Vm−h−1[0 ..m − 2]) = Set(Vm−h[1 ..m − 1]). But Cm−h−1 6= Cm−h, hence

V0[h] = Vm−h−1[m − 1] /∈ Cm−h, which implies V0[h] /∈ ⋂k
i=0 Ci. Therefore (3) holds,

which in turn implies (2), concluding the proof of the theorem. ⊓⊔
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Abstract. The words that tile the plane by translation are characterized by the
Beauquier-Nivat condition. By using the constant time algorithms for computing the
longest common extensions in two words, we provide a linear time algorithm in the case
of pseudo-square polyominoes, improving the previous quadratic algorithm of Gambini
and Vuillon. For pseudo-hexagon polyominoes not containing arbitrarily large square
factors we also have a linear algorithm.

Keywords: tiling polyominoes, plane tesselation, longest common extensions

1 Introduction

The way of tiling planar surfaces takes its roots in the ancient times for decorative
purposes. More recently, connections were established with computational theory,
mathematical logic and discrete geometry, where tilings are often regarded as basic
objects for proving undecidability results for planar problems. Tilings have been also
used in physics, as powerful tools for studying quasi-crystal structures: in particu-
lar these structures can be better understood by representing them as rigid tilings
decorated by atoms in a uniform fashion. Their long-range order can consequently
be investigated in a purely geometrical framework, after assigning to every tiling a
structural energy.

A classical result of Berger [2] states that given a set of tiles, it is not decidable
whether there exists a tiling of the plane which involves all its elements. This result has
been achieved by constructing an aperiodic set of tiles, and it has been strengthened
afterwards by Gurevich and Koriakov [12] to the periodic case.

It was therefore natural to seek manageable problems, and polyominoes appeared
as good candidates. Invented by Golomb [10] who coined the term polyomino, these
objects, also called n-ominoes or lattice animals, gained some interest after being
popularized by Gardner in mathematical games [9]. In statistical physics they ap-
pear as models for percolation theory and their combinatorial properties have been
extensively studied. These nowadays well studied combinatorial objects are still re-
lated to many challenging problems, such as tiling problems [5,11], games [9], among
many others (see Weisstein [18] for more pointers). Their enumeration is also an open
problem despite the fact that restricted classes have been fully described.

There are different types of polyominoes and here we consider a polyomino as a
finite union of unit lattice closed squares (pixels) in the discrete plane whose boundary
consists of a simple closed polygonal path using 4-connectedness (Figure 2(a)). In
particular, polyominoes are simply connected (contain no holes), and have no multiple
points (Figure 1(a)).

⋆ with the support of NSERC (Canada)
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(a): (b):

Figure 1. (a) a polyomino; (b) not a polyomino

The problem of deciding if a given polyomino tiles the plane by translation goes
back to Wisjhoff and Van Leeuven [19] who coined the term exact polyomino for these,
and also provided a polynomial O(n4) algorithm for solving the problem. Polyominoes
may be coded by words on a 4-letter alphabet Σ = {a, a, b, b}, also known as the
Freeman chain codes [6,7], coding their boundaries (see [3] for further reading). For

(b):(a): 

Figure 2. (a) an exact polyomino; (b) the associated tiling

instance, the boundary b(P ) of the polyomino in Figure 2 (a), in a counterclockwise
manner, is coded by the word w = a b a a b a b b a b a b a b a b.

Observe that we may consider the words as circular which avoids a fixed origin.
The perimeter of a polyomino P is the length of its boundary word b(P ) and is
of even length 2n. Beauquier and Nivat [1] gave a characterization stating that the
boundary of such a polyomino P may be factorized (not necessarily in a unique way)
as

b(P ) = A · B · C · Â · B̂ · Ĉ (1)

where at most one of the variables is possibly empty. The operation (̂ ) appearing

in (1) is defined by Û = Ũ , where (̃ ) is the usual reversal operation and ( ) the
complement on Σ = {a, a, b, b}. For instance, the exact polyomino in Figure 2 (b) is
coded by the circular word

w = a a b a b a a b a b a b a b,

its semi-perimeter is 7, and its boundary may be factorized as

b(P ) = A · B · Â · B̂ = a b a a · b a b · a a b a · b a b,

and for the exact polyomino P ′ below

(b):(a): 

66



On the Problem of Deciding If a Polyomino Tiles the Plane by Translation

the boundary may be factorized as

b(P ′) ≡ a a b · a b a · b a b · b a a · a b a · b a b.

Determining if a given word w ∈ Σn is the boundary of a polyomino is com-
puted in O(n). Therefore the problem reduces to finding a factorization satisfying
the Beauquier and Nivat condition. Recently, Gambini and Vuillon [8] improved
the Wisjhoof-van Leeuven bound by designing an O(n2) algorithm that checks the
Beauquier-Nivat condition (1).

The underlying idea of our approach is to search efficiently the pairs of homo-

logue factors X, X̂. Our algorithms borrow from Lothaire [16] (for instance) that
the Longest-Common-Factor, the Longest-Common-Prefix and the Longest-Common-
Suffix in two words may be computed in linear time. The approach is also inspired
by the linear algorithm of Gusfield and Stoye [14] for detecting tandem repeats in a
word, and by the linear algorithm used to detect repetitions with gaps, as shown in
Lothaire [16]. More precisely, the computation of the Longest-Common-Left-Extension
(LCLE(u, v)) and Longest-Common-Right-Extension (LCRE(u, v)) is achieved in con-
stant time, provided a linear pre-processing is performed on u and v, by a clever
utilization of suffix-trees (see Gusfield [13]).

Taking advantage of these algorithms we provide a linear algorithm, with respect
to the length of words, for pseudo-square polyominoes (Theorem 8). We establish a
first step in order to provide a linear algorithm for pseudo-hexagons as well. Indeed,
for boundary words not having two large square repetitions there is a linear algorithm
to decide whether a polyomino tiles the plane by translation or not (Theorem 11).

2 Preliminaries

Let Σ be a finite alphabet whose elements are called letters. Finite words are sequences
of letters, that is, functions w : [0..n − 1] −→ Σ , and the set of words of length n
is denoted Σn. The free monoid Σ∗ = ∪∞

n=0Σ
n is the set of all finite words and the

empty word is denoted ǫ.
A morphism is a function σ : Σ∗ −→ Σ∗ such that σ(uv) = σ(u)σ(v). Clearly a

morphism is defined by the image of the letters. A factor f of w is a word f ∈ Σ∗

satisfying
∃x ∈ Σ∗, y ∈ Σ∗, w = xfy.

If x = ǫ (resp. y = ǫ ) then f is called prefix (resp. suffix). The set of all factors of
w is denoted by F (w), and those of length n is Fn(w) = F (w)∩Σn. Finally Pref(w)
denotes the set of all prefixes of w. The length of a word w is |w|, and the number of
occurrences of a factor f ∈ Σ∗ is |w|f . A word is said to be primitive if it is not a power
of another word. If w = pu, and |w| = n, |p| = k, then p−1w = w[k + 1]..w[n− 1] = u
is the word obtained by erasing p. As a special case when |p| = 1 we have the shift
operator σ defined by σ(w) = w[1..(n − 1)]. Another useful operator is the circular
permutation ρ defined by ρ(w) = w[1..(n − 1)] · w[0].

Two words u and v are conjugate when there are words x, y such that u = xy and
v = yx. Equivalently, u and v are conjugate if and only if there exists an index k such
that v = ρk(v). Conjugation is an equivalence relation written u ≡ v. The reversal
ũ of u = u1u2 · · ·un ∈ Σn is the word ũ = unun−1 · · · u1. A palindrome is a word
p such that p = p̃ , and for a language L ⊆ Σ∞, we denote by Pal(L) the set of its
palindromic factors.
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Paths on the square lattice Z × Z are encoded on the alphabet Σ = {a, a, b, b}
identified with the unit steps {→,←, ↑, ↓}. Parallel paths always define a translation
and we say that two words are homologue when the corresponding paths define a
translation. More precisely, two words u and v are said to be homologue when either

(i) u = v, or
(ii) u = v̂.

An exact polyomino P whose boundary is b(P ) = A · B · C · Â · B̂ · Ĉ is called
a pseudo-hexagon if none of the variables is empty and a pseudo-square otherwise. In

this factorization A (resp. B,C) and Â (resp. B̂, Ĉ) are homologue and define the
respective translations. For instance, the translations defined by the homologue sides
of the pseudo-square polyomino

b(P ) = A · B · Â · B̂ = a b a a · b a b · a a b a · b a b

are shown in Figure 3 (a). In the case of a pseudo-hexagon, as in Figure 3(b), the

(a): (b):

Figure 3. Translations defined by homologue sides of a polyomino tile

translations are related by the relation t3 = t1 + t2. Moreover, the relative positions
of the starting and ending point of any path is completely determined by the sum
of the unit vectors corresponding to each letter. By abuse of notation we write for a
path w : [0..n − 1] → Σ

−→w =
n−1∑

k=0

−→wk.

Note that −→w = 0 if and only if w is a closed path, and that −→u = −−→̂
u .

3 Searching the homologue factors

Since polyominoes are coded by circular words w, in order to find the homologue
factors it is convenient to work with w ·w since a pair of homologue factors might be
split, depending on the starting point.

Therefore, finding the homologue factors amounts to look for the longest common
factor of ww and ŵw denoted LCF(ww, ŵw).

For instance the longest common factors of the polyomino-tile P in Figure 2 (b)
are

LCF(ww, ŵw) = {a b a a, a a b a}
and they are necessarily homologue sides(!). Indeed, since we know the positions i and
j of a b a a and a a ba in w, this is easy to check in linear time. Clearly the boundary
of P may be written as

b(P ) = w = a b a a · u · a a b a · v
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and then one easily checks that v = û. Unfortunately the situation is not always that
good. Indeed, let w = a a b b b a a b a a b a b b b a a b a b. Then the longest homologue
factors of w are (see Figure 4)

LCF(ww, ŵw) = {a a b b b a, a b b b a a},

but w = a a b b b a · a b a a b · a b b b a a · b a b does not satisfy the Beauquier-Nivat
condition. A good factorization is w ≡ b b ·b a a b ·a a b a ·b b ·b a a b ·a b a a. This means

(c):(a): (b):

Figure 4. (b) longest homologue factors; (c) a good factorization

that not all the homologue factors provide a factorization, and good candidates are
those separated by factors of same length.

Definition 1. Let w ≡ b(P ) be the boundary word of a polyomino P . A factor A of
w is admissible if

(i) w ≡ AxÂy, for some x, y such that |x| = |y|;
(ii) A is saturated, that is, x0 6= xk−1 and y0 6= yk−1 where k = |x| = |y|.

Nevertheless, admissibility is ensured for words that code the boundary of poly-
ominoes. Indeed, Gambini and Vuillon established the following property ([8], section
3.1) by using a geometric result of Daurat and Nivat [5].

Lemma 2. Let w ≡ ABCÂB̂Ĉ be a Beauquier-Nivat factorization of the boundary
b(P ) of an exact polyomino P . Then A,B and C are admissible.

Conversely, not all admissible factors lead to a Beauquier-Nivat factorization. For
instance, in the polyomino w ≡ a a a b a b a b a a a b a b a b shown below the factor aaa

(a): (b):

is admissible but does not provide a correct factorization of w. Indeed, A = aa is
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the admissible factor (w = AxÂy with x = ababab, y = ababab) yielding a correct
factorization with B = aba and C = bab:

w ≡ a a · a b a · b a b · a a · a b a · b a b.

The following proposition establishes a useful property.

Proposition 3. Let w = b(P ) ∈ Σ2n be the contour of a polyomino P and let p
be any fixed position in w. Let X be the set of all admissible factors overlapping the

position p and X̂ be the set of their respective homologue factors. Then, there exist

at least one position in w that is not covered by any element of X ∪ X̂.

Proof. By contradiction, assume that there is no such point. Let A ∈ X be the factor
that starts at the leftmost position and B ∈ X be the one that ends at the righmost

position as shown below. The homologue factors A, Â and B, B̂ always define two

p1 S1

S2S2

A
w

B B

A

x y

S

symmetries denoted respectively by S1 and S2. Let x be the overlap between A and

B̂, and y be the overlap between A and B. Without loss of generality we may consider
that |y| ≥ |x|. If |x| = |y| the symmetry implies that x = ŷ and the factorization is

w ≡ xU x̂ V x Û x̂ V̂ . (2)

We use a property proved in Brlek et all. ([4], DLT2005) that simplifies a result of
Daurat and Nivat ([5], IWCIA’03) on the number of salient and reentrant points of
discrete sets: indeed, the number of right turns minus the number of left turns in a
closed and non-intersecting path on a square lattice is 4. In equation 2, notice that
all turns in a factor are cancelled by those of its homologue. Therefore we only have
to consider the turns between consecutive factors. Reading, the word w from left to
right, we see that each pair of consecutive factors is cancelled by its homologue: xU

is cancelled by Û x̂, U x̂ by x Û , x̂ V by V̂ x (the word w is circular), and V x by

x̂ V̂ . Hence the difference between right and left turns is 0, and w is self intersecting.
Contradiction.

If |x| 6= |y| we have the following situation where the factor y (thick line) propa-

y

A
S1 S1

V

BS2

y

y

S2

A

w
x V αβ

B

gates as shown by using the symmetries S1 and S2. In this case ŷ does not overlap Â

in B̂, so let V be the factor between Â and ŷ. We have the following factorization

w ≡ A V̂ β Â V α .
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Passing to vectors, and using commutativity of addition, we have

−→w =
−→
A +

−→̂
A +

−→
V +

−→̂
V +

−→
β + −→α =

−→
β + −→α =

−→
0 .

But ŷ = αx, so that β is followed by α in w. Therefore βα is a nonempty closed path
on the boundary of P . Contradiction.

In the case where ŷ does overlap Â in B̂ we have the following situation where

w

A

B

y y

S1 S1

S2
S2

A

B

γ

y α
β

x

−→γ +
−→
β = 0 (by closure property −→w = 0 =

−→
A + −→γ +

−→̂
A +

−→
β ). Moreover, ŷ = αβx,

so that y γ ŷ contains the nonempty factor α̂ γ α β corresponding to a closed path.
Contradiction. ⊓⊔

Proposition 3 specializes for pseudo-squares as follows. Assume that a pseudo-
square P has two factorizations

w = b(P ) ≡ ABÂB̂ ≡ XY X̂Ŷ

where A = sXt. Then, by using the same argument as in the proof above, the
boundary of P contains a loop yielding a contradiction.

Corollary 4. If w = b(P ) ≡ ABÂB̂ ≡ XY X̂Ŷ are two distinct factorizations of
the boundary of a pseudo-square P , then there exist α, β, γ such that A = αβ and
X = βγ.

As an exemple we have the following pseudo-square

aba · bab · aba · bab ≡ bab · aba · bab · aba,

showing two distinct factorizations. The problem of enumerating all the factorizations
of a given pseudo-square will be addressed in a forthcoming paper.

3.1 A linear time algorithm for detecting pseudo-squares

The main idea used to achieve linear time factorization, is to choose a position p in
w and then list all the admissible factors A that overlap this fixed position. The fol-
lowing auxiliary functions are useful. The Longest-Common-Right-Extension (LCRE)
and Longest-Common-Left-Extension (LCLE) of two words u and v at positions re-
spectively m and n are partial functions

LCRE, LCLE : Σ∗ × Σ∗ × N × N −→ N

defined as follows. For u, v ∈ Σ∗, let m and n be such that 0 ≤ m ≤ |u| and
0 ≤ n ≤ |v|, then
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LCRE(u, v,m, n) = LCP(ρm(u), ρn(v))

LCLE(u, v,m, n) = LCS(ρ|u|−m(u), ρ|v|−n(v))

Remark 5. It is clear from the definition above that LCRE and LCLE may be com-
puted in linear time. Their computation may also be performed directly by the follow-
ing formulas. Since we use circular words w, denote m = m mod |w|. If u[m] = v[n]
then

(i) LCRE(u, v,m, n) = max{k ∈ N | u[m..(m + k)] = v[n..(n + k)]} + 1,
(ii) LCLE(u, v,m, n) = max{k ∈ N | u[(m − k)..m] = v[(n − k)..n]} + 1,

and, otherwise, LCRE(u, v,m, n) = LCLE(u, v,m, n) = 0.

For example, if u = aabbbaabaababababa, v = babaabbbaabbabababb, i = 4 and
j = 7 then (note that the words all starts at position 0) we have

u = a a b bb a a b a a b a b a b a b a,

v = b a b a a b bb a a b b a b a b a b b,

and LCRE(u, v, 4, 7) = 4, LCLE(u, v, 4, 7) = 5. On the other hand LCRE(u,v,4,1) =
LCLE(u,v,4,1)=0.

Later we will need to perform these computations O(n) times. Fortunately, the
computation of LCLE and LCRE is achieved in constant time, provided a linear pre-
processing is performed on u and v, by a clever utilization of suffix-trees (see Gusfield
[13], section 9.1, or Gusfield and Stoye [14], page 531).

Lemma 6. Let w = b(P ) be the boundary of P . For each occurrence of A in w and
each occurrence of A in ŵ, whether A is admissible or not is decidable in constant
time.

Proof. Given an occurrence of A in ŵ, one computes in constant time the correspond-

ing position of Â in w. If Â overlaps A in w is decidable in constant time. If Â and

A do not overlap then, u ≡ AxÂy and A is an admissible factor, by definition, if and
only if the three following conditions are verified : |x| = |y|, x0 6= xk−1 and y0 6= yk−1

where k = |x| = |y|. ⊓⊔
Lemma 7. Let w = b(P ) ∈ Σ2n be the boundary of P . For any position p in w,
listing all the admissible factors overlapping p is computed in linear time.

Proof. The following algorithm lists all admissible factors containing the p-th letter w.
Since the longest common right and left extension problem can be solved in constant
time after linear time pre-processing.

Algorithm 1
Input: w = b(P ) ∈ Σ2n

0 : Pre-process w and ŵ so that LCLE and LCRE take constant time
1 : For i := 0 to 2n − 1 do
2 : l := LCLE(w, ŵ, p, i) − 1
3 : r := LCRE(w, ŵ, p, i) − 1
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4 : A := w[p − l, . . . , p + r]

5 : If w ≡ AxÂy with |x| = |y| then
6 : Add A to the list of admissible factors.
7 : end if
8 : end for

Using the modulo in managing the positions is superfluous because we may assume,
without loss of generality (since w is a circular word) that p = n. Note that, by def-
inition of LCRE and LCLE, the factor A in this algorithm is necessarily saturated.
As shown in Lemma 6, the condition can be tested in constant time by direct com-
putation of positions in w. Finally, the loop is performed exactly 2n times. ⊓⊔

This lemma implies that the number of admissible factors in a word is linear. To
determine a precise upper bound remains an open problem which is similar to the
problem of determining a tight upper bound for the number of distinct squares in a
word (see for instance Lothaire [16] or Ilie [15]).

Theorem 8. Let w = b(P ) ∈ Σ2n be the boundary of P . Determining if w codes a
pseudo-square is decidable in linear time.

1

w

w

l r

AA

A

y x

A

i

ll r

x y

p

p+r+

i+r+n+1

Figure 5. An admissible factor A in w and ŵ

Proof. If w encodes an exact polyomino, any position belongs to some admissible
factor of the Beauquier-Nivat factorization. Therefore, it suffices to apply Lemma 7
to an arbitrary position p. Then, Algorithm 1 provides the list of all admissible factors
overlapping the position p, and it only remains to check, for each admissible factor, if
x = ŷ. Lemma 2 ensures that if w ≡ ABÂB̂ then B is saturated. As shown in Figure
5, it suffices now to replace step 6 in Algorithm 1 by:

6a : If LCRE(w, ŵ, p + r + 1, i + r + n + 1) = |x| then
6b : P is a pseudo-square.
6c : End if

Since LCRE is computed in constant time, the overall algorithm is linear. ⊓⊔

3.2 A linear algorithm for k-square-free pseudo-hexagons

Let w ≡ b(P ) be the boundary word of an exact polyomino P . A factor f of a word
w is called a square if f = xx for some x ∈ Σ+. The set of squares of a word w is
Squares(w).
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Definition 9. A word w is k-square-free ⇐⇒ max{|f | : f ∈ Squares(w)} < k.

The following technical lemma is useful.

Lemma 10. Let w = b(P ) ∈ Σ2n a k-square-free word, and let p be any position in
w. Then, the number of admissible factors that overlap the position p in w is bounded
by 4k + 2 log(n).

Proof. Let A1, A2, . . . , Ak be all the admissible factors that overlaps p in w. Since

w ≡ AixÂiy with |x| = |y| for all 1 ≤ i ≤ k, all their homologue occurrences Âi

overlaps the position p′ = p + n. Thus, there is a position q such that all Ai overlap q
in ŵ. In Algorithm 1, all the admissible factors overlapping p in w are listed through
a loop such that each iteration can detect at most one of them. Let i1, i2 be such that
0 ≤ i1 < i2 < q and assume that admissible factors are detected when i = i1 and
i = i2.

Let α1 = ŵ[i1, . . . , q] and α2 = ŵ[i2, . . . , q]. By definition of common extension we
also have that α1 = w[p, . . . , p + |α1| − 1] and α2 = w[p, . . . , p + |α2| − 1], as shown
below.

p α1

α
2

α
2

α1i1

i2

w

w

This implies that α2 is prefix and suffix of α1, so that Lothaire’s Proposition 1.3.4
[17] applies. It follows that there are two words u, v ∈ Σ∗ such that α1 = (uv)mu, for
some integer m with

m(|α1| − |α2|) ≥ |α2| ≥ (m − 1)(|α1| − |α2|). (3)

If |α1| < 2|α2|, equation (3) requires m to be greater than 1 and thus α1 contains a
square of length at least 1

2
|α1|. So, in Algorithm 1, as i goes from 0 to 2n − 1, the

number of admissible factors detected is bounded by :

- log n for i from 0 to q − 2k.
- 4k for i from q − 2k + 1 to q + 2k − 1.
- log n for i from q + 2k to 2n − 1.

Summing up all these provides the bound. ⊓⊔

Theorem 11. Let w = b(P ) ∈ Σ2n be a k-square-free word, with k ∈ O(
√

n).
Determining if w codes a pseudo-hexagon is decidable in linear time.

Proof. The idea is to construct convenient, and not too long, lists of admissible factors
and then to use the constant time LCRE function.

Algorithm 2
Input : w = b(P ) ∈ Σ2n

Build L1 : list of all admissible factors that overlap position p in w;
m := position of the rightmost letter of w included in a factor of L1;
Build L2 : list of all admissible factors that overlap position (m + 1) in w.
For all A ∈ L1 do

For all B ∈ L2 do
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If w ≡ ABxÂB̂y then
Compute i : position of x in w;
Compute j : position of ŷ in ŵ;
If LCRE(w, ŵ, i, j) = |x| then

P is a pseudo-hexagon;
End if

End if
End for

End for

Since w is k-square-free, Lemma 10 ensures that L1 and L2 each contain less than
4k+2 log n elements. The nested loops perform at most (4k+2 log n)2 iterations, and
thus, the overall complexity is O(n + (4k + 2 log n)2) = O(n). ⊓⊔

4 Concluding remarks

The results above generalize to more general tilings. Indeed, since the Beauquier-Nivat
factorization involves path properties, there is no need for a tile to be a polyomino.
For instance, the tile T in Figure 6

(a): (b):
S

Figure 6. (a) An hexagonal tile with (b) the associated tiling

is hexagonal and its Beauquier-Nivat factorization is (starting from S)

b(T ) = X · Y · Z · X̂ · Ŷ · Ẑ
= a a b a b a b a · b a a · b a b · a b a b a b a a · a a b · b a b .

The contour path is non-crossing, instead of self-avoiding as in the case of polyomi-
noes, and provides an instance of an 8-connected set of cells that tiles the plane by
translation. This leads naturally to the problem of characterizing the 8-connected sets
of cells that tile the plane by translation. On the other hand there is still a gap to fill.
A deeper analysis is needed to lift the condition on the number of square factors in the
contour word, in order to provide an optimal algorithm for deciding if a polyomino
tiles the plane by translation.
Acknowledgements The authors are grateful to the anonymous referees for their
careful reading and valuable comments.
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Abstract. This contribution advocates that two-dimensional context-free grammars
can be successfully used in the analysis of images containing objects that exhibit struc-
tural relations. The idea of structural construction is further developed. The approach
can be made computationally efficient, practical and be able to cope with noise. We
have developed and tested the method on a pilot study aiming at recognition of off-
line mathematical formulae. The other novelty is not treating symbol segmentation in
the image and structural analysis as two separate processes. This allows the system to
recover from errors made in initial symbol segmentation.

1 Motivation and Taxonomy of Approaches

The paper serves two main purposes. First, it intends to point the reader’s attention
to the theory of two-dimensional (2D) languages. It focuses on context-free grammars
having the potential to cope with structural relations in images. Second, the paper
demonstrates on a pilot study concerning recognition of off-line hand written mathe-
matical formulae that the 2D context-free grammars have the potential to deal with
real-life noisy images.

The enthusiasm for grammar-based methods in pattern recognition from the
1970’s [6] has gradually faded down due to inability to cope with errors and noise.
Even mathematical linguistics, in which the formal grammar approach was pio-
neered [4], has tended to statistical methods since the 1990s.

M.I. Schlesinger from the Ukrainian Academy of Sciences in Kiev has been devel-
oping the 2D grammar-based pattern recognition theory in the context of engineering
drawings analysis since the late 1970s. His theory was explicated in the 10th chapter
of the monograph [17] in English for the first time.

The first author of this paper studied independently the theoretical limits of 2D
grammars [14] and proved them to be rather restrictive.

The main motivation of the authors of the reported work is to discover to what
extent the 2D grammars are applicable to practical image analysis.

This paper provides insight into an ongoing work on a pilot study aiming at off-
line recognition of mathematical formulae. We have chosen this application domain
because there is a clear structure in formulae and works of others exist which can be
used for comparison.

Let us categorize the approaches to mathematical formulae recognition along two
directions:

– on-line recognition (the timing of the pen strokes is available) versus off-line
recognition (only an image is available).



Proceedings of the Prague Stringology Conference ’06

– printed versus hand-written formulae.

We deal with off-line recognition of hand-written formulae in this contribution. Of
course, the approach can be also applied to printed formulae.

2 State-of-the-Art

Formulae recognition has been a widely studied task. Several approaches from pattern
recognition were adopted as well as new methods were motivated and designed by
this particular task. A taxonomy of the methods is given in [3]. There are only a
few commercial products performing formulae recognition. The most prominent is
probably xMathJournal software [19] for Tablet PCs which uses on-line recognition.
This software serves as a sophisticated calculator allowing inputs to be written by
hand.

Most of the known methods follow the following two-phase procedure:

– Detection of individual symbols by image segmentation and labelling symbols
using pattern recognition techniques.

– Structural analysis of relations among labelled symbols.

Classical approaches known from Optical Character Recognition were adopted to
perform the symbols recognition phase. Images are segmented and a classifier is used
to assign symbols to segments. There are also works performing symbol detection,
segmentation and labelling during a single simultaneous process using Hidden Markov
Models [18].

Formalisms related to structural analysis include geometric grammars, graph
grammars, finding a minimal spanning tree, etc. [7,12,5].

Criticism of the commonly used methods concerns the image segmentation which
is done without any knowledge of the formulae structure. It is hardly possible to
recover from errors made during symbol segmentation phase. There have been at-
tempts to employ additional error corrections schemes. However, this postprocessing
corrections do not fit naturally into the pattern recognition process.

The approach based on the two-dimensional context-free (2D CF) grammars and
a general structural construction tries to solve this problem [17]. The group from Kiev
has applied their approach to images of musical scores [16] or electrical circuits [11].
Let us note that the notion of 2D CF grammars has appeared in works of other
authors, e.g., [13].

3 Theory of Two-dimensional Languages

The theory of two-dimensional languages studies generalizations of formal languages
to two dimensions. These generalizations can be done in many different ways. Au-
tomata working over a two-dimensional tape were firstly introduced by M. Blum and
C. Hewitt, already in 1967. Since then, several formal models recognizing or generat-
ing two-dimensional objects have been proposed in the literature.

The most common two-dimensional object is a picture which is a matrix of symbols
taken from a finite alphabet Σ. The set of all pictures over Σ is denoted by Σ∗∗. Each
subset L ⊆ Σ∗∗ is called a two-dimensional language. Note that it is also possible to
consider objects of more general shapes, e.g. connected arrays, but we will work only
with pictures.
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One of the important tasks the theory of two-dimensional languages deals with is
to search for suitable generalizations of the Chomsky hierarchy, especially of its first
two levels, i.e. regular and context-free languages. Several formalisms were adopted or
developed to fulfil this task, however, the more complex topology of pictures causes
that the properties of the proposed classes usually differ to those known from regular,
resp. context-free languages, despite the fact that the classes are defined via models
resembling finite-state automata, resp. context-free grammars.

In the following sections, we describe two models of 2D finite-state devices and
a 2D generalization of CF grammars. We also list basic properties of recognized
(generated) languages.

3.1 Finite-state Devices

A two-dimensional finite-state automaton (2FSA) [15] is a natural generalization of
the one-dimensional two-way automaton (which of recognition power equals the power
of 1D finite-state automaton). It is equipped by a two-dimensional tape and allowed
to move the head in four directions – left, right, up and down. This is the reason why
it is also called a four-way automaton by some authors.

Let 2DFSA denote a deterministic 2FSA and L(2FSA), resp. L(2DFSA) the
class of 2D languages recognizable by a 2FSA, resp. 2DFSA. The classes of recognized
languages are characterized by the following facts:

– L(2DFSA) is a proper subset of L(2FSA).
– L(2FSA) is not closed under concatenation (neither row or column), complement

and projection.
– The emptiness problem is not decidable even for 2DFSA’s.

Another kind of a finite-state device, so called two-dimensional on-line tessellation
automaton (2OTA), was introduced by K. Inoue and A. Nakamura [9] in 1977. It is
a kind of a bounded 2D cellular automaton. In comparison to the cellular automata,
computations are performed in a restricted way – cells do not make transitions at
every time-step, but rather a ‘transition wave’ passes once diagonally across them.
Each cell changes its state depending on two neighbors – the top one and the left one.
The result of a computation is determined by the state the bottom-right cell finishes
in.

Again, let 2DOTA denote a deterministic 2OTA and L(2OTA), resp. L(2DOTA)
be the classes of languages recognizable by the models. The most important results
on the automata follow:

– L(2DOTA) is a proper subset of L(2OTA).
– L(2OTA) is closed under row and column concatenation, union and intersection.
– L(OTA) is not closed under complement while L(DOTA) is closed under comple-

ment.
– L(DOTA) and L(FSA) are incomparable.
– L(DFSA) is a proper subset of L(DOTA).

D. Giammarresi and A. Restivo [8] present the class of languages recognizable by
this device as the ground level class of the two-dimensional theory, prior to languages
recognizable by two-dimensional finite-state automata. They argue that the proposed
class fulfills more natural requirements on such a generalization. Moreover, it is pos-
sible to use several formalisms to define the class. Except tessellation automata, they
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include tiling systems or monadic second order logic, thus the definition is robust as
in the case of regular languages. On the other hand, 2OTA’s are quite strong, since
some NP-complete languages can be recognized by them. This result speaks against
the promotion of the class to the 2D ground level class.

3.2 Two-dimensional Context-free Grammars

In this section we present a proposal of 2D CF grammars and results on them as they
were given in [14]. The grammars are a generalization of 2D CF grammars introduced
in [17].

Let [ai,j]m,n denote the matrix

a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

For P ∈ Σ∗∗, let rows(P ), resp. cols(P ) denote the number of rows, resp. columns
of P . We consider there is the only picture consisting of 0 rows and 0 columns. This
picture, denoted Λ, is called the empty picture, analogously to the empty word λ.

We define two binary operations, the row and column concatenation. Let A =
[ai,j]k,l and B = [bi,j]m,n be non-empty pictures over Σ. The column concatenation
A B, resp. row concatenation A B is defined if k = m, resp. l = n. The products of
the operations are given by the following schemes:

A B =

a1,1 . . . a1,l b1,1 . . . b1,n
...

. . .
...

...
. . .

...
ak,1 . . . ak,l bm,1 . . . bm,n

A B =

a1,1 . . . a1,l
...

. . .
...

ak,1 . . . ak,l

b1,1 . . . b1,n
...

. . .
...

bm,1 . . . bm,n

It means A B = [ci,j]k,l+n, where

ci,j =

{
ai,j if j ≤ l
bi,j−l otherwise

and similarly, A B = [di,j]k+m,l, where

di,j =

{
ai,j if i ≤ k
bi−k,j otherwise

The generalized concatenation is an unary operation
⊕

defined on a set of ma-
trixes of elements that are pictures over some alphabet. For i = 1, . . . ,m; j = 1, . . . , n,
let Pi,j be pictures over Σ.

⊕
[Pi,j]m,n is defined if

∀i ∈ {1, . . . ,m} rows(Pi,1) = rows(Pi,2) = . . . = rows(Pi,n)
∀j ∈ {1, . . . , n} cols(P1,j) = cols(P2,j) = . . . = cols(Pm,j)

The result of the operation is P1 P2 . . . Pm, where each Pk = Pk,1 Pk,2 . . . Pk,n.
See Figure 1 for an illustrative example.
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P2,1 P2,2 P2,3

P1,1 P1,2 P1,3

Figure 1. Scheme for the result of
⊕

[Pi,j]2,3 operation

Definition 1. A two-dimensional context-free grammar (2CFG) is a tuple (VN , VT ,
S0,P), where

• VN is a finite set of nonterminals
• VT is a finite set of terminals
• S0 ∈ VN is the initial nonterminal
• P is a finite set of productions of the form N → W , where N ∈ VN and W ∈

(VN ∪ VT )∗∗ \ {Λ}. In addition, P may contain production S0 → Λ. In this case,
no production in P contains S0 as a part of its right-hand side.

Definition 2. Let G = (VN , VT , S0,P) be a 2CFG. We define a picture language
L(G,N) over VT for every N ∈ VN . The definition is given by the following recurrent
rules:

I) If N → W is a production in P and W ∈ VT
∗∗, then W is in L(G,N).

II) Let N → [Ai,j]m,n be a production in P, different to S0 → Λ, and Pi,j (i = 1, . . . , n;
j = 1, . . . ,m) be pictures such that
• if Ai,j is a terminal, then Pi,j = Ai,j

• if Ai,j is a nonterminal, then Pi,j ∈ L(G,Ai,j)
Then, if

⊕
[Pi,j]m,n is defined,

⊕
[Pi,j]m,n is in L(G,N).

The set L(G,N) consists of pictures that can be obtained by applying a finite
sequence of rules I and II. The language L(G) generated by the grammar G is defined
to be L(G) = L(G,S0).

To illustrate the presented definition, let us show a simple example of a 2CFG
that generates the set of all non-empty square pictures over Σ = {a}.
Example 3. Let G = (VN , VT , S0,P) be a 2CFG, where VT = {a}, VN = {V,H, S0}
and P consists of the following productions:

1) H → a , 2) H → a H , 3) V → a , 4) V → a
V

,

5) S0 → a , 6) S0 → a H
V S0

.

Productions 1), 2) are one-dimensional, thus it should be clear that L(G,H) contains
exactly all non-empty rows of a’s. And really, by applying rule I) on production 1), we
have a ∈ L(G,H). Furthermore, if ak ∈ L(G,H), then rule II) applied on production
2) gives ak+1 ∈ L(G,H). Similarly, L(G, V ) contains non-empty columns of a’s.

By applying rule I) on production 5), the square 1 × 1 is generated by G. Since
a ∈ L(G,S0) ∩ L(G,H) ∩ L(G, V ), rule II) applied on production 6) gives that the
square 2 × 2 is also in L(G,S0). The row, resp. column of length 2 is generated by
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H, resp. V , thus rule II) can be applied again to produce the square 3 × 3, etc. By
induction on the size, we can show that each non-empty square picture over {a} can
be generated and that there is no way to generate any non-square picture.

If we restrict right-hand sides of productions to be composed of at most two
elements we obtain grammars from [17]. Let 2SCFG denote such a grammar and let
us summarize the allowed types of productions:

P1. (column concatenation) N → A B

P2. (row concatenation) N → A
B

P3. (renaming) N → A

N is a nonterminal, A and B are terminals or nonterminals.

A characterization of 2CFG’s follows:

– L(2CFG) is not comparable to L(2FSA), neither to L(2OTA).
– L(2SCFG) is a proper subset of L(2CFG).
– There is no analogy to the Chomsky normal form of productions.
– Time complexity of recognition depends on size of production’s right-hand sides.
– The emptiness problem is not decidable.

We define two languages to demonstrate the incomparability between L(2FSA)
and L(2CFG).

1. L1 = {P |P ∈ {a}∗∗ ∧ cols(P ) = rows2(P )}
2. Let L2 be a language over {a, b}, consisting of square pictures, where each row

and each column contains exactly one symbol b.

L1 can be generated by a 2CFG, but it cannot be recognized by any 2FSA. On the
other hand, L2 is recognizable by a 2FSA (even by a 2DFSA), but it cannot be
generated by any 2CFG.

The well known Cocke-Younger-Kasami algorithm [10,20,1] for recognition of lan-
guages generated by one-dimensional context-free grammars can be generalized on
2SCFG’s [17]. Time complexity of the algorithm is

O
(
m2n2(m + n)

)
,

where m, resp. n denote the number of rows, resp. columns of the picture. It is
also possible to generalize the algorithm on languages generated by 2CFG’s, but
time complexity depends on sizes of production’s right-hand sides in this case. Let
G = (VT , VN , S0,P) be a 2CFG and

p = max {rows(W ) |N → W ∈ P} , q = max {cols(W ) |N → W ∈ P} .

Now, time complexity of the algorithm is

O
(
mp+1nq+1

)
.
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4 General Idea of Structural Construction

Principles related to the structural construction are explained in this section. The
recognition process works with regions of the input image. A region is a connected
set of pixels having some common property. The region is assigned a label determining
which structure was recognized to be represented by the region (e.g., a fraction line
as a part of a formula) and also a penalty giving the cost of derivation of the region.
We consider two finite sets of labels: VT is a set of terminals and VN is a set of
nonterminals. There is also one distinguished label S0 ∈ VN corresponding to the
whole structure we want to recognize.

At the beginning, there are so called terminal regions only, labelled by terminals.
These regions can correspond to single pixels of the input image or to regions detected
by an external tool. Usually, the property of regions is that they decompose an image
into disjoint components. We relax this requirement and allow that regions to share
some pixels.

A set of rules specifying how labelled regions can be combined to produce larger
regions (their unions) is defined. A rule N → N1, . . . , Nk is interpreted as follows.
If there are regions R1, . . . , Rk labelled by N1, . . . , Nk, their sizes and positions fulfil
some constraints connected to the rule then their union R =

⋃k
i=1 Ri with the label N

can be derived. The penalty of this derivation is computed from penalties of particular
regions Ri. The rules are applied during an iterative process to derive larger and larger
regions. The process ends when all possible regions have been derived. If the whole
image was assigned by S0 and the penalty of related derivation fits into some limit
then the desired structure in the image was successfully recognized.

The described recognition process is too general and would be highly complex in
time and space. Because of this, we need to seek some convenient unifications of rules
and region shapes that will lead to an acceptable implementation. The formalisms
resulting in these unifications can be based on 2D CF grammars we have already
presented. Namely 2SCFG’s are considered in [17]. In this case, permitted regions are
only rectangles to suppress the complexity of derivations. Rules (or productions – to
be consistent with the grammar terminology) are of types P1, P2 and P3.

Two observations can be made for the usage of the grammars: The complexity is
still high and the constructs supported by the grammars are not rich enough to model
relationships among symbols in mathematical formulae. We will address these two
issues in the following section by introducing a suitable extension of the grammars.

5 Formulae Recognition Based on the Structural
Construction

The main ideas taken from the structural construction we follow in our approach can
be expressed in the following way:

Perform ‘rough segmentation’ of the input image. For each possible elementary
symbol, find all occurrences of it and let the structural analysis decide, structure of
which formula fits the input image best and how does the image segmentation looks
like.
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5.1 Specification and Goals of the Pilot Study

The pilot study was expected to support elements and constructs as numbers, vari-
ables, brackets, subscripts, superscripts, basic unary and binary operators, power to
operations, fractions, sums, integrals and square roots.

We consider the inputs to be black and white images, however, the used method
can be easily adopted to gray-scale images as well since it is general enough and does
not depend on this assumption.

Our main goal was to investigate whether the structural construction can be
successfully applied to off-line formulae recognition. In particular, we were interested
how the method can deal with the following situations.

a) Symbols touching vertically or horizontally.
b) Symbols split into several components.
c) Ambiguities.
d) Misplaced symbols.
e) Noise.

Examples of these situations are given in Figure 2. Cases a) and b) demostrate
standard formulae. Case c) illustrates a fraction line and a minus sign represented
by the same image, the meaning is being given by the context. And finally, case
d) includes an additional symbol A that is by mistake placed into the formula. We
require our method to exclude such a misplaced symbol and recognize the formula
composed of the other symbols.

a) b) c) d)

Figure 2. Corner cases we would like to handle

5.2 Extension of 2D Context-free Grammars

We use an extension of 2D CF grammars to model relationships among mathematical
symbols. In this section, we give a description of the productions form and their
application.

Let N → A ⊕ B denote a production of our 2D CF grammar extension. The
interpretation is similar to the interpretations of productions N → A|B and N → A

B
,

regions labelled A and B can be united, producing a region labelled N . But this time
we do not require the regions to touch each other. Permitted mutual positions of the
regions are defined by a constraint that is connected to the production. The form of
the constraint is depicted in Figure 3.

R and S are two regions in the image, F is a feature point of S (the center of left
border in this particular case). C is a dashed rectangle the size and position of which
is given relative to the size and position of R. It represents the mentioned constraint.
The considered production can be applied when the following conditions are fulfilled:
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R

(A)

C

F

S

(B)

Figure 3. General production scheme of N → A ⊕ B

– R, resp. S can be labelled by A, resp. B.
– feature point F is located inside C.

The resulting region is the smallest rectangle containing R and S. Feature points are
some specific points of a region. We usually use corners and centers of bounding edges.
We also compute baseline (when a new region is derived) and take the intersection
with left or right bounding edge.

Figure 4 shows usage of a production to model ‘power to’ relationship where the
constraint is defined for the bottom-left corner of the region storing the symbol four.

Figure 4. Example of the production usage

The penalty of the derived region is computed based on the following factors:

– Used production.
– Penalties of R and S.
– Percentage of black pixels in the new region that are neither in R nor S.
– Relative sizes and positions of R and S.

To finish the description we will make three remarks. First, note that R and S
can overlap. Second, we have defined the constraint on the location of S, assuming
we know the location and size of R. In our structural analysis, we will also need the
opposite case, i.e., to look for S while knowing R. We slightly extend the production
form by attaching one more constraint C ′ of the mentioned meaning. And finally, in
some cases of formulae constructs, it is more convenient to compose a new region
from three regions instead of two (consider, e.g., a variable with a subscript and
superscript). This can be easily supported by introducing productions of the from
N → A1 ⊕ A2 ⊕ A3.
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5.3 Architecture

Our software consists of two independent layers. The first layer performs terminals
detection, while the second one is responsible for structural analysis. An external OCR
tool is used within the first layer. Structural analysis is driven by a grammar defining
supported mathematical formulae. The parsing algorithm is of a general nature and
it can be used to recognize another types of structures if supported by a proper
grammar.

5.4 Terminals Detection

We have developed an OCR tool for classification of image regions. The tool is based
on a simple extraction of features from the input picture. The k-nearest neighbor
classifier is implemented to classify the extracted vectors.

We have tested two methods for terminal symbols detection. The first method
works with rectangular scanning windows of some specific sizes. Each of the windows
is being moved trough the input image. Whenever it is in a new position, its content
is evaluated by the OCR tool (provided that the number of black pixels exceeds some
defined threshold). The result of the evaluation is a set of terminals assigned by a
penalty, where the penalty corresponds to the belief that the scanning window stores
a particular symbol. Only the terminals with a sufficiently low penalty are included in
the result. For example, we have a window to detect subscripts and another window
to detect variables and numbers. Sizes of the windows are determined by expected
sizes of symbols in the formulae which means the method requires tuning for typical
inputs.

It would be ideal in theory if we could use views of all sizes to scan the image,
however, this approach is time expensive. Limiting the sizes of used views results
in an acceptable performance but can miss some symbols in the image when their
size differs from the expectation. Because of this we have tested the second method
based on preprocessing the content of the image by computing connected components.
Selection of views that are evaluated by the OCR tool is driven by these components.
The bounding rectangles of the following areas are chosen:

– the components themselves,
– divisions of the components – up to two splitting horizontal and vertical points

are considered,
– combinations of neighboring components.

5.5 Parsing Algorithm

We describe the algorithm that is used for the structural analysis phase. To simplify
the description, we do not explain how information needed to track feature points
and derivation trees is being updated. Just note that whenever a region R is labelled
by N , we record by which production this was derived.

1. Let R be a list of triples (R,N, p), where R is a region, N label assigned to R
and p penalty of this assignment. Initialize R by results of the terminals detection
phase.

2. Iterate through R. Let (R,L, p) ∈ R be the current element. For each production
N → A⊕B such that L = A or L = B, take the rectangular area C defined by the
constraint of the production and find subset S ⊆ R, where for each (R′, L′, p′) ∈ S
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the production can be applied on R and R′. Let R be the derived region, p penalty
of the derivation. If p is greater than some threshold then continue by the next
iteration, otherwise check whether R has been already labelled by N . If not then
append (R,N, p) at the end of R. If there is already (R,N, p2) in R and p < p2

then remove (R,N, p2) from R and append (R,N, p), otherwise ignore the new
derivation.

3. A formula is successfully recognized when the bounding rectangle of the input is
labelled by S0. If not then we can look for the largest region in R labelled by S0.

To make the algorithm fast, we use a data structure storing points of a plane, allowing
it to effectively evaluate queries of the type: for a rectangle, return the points that are
located inside the rectangle (so called orthogonal range searching). A suitable data
structure allowing to search in time O(log n) can be constructed [2].

Our conclusions on time complexity are based on empirical data, we do not give an
exact formula since it depends on many factors, including the number of the terminals
detected during the first phase. Compared to the generalized Cocke-Younger-Kasami
algorithm, time complexity is lower because the algorithm does not process all rect-
angles in the input. It would be possible to derive some upper bound on time, but it
does not give a good idea about expected time. Instead of doing it, we rather discuss
the most problematic case in the section regarding results.

6 Results

We have implemented the pilot study in Java. It includes an user interface allowing
to browse formulae images, run the recognition on them and display results. Except
the results, the interface also provides information helping to understand and tune
the process of structural analysis. For example, it is possible to query for all regions
labelled by a specific nonterminal, for penalties of related derivations, etc.

The implementation has been tested on over 200 handwritten formulae. We can
conclude that after tuning the grammar there were no problems with correctness of
the structural analysis. The problems we have encountered are connected mainly to
the terminals detection phase.

We have faced some limitations when working with rectangular regions. Not all
symbols in a formula can be separated by rectangles. Figure 5 a) shows one of the
simplest examples. The bounding box of symbol r contains a part of the subscript. It
has an impact on recognition of r, which is assigned a bigger penalty in this case. In
general, the recognition does not give good results, when the bounding boxes overlap
too much. This is not usually case of printed formulae.

We were also forced to compose some elementary symbol from more components
due to the mentioned limitation. A typical example is a square root which we consider
to be formed of two parts (the square root argument can be treated as an additional,
third part) – see Figure 5 b).

Other problems are connected to fraction lines. Continual subparts of a fraction
line are also recognized as fraction lines. This leads to a large number of terminal
symbols and possible combinations among them to be checked during the structural
analysis. Figure 5 c) shows an image on which the problem starts to be visible.
Recognition of this formulae takes about 20 seconds and grows fast for larger fractions
(note that the recognition of each formula depicted in Figure 2 takes up to 2 seconds).
We have implemented a preprocessing of detected fraction lines that reduces their
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a) b) c)

Figure 5. a) Bounding box of r contains a part of the subscript. b) Square root
symbol composed of two parts. c) Formula with several fraction lines.

number. It would be also possible to implement a special method (separated from the
OCR tool) for fraction lines detection.

The last problem we have encountered was the accuracy of the used OCR tool
that was not as high as it should be, but this problem can be solved by choosing a
better tool.

7 Conclusions

We have showed that the method of structural construction can be applied for off-line
mathematical formulae recognition. Our main contribution to the area of formulae
recognition are the following achievements:

– Segmentation of the image is done during structural analysis (no error corrections
are needed). We took advantage of the rich formula structure which allows this
approach.

– Structural analysis is robust. It is penalty oriented and searches for the formula
structure that best matches the input image. It can easily deal with noises, in-
cluding misplaced symbols.

– We have designed an extension of 2D CF grammars powerful enough to express the
formulae structure. It can be also effectively parsed (thanks to constraints defined
via rectangles and the usage of data structures for orthogonal range searching).

We would like to focus more on printed formulae in the upcoming work. Our future
plans include the usage of learning methods. Provided that a sufficiently large set of
formulae is collected, the methods can be applied on learning etalons of terminal
symbols and productions parameters. The learned etalons can improve the terminals
detection phase, while the learned productions parameters will improve tuning of the
grammar for a concrete typesetting style of formulae (so far we have tuned these
parameters manually).
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17. M. Schlesinger and V. Hlaváč: Ten lectures on statistical and structural pattern recognition,
vol. 24 of Computational Imaging and Vision, Kluwer Academic Publishers, Dordrecht, The
Netherlands, 2002.

18. H. Winkler and M. Lang: Online symbol segmentation and recognition in handwritten math-
ematical expressions, in Proceedings of the IEEE International Conference on Acoustics, Speech,
and Signal Processing, vol. 4, Munich, Germany, 1997, pp. 3377–3380.

19. Mathjournal 2.0: a software for formulae recognition from the xThink company, 2006,
http://www.xthink.com/MathJournal.html.

20. D. Younger: Recognition of context-free languages in time n3. Information and Control, 10
1967, pp. 189–208.

89



A Concurrent Specification of Brzozowski’s DFA

Construction Algorithm

Tinus Strauss, Derrick G. Kourie, and Bruce W. Watson

FASTAR Research group
Department of Computer Science, University of Pretoria,

Pretoria, South Africa
{tstrauss, dkourie, bwatson}@cs.up.ac.za

Abstract. In this paper two concurrent versions of Brzozowski’s deterministic finite
automaton (DFA) construction algorithm are developed from first principles, the one
being a slight refinement of the other. We rely on Hoare’s CSP as our notation.

The specifications that are proposed of the Brzozowski algorithm are in terms of the
concurrent composition of a number of top-level processes, each participating process
itself composed of several other concurrent processes. After considering a number of
alternatives, this particular overall architectural structure seemed like a natural and
elegant mapping from the sequential algorithm’s structure.

While we have carefully argued the reasons for constructing the concurrent versions
as proposed in the paper, there are of course, a large range of alternative design choices
that could be made. There might also be scope for a more fine-grained approach to
updating sets or checking for similarity of regular expressions. At this stage, we have
chosen to abstract away from these considerations, and leave their exploration to future
research.

Keywords: automaton construction, concurrency, concurrent sequential processes,
regular expressions

1 Introduction

This research is inspired by two contemporary trends. On the one hand, finite au-
tomaton technology is being applied to ever-larger applications. On the other hand,
hardware is tending towards ever-increasing support for concurrent processing. Chip
multiprocessors [6], for example, implement multiple CPU cores on a single die. Ad-
ditionally, scale-out systems [1] – collections of interconnected low-cost computers
working as a single entity – also provide parallel processing facilities. These hardware
developments present the challenging task of producing quality concurrent software
[5,7,8].

It seems, though, that relatively little thought has been given in the finite automa-
ton research community to developing concurrent versions of the various sequential
algorithms that are widely in use. The only parallel algorithm that converts a regular
expression into an automaton of which we are aware has been described by Ziadi and
Champarnaud [9].

Here, two concurrent versions of Brzozowski’s deterministic finite automaton
(DFA) construction algorithm are developed from first principles, the one being a
slight refinement of the other. This will be the theme of section 3. However, before
developing the concurrent algorithm, we provide a brief overview of the sequential
version in section 2. A brief reflection on this work is given in section 6.
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2 Sequential Algorithm

Brzozowski’s DFA construction algorithm [2] employs the notion of derivatives of
regular expressions to construct a DFA. The algorithm takes a regular expression E
as input and constructs an automaton which accepts the language represented by E.

The automaton is represented using the normal five-tuple notation (D,Σ, δ, S, F )
where D is the set of states; Σ the alphabet; δ the transition relation mapping a
state and an alphabet symbol to a state; and S, F ⊆ D are the start and final states,
respectively. L is an overloaded function giving the language of a finite automaton or
a regular expression.

Since each regular expression in D is represented by a node in the automaton, we
will sometimes refer to an element in a set as a regular expression, and at other times
we will refer to it as a node.

The well-known sequential version of the algorithm is given in Dijkstra’s guarded
command language in figure 1. The notation assumes that the set operations ensure
“uniqueness” of the elements at the level of similarity, i.e. a ∈ A implies that there
is no b ∈ A such that a and b are similar regular expressions.

func Brz(E,Σ) →
δ, S, F := ∅, {E}, ∅;
D,T := ∅, S;

do (T 6= ∅) →
let q be some state such that q ∈ T
D, T := D ∪ {q}, T \ {q};
for (i : Σ) →

d := d
di

q;
if d /∈ (D ∪ T ) → T := T ∪ {d}
[] d ∈ (D ∪ T ) → skip
fi;
δ(q, i) := d;

rof ;
if ε ∈ L(q) → F := F ∪ {q}
[] ε /∈ L(q) → skip
fi;

od;
return (D,Σ, δ, S, F );

Figure 1. Brzozowski’s DFA construction algorithm

Walking through this sequential algorithm, it will be seen that it relies on two sets:
a set T containing the nodes (regular expressions) for which derivatives need to be
calculated; and another set D containing the nodes for which derivatives have been
found already.

The algorithm then works through all the nodes q ∈ T , finding derivatives with
respect to all the alphabet symbols and depositing these nodes (regular expressions)
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into T in those cases where no equivalent regular expression has already been de-
posited into T ∪ D. Each node, q, dealt with in this fashion from T is then removed
from T and added into D.

In each iteration of the inner for loop (i.e. for each alphabet symbol), the δ
relation is updated to contain the mapping from node q to its derivative with respect
to the relevant alphabet symbol.

Finally if q is nullable, it is added to the set of final states F .
In the forthcoming sections we present a concurrent specification of the algorithm

in which we attempt to allow as much concurrency as possible.

3 Concurrent specification

We present here an approach to parallelising the algorithm. Of the many process
algebras have been developed to concisely and accurately model concurrent systems,
we have selected CSP [4,3] as a fairly simple and easy to use notation. It is arguably
better known and more widely used than most other process algebras. Below, we
provide a brief introduction to the CSP operators that are used, and indicate some
of the assumptions we make in regard to atomicity of operations.

3.1 Introductory Remarks

CSP is concerned with specifying a system of concurrent sequential processes (hence
the CSP acronym) in terms of sequences of events, called traces. In fact, the semantics
of a concurrent system is seen as being precisely described by the set of all possible
traces that characterise such as system. A fundamental assumption is that events are
instantaneous and atomic—i.e. they cannot occur concurrently. Various operators are
available to describe the sequence in which events may occur, as well as to connect
processes. Table 1 briefly outlines the main operators used in this article.

a → P event a then process Q
a → P |b → Q a then P choice b then Q
x : A → P (x) choice of x from set A then P (x)
P ‖ Q P in parallel with Q

Synchronize on common events in the alphabet of P and Q
b!e on channel b output event e
b?x from channel b input to variable x
P <| C >| Q if C then process P else process Q
P ;Q process P followed by process Q
P ✷Q process P choice process Q

Table 1. Selected CSP Notation

Full details of the operator semantics and laws for their manipulation are available in
[4,3]. Note that SKIP designates a special process that engages in no further event,
but that simply terminates successfully. Parallel synchronization of processes means
that if A ∩ B 6= ∅, then process (x : A → P (x)) ‖ (y : B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) ‖ Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such
parallel synchronization is the process (b!e → P ) ‖ (b?x → Q(x)). This should be
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viewed a process that engages in the event b.e and thereafter behaves as the process
P ‖ Q(e).

3.2 Atomicity Assumptions

In deploying CSP, we have made the following assumptions relating to atomic execu-
tion.

Firstly, if an event maps to a function call, then that function is assumed to be a
sequence of code in the original sequential algorithm which runs uninterruptedly to
completion on some processor.

Furthermore, in the interest of conciseness and without loss of generality, it will
sometimes be convenient to subsume certain assignment operations of the sequential
program into the actual parameter list of a process invocation. For example, instead
of specifying some recursive parameterised process P (D) as P (D) = · · · (D : = D ∪
{q}); P (D), we will regard the specification P (D) = · · ·P (D ∪ {q}) as equivalent.
This means that operations that are needed to compute the actual parameters for
a process invocation are regarded as taking place atomically—i.e. they cannot be
interrupted by any other process’s activity.

Similarly, where the CSP syntax for a conditional is used, as in P <| C >| Q, it will
be assumed that the computation of the condition, C, takes place atomically and prior
to the activation of any first event possible in the constituent processes, P and Q.
This is specifically the case where similarity between regular expressions as implied
in the Boolean expression d /∈ (D ∪ T ) has to be computed.

These instances of atomic activity are highlighted, not because they deviate from
CSP syntax, but because they represent potential opportunities for a more fine-
grained specification of the algorithm than what will be proposed below. However,
deeper consideration of whether such a more fine-grained specification would be de-
sirable or possible was deemed to be outside the scope of this present endeavour.

4 The BRZ process

The specification that is proposed of the Brzozowski algorithm is in terms of the
concurrent composition of three top-level processes, each participating process itself
composed of several other concurrent processes. After considering a number of al-
ternatives, this particular overall architectural structure seemed like a natural and
elegant mapping from the sequential algorithm’s structure.

The first of these three processes is called OUTER. It corresponds to the actions of
the outer loop of the sequential program. Another process called DERIVE caters for
the computation of derivatives in the inner loop of the sequential version. Finally, an
UPDATE process caters for the determination of which derived regular expressions
should be used to update the “to do” set T , and also for updating the transition
function, δ. The concurrent specification of the Brzozowski algorithm is thus:

BRZ (D,T ) = OUTER(D,T ) ‖ DERIVE ‖ UPDATE

Note the sets D and T are required as parameters for the OUTER process, because
they are explicitly altered within this process. However, we will assume that these sets
are globally available for read-only purposes within the other two processes, DERIVE
and UPDATE. It will be convenient to regard the alphabet Σ as well as the sets F
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and δ as being a globally available to all sub-processes of the concurrent version of
BRZ.

Furthermore, we assume that the first statement of the sequential algorithm—
δ, S, F : = ∅, {E}, ∅;—takes place before the concurrent algorithm starts off. Given
a regular expression, E, the concurrent process BRZ (∅, {E}) is equivalent to the
sequential algorithm BRZ ({E}, Σ).

In the subsequent sections these constituent processes of BRZ are explored and
defined in greater detail. Figure 2 provides a graphical representation of the structure
of BRZ. However, it also includes a refinement to this model that incorporates buffers
for greater efficiency. This refinement is described in subsection 5.2.

4.1 The OUTER process

This process corresponds to the iterations of the outer loop in the sequential algo-
rithm, in that it selects the next q to be processed, and caters for the updating of the
two sets T and D.

The OUTER process has these two sets as parameters. As in the sequential case,
D contains all the regular expressions for which derivatives have been found and
will become nodes in the automaton. T is the set of regular expressions for which
derivatives are still to be found.

The process is responsible for extracting an arbitrary node from T and then pass-
ing it on to the DERIVE process. It also updates the sets D, T , and F .

The process is defined in terms of a choice between two sub-processes. This is
indicated by the CSP process choice operator, ✷. The first sub-process operand in
the choice is initiated by engaging in an event that consists of selecting one of the
regular expressions in T . The selected regular expression is called q. Thereafter, the
OUTER process behaves as the parallel composition of two processes that take q
as a parameter: EXTRACT and FINAL. This parallel composition has to run to
completion before the OUTER process repeats, now with q added to D and removed
from T .

Before considering the detail of the processes EXTRACT and FINAL that consti-
tute the parallel composition, consider the second sub-process operand of the process
choice operator in OUTER. It monitors a channel that is called insert, inputting a
regular expression represented by the variable q from the channel whenever such an
input becomes available. Thereafter OUTER repeats with q added to T . Again, we
assume that this set union operation is atomic. This corresponds to the part in the
sequential algorithm where the derivative d is added to T inside the inner loop.

OUTER(D,T ) = (q : T → (EXTRACT (q) ‖ FINAL(q));OUTER(D ∪ {q}, T \ {q}))
✷

(insert?q → OUTER(D,T ∪ {q}))

Now consider the two processes within OUTER which are to execute as a parallel
composition: EXTRACT and FINAL.

We begin with EXTRACT. Our task here is to express the fact that its parame-
ter q should be broadcast to a set of processes that will independently compute the
derivative of q, each with respect to a different symbol in the alphabet. To this end,
EXTRACT is regarded as the parallel composition of a set of processes, designated
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EXTRACT i for each i in the alphabet Σ. Each EXTRACT i process passes its pa-
rameter, q, along its own channel, dIni, and then terminates successfully. The CSP
specification to express the above is as follows:

EXTRACT (q) =‖i:Σ EXTRACT i(q) where

EXTRACT i(q) = (dIni!q → SKIP)

As will be seen a little later, there is a DERIVE i process for each alphabet symbol
i in Σ. Each of these processes will receive the outputted q on the associated dIni

channel.
The FINAL process checks whether q is nullable and then adds q to the set of

final states and then terminates successfully; otherwise FINAL terminates successfully
without engaging in any action.

FINAL(q) = F := F ∪ {q} <| ε ∈ L(q) >| SKIP

Note that the set of events that take place in EXTRACT and FINAL are disjoint.
The parallel composition of these two processes can therefore be described by the
arbitrary interleaving of their respective event trace sets.

4.2 The DERIVE Process

The DERIVE process finds, in parallel, the derivatives of a regular expression with
respect to all the symbols i ∈ Σ. The objective is to define DERIVE in such a way
that each of its sub-processes can resume computing yet another derivative for a given
alphabet symbol as soon as its task is complete, independently of the progress of its
peer sub-processes. Here, a first order definition of DERIVE is given that does not
fully meet this objective. This can be achieved by a simple refinement of the overall
specification, as will be discussed later.

A sub-process that is designated DERIVE i receives input on channel dIni and
outputs results of its computation to dOuti. The channels have the same alphabet,
namely, the set of all possible derivatives of regular expressions that can be con-
structed from Σ. Each DERIVE i process repeatedly accepts some arbitrary regular
expression, and then emits the associated derivative with respect to i.

The parent DERIVE is therefore the parallel composition of all DERIVE i pro-
cesses. Thus:

DERIVE = ‖i:ΣDERIVE i where

DERIVE i = dIni?q → dOuti!(q,
d

di
q) → DERIVE i

Recall that data is put onto the dIni channel by process EXTRACT i. Thus, in princi-
ple, the sub-processes DERIVE i and EXTRACT i can synchronise independently on
events on channel dIni and run ahead of a pair of their peer sub-processes, say DE-
RIVE j and EXTRACT j. Unfortunately, the parent process of the EXTRACT i pro-
cesses, namely EXTRACT, can only complete once all its constituent sub-processes
have completed. And a fresh regular expression, q, can only be offered to DERIVE i

via EXTRACT i once EXTRACT has completed, since only then can the recursive
call to OUTER take place. This deficiency will be corrected in subsection 5.1, where
a buffer will be placed on each channel.

At this stage, operations for updating δ and feeding the derivatives back to T are
discussed.

95



Proceedings of the Prague Stringology Conference ’06

4.3 The UPDATE Process

The UPDATE process is designed to receive a regular expression and its derivative
with respect to i as a pair (q, d) from each dOuti channel. This is to happen in-
dependently of the state of readiness to receive some other regular expression and
derivative pair on an alternative channel, say dOutj. In each case, the pair is passed
on for updating δ and the derivative is considered for possible updating of T . The
process is formed by the parallel composition of DERIVE i processes for each i in Σ.
This can be expressed as follows:

UPDATE =‖i:Σ UPDATE i

After receiving the regular expression and derivative pair on the dOuti channel, each
UPDATE i process behaves as the parallel composition of two sub-processes. One,
called UPT i, corresponds to the action of conditionally adding the derivative to T .
The other, called UPD i, corresponds to the action of unconditionally updating δ.

UPDATE i = (dOuti?(q, d) → (UPT i(d) ‖ UPD i(q, d)) );UPDATE i

UPT i(d) establishes whether or not d is in D∪T . If it is, then UPT i simply terminates
successfully. Otherwise, it outputs d on the insert channel, thus feeding d back to
OUTER where d is added to T . After this, the sub-process terminates successfully.

UPT i(d) = insert!d → SKIP <| d /∈ (D ∪ T ) >| SKIP

UPD i unconditionally updates δ and then terminates. The relation is updated by
adding an entry into δ that represents a transition from q to d as a result of symbol i.
Because each such update will always be with respect to a different (q, i) pair, there
is no need to protect the data structure used to represent δ from write conflicts. How
such concurrent access to the relevant data structure can actually be achieved is left
as an implementation issue.

UPD i(d) = δ(q, i) := d

Note that UPDATE i starts again after the two sub-processes terminate successfully.
Only then will a given UPDATE i sub-process be ready to input another (q, d) from its
respective channel. Once more, there is scope modelling each of the dOuti channels as
a buffer. This would ensure that any holdup in the execution of sub-processes UPT i

and UPD i (in particular, the computation of the Boolean result of the condition in
UPT i) will not delay the supplier of data on the dOuti channel. However, in the
interests of simplicity, this will not be modelled here. Instead, we illustrate below
how the idea of buffering can be included between the DERIVE i and EXTRACT i

processes, as previously suggested.

5 The BRZBUFF process

The DERIVE i and EXTRACT i processes are connected by synchronous channels.
A process outputting a message onto a channel can only proceed when the receiving
process inputs the message. This implies that EXTRACT will only terminate once q
has been read by all the DERIVE i processes. This will in turn prevent OUTER from
producing another q. So if, for example, there is a very slow DERIVE i process, all
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Figure 2. Graphical representation of the BRZBUFF process

the others will have to wait for it to complete before continuing. This is clearly not
desirable. Work for any processes should ideally be produced at least as fast as it can
consume the work.

For the above reason it was decided to connect the DERIVE i and EXTRACT i

processes through buffers. New q’s can then be placed into the buffers without having
to wait for all the DERIVE i processes to complete.

5.1 The BUFFERS process

As suggested in [4], a buffer may be modelled using a process called BUFFER. It
behaves like a queue—messages enter at the right and exit on the left in the same
order that they arrived.

BUFFER = P〈〉 with

P〈〉 = left?x → P〈x〉

P〈x〉⌢s = (left?y → P〈x〉⌢s⌢〈y〉

right!x → Ps)

Since each pair of processes, EXTRACT i and DERIVE i, need to be connected
through a buffer, multiple labelled copies of the BUFFER process are required. As
a matter of convenience we will define a process called BUFFERS as the parallel
composition of these BUFFER processes:

BUFFERS = ‖i:Σ(bufi : BUFFER)

The only remaining step is to modify the respective definitions of the DERIVE i and
EXTRACT i processes so that they interact through these buffers. This is necessary
since the alphabet of each of these processes should contain the alphabet of the
corresponding buffer process. Thus, each EXTRACT i(q) sub-process enters data on
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the left channel of its associated buffer, and may thus be defined as

EXTRACT i(q) = (bufi.left!q → SKIP)

Each corresponding DERIVE i sub-process inputs data from the right channel of its
associated buffer. Its definition therefore changes to

DERIVE i = bufi.right?q → dOuti!(q,
d

di
q) → DERIVE i

5.2 Putting everything together

A complete system that can be built from the preceding processes is designated
BRZBUFF (D,T ), because it provides for the buffering just discussed. It is defined
as follows:

BRZBUFF (D,T ) = OUTER(D,T ) ‖ BUFFERS ‖ DERIVE ‖ UPDATE

Thus, BRZBUFF (∅, {E}) is a more efficient alternative to BRZ (∅, {E}). It, too, is
therefore a concurrent specification of the sequential algorithm given in figure 1.

Figure 2 depicts the major constituent processes of BRZBUFF. It should be clear
from the diagram that each EXTRACT i,DERIVE i pair is now connected via a buffer.
The arrows in the diagram indicate the direction of information flow on the channels
that connect the processes.

6 Conclusion

Although CSP has proved to be a convenient paradigm and notation for unravelling
and articulating the concurrency inherent in the sequential algorithm, it has proven
to be deficient in one respect: there does not seem to be a convenient mechanism
for gracefully terminating the concurrent specification. As given above, the algorithm
terminates when T is empty and further synchronisation is expected on the input
channel. This means that the OUTER process does not terminate in a SKIP, but
instead awaits further input on this channel, which never appears. Notwithstanding
this deficiency, the problem can be easily overcome at the implementation level.

While we have carefully argued the reasons for constructing concurrent version
as proposed above, there are of course, a large range of alternative design choices
that could be made. These relate not only to overall architectural issues, but also to
the level of more or less granularity in the concurrency, and whether the number of
processors available should be explicitly taken into account.

Thus, we have already pointed out the scope for including even more buffering
than we have. There might also be scope for a more fine-grained approach to updating
sets or checking for similarity of regular expressions. At this stage, we have chosen
to abstract away from these considerations, and leave their exploration to future
research.

From an implementation point of view, it would be relatively easy to use a
threaded language such as Java to do the implementation on a single processor plat-
form. However, this does not appear to be particularly interesting, since the context
switching required would undoubtedly render the concurrent version less efficient than
its sequential counterpart. Instead, we are interested in implementing the concurrent
version proposed above on one or more multiprocessor platforms. We expect this to
be the immediate focus of our future research.
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1 Introduction

In this paper, we present data structures and algorithms for efficiently construct-
ing an ‘approximate automaton’ from a regular expression. Very large automata are
finding application in areas as diverse as computational linguistic, network intrusion
detection, text indexing, and silicon chip design. These problem domains intrinsically
have very large amounts of data—both in the form of input strings being processed
by finite automata, and also in the size of the automata themselves.

A great deal of effort has been invested in tuning algorithms for processing a
string for acceptance by an automaton, or for pattern matching using the automa-
ton7. Recently, much less research and implementation effort has been devoted to the
efficiency during construction of very large automata8. In some of the newer applica-
tion domains, the ‘exactness’ of the automata is proving to be less of an issue than

7 Cf. the proceedings of conferences such as Prague Stringology Workshop, Conference on Imple-
mentations and Applications of Automata and Combinatorial Pattern Matching.

8 In the last decades, asymptotic improvements were made by Champarnaud, Ponty, Ziadi, Chang,
Paige, Antimirov, and Watson, among others.
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the performance of the algorithms constructing and using the automata. In particu-
lar, in network intrusion detection, a pattern matching finite automaton may accept
some ‘extra’ words without ill effects—the algorithm merely detects an additional
matched pattern (corresponding to a network security attack), which is subsequently
discarded during further vetting of the pattern9. In such an application, we can use
an approximate automaton—one which accepts the intended language and perhaps
some additional strings. Approximate automata have also been derived for a field of
pattern matching, where they are known as factor oracles [1,3].

Section 2 gives a definition of the problem, along with discussion of some of the
existing solutions. Section 3 gives the new algorithm, while Section 4 discusses choices
of hash functions. Finally, Section 5 gives some discussion points, conclusions and
future work. Throughout this paper, we use standard definitions of deterministic
finite automata, which are not discussed or defined further in detail.

2 Problem statement

In this section, we give a brief overview of the problem and existing work on solu-
tions. In Algorithm 2.1, we begin with Brzozowski’s automata construction algorithm
[2,10]. (Note that the skip statement does nothing — it is included for completeness
so that the if-fi statement has two branches.) The algorithm takes as input a regular
expression over alphabet Σ and directly produces a finite automaton. (This algo-
rithm is arguably one of the simplest and most elegant algorithms, although it is
not always efficiently implemented, giving the incorrect impression that some of the
bitvector-based algorithms (such as those of Glushkov, McNaughton-Yamada, Berry-
Sethi, among others) are intrinsically more efficient.)

The abstract states in Algorithm 2.1 have ‘internal structure’, meaning that they
are in fact regular expressions. In practice, the regular expressions are mapped on-
the-fly to integers to store the transition function δ in a lookup table and final state
set F as a bitvector (indexed by state). That gives Algorithm 2.2, in which state
set Q is replaced by a set of integers, the start state is state zero, the signature of
δ is appropriately changed, and a ‘remapping’ data structure is used to map the
abstract states to integers. In this algorithm, an abstract state is remapped (assigned
an integer representation) when it is first encountered/created (as opposed to when
its out-transitions are constructed), since the integer representation may be needed as
a transition destination immediately. The worst-case running time of this algorithm
(indeed, of all deterministic finite automata construction algorithms) is exponential
in the size of the regular expression. However, we are more concerned with those parts
of the algorithm and data structures which are tunable.

We make the following observations about Brzozowski’s construction algorithm10:

1. The sets done and todo both contain abstract states, whereas they could just
contain the integer representations of states, while using the inverse of remap to
recover the abstract state (which is needed in building the out-transitions). We do
not discuss this optimization further, as it is already used in most implementations.

9 Such further vetting is characteristic of intrusion detection, in which network traffic is rapidly
scanned for patterns; pattern ‘hits’ are subsequently examined for further characteristics before
classifying them as a real network security attack.

10 Some of these observations were previously made in [11,12]—though about another construction
algorithm.
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Algorithm 2.1 (Brzozowski’s construction):

func Brzconstr(E) →
Q, δ, F := ∅, ∅, ∅;
done, todo := ∅, {E};
do todo 6= ∅ →

let p be some state such that p ∈ todo;
done, todo := done ∪ {p}, todo \ {p};
Q := Q ∪ {p};
{ build out-transitions from p on all alphabet symbols }
for a : Σ →

{ compute the left derivative of p with respect to a }
destination := a−1p;
if destination 6∈ done ∪ todo →

{ destination’s out-transitions are still to be built }
todo := todo ∪ {destination}

[] destination ∈ done ∪ todo → skip
fi;
{ make a transition from p to destination on a }
δ(p, a) := destination

rof ;
{ if p is nullable, make it a final state }
if ε ∈ L(p) →

{ p should be a final state }
F := F ∪ {p}

[] ε 6∈ L(p) → skip
fi

od;
{ language of automaton (Q,Σ, δ, E, F ) = language of regular expression E }
return (Q,Σ, δ, E, F )

cnuf
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Algorithm 2.2 (Brzozowski’s construction with remapping):

func Brzconstr ′(E) →
next , δ, F, remap := 0, ∅, ∅, ∅;
remap[E],next := next ,next + 1;
done, todo := ∅, {E};
do todo 6= ∅ →

let p be some state such that p ∈ todo;
done, todo := done ∪ {p}, todo \ {p};
{ build out-transitions from p on all alphabet symbols }
for a : Σ →

{ compute the left derivative of p with respect to a }
destination := a−1p;
if destination 6∈ done ∪ todo →

{ destination’s out-transitions are still to be built }
todo := todo ∪ {destination};
{ give destination an integer representation now though }
remap[destination],next := next ,next + 1

[] destination ∈ done ∪ todo → skip
fi;
{ make a transition from p to destination on a }
δ(remap[p], a) := remap[destination]

rof ;
{ if p is nullable, make it a final state }
if ε ∈ L(p) →

{ p should be a final state }
F := F ∪ {remap[p]}

[] ε 6∈ L(p) → skip
fi

od;
{ language of automaton ({0, . . . ,next − 1}, Σ, δ, 0, F ) = language of regular expression E }
return ({0, . . . ,next − 1}, Σ, δ, 0, F )

cnuf
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2. In pathological examples, the todo set (containing abstract states that still need
to be constructed) can grow at one time during construction to contain all states
which will ever be built (except for the current state p). The only solutions to
this problem are domain-specific; that is, the size of todo is sometimes bounded
by representing todo as a queue or as a stack (yielding, respectively, a depth-first
or a breadth-first construction of the automaton’s transition graph).

3. The performance of the algorithm depends heavily on the quality of the remap
representation for fast lookups. There are numerous efficient implementations for
remap, including hash tables, balanced trees, etc. This is not discussed further
here.

4. During construction, the remapper (data structure remap) grows to include a
mapping from all abstract states to their respective integer representations. The
memory consumed by remap is therefore significant; worse-still, it is only freed
after the entire automaton is constructed.

The most promising area for improvement is the last point, for which the following
solutions exist:

1. [8,6,7,5] give a space-efficient data structure combining representations of regular
expression E, all of the derivative regular expressions in remap (the set of states)
and the automaton itself.

2. A reachability-based algorithm was presented in [11,12]. That algorithm limits
remap to those states which are reachable from states still in todo.

We now turn to the new algorithm, which is combinable with these two pre-existing
solutions.

3 New algorithm

One implementation of remap uses a hash table with hash function h, which maps
regular expressions (the abstract states) to integers. In the event that two regular
expressions hash-collide, a mechanism is normally used to check whether the regular
expressions are indeed identical—typically using ‘hash-buckets’, rehashing, etc. (as is
found in elementary data structure textbooks such as [4]). Unfortunately, all of those
collision-resolution mechanisms involve representing the abstract states themselves.
Our new algorithm eliminates this, thereby allowing hash collisions: two abstract
states which hash to the same value are simply mapped to the same integer state.
Indeed, the hashed values can be directly used as the states, as in Algorithm 3.1 where
we reintroduce state set Q; state sets Q, F and done can now be implemented as sets
of integers. Note that the test destination 6∈ todo can also be efficiently implemented
using h.

4 Hash functions and their implications

The primary difference between a normal automaton construction algorithm (such as
Brzozowski’s algorithm) and Algorithm 3.1 is that the latter will merge two states
whenever there is a hash collision; such merging would not otherwise have occurred
in any of the standard construction algorithms. The resulting automaton is an ap-
proximate automaton as it will accept additional words not in the language of regular
expression E. Precisely how often additional words are accepted clearly depends on
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Algorithm 3.1 (New hash-based construction):

func Brzconstr ′′(E) →
Q, δ, F, remap := ∅, ∅, ∅, ∅;
done, todo := ∅, {E};
do todo 6= ∅ →

let p be some state such that p ∈ todo;
done, todo := done ∪ {h(p)}, todo \ {p};
Q := Q ∪ {h(p)};
{ build out-transitions from p on all alphabet symbols }
for a : Σ →

{ compute the left derivative of p with respect to a }
destination := a−1p;
if h(destination) 6∈ done ∧ destination 6∈ todo →

{ destination’s out-transitions are still to be built }
todo := todo ∪ {destination}

[] h(destination) ∈ done ∨ destination ∈ todo → skip
fi;
{ make a transition from h(p) to h(destination) on a }
δ(h(p), a) := h(destination)

rof ;
{ if p is nullable, make it a final state }
if ε ∈ L(p) →

{ p should be a final state }
F := F ∪ {h(p)}

[] ε 6∈ L(p) → skip
fi

od;
{ language of automaton (Q,Σ, δ, h(E), F ) = language of regular expression E }
return (Q,Σ, δ, h(E), F )

cnuf
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how often hash collisions occur, which depends in turn on the hash function h. The
approximate automaton can be forced arbitrarily close to an exact automaton for E
by increasing the number of bits in the range of h and making h appropriately more
intricate11.

While the design of h is crucial, our ongoing experiments give these guiding re-
quirements:

– It should be structurally inductive on regular expressions.
– It should map to unsigned integers.
– The atomic ‘letter’ (single symbol) regular expressions should map to the character

itself, e.g. h(a) = unsigned(a).
– The remaining two atomic regular expressions (empty string and empty set) should

map to infrequently or unused characters, such as −1 and −2.
– The hash of Kleene closure (the star operator) should set a high-bit in the hash

of the star’s operand’s hash, e.g. h(F ∗) = h(F )&(1 << (numbits − 1)). In this
case, the hash function can also be designed for idempotence of Kleene closure,
i.e. h(F ∗∗) = h(F ∗), etc. Such ‘design-for-identities’ allows us to specifically hash-
collide states which look dissimilar, but are equivalent, thereby achieving a mea-
sure of minimization12.

– The hash of a union/or regular expression should combine the two sub-hashes via
an associative and commutative operator, such as exclusive-or.

– The hash of two concatenated regular expressions should combine the two sub-
hashes while simultaneously being anti-symmetrical (as concatenation is), such
as bitwise concatenation, or left-shifting the first sub-hash before exclusive-oring
with the second sub-hash.

In short, the hash function should reflect the algebraic properties of the regular op-
erators themselves.

4.1 Fixing the automaton size a priori

Interestingly, the use of a hash function to generate the state-set enables us to a priori
choose the number of states in the final automaton. Rather than accumulating the
hashed values in variable Q, we initially fix our state set as {0, . . . , n} (for some n).
Subsequently, we always use h(p) mod n instead of h(p), thereby bringing all states
into the appropriate range. This can be particularly useful in cases where dynamic
memory (re)allocation is costly while building the automaton.

5 Discussion and future work

We have presented an efficient new algorithm for constructing approximate determin-
istic finite automata. The ‘approximateness’ of the finite automata (that is, how few
‘extra’ words they accept over and above their intended language) can be controlled
by choice of a hash function, some guidelines for which were presented. Unlike other
automata construction algorithms, the number of states can be fixed a priori.

There remain a number of interesting research questions and tasks:

11 When the number of bits is equal to the largest derivative of E, h can be used to directly encode
each such derivative regular expression—giving perfect hashing.

12 Other regular identities which may be specifically hash-collidable include F · ∅ = ∅, F · ε = F ,
ε∗ = ε, etc.
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1. The new algorithm and a variety of hash functions should be benchmarked; this
work is ongoing.

2. The effects of various hash functions should be tested in practice (for example,
in intrusion detection) for how close the resulting automaton is to the desired
language.

3. Some operations in the new algorithm can be parallelized. A parallelization of
Brzozowki’s algorithm is the subject of another paper submitted to PSC. It would
be interesting to know whether further parallelization opportunities exist in the
new algorithm.

4. In data structure design, the size of the hash tables are typically chosen to be a
prime number (and therefore the hash key is reduced modulo this size), as this
reduces the probability of collisions. It would be interesting to know whether a
similar property exists in the new algorithm, with typical choices of hash functions.
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Abstract. Table-driven (TD) DFA-based string processing algorithms are examined
from a number of vantage points. Firstly, various strategies for implementing such al-
gorithms in a cache-efficient manner are identified. The denotational semantics of such
algorithms is encapsulated in a function whose various arguments are associated with
each implementation strategy. This formal view of the implementation strategies sug-
gests twelve different algorithms, each blending together the implementation strategies
in a particular way. The performance of these algorithms is examined in against a set of
artificially generated data. Results indicate a number of cases where the new algorithms
outperform the traditional TD algorithm.
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1 Introduction

Most automata implementers rely on a well-known table-driven (TD) algorithm for
string acceptance testing. The algorithm is a simple loop which accesses the transition
table and scans through string’s symbols in order to establish whether it is part of the
language modelled by the DFA or not. To the best of our knowledge, not much has
been done to explore alternative methods for implementing DFA-based recognizers
that could outperform the conventional TD algorithm in specialised circumstances.
Of course, the hardcoded approach suggested by Thompson in [8] has been studied,
and experiments revealed that it outperforms TD for DFAs of relatively small size [2].

For each successive element of the input string being scanned, the TD algorithm
has to access a row of the transition table. The overall performance of a TD recognizer
is determined by the pattern of accesses into the transition table induced by the
input string. If, for example, the string induces a fairly random pattern of accesses
into the table, then there will be a relatively high probability of cache misses and
a consequent degradation of performance [3]. It is thus of interest to investigate
alternative table-driven approaches that somehow organize the transition table so as
to minimize such effects. It should be noted at the outset that the conclusions to be
expected from such an investigation must, of course, be tentative and probabilistically
conditioned, since the characteristics of input strings are, in practice, at best only
probabilistically known. Nevertheless, as the amount of hardware cache increases,
and as finite automata technology is deployed in ever-larger applications, the need to
explore effective cache utilization strategies is an important research theme.
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In this paper, we propose three implementation strategies associated with the
table-driven algorithm in order to minimize the overall latency of a recognizer. In each
case, the revised algorithm outperforms the TD algorithm for an appropriate class of
input strings. The first strategy, referred to as the dynamic state allocation (DSA)
strategy, has already been suggested in [3] and was proven to outperform TD when a
large-scale FA is used to recognise very long strings that tend to repeatedly visit the
same set of states. The second strategy, referred to as the State pre-ordering (SpO)
strategy, relies on a degree of prior knowledge about the order in which states are
likely to be visited at runtime. It is shown that the associated algorithm outperforms
its TD counterpart no matter the kind of string being processed. The last strategy,
referred to as the Allocated Virtual Caching (AVC) strategy, reorders the transition
table at run time and also leads to better performance when processing strings that
visit a limited number of states.

The remaining part of the paper is organized as follows: in section 2 below, we
provide a unified formalism to describe table-driven recognizers that are based on the
above mentioned strategies. Section 3 discusses each of the algorithms. Then follows
in section 4 discussion on experimental results. The conclusion and further direction
to this contribution are given in section 5.

2 Characterization of Table-driven Recognizers

In this section, we describe the various table-driven string recognizers mentioned in the
introduction in a formal fashion—specifically, in terms of mathematical functions—
where arguments correspond to the strategy according to which the TD recognizer is
implemented. The next section gives the pseudo-code for these algorithms.

Consider an automaton M = (Q,V , δ, s0,F), where: Q is the set of states; V is
the set of the alphabet symbols; δ is the transition function; s0 is the start state; and
F is the set of final states of the automaton. We denote by T = P(Q× V ×Q) the
power set of Q×V ×Q. Since V∗ is the set of all strings over the alphabet, including
the empty string; the language of M is denoted L(M) ⊆ V∗. We also consider the set
B = {T, F} of boolean.

Traditionally, FA-based string recognizers are implemented using the table-driven
algorithm. In this case, the transition function is represented in the form of a table
(two-dimensional array) whose columns represent the symbols of the alphabet and
rows the states of the automaton. The table is therefore an implementation of the
function δ(q, cj) that is associated with the FA at issue4.

The traditional TD algorithm does not account for the way in which the transition
table is accessed. If the input string results in transitions to states that are arbitrarily
located in the table, then there are likely to be many cache misses and consequent
performance degradation. On the other hand, if transitions are to states that are
contiguously stored in the transition table, then the cache utilisation will be optimal,
with consequent performance gains. The following subsection discusses the strategies
investigated to date aimed at exploiting this insight.

4 For convenience, and without loss of generality, it will be assumed that states are integers in the
ranges [−1, |Q|). State −1 corresponds to the sink state that indicates rejection, and need not be
represented as a row in the table. Each remaining state, q, corresponds to the qth table row. By
convention, 0 corresponds to the start state.
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2.1 Dynamic State Allocation (DSA)

Implementation of FA-based string processors that rely on the dynamic state allo-
cation principle requires that a dynamically allocated space be created in memory
which is used during acceptance testing. At runtime, as each state is encountered
that falls for the first time within the string path5, it is allocated a memory block into
which the state’s transition information (i.e. a row in the original transition table)
is copied. Subsequent references to such a state’s transitions are then made via this
new piece of memory, rather than via the original transition table. Furthermore, the
memory blocks allocated to states on the string path are contiguous, and arranged in
the order in which the states are encountered. The DSA strategy was first introduced
in [3] and further improvements on the algorithm were suggested in [4].

The TD algorithms based on various strategies are to be described as a mathe-
matical function in subsection 2.4. In this function, we will rely on an argument to
represent the DSA strategy. The argument, D is a natural number that indicates the
extent to which the strategy has been adopted. This can range from not having been
adopted at all, in which case the argument should be 0; to having been adopted for
every possible state visited along the state path, in which case the argument should
be set to n = |Q|. Two scenarios are distinguished:

– In the unbounded dynamic state allocation scenario, the relevant strategy variable
is equal to the maximum number of states (i.e. D = n). In this case, dynamic
allocation occurs as new states that have not yet been dynamically allocated
in the new memory space are encountered. In a worst case situation it may be
necessary to have the size of the newly allocated memory equal to that of the
originally used memory. All that has changed is that the state ordering in the
newly allocated memory is organized in a contiguous fashion with respect to the
sequence of states in the string’s state path.

– In a bounded dynamic state allocation scenario, a relevant strategy variable is
strictly less than the maximum number of states, but also greater than zero (0 <
D < n). In this case, the algorithm only has a limited number of states to be
allocated dynamically in memory. The restriction means that not all states need
necessarily be represented in the new memory location when processing a string
whose string path requires more states than those allocated.

Note that a bounded DSA strategy requires a replacement policy—i.e. a policy about
whether and how to replace states in the dynamically allocated space. In this paper,
we shall assume the direct mapping replacement policy. In terms of this policy, when
the dynamic space is full and reference is made to a state that has not yet been
visited, the new state is assigned an address in the dynamically allocated space based
on the modulus operation used to identify the state to be removed from the dynamic
space. Of course, there could be various other replacement policies such as: the least
recently used (LRU) policy whereby, state in allocated memory is removed, replacing
it with the least recently invoked state; or associative mapping and the set associative
mapping [1,7]. Alternatively, we may simply chose not to do any replacement at all
within the dynamically allocated space. However, these various policy options will
not be further explored here.

In the next subsection, a new TD-based implementation strategy referred to as
the state pre-ordering strategy is discussed.

5 String path is construed to mean the set of visited states that are encountered during the processing
of the input string.
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2.2 State Pre-ordering (SpO)

It may sometimes happen that the percentage of visited states is far below the overall
number of states that make up the automaton. Moreover, those frequently visited
states may be scattered throughout the transition table. To optimize performance
in such a situation, a mechanism is needed to reorganize the transition graph such
that frequently accessed states are grouped together in memory, thus reducing the
probability of cache misses. The SpO strategy addresses this issue. The strategy
requires that a function be run before acceptance testing. The function reorders the
automaton’s original placement of states in the transition table, to correspond with
some ordering of states that is provided by the user as input. Such input could, for
example, be based on some a priori reasoning of the user, or on an empirical analysis
of the history of state visits in prior runs of the FA.

As in the case of the DSA strategy, the reference to this strategy in the mathemat-
ical function of subsection 2.4 is in terms of a boolean argument, say P . It indicates
whether the SpO strategy is used for implementing the FA or not. Therefore, when
the variable evaluates to true, a preprocessing operation that reorders the automaton
states is to be invoked before acceptance testing. As a result, state i transitions are
not necessarily in the ith row of the table. Thus, subsequent accesses to the transition
table is done via an auxiliary array, say p : [0..n), whose ith entry is the new row
number of state i in the transition table. However, if the variable evaluates to false,
the strategy is not used at all.

The next subsection discusses yet another implementation strategy referred to as
allocated virtual caching.

2.3 Allocated Virtual Caching (AVC)

The allocated virtual caching strategy treats a portion of the memory that holds
the transition table as a kind of cache area. Typically, this portion of memory is the
first V rows of the transition table, where V is some pre-specified value. The phrase
virtual cache has been coined to differentiate this block of RAM memory from the
conventional cache memory in hardware. We algorithmically enforce a type of cache
behaviour in utilising this memory. The dedicated portion of the memory is referred
to as the allocated virtual cache.

During acceptance testing, individual states are transferred into the cache as they
are visited, in the hope of enhancing the cache’s spatial and temporal locality of
reference. The virtual cache will typically be limited in size, and may therefore not
contain every single state required. As a result, when reference is made to a state that
is not present in the cache, a replacement policy must be used to remove a state from
the cache. Removing a state from the cache makes a cache line available, so that a
new state’s information can be placed in the empty cache line.

It is important to realise that the initial cache is regarded as empty, even though
the actual cache is occupied by state transition information for the first V table
entries. By this we mean that a pointer which keeps track of the portion of cache
utilised will initially indicate 0 and progressively climb to V as more and more rows
are swopped into cache. Eventually, this pointer will climb to V , whereafter the cache
is regarded as full.

The AVC strategy differs from the DSA strategy in the following sense. In the
DSA strategy, the state transition information is copied (dynamically) into an free
portion of the memory. The AVC strategy, on the other hand, utilises the original
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transition table. It swops rows of the initial table, removing some state transition
information from the cache into elsewhere in the transition table, and bringing in
fresh state transition information into the cache in respective of the most recently
encountered state (unless, of course, that most recently encountered state is already
in cache, in which case no swopping is required).

Unlike the DSA strategy, the AVC strategy only makes sense if it is bounded. If
it were unbounded, then the entire transition table would be regarded as the virtual
cache—if a prefix of the string path references all states, then there would never be
the need to change the contents of the virtual cache when inspecting the suffix of the
string path.

For the present work, for deciding on a state to be removed from cache,we rely on
the direct mapping policy that was mentioned in the discussion of the DSA strategy.
Of course, we could also chose to have a policy of not swapping out states from
the cache once it is full, but instead referencing the transition information from the
original state position in the table.

In the mathematical description of the TD algorithm based on an AVC strategy,
given in subsection 2.4, V (a natural number) is used as a function argument. If V is
0 then the AVC is not used at all. Alternatively if V has any value in the range [0, n)
this means that up to V states may be part of the cache.

The next subsection gives a mathematical function to summarise the above strate-
gies to be built into TD recognizers, relating each implementation strategy to an
argument of the function.

2.4 A Unified Formalism of TD algorithms

In general, an acceptor or a string recognizer of a finite automaton is an algorithm
that relies on the finite automaton’s transition function in order to determine whether
a string is part of the language modelled by the FA or not. Therefore, given a input
string s and a transition function, δ, the recognizer scans each symbol of the string
and returns a boolean. Clearly, this way of describing a recognizer reflects the se-
mantics of the core TD implementation. However, it places no restriction on how the
the mapping of s and δ should operate. Since we have introduced three additional
strategy arguments for describing the various ways in which a TD recognizer could
be implemented, we may now consider a recognizer as a function that requires as
arguments a transition function δ, the input string s, and the respective DSA, SpO
and AVC strategy arguments, D, P and V . The function then returns a boolean as
result. Let us call such a function ρ. It may be characterized as follows:

ρ : T × N × B × N × V∗
9 B

ρ(∆,D, P, V, s) =

{
true if s ∈ L(M)

false if s /∈ L(M)

where 0 ≤ D ≤ |Q|, P ∈ B, and 0 ≤ V < |Q|.
In fact, ρ may be regarded as the denotational semantics of the string recognizer

[6]. It specifies the “meaning” of the algorithm in functional terms, but hides de-
tails about how the algorithm that performs acceptance testing should actually work.
There are, in fact, various ways in which the processing can take place, each corre-
sponding to different instantiations of the strategy arguments. The next section gives
algorithms that correspond to various instantiations.

112



On Implementation and Performance of Table-Driven DFA-Based String Processors

3 The various TD algorithms

The strategy arguments of ρ may be instantiated in 3 × 2 × 2 = 12 different ways:
D can either be 0 (no DSA), a bounded value (D ≤ |Q|), or an unbounded value
(D = |Q|); P is one of two Boolean values; and V is either 0 (no AVC) or greater
than 0. Each of these instantiations may be associated with a different implementation
of a table-driven FA-based string recognizer.

Each row of table 1 depicts one of the 12 different algorithms that can be con-
structed, based on the combination of the values that are assigned to strategy ar-
guments. For easy reference, the last column in the table informs the reader the
subsection in the text where the algorithm is discussed. Note that for reasons of
space economy, not all algorithms can be fully discussed here. In these cases, the
column references a subsection where the algorithm is mentioned. The first column
in the table are triplets of the form (D,P, V ), indicating instances of the strategy
variables that relate to this specific algorithm. The second column informs the reader
of the strategies that are implemented in the construction of the algorithm.

The name given to each algorithm starts with the letter t followed by the con-
catenation of the numbers assigned to each active strategy as follows: the number 1
is assigned to the DSA strategy; the number 2 is assigned to the SpO strategy; and
the number 3 is assigned to the AVC strategy. Since there are two variations to the
DSA strategy, we chose to prefix its number with: u for the unbounded case, and b
for the bounded case. For example, tu1 refers to the table-driven algorithm based on
the unbounded DSA strategy, tb123 refers to the table-driven algorithm based on the
bounded DSA strategy combined with the SpO and AVC strategies; and of course, t
refers to the core table-driven algorithm.

Combination Active strategy Name Reference
(0, F, 0) None t 3.1
(d, F, 0) bounded DSA tb1 3.2
(n, F, 0) unbounded DSA tu1 3.2∗

(0, T, 0) SpO t2 3.3
(0, F, v) AVC t3 3.4
(0, T, v) SpO and AVC t23 3.5
(d, T, 0) bounded DSA and SpO tb12 3.5∗

(d, T, v) bounded DSA, SpO and AVC tb123 3.7
(d, F, v) bounded DSA and AVC tb13 3.6
(n, T, 0) unbounded DSA and SpO tu12 3.5∗

(n, T, v) unbounded DSA, SpO and AVC tu123 3.7∗

(n, F, v) unbounded DSA and AVC tu13 3.6∗

Table 1. The Range of TD-based algorithms (those with a ∗ are not discussed in
details)

These various algorithms are now discussed in the subsections below.

3.1 The core TD algorithm

This well-known algorithm is rather simple: it takes as input the transition function
δ, the string s to be processed, and returns a boolean.
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Algorithm 3.1(The core table-driven recognizer)

proc t(δ, s)
; q, j := 0, 0
do (j < s.len) ∧ (q ≥ 0) →

q, j := δ(q, sj), j + 1
od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

3.2 The bounded TD-DSA algorithm

The algorithm is based on the DSA strategy and accounts for both bounded and
unbounded case according to the nature of the strategy argument D. The unbounded
case of the algorithm was discussed in [3] and here, we provide its bounded counter-
part, which involves state replacement when the dynamically allocated space is full,
and reference is made to a state that has not previously been visited.

In addition to the core TD algorithm inputs, TD-DSA also requires as input
the number of states, D, that may be dynamically allocated; the block size, Z, of
memory required for each newly allocated state; and the starting address, A from
which memory is to be allocated. In the algorithm, The variable p serves as a counter
of the number of states that have been dynamically allocated to date. If p ≥ 0 is the
qth entry in array m[0,n) (which is initialized to −1) then this means that the qth row
of δ has been copied over to the pth row of the table d that has been dynamically
evolved in memory. The function search(m, r) returns the index i in the array m[0..n)

for which mi = r.
When mq = −1, where q is the current state, then a further test is made on p to

find out whether the reserved dynamic portion of memory is full or not. If not full,
the block referenced by variable d is expanded by Z bytes (starting from address B
which initially is A), the state information is copied into d, and B is incremented
to points to the next address where the next state information may be copied if the
dynamic memory block is not full.

Algorithm 3.2(The bounded TD-DSA recognizer)

proc tb1(δ,D,A, Z, s)
; m[0..n), B, q, j, p := −1, A, 0, 0, 0
;do (j < s.len ∧ q ≥ 0) →

if (mq = −1) → { state not dynamically allocated}
if (p < D) →

; mq, dp := p,malloc(B,Z)
; dp,[0..a), p, B := δq,[0...a), p + 1, B + Z
; q := dp,sj

[] (p ≥ D) →
r := MOD(q,D){ remainder in the division of q by D}
; mq := r
; i := search(m, r)
; mi := −1
; dr,[0..a), q := δq,[0..a), dr,sj

f i
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[] mq 6= −1 → skip{ state dynamically allocated}
f i
; q, j := dmq ,sj

, j + 1
od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

3.3 The TD-SpO algorithm

Again, in addition to the input for the TD algorithm, the TD-SpO algorithm is
provided with an auxiliary array p[0..n) such that pi specifies to which new row of δ
the ith row of δ should be moved. At the start, the function reorder(δ, p) reorders the
automaton’s states according to p’s entries. Then follows proper acceptance testing
whereby, access to a state q information is made indirectly via p. Thus, δ(pq, sj)
returns the transition triggered by the string’s symbol sj at state q.

Algorithm 3.3(The TD-SpO recognizer)

proc t2(δ, p, s)
; reorder(δ, p)
; q, j := 0, 0
do (j < s.len) ∧ (q ≥ 0) →

q, j := δ(pq, sj), j + 1
od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

3.4 The TD-AVC algorithm

For this algorithm, the size of the virtual cache, V , has to be provided. Auxiliary
arrays m[0..n), c[0..V ) and i[0..n) are used. mq = r means that state q transition infor-
mation is held in row r of the table δ. The array c[0..V ) is used to hold the states
currently in the cache, and the array i[0..n) indicates whether a state is currently in
the cache (iq = 0) or not (iq = −1). All entries of i are set to -1, indicating that
states have not yet been visited although the first V states are initially in the cache
by default. The variable l is used as cache line controller and helps establish whether
the cache is full or not. The cache is said to be full when the number of different
states visited thus far has reached V .

For every iteration of the main loop, a test is made to check whether the current
state, q is in the cache or not. If it is (iq 6= −1), then the normal transition code is
executed. Otherwise a check is made to see whether the cache is full or not. If the
cache is full (l ≥ V ) and q is not in the cache, then further acceptance testing may
take place only after doing state replacement, as for the DSA strategy. Otherwise,
(i.e. the cache is not full and q is not in cache) q’s transition information is swapped
with that of state l, then l is incremented and acceptance testing takes place. Of
course, information of those states that are in the cache by default are not swopped
provided that their state matches the state in the cache line (ie. q = cl).

State information is swopped by the function swd(δ[mq], δ[mp]) that also inter-
changes the entry mq of the current state q with the entry mp of the state p currently
in the cache line, and referenced in the algorithm by cl.
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In order to do state replacement when the cache is full, we use the modulo opera-
tion to determine the position in the cache to which q should be moved. Then follows
implicit interchange of state information as previously described. Of course, whether
the cache is full or not, a states’s information in i is updated accordingly as depicted
in the algorithm.

Algorithm 3.4( Table-driven based on allocated virtual caching)

proc t3(δ, V, s)
; q, j, p, l := 0, 0, 0, 0
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
do (j < s.len) ∧ (q ≥ 0) →

if (iq 6= −1) → skip
[] (iq = −1) ∧ (l < V ) →

if q = cl → skip
[] q 6= cl →

p := cl

; swd(δ[mq], δ[mp])
; ip, cl := −1, q

f i
; iq, l := 0, l + 1

[] (iq = −1) ∧ (l ≥ V ) →
p := MOD(mq, V )
swd(δ[mq], δ[mcp

])
iq, icp

, cp := 0,−1, q
f i
; q, j := δ(mq, sj), j + 1

od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

3.5 The TD-SpO-AVC algorithm

The algorithm relies on both SpO and AVC strategies. A näıve approach for its
implementation would be to first reorder the automaton’s states using the func-
tion reorder(δ, p), and then invoke (for every iteration of the main loop) a function
tdavc(δ, p,m, c, i, l, V, j, q, s) that updates the next state q to be transited to, as well
as the next index j of the string s currently being processed. This latter function also
takes as parameters the arrays m, c, and i as well as the cache line controller, l, pre-
viously described in subsection 3.4. Moreover, access to states’ original information
is made via entries of the array p. The algorithm below depicts the pseudo-code of
algorithm t23.

Algorithm 3.5(The TD-SpO-AVC algorithm)

proc t23(δ, p, V, s)
; reorder(δ, p)
; q, j, p, l := 0, 0, 0, 0
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
do (q < s.len) ∧ (q ≥ 0) →
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tdavc(δ, p,m, c, i, l, V, j, q, s)
od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

The same principle applies for algorithms tu13 and tb13, that also rely on the combina-
tion of the SpO strategy with the unbounded and bounded DSA strategies. All that
is required is to change the function in the main loop with a function that implements
the relevant strategy and updates the next state and the next string index.

3.6 The bounded and unbounded TD-DSA-AVC algorithm

These two algorithms combine the AVC strategy with either the bounded DSA strat-
egy or the unbounded DSA strategy. We only discuss here the unbounded TD-DSA-
AVC algorithm. For its implementation, the following simple policy may be adopted
for an automaton of n states:

– The first k states of the automaton are cacheables. That is, they are processed
within the virtual cache which holds up to V states, and the following holds:
0 < V < k < n

– The remaining n − k states are processed within the allocated dynamic mem-
ory space where each state occupies Z bytes, and the first state to be allocated
dynamically is located at address A in the memory.

In the algorithm, for every iteration of the main loop, upon accessing a state q,
a test is first made to determine whether the state is cacheable or not. If that is the
case, the function tdavc(δ,m, c, i, l, V, j, q, s) is invoked that updates the next state q,
the next symbol sj to be processed, as well as all the other parameters involved in the
function. However, if the state is not cacheable, it ought to be processed within the
dynamically allocated space using the function utddsa(δ, A, Z,B, q, j, s) that updates
the variables q and j, as well as the parameter B that holds the next address to be
used for space allocation in the case the state currently being processed has not yet
been visited. The pseudo-code of the algorithm is depicted below.

Algorithm 3.6(The unbounded TD-DSA-AVC algorithm)

proc tu13(δ, k, A, Z, s)
; q, j, p, l, B := 0, 0, 0, 0, A
; m[0..n), c[0..V ), i[0..n) := [0..n), [0..V ),−1
;do (j < s.len ∧ q ≥ 0) →

if q < k → tdavc(δ,m, c, i, l, V, j, q, s)
[] q ≥ k → utddsa(δ, A, Z,B, q, j, s)
f i

od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i
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3.7 The bounded and unbounded TD-DSA-SpO-AVC algorithm

The algorithms consist of the SpO strategy and a combination of the AVC strategy
and either of the DSA strategies. For consistency, we briefly discuss the unbounded
case. Based on previous discussions, the algorithm would first consists of a preprocess-
ing phase whereby the function reorder(δ, p) is invoked. Then follows the processing
phase similar to the unbounded TD-DSA-AVC algorithm described in the previous
subsection. Of course the policy on the number of states to be cacheable and those to
be dynamically allocated must be defined. We adopt the same principle as previously
described, and the algorithm is depicted below.

Algorithm 3.7(The unbounded TD-DSA-SpO-AVC algorithm)

proc tu123(δ, p, s, c, k, d, A, Z)
; reorder(δ, p)
{ Initializations }
;do (q < s.len ∧ q ≥ 0) →

if q < k → tdavc(δ, p,m, c, i, l, V, j, q, s)
[] q ≥ k → utddsa(δ, p, A, Z,B, q, j, s)
f i

od
if q < 0 → {return false} [] q ≥ 0 → {return true} f i

The reader should notice the presence of the auxiliary array p as argument in the
functions in the main loop. This simply emphasizes that, unlike algorithm tu13, access
to original states’ information is made via entries of p.

4 Experimental Results

Various experiments were conducted in order to determine the point at which the
derived implementation strategies outperform the core TD implementation. We relied
on artificially generated data, in each case contrived to generate an input string that
would demonstrate the strength of a relevant new algorithms in relation to the core
TD algorithm.

The algorithms were implemented using the Netwide Assembly language (NASM),
under the Linux OS, on an Intel Pentium IV machine. For each algorithm under
investigation, 120 different automata were generated of size ranging from 100 to 12000
states, with increment of 100. Associated with each recognizer was an accepting string
of length 4n, where n is the number of states of the automaton. The strings generated
were explicitly designed such that the first n symbols where randomly chosen among
the automaton states, and those symbols where repeated 4 times.

For each algorithm involving the SpO strategy, the array of state positions p[0..n)

was randomly generated.
Each recognizer was then run 50 times, and the minimum time in clock cycles (ccs)

was recorded. In order to evaluate the extent to which the algorithms outperformed
the core TD algorithm and vice-versa, the data collected for each algorithm was
plotted against the data of the core TD algorithm.

For the bounded TD-DSA and the TD-AVC algorithms, we chose a bound of 50%
on the number of states—that is, for an automaton of size n, up to pn/2q states were
processed in the allocated dynamic memory or in the virtual cache, respectively.
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The graphs in figure 1 depict the performance of the core TD algorithm against
the bounded TD-DSA, the unbounded TD-DSA, the TD-SpO, and the TD-AVC
algorithm respectively. The performance of the unbounded TD-DSA strategy was al-
ready discussed in [3]. As shown in the graphs, the TD-algorithm outperforms the
bounded TD-DSA algorithm under the conditions discussed above. This suggests
that the bounded nature of the algorithm requires frequent state replacement during
acceptance testing when the dynamically allocated space is full. Therefore, the fol-
lowing scenarios merit further experimentation in respect of the bounded TD-DSA
algorithm:

– Replacement policy : We have chosen to use the direct mapping policy in order to
swap a state in and out of the allocated free memory space when no more space
is available. Such policy may not always guarantee better cache placement and
data organization since it may happen that a state is constantly swapped in and
out of the cache, and hence poor performance of the algorithm. A policy such
as the associative mapping or the LRU policy could perhaps be used to avoid
such problem [7]. Alternatively, once the threshold for state allocation has been
reached, we could avoid using any replacement policy. Instead, acceptance could
be performed through the transition table whenever reference is made to a state
out of the dynamic space.

– Kind of string : Previous experiments indicated that up to 70% of the automa-
ton’s states were accessed during acceptance testing [3], when processing the kind
of randomly generated accepting strings that we used for the current experiment.
Therefore, dedicating only 50% of those states to the dynamic memory space
apparently does not guarantee sufficient improvement on data organization. In-
stead, for the particular strings generated, excessive overheads are incurred, with
consequent poor performance.

In an attempt to take into account the fact that replacement policy is a performance
bottleneck, the TD-AVC algorithm was implemented such that no replacement was
made when the cache was full. This approach resulted in TD-AVC competing with
it core TD counterpart as shown in figure 1-IV. Again, since up to 70% of the au-
tomaton’s state are visited, we merely have 20% of the states that are processed
out of cache whiles the remaining are processed in cache. This observation clearly
shows that the strategy is competitive under appropriate circumstances. However,
the range of data that will provide better cache utilization requires further investiga-
tion. Furthermore, even better performance of TD-AVC over the TD is expected if
the cache size increases at about 70% of the total number of states, since most of the
states would be contiguously organized. The graphs in figure 1-III also reveal that
the TD-SpO strategy outperforms its TD counterpart. It should be noted that we did
not take into account the time taken to reorder the states, since this is regarded as
a once-off pre-processing activity. The results confirm that pre-ordering of the state
rows can indeed bring about performance improvements. This will be at an optimal
when pre-ordering maximizes spacial and temporal locality of reference.

Figure 2 depicts the graphs of the various algorithms obtained by combining the
implementation strategies. As may be observed, the combination of the SpO strategy
with the unbounded TD-DSA yields better performance over the core TD algorithm.
This also applies to algorithms t23 (this version used direct mapping for replacement).
Again, the pre-ordering of states apparently results in better data organization, and
hence better cache utilization. However, for algorithm tu123, the AVC strategy re-
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Figure 1. Performances of TD vs DSA (I & II), AVC (III), and SPO (IV)

lied on direct mapping for replacement; this resulted in overheads and therefore poor
cache utilization, and hence poor performance. It is expected that by choosing suitable
strings, a better performance would be observed. For algorithm tb123, the bounded
nature of both DSA and AVC strategies required replacement, resulting in various
overheads; this explains its poor performance over the TD algorithm. Again, suitable
data set would produce better result. The combination of both the DSA strategy
and the AVC strategy also suffered from the overheads caused by the direct mapping
replacement policy. Therefore, in order to improve the performance, a better replace-
ment policy should be chosen or we may even avoid it totally. The conclusion and
further direction to this contribution are depicted in the next section.

5 Conclusion and Future Work

In this paper, we have investigated various ways of improving performances of the
conventional TD algorithm using various implementation strategies to which were
associated parameter arguments. A 6-argument function provided the denotational
semantics of various TD FA-based string recognizers. Alternative instantiations of
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Figure 2. Performances of TD vs DSA-SPO (I & II), DSA-AVC (III & IV), DSA-
SPO-AVC (V & VI), and SPO-AVC (VII)
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these arguments represented new TD-based algorithms. The algorithms were then
implemented and performance recorded. It was shown that, based on the strings made
of long repeated sequences, some of the algorithms outperformed the traditional TD
algorithm, but the others were not of interest due to the appropriateness of the kind
of string considered and the policy used for replacement.

The algorithms were tested by relying on artificially generated data (strings and
automata). Thus as a matter of future work, various experiments will be conducted on
real life data such as genetic sequences, micro-satellites for tandem repeat detection,
network intrusion detection, and the like. We also wish to further explore the string
characteristics and appropriate sizes for dynamically allocated space (in the case of
DSA) and virtual cache (in the case of AVC) respectively.

The algorithms presented in this work are part of a toolkit that is under construc-
tion for FA-based string processing, targeted at applications that use FA-based string
recognition as part of their model solution.
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Abstract. Hidden Markov models (HMMs) are effective tools to detect series of sta-
tistically homogeneous structures, but they are not well suited to analyse complex
structures. Numerous methodological difficulties are encountered when using HMMs to
segregate genes from transposons or retroviruses, or to determine the isochore classes of
genes. The aim of this paper is to analyse these methodological difficulties, and to sug-
gest new tools for the exploration of genome data. We show that HMMs can be used
to analyse complex genes structures with bell-shaped distributed lengths, modelling
them by macro-states. Our data processing method, based on discrimination between
macro-states, allows to reveal several specific characteristics of intronless genes, and a
break in the homogeneity of the initial coding exons. This potential use of markovian
models to help in data exploration seems to have been underestimated until now, and
one aim of our paper is to promote this use of Markov modelling.

Keywords: HMM, macro-state, gene structure, G + C content

1 Introduction

The sequencing of the complete human genome led to the knowledge of a sequence
of three billion pairs of nucleotides [19]. Such amounts of data make it impossible to
analyse patterns or to provide a biological interpretation analysis unless one relies on
automatic data-processing methods. For twenty years, mathematical and computa-
tional models have been widely developed in this setting. Numerous methodological
efforts have been devoted to multicellular eukaryotes since a large proportion of their
genome has no known function. For example, only 3% of the human genome is known
to code for proteins. Another difficulty is that the statistical characteristics of the
coding region vary dramatically from one species to the other, and even from one
region in a given genome to the other. For example, vertebrate isochores ([29], [3])
exhibit such a variability in relation to their G + C frequencies. Thus it is necessary
to use different models for different regions if one seeks to detect patterns in genomes.

A classical way of modelling genomes uses hidden Markov Models (HMMs) ([22],
[18], [23]). To each type of genomic region (exons, introns, etc.), one associates a state
of the hidden process, and the distribution of the stay in a given state, that is, of the
length of a region, is geometric. While this is indeed an acceptable constraint as far as
intergenic regions and introns are concerned, the empirical distributions of the lengths
of exons are clearly bell-shaped ([6], [2], [17]), hence they cannot be represented
by geometrical distributions. Semi-Markov models are one option to overcome this
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problem [6]. These models are very versatile, since they allow to adjust the distribution
of the duration of the stay in a given state directly to the empirical distribution.
The trade off is a strong increase in the complexity of most algorithms implied by
the estimation and the use of these models. For example, the complexities of the
main algorithms (forward-backward and Viterbi) are quadratic in the worst case
with respect to the length of the sequence for hidden semi-Markov chains and linear
for HMMs ([6], [27], [15]). This may limit their range of application as far as the
analysis of sequences with long homogeneous regions is concerned. Another difficulty
is the multiplication of the number of parameters that are needed to describe the
empirical distributions of the durations of the states, and which must be estimated,
in addition to usual HMM parameters [27]. Thus the estimation problem is more
difficult for these variable duration HMMs than for standard HMMs [27].In other
words, semi-Markov models are efficient tools to detect protein genes, but they are
much more complex than HMMs. We suggest to use HMM for modelling the exon
length distribution by sum of geometric laws. To do this a state representing a region
is replaced by a juxtaposition of states with the same emission probabilities. This
juxtaposition of states is called macro-states.

The modelling of a gene may be used to annotated complete genomes, as Genscan
[6] in Ensembl, but also to explore data in order to detect exceptional patterns and
to help in their biological interpretation. Thus, the use of Markov models for the pur-
pose of data exploration has been underestimated in genome analysis. This objective
requires simple parameters and a relative small amount of computer resources, to be
able to perform numerous analyses of the data. For this purpose, we show how to use
macro-states HMMs models for complete genome analysis.

2 Materials

Gene sequences were extracted from Hovergen (Homologous Vertebrate Genes Data-
base) [11] for the human genome. To ensure that the data concerning the intron/exon
organisation was correct, we restricted our analysis to genes of which the RNA tran-
scripts have been sequenced. To avoid distortion of the statistical analysis, redun-
dancy was discarded. This procedure yielded a set of 5034 multi-exon genes and 817
single-exon (that is, intronless) genes. To simplify the model, UTRs (including their
introns) were not separated from intergenic regions. As a consequence, in the present
paper, the word “intron” means an intron which is located between two coding exons.

The statistical characteristics of the coding and noncoding regions of vertebrates
differ dramatically between the different isochore classes [4]. The isochore has been
classified as a “fundamental level of genome organisation” [13] and this concept has
increased our appreciation of the complexity and variability of the composition of
eukaryotic genomes [25]. Many important biological properties have been associated
with the isochore structure of genomes. In particular, the density of genes has been
shown to be higher in H- than in L isochores [24]). Genes in H isochores are more
compact, with a smaller proportion of intronic sequences, and they code for shorter
proteins than the genes in L isochores [12]. The amino-acid content of proteins is
also constrained by the isochore class: amino acids encoded by G + C rich codons
(alanine, arginine . . .) being more frequent in H isochores ([10], [9]). Moreover, the
insertion process of repeated elements depends on the isochore regions. SINE (short-
interspersed nuclear element) sequences, and particularly Alu sequences, tend to be
found in H isochores, whereas LINE (long-interspersed nuclear element) sequences
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are preferentially found in L isochores [20]. Thus, we took into account the isochore
organisation of the human genome. Three classes were defined based on the G + C
frequencies at the third codon position (G + C3). The limits were set so that the
three classes contained approximately the same number of genes. This yielded classes
H=[100%, 72%], M=]56%,72%[ and L=[0%,56%], which were used to build a training
set. These classes were roughly the same as those used by other authors ([24], [30]).
These sets were used to model the distributions of the lengths of the exons and the
introns, and to analyse the structure of genes.

3 Methods

3.1 Estimation of the parameters

Estimation of emission probabilities: The DNA sequence is heterogeneous along
the genome, but it consists of a succession of homogenous regions, such as coding and
non-coding regions. HMMs are used to distinguish between these different types of
regions.

Exons consist of a succession of codons, and each of the three possible positions
in a codon (1, 2, 3) has characteristic statistical properties. This implies the need
to divide exons into three states ([7], [5]). HMMs take into account the dependency
between a base and its n preceding neighbours. In this case, the order of the model
is n. For our study, n was taken to be equal to 5, as in the studies of Borodovsky
and Burge ([7], [5]). The emission probabilities of the HMM were therefore estimated
from the frequencies of 6-letter words in the different regions (intron, initial exon,
internal exons and terminal exon) that made up the training set. Even if introns have
not codon structure, the use of 6-letter words allow to improve the discrimination
between coding and no-coding region. Therefore there is an HMM for each region.

Thus, the emission probabilities of the model were estimated by using the max-
imum likelihood method in order to highlight why some sequences are not correctly
predicted although it is the case for other sequences of the same region. In other
words, we relied on the error of predictions of the HMMs, rather than analyse some-
what blindly the genomes to do an exploration of the human genome.

Estimation of the structure of the macro-states: An alternative to the semi-
Markov models is suggested to model the bell-shaped empirical length distributions of
the exons. We propose to use sums of a variable number of geometric laws with equal
or different parameters. Thus a “biological state” is represented by a HMM and not
by a single Markov state. The emission of probabilities of every state in this HMM
are the same. A key property of this macro-state approach is that the conditional
independence assumptions within the process are preserved with respect to HMMs.
Hence, the HMM algorithms to estimate the parameters and compute the most likely
state sequences still apply [15]. The length distribution of the exons and introns was
estimated from the training set (data set sequences are named x1 . . . xn). Each xi was
considered to be the realization of an independent variable of a given law. We tested
the following laws:

– The sum of m geometric laws of same parameter p (i.e. a binomial negative law):

P [X = k] = Cm
k−1p

m(1 − p)k−m
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– The sum of two geometric laws with different parameters p1 > p2:

P [X = k] = p1 × p2 ×
(1 − p2)

k−1 − (1 − p1)
k−1

p1 − p2

– The sum of three geometric laws with different parameters p1 < p2 < p3:

P [X =k] =
p1 × p2 × p3

p2 − p3

×
(

(1−p1)
k−1 − (1−p3)

k−1

p3−p1

− (1−p2)
k−1 − (1−p3)

k−1

p3−p2

)

To estimate the parameters of the different laws, we minimised the Kolmogorov-
Smirnov distance for each law. The law which fits best with the empirical distribution
is the law with the smallest Kolmogorov-Smirnov distance. However, the classical
Newton or gradient algorithm cannot minimise for the Kolmogorov-Smirnov distance,
because this distance cannot be differentiable. We therefore discretised the parameter
space with a step of 10−5, and fixed the minimum value. Parameter estimations were
not based on the maximum likelihood, which would have matched the end of the
exon length distribution thus neglecting many small exons (Figure 1 a). Indeed, that
it is for a geometrical law or a convolution of geometrical laws, the parameter p is
estimated by the reverse of the mean (E[X] = 1/p) by the method of the maximum
likelihood. The extreme values thus tend to stretch the distribution towards the large
ones. We therefore have preferred to use the Kolmogorov-Smirnov distance in order
to obtain a better modelling of the human gene. Again, in order to provide simple
but efficient models, equal transitions between states of a macro-state were favoured
when it was possible.

Figure 1. (a) The histogram represents the empirical distribution of the length of
the initial exons in a multi-exons gene. The dotted line describes the theoretical
distribution, obtained from the Kolmogorov-Smirnov distance. The continuous line
characterises the binomial distribution, obtained by the method maximum likelihood.
(b) The histogram represents the empirical distribution of the length of the inter-
nal exons. The dotted line describes the theoretical distribution, obtained from the
Kolmogorov-Smirnov distance.

Thus, a region is represented by a hidden state of the HMM. If the length dis-
tribution of a region is fitted by a sum of geometric laws, the state representing the
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region is replaced by a juxtaposition of states with the same emission probabilities,
thus leading to macros-states (Figure 2). The state duration is characterised by the
parameters of the sum of these geometric laws. Various studies ([6], [28], [8]) have
shown that the length distribution of the exons depend on their position in the gene.
We took all exon types into account: initial coding exons, internal exons, terminal
exons and single-exon genes.

Figure 2. Figure representing initial exon HMM

3.2 Models selection

Algorithm of Models selection In order to measure the adequacy of a model
with a genomic region, the theory of HMMs proposes two solutions: the probability
of the observed sequence conditioned by the optimal trajectory in the hidden states
(Viterbi) or the probability of the sequence x under the model M , P [x|M ].
The first method neglects the fact that many trajectories are biologically equivalent.
The second method sums the probabilities corresponding to internal structures of a
sequence, which were different. Thus, a model that predicts a bad internal structure
can be associated to a high value of the probability. For example, these two techniques
of selection of models in the context of HMMs were compared:
We consider a HMM of type M1M0 with 2 states, called A and B, and 2 observations,
called 0 and 1. We assume that the transition probabilities from A to B and from
B to A are both t = 9.53643.10−7, and that A emits 0, respectively B emits 1, with
probability p. We note M0.9 the HMM with the probability p = 0.9 and M0.6 the
HMM with p = 0.6. We choose the sequence x = 0n1n for given value of n=10, the
aim is to choose M0.9 and M0.6.
If the maximisation of the probability of the sequence was used, it is needed to
compute P (x|M):

P (x|M0.9) = 6.97.10−11 < P (x|M0.6) = 1.27.10−6.

In this case the model M0.6 is better than the model M0.9.
If the probability of the observed sequence conditioned by the optimal trajectory in
the HMM was used, it is needed compute the probability given by the Viterbi algo-
rithm: P (x/sop,M). For the models M0.9 and M0.6, the optimal sequence is composed
of n states A followed by n states B. In general case (0.5 < p < 1), this probability
is:

P (x|sop,M0.9) = 0.1215 > P (x|sop,M0.6) = 3.65.10−5.

Thus, M0.9 is better than M0.6. This very schematic example shows opposite con-
clusions for the two methods and amphases the fact none of these approaches has
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a universal validity. On the other hand, if we consider HMMs that correspond to
a macro-state, the situation is biologically clearer. All trajectories in a macro-state
are biologically equivalent. The method of the optimal trajectories is therefore not
adapted to this problem, while, the situation is well described by the probability of
the sequence under the model. Thus, the probabilities that are summed correspond
to the same biological structures.

Analysis of the gene structure using HMMs selection The use of HMMs
for classifying sequences raises the question of the evaluation of their discriminating
power. The method chosen here is to split the set of sequences of known nature into
two sets: one for training and one to compare the different models.
All HMMs (introns, initial exons, internal exons and terminal exons models) are
then compared pairwise for all the sequences in a given type of region (intron, initial
exon, internal exon and terminal exon sequences) of the test set, in order to identify
the model which is the most likely to represent the test sequence. This gives the
discrimination measure D, with

D = P (S/HMM1)/P (S/HMM2),

where S is the sequence being tested, and HMM1, HMM2 are the two models tested.
The computations were realized with the package SARMENT [16]. The best HMM
for most of the sequences in a given region is used to characterise this region. Each
model is finally characterised by the frequency with which it recognises the sequences.
This approach allows to show the types of sequences that were not well recognised
by their corresponding model. Finally, the analysis of the different types of exons was
completed by a correspondence analysis.

4 Results – Discussion

4.1 Inclusion of explicit distributions of the durations of the states in
HMMs

In order to model the bell-shaped empirical length distributions of exons (Figure 1),
we have used sums of geometric distributions with equal or different parameters. The
length of an exon depends on its position within the gene. Initial and terminal exons
tend to be longer than internal ones (Table 1). The length of introns displays also
a noticeable positional variability. The distributions of the lengths of internal and
terminal introns are relatively similar, but these types of introns are both smaller
than the initial introns (Table 1). As is well known, the lengths of exons and introns
depend on their G + C content [8]. Table 1 shows that the G + C frequency at the
third codon position is negatively correlated with the length of the introns, i.e., high
frequencies correspond to short introns, and vice versa. The initial exons are longer in
G+C rich regions (i.e. displays a significant Wilcoxon non-parametric test). However,
the length of the internal and terminal exons does not vary with the class of isochores
(i.e. displays a non significant Wilcoxon non-parametric test). The length of the
exons displays clearly a bell-shaped pattern, for the three G + C classes. Since the
minimisation of the Kolmogorov-Smirnov distance yields a good fit with the empirical
distribution of the length of the exons (Figure 1 and Table 1), we used it to model
their length distribution by a sum of geometric laws and estimated the parameters
of these laws (see Method for a comparison with the maximum likelihood approach).
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Length (bp) Length (bp) Length (bp)
Position in class H in class M in class L

in the gene Mean Median Mean Median Mean Median
Initial coding exon 223 123 176 102 160 87

Internal exon 144 126 143 125 144 120
Terminal exon 244 165 237 145 218 138
Initial intron 4027 3189 4139 3540 5315 4857

Internal intron 1461 958 1767 1310 2850 2433
Terminal intron 1394 884 1764 1282 2819 2415

Table 1. Length of the exons and of the introns according to their position in the
gene and according to their G + C frequency at third codon position

Laws Parameters p K-S distance
G2(p) 0.0117 0.1084
G3(p) 0.0185 0.16
G4(p) 0.02634 0.1826

G(p1, p2) 0.0055-0.087 0.0447

Table 2. Parameters estimation of different laws obtained for initial exons of class H
minimising Kolmogorov-Smirnov distance (K-S)

We define Gn(D1, ..., Dn) as the distribution of the sum of n random variables of
geometric distributions, each with expectation Di and parameter pi = 1/Di. Thus
the expectation of Gn(D1, ..., Dn) is D1 + ... + Dn. When Di = D for every i, this
is called a negative binomial distribution with parameters (n,1/D), which we denote
Gn(1/p). Finally Gn(D) is a geometric distribution with expectation D and parameter
p = 1/D, which we write G(D).

We show here only the results for the modelling of the distributions of the lengths
in the H class. However, the distributions of the lengths in the classes M and L can be
modelled by sums of geometric laws. The estimated distributions are G2(58.82, 74.07)
for initial exons (Figure 1 a), G3(86.21, 181.81, 10) for terminal exons, G5(26.32) for
internal exons (Figure 1 b), G3(351.11) for intronless genes, and the geometric dis-
tribution G(111.11) for initial introns. Other types of introns are also modelled by a
geometrical distribution.

The distributions of the lengths of the single exons (that is, the intronless genes)
exhibit a clear bi-modality (Figure 3). By using the software Blast [1] to search regions
of the human genome similar to our intronless genes, we have found that many small
intronless genes are often repeated along the human genome. The comparison of
all these repeated intronless genes to a database of pseudogenes [21] revealed that
many small intronless genes are actually pseudogenes, i.e., genes that have lost their
function. After the elimination of these pseudogenes, the distribution of the lengths
of the real intronless genes is bell-shaped, like the distributions for the other types of
exons.

4.2 Evaluation of the models

The macro-states used for initial exons (M E1), internal exons (M Eint) and termi-
nal exons (M Eter) were evaluated. In order to compare the models two-by-two, the
likelihoods of each sequence of a given type (initial exons, internal exon, etc.) with
respect to the two models were compared and the model with the greater likelihood is
voted for by this sequence (see Method). For example, the sequences of initial exons
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Figure 3. (a) The histogram represents the empirical distribution of the length of
the intronless genes. (b) The histogram represents the empirical distribution of the
length of the intronless genes without pseudogenes.

vote between the model for the initial exons (M E1) and the model for the internal
exons (M Eint), assuming roughly equal proportions (Figure 4, Histogram 1). In
conclusion, on the sequences of initial exons, the models M E1 and M Eint have
similar predictive powers. Figure 4 gives results for the isochore class H. We stress
the following points.

1. Internal exons and terminal exons share similar statistical properties. This is
shown by the similar predictive powers of the models M Eint and M Eter (Figure
4, Histograms 4 and 6).

2. The initial exons are clearly discriminated from the other exons. This is shown by
the smaller likelihood of the internal exons in M E1 than in M Eint (Figure 4,
Histograms 3 and 5).

3. The modelling of the initial exons is inadequate. This is shown by the small like-
lihood of the initial exons in M E1 (Figure 4, Histograms 1 and 2).

The specific statistical characteristics of the initial exons might result from the
existence of signals located at, or covering, the beginning of the genes. To explore this
hypothesis, we have split our HMM for the initial exons into two HMMs. The first one
models the first n nucleotides of the initial exon, and the second the remaining part of
the initial exon. This new initial exon model is called M E1n. Pairwise comparisons
between the models M E1n for various values of n (Figure 5) show that the M E180

model yields the better discrimination. This suggests that the break of homogeneity
in the initial exon happens around the 80th base. Finally, this separation provides a
better discrimination between the models of the internal and initial exons on the one
hand and the model of the initial exons on the other hand (49% to 61% in favour of
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Figure 4. Models learned from different sequences (initial, internal and terminal ex-
ons) were compared pairwise using the sequences used to determine the best predic-
tions. For instance, in histogram 1, the likelihood of each first exon was computed
using models learnt on E1 and Eint. The black bar represents the percentage of first
exons having a higher likelihood for the first exon model, and the grey bar those with
a higher liklihood for the second exon model. Histograms 1-2: The models E1, Eint
and ET have same predictive power on initial exons. Histograms 3-5: The models
Eint and ET provide a good prediction of the internal and terminal exons compared
to the E1 model (82% and 75%, respectively). Histograms 4-6: The models Eint and
ET have the same predictive power for initial and terminal exons.

the M E180 model [Figure 4, histogram 1 and Figure 5, histogram 7]) and from the
internal exons (89% to 92% in favor of M Eint, not shown in the Figure). Similar
results were found for the terminal exons.

The break in the homogeneity of the first exon could be explained by the presence
of a signal peptide. The first exons which contain a signal peptide are better recognised
by the first HMM of the M E180 model than by the second one in 75% of the cases.
These results were also compared with those obtained by SignalP [26]. The initial
exons which, according to SignalP, contain a signal peptide, were more accurately
recognised by the M E180 model than by the internal exon model in 70% of the
cases. When SignalP does not predict a signal peptide, the M E180 and the internal
exon models yield similar results.

The significance of the modelling of isochores is highlighted by the results de-
scribed in the previous paragraph, which show the effect of the distributions of the
lengths of exons and introns. This claim was confirmed by our study of the influ-
ence of the isochore class on the words frequencies, in the different types of regions.
For every type of exons (i.e., initial, internal and terminal), the model trained with
a specific isochore class performed better on this class than the others (Figure 6).
The situation as concerns the classes of introns is somewhat different. The introns
from classes H and M are better predicted by our HMMs H and M , respectively
(Figure 7, Histograms 1 to 4), whereas the three models H, L, and M , are more or
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Figure 5. The models learned from different sequences (initial, internal and terminal
exons) were compared pairwise to the initial exons to identify the best predictions.
The IE80 model provides a better prediction of initial exons than any other model
tested.

less equivalent for the introns of class L (Figure 7, Histograms 5, 6). This analysis
clearly reveals some major statistical differences between the three isochore classes,
and the importance of taking into account this heterogeneity of the genome in a con-
text of prediction of genes. The poor recognition of introns in L isochores by all these

Figure 6. The models learned from different sequences (internal exons of classes H,
M and L) were compared pairwise on the same sequences to determine the best
predictions.

132



A Markovian Approach for the Analysis of the Gene Structure

models might result from an over-simplistic modelling. We point out that repeated
elements, particularly LINEs, were not taken into account. Their higher frequency in
the isochores of class L could explain the response of the model.

Figure 7. The models learned from different sequences (introns of classes H, M and
L) were compared pairwise on the same sequences to determine the best predictions.

Many other data exploration tools exist. Multivariate analysis is on among the
most popular methods that uses exactly the same data as HMMs. Indeed, if sequences
are represented by frequencies of 6-bases words (see method), then a correspondence
analysis will take into account exactly the same data as the one which is used to
estimate the parameters of an HMM (see method). Figures 8 and 9 show the general
patterns found by correspondence analysis. The frequencies of words of length 6 in
the exons and the introns are neatly divided into four groups: H exons, M exons, L
exons, and introns (Figure 8). When the reading frames are also taken into account
(Figure 9), they are separated on the first factor, showing that the statistical differ-
ences between the codon positions represent the main statistical pattern in coding
sequences.

5 Conclusion

The use of Markov models for the purpose of data exploration has been underesti-
mated in genome analysis. This study is the first large scale exploration of the use of
macro-states. Our approach allows to discriminate most genomic regions and is based
on a selection among HMM models using macro-states. Macro-states allow to model
distributions of lengths which are not geometric. Our strategy yields a comprehensive
description of the human genome that highlights the following features:

1. The particular structure of intronless genes revealed the large number of errors of
annotation in the databases for these genes: most small intronless genes are actual
pseudogenes.

2. The great statistical differences between the three classes of isochores, and there-
fore the importance of taking into account this heterogeneity of the genome for
the purpose of gene prediction. Initial exons exons are longer in the H class (G+C
rich). Introns are longer in the L class (G + C poor).
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3. Initial exons exhibit a very specific pattern, due to the fact that half of them
contain a peptide signal. An average duration of stay in the first state of M E180
of 80 bases long was observed, this is consistent with biological knowledge about
such signals, which are 45 to 90 bases long. Initial exons without a peptide signal,
and the second parts of the initial exons with a peptide signal, are statistically
similar to internal exons and terminal exons, respectively.

Figure 8. Correspondence analysis of the emission probabilities of the different states
models in reading frame 0. The first axis (36.2% of total variability) represents the
G + C gradient. Eint.H.0=internal exon model of class H and reading frame 0;
Eint.M.0=internal exon model of class M and reading frame 0; Eint.L.0=internal
exon model of class L and reading frame 0; ETt.H.0=terminal exon model of class H
and reading frame 0; ETt.M.0=terminal exon model of class M and reading frame 0;
ETt.L.0=terminal exon model of class L and reading frame 0; First.E.H.0=initial
exon model of class H and reading frame 0; first.E.H.0=initial exon model of class
M and reading frame 0; first.E.H.0=initial exon model of class L and reading frame
0. IN.H=intron model of class H; IN.M=intron model of class M ; IN.L=intron
model of class L.

Macro-states HMMs models are based on exactly the same data as. Multivariate
analysis but allows to identified the general patterns with a much lower cost in CPU
resources. This is very close to the principle of some “old” gene prediction methods
(see RECSTA [14]). However, the markovian approach has important advantages:
it is not necessary to know the limits of the regions before the analysis, and more
importantly, the model is more versatile; hence, new hypotheses can be explicitly
introduced, as was done for the signal peptide.
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Abstract. In the context of this paper microsatellites (short approximate tandem re-
peats) refer to consecutive patterns contained in genomic sequences. A new algorithm
to detect such microsatellites in DNA is proposed. The algorithm relies on the construc-
tion of finite automata originating from the Moore machine paradigm. The proposed
finite automata contain “counting states”. The overall algorithm is designed to support
user requirements as expressed by the typical geneticist.

Keywords: finite automata, microsatellites, tandem repeats, computational biology

1 Introduction

A perfect tandem repeat (PTR) is a string of nucleotides in a genomic sequence whose
initial substring (of some arbitrary length) is followed by two or more copies of that
substring. The introductory substring is called the motif of the PTR.

For example, ACGACGACGACGACG is a PTR, in which the motif is a substring of
length 3 (i.e. |motif | = 3), namely ACG.

In contrast, an approximate tandem repeat (ATR) is a genomic sequence whose
introductory substring (or motif) is followed by two or more substrings, of which at
least one need not necessarily be an exact copy of the motif. The extent to which
these non-exact copies may vary from the motif is limited, as will be discussed later
in this article.

An example of an ATR is: ACGACTACG. In this case, the substring ACT that directly
follows on the motif ACG has a mismatch in the third position.

In the absence of further qualification, reference to a TR should be construed as
a reference to either a PTR or an ATR. It should be noted that there is not complete
consensus on the precise meaning of a TR. In some cases, it is not required that
the TR starts off with its motif. In fact, there are some who would be content to
regard a string of approximate repeats as a TR, even if it did not contain the motif
at all. However, this research has been driven by the requirements of geneticists and
molecular biologists who were interested in detecting TR’s as defined above.

A TR element (TRE) that matches the identified motif of the TR will be referred
to as a PTR element (PTRE). A TRE that does not match the motif is referred to
as an ATR element (ATRE).

In the literature ([21]; [15]; [16]; ) a distinction is made between TR’s that con-
stitute microsatellites, minisatellites and satellites. However, terminology is not used
consistently in the literature.

Castelo et al. [4] coins the term Simple Sequence Repeats (SSR’s) for microsatel-
lites; Tran et al. [22] terms microsatellites short tandem repeats. Delgrange and Rivals
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[6], Benson [3] and Abajian [1] consider TR’s characterized by motif lengths greater
than or equal to two and smaller than or equal to five (2 ≤ |motif | ≤ 5) to be mi-
crosatellites. Thurston and Field [21] consider TR’s microsatellites if 2 ≤ |motif | ≤ 6.
For the purposes of this paper microsatellites will be consider to be TR’s with a
PTRE or motif such that 2 ≤ |motif | ≤ 5. Microsatellites may include both PTRE
and ATRE.

Although the algorithm, FireµSat, that is proposed here, can in theory be applied
to search for TR’s of any length, the focus at this stage, is to introduce an algorithm
that searches specifically for microsatellites.

It will be seen that FireµSat has several parameters that can be used to tune its
search. It should be emphasised that these parameters have been devised in consul-
tation with the intended user community, who have been unable to usefully deploy
existing software for TR detection. The objective is to fine tune a TR search so that
redundant data is avoided, and relevant data is not missed.

The remainder of this paper is laid out as follows. Section 2 provides a brief
overview of existing software packages or proposed algorithms that attempt to address
the computational problem of detecting microsatellites on DNA. Section 3 defines
the problem in a formal manner. In section 4 an outline is provided of how finite
automaton (FA) technology can be used to detect tandem repeats in a DNA string,
culminating in pseudo-code for the FireµSat algorithm. Section 5 concludes the paper,
and points to work currently underway to empirically test the FireµSat algorithm.

2 Related work

There are various software packages that search directly or indirectly for microsatel-
lites. In this regard Van den Bergh [23] mentions that although most authors reference
a selection of software that has been developed before the software that they propose,
there does not seem to be a comprehensive catalogue of relevant software. It is pos-
sible to classify existing software in various ways. Benson [3] divided the algorithms
that he investigated into three categories and mentions their shortcomings as follows:

– Alignment algorithms
Alignment algorithms proposed by (Benson [2], Kannan and Myers [7] and Schmidt
[19]) have an excessive running time—their running time is exponential.

– Algorithms from the field of data compression
An algorithm proposed by Milosavljevic and Jurka [14] detects simple sequences
thus mixtures of fragments that occur elsewhere. Simple sequences may or may
not contain TR’s. This algorithm makes no attempt to deduce a repeated pattern.
Rivals et al. [17] also developed an algorithm belonging to this category that is
based on the presence of preselected patterns with (1 ≤ |motif | ≤ 3). This algo-
rithm suffers from severe limitations in terms of the motif length that is allowed,
and in terms of the fact that the algorithm only searches for preselected motifs.

– Algorithms that aim to find TR’s more directly.
Of these algorithms, the one developed by Landau et al. [11] is limited by its
definition of approximate repeats. The algorithm requires that two copies differ
by k or fewer substitutions (Hamming distance) or by k or fewer substitutions and
indels (unit cost edit distance). The requirement for a fixed number of differences
rather than a percentage is regarded as unsatisfactory. Similarly, the treatment
of substitutions and indels as equals is regarded as unsatisfactory. The heuristic
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algorithm proposed by Karlin et al. [8] is hampered in the same manner by the use
of matching blocks separated by error blocks of fixed size. Myers and Sagot [15] has
proposed an exact algorithm that requires that the approximate pattern size and
a range for the number of copies should be pre-specified. An earlier algorithm of
Benson [2] only finds TR’s if they have a pattern size that is specified in advance.

Delgrange and Rivals [6] argue that an exact algorithm that entails the systematic
detection of significant TR’s in a way that is independent of the motif or of the
sequence length is beyond the scope of present methods. In regard to existing software
Delgrange and Rivals [6] also distinguish between three different classes of algorithms
and their shortcomings as follows:

– Fast algorithms from the field of computer science.
In the field of computer science there are several fast algorithms that search for
only two exact tandem repeats. Authors presenting these approaches include Main
and Lorentz [13]; Kolpakov and Kucherov [9] and Stoye and Gusfield [20]. Al-
though these algorithms may be useful as filters to detect possible duplicate motifs
they do not comply with the needs of molecular biologists [6].

– Algorithms that do not make provision for the detection of TR’s containing sub-
stitutions, deletions and insertions at once.
Algorithms in this category include those developed by Kolpakov and Kucherov
[10], as well as the algorithms developed by Landau et al. [12] and Coward and
Drablos [5]. These particular algorithms only make provision for substitutions.

– Algorithms that detect TR’s and allow for substitutions, insertions and deletions.
These algorithms include the work of Myers and Sagot [15] who introduced a
combinatorially exhaustive approach that identifies several possible motifs and
alignments for each TR. The complexity of this approach depends exponentially
on some parameters. The work of Rivals [18] is limited to small motifs and allows
only indels between two of the motifs within a TR.

3 Formal problem statement

ATR’s on genetic sequences are defined in terms of the following, more formal con-
ventions. A PTR whose motif ρ is repeated p times where p ≥ 1, is denoted by ρp. An
ATR u that is derived from this PTR ρp, must also have the motif (ρ) as its prefix.
It therefore has the form ρu2 · · · up where each ATRE, uk(k = 2 · · · p), is the result
of at most ε mutations on ρ. Here ε is called the motif error. In theory, ε could be
anywhere in the range 0 ≤ ε ≤ |ρ|.

However, when running FireµSat, the user is required to choose a maximum value
for ε that complies with certain practical considerations. In determining whether the
string ρu2 · · ·up is to be construed as an ATR, this value of ε represents the maximum
number of mutations (or errors) that are tolerated, in deciding whether or not, for
each k = 2 · · · p, uk represents an acceptable ATRE. In 3.1, the author discusses
the types of mutations that are tolerated. Here it is emphasized that the following
toleration limits on ε apply for a given ρ.

1. If |ρ| = 2 or |ρ| = 3 then only zero or one error is tolerated; i.e. ε may be chosen
as either 0 or 1. (The default is 1.)

2. If |ρ| = 4 or |ρ| = 5 then zero, one or two errors are allowed; i.e. ε may be chosen
as either 0, 1 or 2. (The default is 2.)
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Recall that the objective is to detect microsatellites. This means that 2 ≤ |ρ| ≤ 5.
Consider an example where ρ = ACGTT. Then |ρ| = 5 and the user may conse-

quently select the maximum number of errors to be either 0 or 1 or 2. If the user
selects “2”, then ACT would be regarded as an ATRE, since it may be construed as
the motif in which two deletions (see 3.1) have occurred. Likewise, ACGT could be
regarded as an ATRE, since it may be seen as the motif in which one deletion has
occurred. (See 3.1.) However, AC will not be regarded as an ATRE.

3.1 Type of mutations tolerated

A substring u is considered similar to the substring ρp if it can be written as u =
u1u2 · · ·up where each word uk (k = 1 · · · p) is obtained by at most ε mutations on ρ
and where ε is some pre-specified limit in the range 0 ≤ r ≤ |ρ|. This was explained
in the previous paragraph (3). (Note that in running FireµSat, the user has further
options for constraining the search for ATR’s. These options are discussed in 3.2.
They are concerned with constraining the ratio of ATRE’s to PTRE’s in a string
and/or constraining the number of consecutive ATRE’s in the string.)

To further illustrate the above, consider an example based on the three letter
PTRE ρ = ACG, where ε = 1 has been selected. This means that at most 1 mutation
is allowed. The authorized forms of each ATRE uk are, therefore, as follows:

1. The word ρ itself: uk = ACG and |uk| = 3.
2. The word ρ with the deletion of one nitrogenous base: uk ∈ {CG, AG, AC}. Thus, in

all these cases |uk| = 2.
3. The word ρ with the mismatch of one base: uk ∈ {XCG|X : {C,G,T}} ∪ {AXG|X :

{A,G,T}} ∪ {ACX|X : {A,C,T}}. In all these cases |uk| = 3.
4. The word ρ with an insertion in front of or behind any position ρi of ρ. uk ∈

{ACGX|X : {A,C,G,T}}∪{ACXG|X : {A,C,G,T}}∪{AXCG|X : {A,C,G,T}}∪{XACG|X :
{A,C,G,T}}. In all these cases |uk| = 4.

It should be noted that all these words keep at least 2 bases from the original word
ρ. As it stands, the foregoing could lead to ambiguity in determining the mutational
origin of a string. For example, ACG could be construed as some intended PTRE, ρ,
or as a deletion of the last nucleotide, G, of the PTRE ρ, followed by the insertion
of G.

To resolve such ambiguities, the following rules will be applied wherever possible:

1. A string will be interpreted as a PTRE rather than as an ATRE with mutations.
2. A string will always be regarded as an ATRE that results from mismatches, rather

than from insertions or deletions.
3. An ATRE will be regarded as originating from a deletion rather than from an

insertion.

This manner of defining authorized forms of mismatches and deletions of uk derives
from experimental observations cited by Rivals et al. [17]. It has been endorsed by
Benson

[3] as providing statistically relevant information. The algorithm proposed also al-
lows for other types of errors that can be adjusted by the user. More details pertaining
to this matter are to be found in 3.2.
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Indeed, the approach was discussed with a molecular biologist, L. P. Wright, from
the University of Pretoria, who was positive about the statistical relevance of the
information that would be generated by the proposed algorithm.

In principle, then, an algorithm seeking TR’s could rely on the motif error (ε)
alone to determine when the end of a candidate string has been found. However,
in practice, it is useful to rely on additional metrics. In 3.2 three such metrics are
introduced. They determine whether a string that has been found to be a possible
TR at some point in the algorithm, should be output as such, or whether further
processing should occur to see if the string can be further extended to produce a
longer TR.

3.2 Additional metrics and threshold values

In addition to considering ε (the maximum motif error that may occur within a TR),
FireµSat also computes three additional metrics. These are σ, the so-called substring
error; tn atreC, the number of ATRE’s that occur consecutively; and tn tre, the total
number of TRE’s. In each case, the user can specify maximum values for these metrics,
which FireµSat will use as a threshold value in determining when a given substring
can be regarded as a TR. Each of these metrics will now be considered in turn.

1. The substring error :σ
This is a measure of the extent to which the number (weighted as described
below) of ATRE’s in the candidate TR exceeds the number of PTRE’s. The mea-
sure is computed at appropriate points by FireµSat and then compared against a
user-specified threshold value of the maximum substring error allowed, τ . During
processing σ ≤ τ should always hold.
In line with the guidelines suggested by Benson [3], the value of σ depends, inter
alia on penalties (or weights) allocated by the user to mismatches (p m), deletions
(p d) and insertions (p i). For a given motif, ρ, and a given substring that has been
partitioned into the form u = ρu2 · · ·up, σ on u is computed as:

σ = (n d ∗ p d) + (n i ∗ p i) + (n m ∗ p m) − n ptre

where n d is the number of deletions in u; n i is the number of insertions in u;
n m is the number of mismatches in u; and n ptre is the number of PTRE’s in u.
The user may rely on system default values for the penalties. These are p i = 1.0,
p d = 1.0 and p m = 0.5 respectively. A penalty weight of 0 may be chosen for one
or more of the mutation types, in which case no penalty is assigned to ATRE’s
that derive from that mutation type.
The value of σ therefore reflects the extent to which the number of ATRE’s ex-
ceeds the number of PTRE’s, weighted in terms of penalty values associated with
mismatches, deletions and insertions.
The foregoing implies that FireµSat has to keep a count of the number of the
various types of mutations. As will be seen in section 4.1, FireµSat makes use
of an FA denoted by FATR, which is the sum (in the sense of Kleene’s theorem
Rule 2 of part 3) of four other FA’s: one for recognizing PTRE’s, and one each for
recognizing insertions, deletions and mismatches. In general the substring error σ
is calculated every time a final state is reached in FATR. Each such final state is
associated with a unit increment in either the number of PTRE’s, or the number
of insertions, or the number of deletions or the number of mismatches. It is these
final states, therefore, that enable the counting of the various types of mutations.
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For as long as σ ≤ τ holds, the scan of the input string continues in an effort to
increase the length of the TR found to date. If the condition is not met, then the
TR found to date is output, and the next TR in the input string is sought.
Of course, whenever a dead end state (a state that has only incoming edges,
including a loop into the state itself labelled with all the alphabet letters of the
input alphabet) of FATR is reached, then the TR is also output, and the search
for the next TR resumed.

2. The maximum number of consecutive ATRE’s (α)
The user has the option of entering a value denoted by α. This value indicates the
maximum number of ATRE’s that are allowed to occur next to each other. Thus
α serves as a second threshold value.
If the user specifies a value for α, then the counter tn atreC is maintained to
record the total number of consecutive ATRE’s since the last PTRE. The counter
is incremented whenever an ATRE has been read (indicated by a transition to
a final state of FATR) irrespective of the type of elements—whether it be an
insertion, deletion or mismatch. However, when a PTRE is read, then the value of
tn atreC is again set to zero. The processing of a string will only proceed if α ≤
tn atreC.
Note that a value for α is not activated by default. Thus, if the user does not
enter a value for α, then there is no limit to the number of ATRE’s that may
occur consecutively. (Alternatively, one might say that the default value of α is
∞.)

3. The minimum number of tandem repeat elements (β)
To avoid the output of unwanted data, the user may indicate the minimum num-
ber of TRE’s that has to occur before a TR is output, denoted by β. To this end,
a count, tn tre, is kept of the total number of tandem repeat elements encoun-
tered to date in the current candidate TR. In fact, a count is also kept of the
total number of PTRE’s encountered to date, tn ptre, and of the total number of
ATRE’s encountered to date, tn atre. Clearly, tn tre = tn ptre + tn atre.
The current candidate TR will only be reported as a TR if one of the previously
mentioned thresholds or terminating conditions is encountered and if tn tre ≥ β.
The default value for β is two.

To illustrate these concepts, consider the genetic substring ACGACACACACGCGCGACGACT.
Let the motif be ACG. The values for n d,n i, n m, tn ptre, tn atre and tn atreC are
as follows at different processing intervals of the substring.

0. ACGACACACACGCGCACGACT n d n i n m tn ptre tn atre tn atreC
1. ACG 0 0 0 1 0 0
2. ACGAC 1 0 0 1 1 1
3. ACGACAC 2 0 0 1 2 2
4. ACGACACAC 3 0 0 1 3 3
5. ACGACACACACG 3 0 0 2 3 0
6. ACGACACACACGCGC 3 0 1 2 4 1
7. ACGACACACACGCGCGACG 3 0 1 3 4 0
8. ACGACACACACGCGCACGACT 3 0 2 3 5 3

Suppose that τ was specified by the user as 5, and that the default values for the
penalties are used, namely p i = 1.0, p d = 1.0, p m = 0.5. Then:
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σ = (n d ∗ p d) + (n i ∗ p i) + (n m ∗ p m) − n ptre

= (3 ∗ 1) + (0 ∗ 1) + (2 ∗ 0.5) − 3

= 1

and since this is less than the specified value for τ , FireµSat would attempt to
explore elements beyond the given genetic substring before deciding at which stage
the substring should be reported as a TR.

The algorithm is invoked by:

FireµSat(min, max,ε, τ, α, β, p d, p i, p m, gSeq)

where gSeq represents the entered genetic sequence. It returns all TR’s with motif
lengths in the range [min,max ] in gSeq, subject to motif error ε and threshold values
τ , α and β as discussed in subsections 3.1 and 3.2 respectively.

4 Algorithm Construction

4.1 FireµSat

The theory underlying FireµSat is a combination of straightforward FA technology
combined with a flavour of Moore machine technology. How this theory is applied will
be elaborated in the process of introducing the theoretical underpinnings of FireµSat.

For illustrative purposes, ACG will be used throughout as the motif string. In addi-
tion, to facilitate the explanation of the algorithm, the following FA’s are introduced.
In each case, the way in which the given FA scans a string of the form u = ρu2u3 · · ·up

will be described.

– FAP (ρ) is an FA that reaches a final state after scanning the first occurrence of ρ
in u. In fact, it reaches the final state again if u2 = ρ is encountered in u, and again
if u3 = ρ is encountered in u, etc. However, FAP (ρ) goes to a dead end state as
soon as a character in u is encountered that indicates that u is not a PTR. Thus,
FAP (ρ) accepts a PTR of arbitrary length, with motif ρ, entering the final states
as many times as there are PTRE’s in the PTR.

– FAD(ρ, ε) is an FA that, upon scanning u, reaches its first final state once the
substring ρ has been read. FAD(ρ, ε) continues to reach final states after scanning
each word, ui (where i = 2 · · · p) provided that one of the following conditions
hold: a) either ui = ρ or b) ui is a word deduced from ρ that contains a maximum
of ε deletions.

– FAM(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it func-
tions in terms of mismatches rather than deletions.

– FAI(ρ, ε) is an FA that functions analogously to FAD(ρ, ε), except that it func-
tions in terms of insertions rather than deletions.

– FATR(ρ, ε) is an FA obtained from the sum of all the previously defined FA’s.
Thus:

FATR(ρ, ε) = FAP (ρ) + FAD(ρ, ε) + FAM(ρ, ε) + FAI(ρ, ε)

– Finally, the predicate isTR(gSeq[i, j], ε, τ, α, β, ρ) is defined as true if there is a
TR with motif ρ in the genetic sequence gSeq[i, j], such that the motif error is
no greater than ε, the substring error (σ) is no greater than τ , the number of
consecutive occurrences of ATRE’s (tn atreC) is no greater than α and the total
number of TRE’s (tn tre) is at least β.
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The Fire Engine software [24] constructs an FA from a regular expression (r.e.)
that is provided as input. For a given motif, it is relatively easy to specify the regular
expressions that correspond to the various FA’s just mentioned above.

For example, the language accepted by FAP (ACG) can be defined by the r.e.
(ACG)(ACG)∗. Similarly, the languages accepted by FAD(ACG, 1), FAM(ACG, 1) and
FAI(ACG, 1) may be defined by means of r.e.’s, respectively, as follows:

– FAD(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + AC + AG + CG)∗.

– FAM(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + CCG + GCG + TCG + AAG + AGG + ATG + ACA + ACC + ACT)∗.

– FAI(ACG, 1) accepts the language defined by the r.e.
(ACG)(ACG + AACG + CACG + GACG + TACG + ACCG + AGCG + ATCG+
ACAG + ACGG + ACTG + ACGA + ACGC + ACGT)∗.

If these deterministic FA’s (FAD(ACG, 1), FAM(ACG, 1)) are constructed and dis-
tinction is made between the type of final states a trace through each respective FA
will confirm that strings of the form ρu1 · · ·uq are recognized, where:

– ρu1 · · ·uq may be preceded by p, some arbitrary non-motif prefix.
– ρ is the motif (in the present example, ACG) of the TR,
– each ui, i = 1 · · · q is an ATRE based on ρ, allowing for an error of maximally

ε. Note that in the present example, ρ = ACG and thus |ρ| = 3. Therefore, as
previously discussed, ε is only allowed to assume the value of 1 or 0.

– q ≥ 1 is the number of ATRE’s that follow on from the motif in the TR.

If FAD(ACG, 1), FAM(ACG, 1) and FAI(ACG, 1) are constructed as deterministic FA’s
then it will be seen that if any additional element that does not belong to the TR
identified up to that point is encountered in the input string, the FA will transit to a
dead-end state in each respective case.

It is possible to distinguish between two kinds of final states in each of these
machines: those which signal that a motif (PTRE) has been scanned, and those which
indicate that a deletion or mismatch or insertion has been scanned. These states will
be referred to as PTR- and ATR-final states, respectively. As explained below, the
number of transitions into these states have to be counted, and the respective values
of σ, tn atreC and tn tre have to be correspondingly updated so as to ensure that
the strings designated as TR’s are consistent with thresholds τ , α and β respectively,
as explained in section 3.2 above.

In order to contribute to the foregoing explanation figure 1 has been included. A
trace through figure 1 will confirm that strings of the form pρu1 · · ·uq are recognized,
where:

– p is some arbitrary non-motif prefix preceding a TR,
– ρ is the motif (in the present example, ACG) of the TR,
– each ui, i = 1 · · · q is a TRE based on ρ, allowing for an error of maximally ε. Note

that in the present example, ρ = ACG and thus |ρ| = 3. Therefore, as previously
discussed, ε is only allowed to assume the value of 1. Thus only 1 deletion may
occur.

– q ≥ 1 is the number of ATRE’s that follow on from the motif in the TR.
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Figure 1. FAD(ACG,1)

It will also be seen that if any additional element that does not belong to the TR
identified up to that point is encountered in the input string, then the FA transits
to a dead-end state. State D9 in figure 1 is a dead-end state without any outgoing
edges.

In figure 1, there are also two kinds of final states: those which signal that a motif
(PTRE) has been scanned, and those which indicate that a deletion has been scanned.
These states will be referred to as PTR- and ATR-final states, respectively. As ex-
plained below, the number of transitions into these states have to be counted, and
the respective values of σ, tn atreC and tn tre have to be correspondingly updated
so as to ensure that the strings designated as TR’s are consistent with thresholds τ ,
α and β respectively, as explained in section 3.2 above.

In order to construct FATR(ρ, 1) we first construct the respective constituent
machines and then apply the constructive algorithm which forms part of the proof of
Rule 2, Part 3 of Kleene’s theorem.
FATR(ACG, 1) = FAP (ACG) + FAD(ACG, 1) + FAM(ACG, 1) + FAI(ACG, 1).
This can be done by using the Fire Engine software toolkit [24] that provides a
function for adding FA’s.

The discussion to date can be generalized: FATR(XYZ, 1) is an FA for recognizing
the parameterized motif XYZ of length 3. The parameters are X, Y and Z and each of
these parameters can be instantiated to any one of the nucleotides {A, C, G, T}. This
parameterized FA is, as before, the sum of four other FA’s, each of which are also
parameterized.

Thus, the r.e. associated with FAP (XYZ) can be defined as (XYZ)(XYZ)∗. Further-
more, FAD(XYZ, 1), FAM(XYZ, 1) and FAI(XYZ, 1) can also be defined as follows:
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– FAD(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + XY + XZ + YZ)∗.

– FAM(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + YYZ + ZYZ + RYZ + XXZ + XZZ + XRZ + XYX + XYY + XYR)∗.

– FAI(XYZ, 1) accepts the language defined by the r.e.
(XYZ)(XYZ + XXYZ + YXYZ + ZXYZ + RXYZ + XYYZ + XZYZ + XRYZ+
XYXZ + XYZZ + XYRZ + XYZX + XYZY + XYZR)∗.

Thus, in principle, any FATR of motif length 3 can be algorithmically constructed.
Similarly, parameterized versions for FATR(ρ, ε) can be constructed for |ρ| = 2, 4, 5
and for permissable values of ε. In each case, the r.e.’s relating to the constituent
FA’s have to be determined, the corresponding FA’s are then derived using the Fire
Engine toolkit, and these derived FA’s are then summed, also using the toolkit, to
provide FATR(ρ, ε).

Once FATR(ρ, ε) is constructed, certain adaptations to the conventional FA lan-
guage recognition algorithm are required when scanning through a genomic sequence
in search of the next TR. Some of the details relating to these adaptations will be
discussed later.

For the present, consider the high-level description of FireµSat given henceforth.
As mentioned previously, the algorithm requires as parameters:

– The lower and upper bound of motif lengths to be considered (min and max
respectively);

– the maximum allowable motif error (ε - discussed in section 3.1);
– the maximum allowable substring error (τ - discussed in section 3.2);
– the penalty values used to calculate the substring error (p m, p d and p i all

explained in section 3.2);
– the maximum allowable number of ATRE’s that may occur consecutively (α -

discussed in section 3.2);
– the minimum number of TRE’s that should occur before a string is output as a

TR (β - explained in section 3.2) and;
– the genomic sequence itself (gSeq). (The development of the actual software is in

progress the user is provided with an additional option to select default values for
the respective threshold values.)

The following functions are assumed:

– GenerateWords(ρLength) generates a set of all words of length ρLength from
the alphabet Σ = {A,C,G,T}.

– CreateFATR(ρ, ε) returns FATR(ρ, epsilon) as discussed.
– FindIndices(gSeq,FATR, τ, α, β, p m, p d, p i) returns a set of index pairs in gSeq.

A substring of gSeq is a TR recognized by FATR within the constraints specified
by τ , α and β as explained in section 3.2 if and only if its start and endpoint
indices constitute a pair in the returned set. Note that the call to this function is
independent of all prior and subsequent calls to it.
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proc FireµSat(min,max, ε, τ, α, β, p m, p d, p i, gSeq)
pre {(0 < min ≤ max) ∧ (0 ≤ ε) ∧ (σ ≤ τ) ∧ (0 ≤ α ≤ tn atreC)∧

(0 ≤ β ≤ tn tre) ∧ (gSeq ∈ Σ∗)}
indices := φ
; for ρLength : [min,max] →

; words := GenerateWords(ρLength)
; FASet := φ
; for w : words →

; FATR := CreateFATR(w, ε)
; indices := indices ∪ FindIndices(gSeq, FATR, τ, α, β, p m, p d, p i)

rof
rof
post {(i, j) ∈ indices ⇔ ∃ρ : Σ∗ · |ρ| ∈ [min,max]∧

isTR(gSeq[i, j], ε, τ, α, β, p m, p d, p i, ρ)}
Note that in order to use FATR appropriately in FireµSat, it is required that

the final states of the original component FA’s be identifiable in it. Note that of the
features of the constructive algorithm introduced in the proof of Rule 2, Part 3 of
Kleene’s algorithm is that if it is used to compute say FAX =FAY +FAZ , then every
final state in FAY can be mapped to a final state in FAX . The same holds true for
every final state in FAZ . Moreover, every final state in FAX will either map to a final
state in FAY or to a final state in FAZ or to a final state in both FAY and FAZ .

To determine whether the conditions on the threshold values, τ (representing
the maximum allowable substring error), α (representing the maximum number of
ATRE’s that may occur consecutively) and β (the minimum allowable number of
TRE’s that have to occur before a TR is reported) have been met when scanning
through a tandem repeat, various counters, initially at 0, have to be updated once a
motif is encountered as we scan through a string. To this end let the variables tn ptre
and tn atre store the number of PTR-final states and ATR-final states encountered
to date, respectively. Additionally, the variables n d, n m and n i store the number
of deletions, mismatches and insertions encountered to date, respectively.

For reasons explained later, the number of symbols scanned since the last tally of
a final state is stored in ℓ, and a flag motif is set to true that final state marked the
end of a PTRE and to false, otherwise. Finally ε, is the maximum number of symbols
by which an ATRE may differ from the motif. (The value of ε is easily determined
and depends on the motif length as explained in section 3.)

The logic of how these counters are to be updated whenever a state, Q, of an
FATR is being examined. A number of predicates are assumed that test whether
Q is a final state (isF inal(Q)) and/or whether Q is a state that terminates a mo-
tif (isPTRE(Q)), and/or a deletion (isDel(Q)), insertion (isIns(Q)) or mismatch
(isMis(Q)).

Note, specifically, that more than one of these conditions may hold for a final state,
as forthcoming discussed. Dijkstra’s guarded command language (GCL) is used, in
which the semantics of the if-statement specifies that non-deterministic selection of
the guards takes place if more than one guard evaluates to true. Therefore, to avoid
ambiguity, guards have to be designed to be mutually exclusive. In each case, the
body then adjusts the counters according to the rules already given above.

Thus, it will be seen that if a final state is of multiple types, then the PTRE counter
(tn ptre) takes precedence, followed by the mismatch counter (n m), followed by the
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deletions counter (n d), followed by the insertion counter (n i). By this it is meant
that if a final state is encountered that is final for both PTRE’s and mismatches,
then the PTRE counter is incremented rather than the mismatch counter. Similarly,
mismatches are incremented rather than deletions, etc.

However, there are a few exceptions to be dealt with in the case of an insertions
final state being reached. Firstly, the insertions counter n i is only incremented if
the next state, R, is not also an insertion state. Secondly, suppose that the last
TRE encountered was a PTRE (indicated by the flag motif ) and that the number of
transitions from this last PTRE state to this current insertion state (recorded in ℓ)
is less than or equal to ε. It is then assumed that an insertion has been encountered
instead of a motif ℓ transitions earlier. Consequently the tn ptre counter that was
previously incremented is now decremented.

Note that similar logic ought to be built in, to check that when arriving at a PTR
state, a deletion was not incorrectly recorded less than ε transitions earlier. If so, the
n d, tn atre and tn atreC ought to be decremented. The outline below leaves out this
logic in the interests of overall simplicity. However, it is built into the implemented
algorithm.

Note in passing that the semantics of GCL dictates that, if a condition arises
that does not fire a guard in an if-statement, then the if-statement should abort,
indicating that such a condition constitutes an error. Thus, for example, in the code
below, there is no guard to deal with a condition where a state is designated as final,
but it is not associated with a PTRE, nor with a mismatch, nor with a deletion, nor
with an insertion. Such a condition ought not to arise, and would indeed constitute
an error if it did.

R := nextState(Q,nextSymbol)
if isF inal(Q) →

if isPTRE(Q) →
tn ptre, tn atreC := tn ptre + 1, 0
; ℓ,motif := 0, true

[] (¬isPTRE(Q) ∧ isMis(Q)) →
tn atre, tn atreC, n m := tn atre + 1, tn areC + 1, n m + 1
; ℓ,motif := 0, false

[] (¬isPTRE(Q) ∧ ¬isMis(Q) ∧ isDel(Q)) →
tn atre, tn atreC, n d, := tn atre + 1, tn atreC + 1, n d + 1
; ℓ,motif := 0, false

[] (¬isPTRE(Q) ∧ ¬isMis(Q) ∧ ¬isDel(Q)) →
if ( isIns(Q) ∧ ¬isIns(R)) →

if (ℓ ≤ ε ∧ motif) → tn ptre := tn ptre − 1 f i
; tn atre, tn atreC, n i := tn atre + 1, tn atreC + 1, n i + 1
; ℓ,motif := 0, false

[] (isIns(Q) ∧ isIns(R)) →
ℓ := ℓ + 1

f i
f i

[] ¬isF inal(Q) → ℓ := ℓ + 1
f i
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5 Conclusion

The above code indicates that counter and threshold values are only adjusted when-
ever a final state is reached in FATR. This gives FireµSat a certain Moore machine
character - Moore machines print output only in relation to the state that is reached—
irrespective of which arc was followed to get to that state. However, in this case, when
particular states are reached corresponding counters are adjusted, instead of printing
specific characters as would be required in a Moore machine.

If a dead-end state is reached or τ < σ or α < tn atreC, then the processing on
the applicable FATR will terminate, and the TR scanned up to that point will be
output, provided that β ≥ tn tre. Scanning will then continue in search of the next
TR.

The various parameters have already been discussed. They were derived in close
collaboration with molecular biologists with a view to enhancing the useability of the
algorithm. For example the software under construction allows the user to allocate
penalties in a very sensitive manner, which enables the user to predetermine relatively
easily at least what type of repeats will definitely be detected. It should be noted that
these useability features are a direct consequence of using FA technology.

The implementation of FireµSat, is in progress. Preliminary runtime results show
that FireµSat copes satisfactorily in searching for microsatellites with at most one
mutation. Runtime results of motifs with length four or five where two mutations are
allowed compares very well with STAR ([6]) but not that well with Tandem Repeats
Finder ([3]). However, it should be emphasised that FireµSat provides the user with
a degree of flexibility and usability does not appear to be available in the other
algorithms. Future initiatives are directed at the completion of the FireµSat software
and at reporting comparative results in more detail.
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Abstract. Multilingual text compression exploits the existence of the same text in
several languages to compress the second and subsequent copies by reference to the
first. We explore the details of this framework and present experimental results for
parallel English and French texts.
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1 Introduction

In countries like Canada, Belgium and Switzerland, where speakers of two or more
languages live side-by-side, all official texts have to be published in multilingual form.
The current legislation of the ever expanding European Union obliges the translation
of all official texts into the languages of all member states. As a result, there is a
growing corpus of important texts, large parts of which are highly redundant, since
they do not have any information content of their own, and are just transformed
copies of some other parts of the text collection.

We wish to exploit this redundancy to improve compression efficiency in such
situations, and introduce the notion of Multilingual Text Compression: one is given
two or more texts, which are supposed to be translations of each other and are referred
to as parallel texts. One of the texts will be stored on its own (or compressed by
means of pointers referencing only the text itself), the other texts can be compressed
by referring to the translation, using appropriate dictionaries.

Data compression in general, and text compression in particular, have for long
been prominent topics in the Information Retrieval literature, as full text IR systems
are voracious consumers of storage space, both for the underlying textual database
itself, but also for the auxiliary overhead, such as indices, dictionaries, thesauri, etc.,
see, for example, [14,20,13]. This work concentrates on multilingual information re-
trieval systems and how their data could be compressed.

In a certain sense, multilingual text compression is an extension of delta-coding ,
in which source and target files S and T are given, with the assumption that T is
very similar to S, for example in the case of several versions of the same software
package. Highly efficient compression schemes have been designed for that case, and
the compressibility is obviously a function of the similarity of the input files. Our
problem extends the delta-coding paradigm to the case where similarity is not based
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on the appearance of identical strings, but allow the use of some transformation to
pass from a given text fragment to its matching part.

The basis for enabling multilingual text compression is first the ability to match
the corresponding parts of related texts by identifying semantic correspondences
across the various sub-texts, a task generally referred to as alignment. As the methods
for detailed alignment are quite sensitive to noise, they usually use a rough alignment
of the text as an auxiliary input. They might also use an existing multilingual glos-
sary, but they always generate their own probabilistic glossary, which corresponds to
the processed text.

The current work extends the use of alignment to the question of whether and
how the property of parallelism can be exploited to store those texts in a more space-
efficient way. In other words, we wish to find a way to compress the constituent
parallel sub-texts so that the result will demand less space than would be required if
they were compressed without exploiting their parallelism.

In the next section, we review some related work. Section 3 then brings the sug-
gested algorithm and in Section 4 we report on preliminary experimental results. The
last section suggests future work.

2 Related work

Multilingual texts have been considered in the Information Retrieval literature, where
the challenge is to access information in one language while the query might be
given in another, see, e.g. [5]. Alignment of parallel texts has been used mainly for
machine translation, machine-aided translation and bilingual term extraction [17].
Most algorithms for alignment are designed for bilingual texts only [9], but some
work has been done already for three languages as well [16]. However, the state of the
art for detailed alignment, even for two languages, is still far from perfect. It is thus
not surprising that works on more than two languages do not exist, but a reasonable
mapping for (A,B,C) can be synthesized given alignment outputs for (A,B) and
(A,C).

Most current detailed alignment techniques are based on one of the following
models: (a) IBM’s Model 2 [3], from which the word align algorithm [7] has been
derived; and (b) Hiemstra’s model [12], used both by Xerox’ system [10] and the
linköping Word Aligner [1].

All these methods use some monolingual tools such as part-of-speech taggers,
lemmatizers and possibly parsers for phrase detection. Determining the lemma (=
base form) of each word is critical for the success of the alignment process, especially
when performed across languages from different groups [6]. When the lemmatized
versions of the texts are processed instead of the original versions, the words within
the induced bilingual glossary will naturally be all lemmata rather than morphological
variants.

The compression of similar texts has been considered in the vast research area
dealing with delta coding, see [4,2]. The popular ZLIB tool is optimized to take
advantage of the similarity across the files, and some of its features are used also in
our algorithm. The compression of parallel texts is treated in [15], but without using
text alignment tools.
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3 Compression of a text using its translation

3.1 Compression modeling

The following compression algorithm tries to take advantage of the fact that the text
being compressed is divisible into two parallel parts which are translations of each
other. Dictionary based compression algorithms use pointers to occurrences of the
same substrings either along the text, as in LZ77 [21] or within an auxiliary dictionary,
as in LZW [19]. The current algorithm, however, uses pointers to the translations of
the substring appearing in the parallel section of the text. The original substrings
may be easily retrieved through these pointers using a bilingual glossary along with
some other linguistic resources.

Pointing to another occurrence of a given substring within the same text some-
times requires a relatively large number of bits. That is because the closest occurrence
of that substring can happen far back in history, which is why most implementations
limit the size of the window in which a previous occurrence is to be searched for. In
contrast, translations of words or phrases within a parallel text, if such exist, must
appear in the corresponding translation unit, namely a sentence or paragraph. More-
over, if no large omissions or insertions occur, the translation is expected to be found
within a very narrow text window, whose middle position is computable using the
given alignment. The encoding pointers can store the offset of the translation from
that alignment; these offsets are always very small and thus may be encoded using
only a few bits.

It is important to emphasize that the quality of the alignment does not have any
effect on the correctness of the compression algorithm. That is because the missing
words or word sequences are restored according to the same glossary by which the
alignment has been determined. It is expected that the compression rate would not
be affected either, as alignment algorithms make mistakes due to the consistent ap-
pearance of the wrong translations in the corresponding text windows, even in more
probable positions. This means that the same sequence can be compressed at least
the same number of times using the erroneous translation and perhaps even at a
better cost.

The suggested algorithm assumes the following resources:

1. S, T : The source- and target-language texts, respectively, where T is a translation
of S.

2. AS,T : A word- and phrase-level alignment of the text pair (S, T ). Let si,l denote
the word sequence of length l within S beginning at the ith word. Similarly, let tj,m
denote the word sequence of length m within T beginning at the jth word. AS,T

consists of a set of connections of the form 〈i, l, j,m〉, each of which indicating the
fact that si,l and tj,m have been determined as matching phrases. We assume that
for any pair (j,m) there is at most one connection of the form 〈i, l, j,m〉 within
AS,T . From here and below, si and tj stand for si,1 (the ith word of S) and tj,1
(the jth word of T ), correspondingly.

3. S lem, T lem: Lemmatized forms of S and T . Let slem

i,l and tlem

j,m denote the lemma
sequences corresponding to si,l and tj,m, respectively. That is the concatenations
of the lemmata of si, si+1, . . . , si+l−1 and tj, tj+1, . . . , tj+l−1, correspondingly.

4. LS: A lemmata dictionary. The entries of this dictionary are the words appearing
in S. Each entry stores a list of all possible lemmata of the keyword, sorted in
descending order of frequency. Let LS(s) denote the lemma list for the word s.
For instance, if S is an English text, then LS(working) = (work, working).
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compress target

j ←− 1
while j ≤ |T | do

found ←− false

for m ←− mmax downto 1 do

if ∃i, l such that 〈i, l, j,m〉 ∈ AS,T //〈i, l, j,m〉 is unique

diff ←− i − al(j)

if diff ≥ 0 then sign ←− 0
else sign ←− 1

offset ←− B(|diff|)
length ←− B(l − 1)

for n ←− 0 to l − 1 do

lemman ←− I(slem

i+n, LS(si+n))

trans ←− I(tlemj,m, GS,T (slem

i,l ))

for n ←− 0 to m − 1 do

variantn ←− I(tj+n, VT (tlemj+n))

pointer ←− concatenation ( 1, offset, sign, length,
lemma0, . . . , lemmal−1, trans,
variant0, . . . , variantm−1)

output pointer
j ←− j + m
found ←− true
break

endif
end for

if not found

output concatenation ( 0, code(tj))
j ←− j + 1

endif
end while

Figure 1. Compression using a translated file

5. VT : A variant dictionary. The entries of this dictionary are the lemmata of all words
appearing in T . Each entry stores a list of all possible morphological variants of
the key lemma, sorted in descending order of frequency. Let VT (t) denote the
variant list for the lemma t. For example, if T is a French text, then VT (normal)
= (normal, normale, normaux, normales).

6. GS,T : A bilingual glossary corresponding to the text pair (S, T ). The entries of
this glossary are source language lemma sequences. Each entry includes a list of
possible translations of the key sequence into target language sequences, sorted in
descending order of probability. The translations also appear in lemmatized form.
Let GS,T (s) denote the translation list of the source language sequence s into
the target language. For instance, if S and T are English and French texts, corre-
spondingly, then GS,T (mineral water) = (eau mineral). Note that the word eau

(water) in French is feminine, which requires a feminine-form adjective, namely
minerale, whereas the adjective mineral is the masculine singular form, which is
the corresponding lemma.
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Let al(j) denote the expected position within S of the term corresponding to tj
in T , that is,

al(j) =

⌊ |S|
|T |j +

1

2

⌋
.

In other words, sal(j) is the source word parallel to tj if taking into account only the
proportion between the lengths of S and T . The accurate alignment may then be
expressed by the signed offset from sal(j). If a paragraph- or sentence-level alignment
is available, then S and T can be referred to as the current parallel units, and the
indices i and j are then relative to the beginnings of these units.

Token number S (English) T (French) Encoding

1 Subject Objet 1(0,ǫ,0,ǫ,6,0)
2 : : 0(c(:))
3 Supplies Livraisons 0(c(livraison),2)
4 of de 1(2,0,0,ǫ,1,0,0)
5 military matériel

6 equipment militaire 1(0,ǫ,0,ǫ,0,1)
7 to à 0(c(à),0)
8 Iraq l’ 0(c(le),2)
9 Irak 1(0,ǫ,0,ǫ,0,ǫ)

Figure 2. Example of compression of French text using its English parallel

The algorithm works as follows: beginning at the first position j = 1 within T ,
use AS,T to find the longest sequence tj,m having a corresponding sequence si,l in S. If
found, create a pointer to si,l by concatenating some binary encodings of the following
details:

1. i − al(j): Offset of si from al(j), including sign bit.
2. l − 1: Length of the source sequence minus 1. As l is always greater than 0, l − 1

can be encoded.
3. Indices of slem

i . . . slem

i+l−1 within LS(si) . . . LS(si+l−1), respectively. If a single lemma
exists, then the empty string ǫ is used as index (no need for encoding).

4. Index of tlem

j,m within GS,T (slem

i,l ). As above, in the case of a single translation, ǫ will
be used.

5. Indices of tj . . . tj+m−1 within VT (tlem

j ) . . . VT (tj+m−1), correspondingly. Again, ǫ is
used in the case of singletons.

The pointer is then output with a 1-bit prefix. The next iteration will work for
j = j + m.

If no m is found such that 〈i, l, j,m〉 ∈ AS,T , an alternative encoding of tj is
written to the output stream preceded by a 0-bit, and j is incremented by 1. The
process continues while j ≤ |T |. We shall use some UD (Uniquely Decypherable)
code, e.g., a Huffman code, for all unaligned words in T . This code may be initially
generated for all words in T and then be improved when the counts of unaligned
words are known. Alternatively, the final code can be generated in advance following
a preliminary parsing stage.

As to the encoding of the pointer consisting of a sequence of generally very small
numbers, many of which are zeros, a simple solution would be to use an Elias γ-
code for each component. A more compact encoding can be achieved by devising a
Huffman code for the possible numbers, see the section on coding below.
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Figure 1 displays the formal pseudo-code. B(x) denotes the variable length binary
encoding of x and I(x, y) denotes the variable length binary encoding of the index of
x within the dictionary entry y; if y contains only one item, I(x, y) = ǫ.

The decompression algorithm is straightforward. Note that it needs only the dic-
tionary files, as all relevant information included in the other files is encoded within
the compressed text itself.

Figure 2 gives an example of the algorithm’s output. The second and third columns
contain the English and French parallel texts, respectively. The fourth column is
a decimal representation of the binary encoding. The 0 to the left of parentheses
denotes the encoding of unaligned words, while a 1 indicates a pointer. Numeric
values within the parentheses are actually written to the binary output as variable
length binary numbers, for example, if a γ-code is used, the 6-tuple (2, 0, 0, ǫ, 1, 0, 0)
would be encoded as 1100|0|0||10|0|0 (10 bits).

As an example, we explain in detail the decoding of the fourth encoded token,
which is (2, 0, 0, ǫ, 1, 0, 0), assuming that the first three items have already been de-
coded to Objet : Livraison. The current position (in terms of tokens) in the file T
is therefore 4, and in S, it is ⌊(8/9)× 4 + 1

2
⌋ = 4, corresponding to the word of. The

first two numbers of the 6-tuple are retrieved: 2, 0 are translated to +2, indicating
the fact that the translation sequence is located two words to the right of the current
position in S, which brings us to the term equipment. Adding 1 to the next value, 0,
tells the decoder that it should relate to a 1-word English sequence beginning (and
ending) at the word equipment. Taking a look at the entry equipment in the English
lemmata dictionary (Len(equipment)) reveals there is only one lemma for that word
(the lemma equipment). Therefore, no bits are needed in order to lemmatize it.

Now the decoder looks up the entry equipment within the bilingual glossary
(Gen,fr(equipment)) and finds the list le équipement, de matériel, équipement.
Since several French translations exist, it reads the next value, 1, and retrieves the
corresponding translation (the second option), namely de matériel, so the transla-
tion sequence is of length 2. Since both words in this sequence have more than one
variant, another two values are fetched in order to determine the exact form of each.
The variants list of the lemma de starts with de, des, d’, du. . . and that of matériel
starts with matériel, matériaux, matériels, matérielles, matérielle. . . . The
two last zeros in the sequence to be decoded indicate that the first variant of each
list should be taken, yielding finally the terms (not the lemmata) de matériel as
translation for equipment.

Note that this translation, if considered on its own and not within the larger
context of a bilingual corpus, is in fact quite wrong, since de matériel is a genitive
form rather corresponding to of equipment. This is an example for the fact that an
erroneous translation can still be useful in our case, if the error appears consistently.

3.2 Choosing the encoding

To understand the rational of the encoding decisions, consider Figure 3, listing the
first few output lines of the above algorithm applied to our test data.

The first column is a flag indicating whether the element is a pointer or one of the
non-aligned words, If it is a word, it may be followed by a number, giving the index
of the requested variant in the list of alternatives for this lemma. If it is a pointer, it
starts with a number k, representing an offset, in number of words, between some term
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1 0 0 0 0
0 :
0 organigramme 1
0 de 0
1 11 0 0 1 1 0
1 5 0 0 3 5 0
1 1 0 0 3 0
0 elle 0
0 :

1 9 0 0 0
0 )

1 3 0 0 2 0
1 5 0 0 5 4 0 2
0 agent 0
1 7 0 0 1
1 10 0 0 0 3 0
0 dans 0

Figure 3. Output of translation algorithm

positions as explained above. If k is not zero, it is followed by a sign bit, encoded here
by 0 or 1. The rest of the numbers in the pointers are indices within sets of variants.

The encoding tries to take advantage of the fact that the distribution of the
elements in the different fields is not the same. In fact, three Huffman codes are used:

1. H1 — for the different words in the lines labeled 0;
2. H2 — for the offsets (first numbers in lines labeled 1);
3. H3 — for all the indices appearing in both types of lines, words and pointers.

The first tree H1 is quite large, giving a codeword for each of the different non-
aligned words. As to H2, most of the offsets are small, and their distribution is skewed,
with a clear bias to the smaller numbers. The numbers encoded by H3 are usually
even smaller, since for most sets, there are generally very few variants. Moreover, since
these variants are ordered by decreasing frequency, the first few integers, especially
0, will appear with high probability. The reason for not using the same Huffman tree
for the last two classes, in spite of the fact that similar elements are encoded, is that
their distributions are different enough to justify two trees, in particular because no
ambiguity arises: there is only one element of H2 for each pointer line, so no special
indicator is needed for the fact that the next codeword is from H3.

There is no need to encode the sign field by some Huffman code. Once we know
that a pointer is encoded, the first codeword belongs to H2, and if it is decoded as
representing a number different from 0, we know that it is followed by a sign bit,
so the Huffman codeword is just followed by the sign bit itself. On the other hand,
the flag bit indicating if the current line is a word or a pointer, needs to be encoded.
Instead of wasting one bit for each line, it turned out, on our tests, to be advantageous
to adopt the following scheme: every new line is by default assumed to represent a
word, and the Huffman tree H1 is extended to accommodate also an “Escape” word,
which will be used at the beginning of every pointer line.

The encoding of H3 can further be improved by noticing that the probability of
the number 0 will be higher than 1

2
, suggesting, as in [8], to build a Huffman code for

a set of items consisting of (a) individual numbers appearing in the sequences and (b)
of runs of zeros of different lengths. The elements to be encoded by H3 are therefore
0, 1, 2, . . . , Z2, Z3, . . ., where Zi stands for a run of i zeros.
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As example, the first 5 lines of Figure 3 would be encoded by the sequence:
H1(ESC), H2(0), H3(Z3), H1(:), H1(organigramme), H3(1), H1(de), H3(0), H1(ESC),
H2(11), 0, H3(0), H3(1), H3(1), H3(0).

3.3 Results

The bilingual text used for evaluating the new algorithm comprises the English and
French versions of the European Union’s JOC corpus, a collection of pairs of questions
and answers on various topics. These texts, used on the ARCADE evaluation project
[18] were supplied aligned at the question/answer (paragraph) level. As the transla-
tion is rather precise, correct word- and phrase-level alignments reside quite close to
the linear alignment of each paragraph pair. The automatic word- and phrase-level
alignment as well as the bilingual glossary were obtained using an extended version
of the word align algorithm [7].

The English raw text has about 1,050,000 words, whereas the respective French
text consists of about 1,162,000 words. Table 1 brings the sizes of the compressed
French file (as a fraction of the original) for various compression schemes: Gzip, based
on LZ77, Bzip, based on the Burrows-Wheeler transform, Hword, a Huffman code
encoding each of the different words in the text as single items, and finally Trans, the
algorithm suggested in this work, based on the translation from the English parallel.

The numbers do not include the sizes of the auxiliary files for Trans and Hword,
since in the scenario of a large multilingual information retrieval system, dictionar-
ies and glossaries are needed anyway and are not stored exclusively as an aid for
compression. However, even if those sizes are to be considered, it should be kept in
mind that, according to Heaps’ Law [11], the size of a dictionary for a text of size
n is expected to be αnβ, where 0.4 ≤ β ≤ 0.6. The total size of the auxiliary dic-
tionaries for the current evaluation corpus, compressed using Bzip (rather than a
dictionary-oriented compression scheme), is about 9% of the French raw text. Should
a 1GB corpus be compressed, then corresponding dictionaries would comprise less
than 0.9% of the original text. Obviously, specific dictionary compression can further
decrease that rate.

Full size Gzip Bzip Hword Trans

7551550 0.307 0.214 0.225 0.212

Table 1. Comparison of compression efficiency

As can be seen, Trans is better than Gzip, Hword and Bzip, even without
attempting to optimize the code further. Additional savings can be achieved by using
an improved alignment module, transforming a larger part of the file into pointers
rather than words, or by improving the encoding schemes. Consider, for example,
again the table in Figure 3. At first sight, having a variant number associated with
words like agent seems reasonable, as the word could also appear in plural form
agents, but getting such a number for a preposition like dans might be surprising. A
closer look however reveals that almost every word appears in at least two forms: all
lower case and capitalized (except, obviously, special words like punctuation signs).
This suggests the following strategy (not yet implemented).
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Only one form of every word will be kept, using capitalization for proper nouns
and lower case for the other words. If a word appears at the beginning of a sentence
(follows a period or similar mark), it will be assumed to be capitalized. Exceptions,
which should be rare, are handled by adding a codeword for an Override, which
will be encoded as part of the Huffman tree H1 and will have the interpretation of
(a) being followed by another codeword w from H1; and (b) changing the case of the
first letter of the word represented by w. The Override will be used in case of lower
case proper nouns (like in email addresses) or capitalized other words in the middle
of a sentence. The effect of such a change will be to reduce the number of variants, so
that smaller numbers will be encoded, and in some cases, if the number of variants
is reduced to 1, no encoding at all is needed.

Another optimization could be to compare, for each item, the number of bits re-
quired to encode it with reference to its translation with the number of bits needed for
the corresponding word using a word based Huffman code, that is, it might sometimes
pay to consider a term that could be aligned as if it were unaligned. The resulting
hybrid algorithm improves on both the original form of Trans and on Hword.
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Figure 4. Compression performance as function of basic block size

Gzip and Bzip are adaptive methods and not really competitors for the applica-
tions treated here. The full decoding of the entire corpus is rarely needed, and small
sub-parts, such as a single question/answer document, should be accessible individu-
ally. This is, however, not the case for adaptive methods, which require a sequential
scan from the beginning of the file, while methods like Trans and static Huffman
coding support selective access and decoding. One can, of course, encode smaller parts
of the file individually also by Gzip and Bzip, but compression will deteriorate. Fig-
ure 4 shows the relative size of the compressed French file for the various methods, as
a function of the size of a basic block, which is supposed to be encoded independently
from the others. This size is expressed by the number of consecutive question/answer
documents in each block. For example, if each document is compressed on its own,
compression by Gzip and Bzip reduces the full file only to 0.516 and 0.549, respec-
tively, while Trans stays at 0.212. With increasing block size, compression by the
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adaptive methods improves, but approaches the performance of Trans only for very
large blocks of more than 500 documents.

4 Conclusion and Future Work

The existence of the same text in several languages can be used to improve the com-
pression of a multilingual system. We have presented preliminary tests for two lan-
guages, achieving a good performance. By fine tuning the encoding, the compression
results may be improved.

We intend to test our method on much larger parallel corpora of various lan-
guages, in order to obtain more reliable and generic results. We plan to explore also
the possibility of bidirectional bilingual compression, where pointers can refer both
from S to T and vice versa, which could lead to improvements, since phrases may
have different lengths in different languages. A further topic to be treated is pattern
matching directly within the compressed bilingual text, allowing the treatment of
simple queries in a multilingual Information Retrieval environment.
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project, in Parallel Text Processing, J. Véronis, ed., Kluwer Academic Publishers, Dordrecht,
2000, pp. 369–388.

19. T. A. Welch: A technique for high-performance data compression. IEEE Computer, 17 June
1984, pp. 8–19.

20. Witten, I. H., Moffat, A., and Bell, T. C.: Managing Gigabytes: Compressing and
Indexing Documents and Images, Van Nostrand Reinhold, New York, 1994.

21. Ziv, J. and Lempel, A.: A universal algorithm for sequential data compression. IEEE Trans.
on Inf. Th., IT–23 1977, pp. 337–343.

161



Modeling Delta Encoding of Compressed Files

Shmuel T. Klein1, Tamar C. Serebro1, and Dana Shapira2

1 Department of Computer Science
Bar Ilan University
Ramat Gan, Israel

tomi@cs.biu.ac.il, t lender@hotmail.com

2 Department of Computer Science
Ashkelon Academic College

Ashkelon, Israel
shapird@ash-college.ac.il

Abstract. The Compressed Delta Encoding paradigm is introduced, i.e., delta encod-
ing directly in two given compressed files without decompressing. Here we explore the
case where the two given files are compressed using LZW, and devise the theoretical
framework for modeling delta encoding of compressed files. In practice, although work-
ing on the compressed versions in processing time proportional to the compressed files,
our target file is much smaller than the corresponding LZW form.

Keywords: differencing encoding, delta file, LZW

1 Introduction

Delta compression is a main field in data compression research. In this paper we
introduce a new model of differencing encoding, that of Compressed Differencing. In
this model we are given two files, at least one in its compressed form. The goal is to
create a third file which is the differencing file (i.e. the delta file) of the two original
files, in time proportional to the size of the input, that is, without decompressing the
compressed files.

More formally, let S be the source file and T be the target file (probably two
versions of the same file). The goal is to create a new file ∆(S, T ) which is the
differencing file of S and T . If both S and T are given in their compressed form, we
call it the Full Compressed Differencing Problem. If one of the files is given in its
compressed form we call it the Semi Compressed Differencing Problem. If none of the
files are compressed, it refers to the original problem of differencing.

One motivation for this problem is when the encoder is interested in transmitting
the compressed target file when both encoder and decoder have the source file in its
compressed or uncompressed form. Creating the Delta file can reduce the transmitted
file’s size and therefore the number of I/O operations. Working on the compressed
given form, the encoder can save memory space as well as processing time. Another
motivation is detecting resemblance among a set of files when they are all given in
their compressed form without decompressing them, perhaps saving time and space.
When the size of the difference file is much less than the target file, it indicates
resemblance.

Traditional differencing algorithms compress data by finding common strings be-
tween two versions of a file and replacing substrings by a copy reference. The resulting
file is often called a delta file. Two known approaches to differencing are the Longest
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Common Sub-sequence (LCS) method and the edit-distance method. LCS algorithms
find the longest common subsequence between two strings, and do not necessarily de-
tect the minimum set of changes. Edit distance algorithms find the shortest sequence
of edits (e.g., insert, delete, or change character) to convert one string to another. One
application which uses the LCS approach is the UNIX diff utility, which lists changes
between two files in a line by line summary, where each insertion and deletion involves
only complete lines. Line oriented algorithms, however, perform poorly on files which
are not necessarily partitioned into lines, such as images and object files.

Tichy [16] uses edit-distance techniques for differencing and considers the string to
string correction problem with block moves, where the problem is to find the minimal
covering set of T with respect to S such that every symbol of T that also appears in
S is included in exactly one block move. Weiner [17] uses a suffix tree for a linear time
and space left-to-right copy/insert algorithm, that repeatedly outputs a copy com-
mand of the longest copy from S, or an insert command when no copy can be found.
This left-to-right greedy approach is optimal (e.g., Burns and Long [5], Storer and
Szymanski [15]). Hunt, Vo, and Tichy [11] compute a delta file by using the reference
file as part of the dictionary to LZ-compress the target file. Their results indicate
that delta compression algorithms based on LZ techniques significantly outperform
LCS based algorithms in terms of compression performance. Factor, Sheinwald, and
Yassour [7] employ Lempel-Ziv based compression to compress S with respect to a
collection of shared files that resemble S; resemblance is indicated by files being of
same type and/or produced by the same vendor, etc. At first the extended dictionary
includes all shared data. They achieve better compression by reducing the set of all
shared files to only the relevant subset. Based on these researches we construct the
delta file using edit distance techniques including insert and copy commands. We also
reference the already compressed part of the target file for better compression.

Ajtai, Burns, Fagin, and Long [2] and Burns and Long [5] present several differen-
tial compression algorithms for when memory available is much smaller than S and
T , and present an algorithm named checkpointing that employs hashing to fit what
they call footprints of substrings of S into memory; matching substrings are found
by looking only at their footprints and extending the original substrings forwards
and backwards (to reduce memory, they may use only a subset of the footprints).
Heckel [10] presents a linear time algorithm for detecting block moves using Longest
Common Subsequences techniques. One of his motivations was the comparison of two
versions of a source program or other file in order to display the differences. Agarwal
et al. [1] speed up differential compression with hashing techniques and additional
data structures such as suffix arrays. In our work we use tries in order to detect
matches.

Burns and Long [6] achieve in-place reconstruction of standard delta files by elim-
inating write before read conflicts, where the encoder has specified a copy from a
file region where new file data has already been written. Shapira and Storer [14] also
study in-place differential file compression. The non in-place version of this problem
is known to be NP-Hard, and they present a constant factor approximation algo-
rithm for this problem, which is based on a simple sliding window data compressor.
Motivated by the constant bound approximation factor, they modify the algorithm
so that it is suitable for in-place decoding and present the In-Place Sliding Window
Algorithm (IPSW). The advantage of the IPSW approach is simplicity and speed,
achieved in-place without additional memory, with compression that compares well
with existing methods (both in-place and not in-place). Our delta file construction
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algorithm is not necessarily in place, but minor changes (such as limiting the offset’s
size) can result in an in place version.

If both files, S and T , are compressed using Huffman coding (or any other static
method), generating the differencing file can be done in the traditional way (perhaps
a sliding window) directly on the compressed files. The delta encoding is at least
as efficient as the delta encoding generated on the original files S and T . Common
substrings of S and T are still common substrings of the compressed versions of S
and T . However the reverse is not necessarily true, since the common substrings can
exceed the codeword boundaries. For example, consider the alphabet Σ = {a, b, c}
and the corresponding Huffman code {00, 01, 1}. Let S =abab and T =cbaa, then
E(S) =00010001 and E(T ) =1010000. A common substring of S and T is ba which
refers to the substring 0100 in the compressed file. However, this substring can be
extended in the compressed form to include also the following bit, as the LCS is 01000
in this case.

The problem is less trivial when using adaptive compression methods such as
Lempel-Ziv compressions. The encoding of a substring is determined by the data, and
depends on its location. For this reason the same substring is not necessarily encoded
in the same way throughout the text. Our goal is to identify reoccurring substrings in
the compressed form so that we can replace them by pointers to previous occurrences.
In this paper we explore the compressed differencing problem on LZW compressed files
and devise a model for constructing delta encodings on compressed files. In Section 2
we perform Semi Compressed Differencing using compressed pattern matching, where
the source file is encoded using the corresponding compression method. In Section 3
we present an optimal algorithm in terms of processing time for the Semi and Full
versions of the compressed differencing problem using tries.

2 Delta encoding in compressed files using compressed
pattern matching

Many papers have been written in the area of compressed pattern matching, i.e.
performing pattern matching on the compressed form of the file. Amir, Benson and
Farach [4] propose a pattern matching algorithm in LZW compressed files which
runs in O(n + m2) processing time or O(n log m + m), where n is the size of the
compressed text and m is the length of the pattern. Kida et al. [12], present an
algorithm for finding all occurrences of multiple patterns in LZW compressed texts.
Their algorithm simulates the Aho-Chorasick pattern matching machine, and runs in
O(n + m2 + r) processing time, where r is the number of pattern occurrences.

Compressed pattern matching was also studied in [9,8,13] and in many others.
In this section we use any compressed pattern matching algorithm to perform com-
pressed differencing using the same compression method. Given a file T and a com-
pressed file E(S), our goal is to present T as a sequence of pointers and individual
characters. The pointers point to substrings that either occur in S, or previously
occurred in T . This can be done by processing T from left to right and repeatedly
finding the longest match between the incoming text and either the text of S, or
the text to the left of the current position in T itself; the matching string is then
replaced by a pointer, or, if a match of two or more characters cannot be found, a
single character of the incoming text is output.

The input of any given compressed pattern matching algorithm is a specific pattern
P we are interested in searching for. Since we are interested in locating the longest
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possible match at the current position, we only know the position the pattern starts
with but not the one it ends with. A naive algorithm can, therefore, try to locate
all substrings of T starting at the current position by concatenating the following
character to the pattern each time a match in S or in the already scanned part of T
can still be found. A formal algorithm is given in Figure 1.

We use u to denote the length of the uncompressed file. Let cpm(P, E(S)) denote
any compressed pattern matching algorithm for matching a given pattern P in the
compressed file E(S). It returns the position of the (last) occurrence of P in the
original text S, and 0 if such location is not found. Similarly, pm(P, T ) denotes any
(standard, non-compressed) pattern matching algorithm for matching a given pattern
P in T , which returns the position of the (last) occurrence of P in T , and 0 if no such
location is found. If the match between the pattern starting at the current position
and the compressed form of S or the previous scanned part of T can not be extended,
we output the match we have already found. If this longest match is only of a single
character we output the character at the current position, and advance the position
in T by one.

1 i ←− 1
2 while i ≤ u do

{
2.1 P ←− Ti

2.2 j ←− 0
2.3 while i + j ≤ u and

(pos1 ←− cpm(P, E(S)) 6= 0 or pos2 ←− pm(P, T1 · · ·Ti−1) 6= 0)
2.3.1 j ←− j + 1
2.3.2 P ←− P · Ti+j // concatenate the next character
2.4 if j = 0 // no match was found
2.4.1 output Ti

2.5 elseif pos1 6= 0 //output a pointer to S
2.5.1 output a pointer (pos1, j)
2.6 else // output a pointer to T
2.6.1 output a pointer (pos2, j)
2.7 i ← i + j + 1

}

Figure 1. Solving the Semi Compressed Differencing problem using Compressed Pat-
tern Matching

For analyzing the processing time of the naive algorithm presented in Figure 1,
let us assume that the compressed pattern matching algorithm is optimal in terms
of processing time. By the definition of Amir and Benson [3] of optimal compressed
matching algorithms the running time is O(n + m), where n is the size of the com-
pressed text and m is the length of the pattern. Thus the total running time of the
algorithm presented in Figure 1 is O(u(n+m)), even for optimal compressed pattern
matching algorithms. Our goal is, therefore, to reduce the processing time. In the
following chapter we concentrate on differencing in LZW files.
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3 Delta Encoding in LZW Files

The LZW algorithm by Welch [18] is a common compression technique which is used
for instance by the compress command of UNIX. The LZW algorithm parses the
text into phrases and replaces them by pointers to a dictionary trie. The nodes of
the trie are labeled by characters of the alphabet, and the string associated with
each node is the concatenation of the characters on the path going from the root
down to that node. The trie initially consists only of all the individual characters of
the alphabet. At each stage, the algorithm looks for the longest match between the
string starting at the current position and the previously scanned text. Since the trie
includes the individual characters, there is always a possible match. Once the longest
match has been found, the dictionary trie is updated to include a node corresponding
to the string obtained by concatenating the matched characters with the following
character in the text.

3.1 Semi Compressed Delta Encoding

1 construct the trie of E(S)
2 i ←− 1
3 while i ≤ u

{
3.1 P ←− TiTi+1...Tu

3.2 Starting at the root, traverse the trie using P
3.3 When a leaf v is reached
3.3.1 ℓ ←− depth of v in trie (= length of matching prefix)
3.3.2 output the position in S corresponding to v
3.4 i ←− i + ℓ

}

Figure 2. Semi Compressed Differencing algorithm for LZW compressed files

During LZW decompression a trie identical to that of the LZW compression is
constructed. Although the LZW decompression algorithm takes linear time in the
size of the original file, if the reconstructed file is not needed, the construction of the
dictionary trie can be done in time proportional to the size of the compressed file
[4,18].

Figure 2 presents an improved algorithm for constructing the delta file of the
compressed file E(S) and a given file T . The algorithm constructs the dictionary trie
corresponding to E(S). Starting from the root, the trie is traversed according to the
characters read from T until a leaf is reached. The position of the string corresponding
to the leaf is then output; this information has been kept in the nodes of the trie during
construction. The prefix of T corresponding to the matched string is truncated, and
traversing the trie continues with the remaining part of T starting again from the
root. Since the trie is initialized with nodes corresponding to all the characters of
the alphabet, outputting the positions of these nodes to the delta file corresponds to
inserting individual characters.
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The processing time of this algorithm is O(|E(S)|+ |T |), which is linear in the size
of the input. In order to improve the compression performance, we can add pointers
to the portion of T that has already been processed. This can be done by constructing
the trie for T in addition to that of S, as shown in the algorithm for full compressed
delta files of the next sub-section.

3.2 Full Compressed Delta Encoding

In this section we present a linear time algorithm for the Full Compressed Delta
Encoding problem. Figure 3 presents the algorithm for constructing the delta file of
S and T given E(S) and E(T ). It constructs the dictionary trie of S recording in the
node corresponding to the string x, a triplet (pos, len, k), where pos is the starting
position of the last occurrence of x, len is the length of x (the depth of the node in
the trie), and k is the first character of x. In addition, each node of the trie records
the corresponding index in the LZW list, indicating the order in which the nodes
were created; this index is also the codeword corresponding to that node in the LZW
encoding.

Let Dictionary[cw] be a function returning a pointer to the node in the trie
corresponding to codeword cw. Since the original file T is not needed, we construct
the trie of T in parallel to traversing the trie of S. New nodes are introduced during
this phase of the algorithm when substrings of T correspond to nodes that are not
present in the trie of S. When adding or updating a node (recording the position in
T and changing the corresponding codeword), the algorithm outputs the following
to the delta file, depending on whether the node did exist before or not. If it is an
existing node, the variables pos and len stored in it are output to the delta file; if the
node is a newly created one, then the variables pos and len stored in the parent of
this node are output. The ordered pair (pos, len) can refer to a substring of either S
or T , depending on the last update of the output node.

The variable flag indicates whether the character k, the first character of the
string corresponding to the current codeword, was already written to the delta file in
the preceding stage. If so, we should eliminate k from the string corresponding to the
current pointer by changing the (pos, len) pair to be emitted to (pos+1, len−1), that
is, advancing the start position of the string to be copied by 1, while shortening the
length of this string by 1. The processing time of this algorithm is O(|E(S)|+ |E(T )|),
which is again linear in the size of the input.

To improve the compression performance of the delta file, we can check whether
each ordered pair of the form (position, length) can be combined with its previous
ordered pair, i.e., if two consecutive ordered pairs are of the form (i, ℓ1) and (i+ℓ1, ℓ2)
where i denotes a position in S or T and ℓ1 and ℓ2 denote lengths, we combine them
into a single ordered pair (i, ℓ1+ℓ2). The combined ordered pair can then be combined
with successive ordered pairs.

Consider the following example: S =abccbaaabccba, T =ccbbabccbabccbba. Ap-
plying LZW we get that E(S) =1233219571 and E(T ) =33221247957. The dictionary
trie of E(S) and the combined dictionary of E(S) and E(T ) are given in the following
figures. In the combined trie, dotted nodes indicate new nodes that were introduced
during the parsing of E(T ). Bold numbers represent data that was updated during
the parsing of E(T ), and therefore corresponds to positions in T .

We get that∆(S, T ) = 〈3, 2〉〈5, 1〉〈5, 2〉〈2, 1〉〈3, 1〉(2, 1)(4, 2)〈9, 3〉(3, 1)(4, 2), where
pointers to S are delimited with brackets, and pointers to T with parentheses. Two
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1 construct the trie of E(S)
2 flag ←− 0 // output character k
3 counter ←− 1 // position in T
4 input oldcw from E(T )
5 while oldcw 6= NULL // still processing E(T )

{
5.1 input cw from E(T )
5.2 node ←− Dictionary[oldcw]
5.3 if (Dictionary[cw] 6= NULL)
5.3.1 k ←− first character of string corresponding to Dictionary[cw]
5.4 else

5.4.1 k ←− first character of string corresponding to node
5.5 if ((node has a child k) and (cw 6= NULL) )
5.5.1 output (pos + flag, len − flag) corresponding to child k of node
5.5.2 flag ←− 1
5.6 else

5.6.1 output (pos + flag, len − flag) corresponding to node
5.6.2 create a new child of node corresponding to k
5.6.3 flag ←− 0
5.7 pos of child k of node ←− counter
5.8 oldcw ←− cw
5.9 counter ←− counter + len − flag

}

Figure 3. Full Compressed Differencing algorithm for LZW compressed files
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Figure 4. The Dictionary Trie for E(S)

ordered pairs can be combined thus ∆(S, T ) = 〈3, 3〉〈5, 2〉〈2, 2〉c(4, 2)〈9, 3〉b(4, 2). In
this stage ordered pairs of length 1 are translated to the corresponding character.

The drawback of the above algorithm is that each codeword of the compressed
file T corresponds to an ordered pair (or a single character) in the delta file. Thus
relative to LZW, the only savings in compression is achieved by combining ordered
pairs, leaving the performance still similar to that of LZW. In fact, the limitation of
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Figure 5. The Combined Dictionary Trie for E(S) and E(T )

adhering to a strict use of the LZW compressed form of T in full compressed delta
encoding, is that it cannot take advantage of the similarity between S and T , which
might void the very basis of the applicability of differential compression.

The algorithm presented in Figure 3 constructs the trie of T after the construction
of the trie of S has been completed, recording at each node of the trie information
about the last occurrence of the corresponding string. However, it might be the case
that at the beginning of the compressed file of T we are interested in information about
earlier occurrences of that string in S, which have already been overwritten with later
information. To improve that, we allowed various degrees of partial decoding. That
is, the construction of the tries of S and T is done in parallel.

Partial decoding of degree d means alternatingly treating d codewords of S and
then d codewords of T . Using this approach, we increase the probability, for syn-
chronized files with long matches, that a codeword of the compressed file of T will
refer to a node in the combined trie of S and T that corresponds to a substring of
a long match. We then try to extend this match forwards while performing partial
decoding. In addition to the triplet (pos, len, k) and the pointer into the original file
that are stored in each node, we also add a pointer to the location in the compressed
file of the corresponding codeword. When a match is detected, that is, when a node
is reached in the combined trie that refers to a substring of S and T , we retrieve its
corresponding location in the compressed file S and decompress both S and T from
that point forwards, as long as the match can be extended. For highly similar files,
we can thus get matches that are much longer than the limit imposed by the depth
of the original LZW trie of S.

Preliminary tests with these variants gave encouraging results. For example, using
the executable file xfig.3.2.1.exe as source file S to compress the next version
xfig.3.2.2.exe, playing the role of T , the resulting delta file was smaller than 3K,
whereas the original size of T was 812K, Gzip would reduce that only to 325K, and
LZW, the method on which the delta encoding has been applied here, would yield a file
of size 497K. The coding used was a combination of different Huffman codes for the
characters, the offsets and the lengths. Non-compressed delta encoding could achieve
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even better results, but loose the advantage of working directly with the compressed
files.

4 Future Work

Our exposition here has been mainly theoretical, presenting optimal algorithms (in
the sense defined in [3]) for constructing delta files from LZW compressed data. We
intend to extend these techniques also to LZ77 based compression, which resembles
more to the basic delta encoding scheme.
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Abstract. A combination of new compression methods is suggested in order to com-
press the concordance of a large Information Retrieval system. The methods are aimed
at allowing most of the processing directly on the compressed file, requesting decom-
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1 Introduction

Research in Data Compression has recently dealt with the compressed matching
paradigm, in which a compressed text T is searched directly for the occurrence of
a given pattern P , rather than the usual approach of first decompressing the text
and then searching for P in the original text. This has several advantages, such as
enabling the search for some pattern on remote computers, saving time and space for
the decoding, etc. Not every compression method is suitable for compressed matching,
but many are, e.g. static Huffman coding [13], LZW [1] and many others [16,15,5].

But there are also other file types for which compressed matching could be ad-
vantageous. In a large full-text Information Retrieval System (IRS), a text is not
searched directly, but by means of auxiliary files, such as a dictionary and a con-
cordance. Searching in compressed dictionaries [12] means that the dictionary, which
is the list of all the different terms in the database, is searched in its compressed
form, by compressing the term to be looked up. The present work now extends the
paradigm to the other large file of the IRS, namely the concordance.

The concordance gives for each word W in the database a list L(W ) of indices
to all its locations. We shall refer to such indices as the coordinates of W . In order
to find all the places in which the words A and B occur, one has to intersect L(A)
with L(B). Often, each keyword represents a family of linguistically different variants,
which are all semantically equivalent to the given keyword. In this case, we first need
to merge the coordinates of each variant in this list, before processing the query itself
[4].

In fact, our approach is slightly different from the classical compressed matching
framework. A simple search as in a compressed text does not make any sense, since
one usually does not try to locate a single coordinate in the file. What is rather needed
is a way to process entire lists of coordinates, which leads to our topic of working
with compressed concordances.
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There are several ways to build the concordance. Each depends on the needs
of the system and the accuracy level that the system wants to support. Typically, a
coordinate of a word W is a quintuple (b, r, p, s, w), where b is the index of the book in
which the word W appears, considering the book as the highest level in the hierarchy
describing the locations of the words in the database. The other elements of the
coordinate are: r, the index of the part within the book; p, the index of the paragraph
(within the part); s, the sentence number (in the paragraph), and w, which is the
word number (in the sentence). However, there are Information Retrieval systems
that do not support such an accuracy level, and the concordance keeps then only a
document number and maybe also the paragraph number. In this work, we assume
that the concordance consists of quadruples of the form (d, p, s, w), where we have
merged the pair (b, r) to a single document field.

In order to achieve convenient computer manipulations, one may choose to keep a
fixed length for each field of a coordinate. In this case, each field must be long enough
to hold the representation of the maximal possible value. This, however, is extremely
wasteful, since most of the values are small. On the other hand, if we decide to keep a
variable length encoding for each field, some extra information is needed, to be able
to read the concordance and identify the boundaries of each coordinate.

The problem with concordances is that their initial size may be 50–300 % of the
size of the plain text itself. In addition, using the original concordance when processing
a query often leads to a very large set of coordinates which need to be checked. It is
therefore necessary to compress the concordance. However, if the database is queried
frequently, there is a large time and space overhead for decompressing the necessary
parts of the concordance. For a query of the form A and B, we need to extract all
the coordinates of term A, and intersect them with all the coordinates of term B,
all at runtime. In large textual databases this may require a huge amount of data to
decompress, and technically, large parts of the concordance will be in uncompressed
form most of the time [5].

The present work is an extension of the compressed pattern matching problem,
as it presents a new compression method for compressing the concordance, which
is aimed to allow working directly with the compressed concordances, and accessing
the extracted data only for final decision, while most of the work is done on the
compressed part. All logical operations will be applied on the encoded concordance
itself. The method to be presented is suitable for static databases, since it relies on
statistical information, collected off line before the compression phase is done.

The paper is organized as follows: in the next section, we review previous and
related work in the area of concordance compression methods, and discuss its ap-
plicability to compressed matching. Section 3 then presents the details of the new
algorithm.

2 Previous and Related Work

2.1 The Prefix Omission Method

The most basic compression method that can be applied on concordances is the Prefix
Omission Method (POM)[4]. This method is based on the observation that since the
coordinates are ordered, consecutive coordinates may share the same b, r, p or even s
fields (obviously, different coordinates cannot share all 5 fields). In that case, we can
omit the repeated fields from the second coordinate. In order to maintain the ability
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of reconstructing the file, we need to adjoin a header to that coordinate, holding
information on which fields are to be copied from the preceding coordinate. For a
coordinate of the form (d, p, s, w), it is sufficient to keep a 2-bit header for the four
possibilities: don’t copy any field from the previous coordinate, copy the d-field, copy
d and p fields, and copy fields d, p and s. For example, if the d field is the same as
in the preceding coordinate, we shall save as coordinate only the triple (p, s, w), with
header 01. Although POM yields quite good compression, it is not possible to work
directly with the compressed file.

2.2 Variable Length Fields

As mentioned before, one may choose, for the ease of implementation, to represent
each field in the coordinates by a fixed length code, at the cost of keeping a much
larger file; turning to variable length codes may reduce its size considerably. But in
this case, we need to save extra information to be able to read the file and identify
the field boundaries. The idea is to add a fixed-length header to each field, which
contains a codeword that represents either the length (in bits) of the stored value, or
the value itself, which is useful for specially frequent values in a given field. A small
table is kept translating those codewords to the corresponding values.

2.3 Numerical Compression

Most of the data stored in the concordance is numerical and traditional compression
algorithms cannot provide sufficient compression for such data. In the concordances,
all the values are sorted in non-descending order. For some of the fields, we would
like to find a method that allows to compare the values of two compressed elements
directly, without decoding first. For other fields we just need a good compression
method, that will allow us to identify the element’s boundaries fast. Studying the
distribution of each of the concordance components can help us to choose the proper
compression technique to encode it [3].

A well known technique for compressing lists of non-decreasing values is Delta
Encoding, where each element, except the first, is replaced by difference from its
predecessor [2,7], resulting in smaller values to be stored. This can be done either
directly, or, e.g., devising a Huffman code for the differences. Witten et al. [17] review
some compression techniques that can be applied on those delta values and compare
their performances. Linoff et al. [14] also presented some techniques for compressing
numerical data, such as n–s Coding.

There are more techniques that use variable blocks with escape codes, such as the
Elias codes, Fibonacci codes, etc. The idea is to set aside one bit per block as a flag-
bit, indicating the lengths of the blocks. The γ Elias Codes [6] maps an integer x onto
the binary value of x prefaced by ⌊log(x)⌋ zeros. The binary value of x is expressed
in as few bits as possible and therefore begins with a 1, which serves to delimit the
prefix. Using this code, each integer with N significant bits is represented in 2N + 1
bits [8]. The Fibonacci Code is a universal variable length encoding of integers, based
on the Fibonacci sequence, rather than on powers of 2. The advantage of this scheme
is its simplicity, robustness and speed. In this code, there are no adjacent 1’s, so that
the string 11 represent a delimiter between two codewords [9].

173



Proceedings of the Prague Stringology Conference ’06

3 An algorithm enabling work on the compressed
concordance

3.1 General layout of the compressed file

In the suggested algorithm, the concordance will be compressed along the lines de-
scribed in [4], with a few adaptations intended to facilitate the work directly within
the compressed file. For the ease of description, we shall use the statistics of a real
life concordance, that of a subset of the Responsa Retrieval Project [10], the relevant
parameters of which appear below in Table 1. It should, however, be emphasized that
the methods to be described are general in nature, and could straightforwardly be
adapted to concordances of other natural language full text Information Retrieval
Systems, of different sizes, for different languages and even with different hierarchical
structure of the coordinates.

number of unique words 725,966
total number of words (coordinates) 80,928,240
number of documents 67,937
average number of coordinates per word 111.48
average number of documents per word 52.33
average number of coord. per word in each doc. 2.13
average size of coordinate 7.33 bits
average size of delta field 3.30 bits
maximum size of document field 17 bits
average size of document delta values 3.55 bits

Table 1. Statistics of the Responsa Retrieval Project concordance

Figure 1 shows the layout of a full coordinate, as it is handled by the retrieval
procedures of the Responsa Project. The numbers under each field design their sizes,
in bytes, for a total of 8 bytes per coordinate. The main idea of the compression is to
represent the values in the different fields using a variable number of bits. This reduces
the average number of bits needed, since most values stored in the coordinate are quite
small, while the size of the fields in the full coordinate are chosen to accommodate
the highest possible values, which occur only extremely rarely. The meta-information
necessary for the decompression is kept, for each coordinate, in a fixed length header ,
which is itself partitioned into fields, each encoding the number of bits needed in the
corresponding field of the compressed coordinate, as represented in Figure 2.

book sentence

1 2 1 2 2

word

document

part paragr

Figure 1. Layout of a non-compressed coordinate

In the original algorithm of [4], headers and coordinates were stored in an alter-
nating sequence. This did not cause any problem, since for the processing of a query
A and B, the entire lists L(A) and L(B) were first fetched from the disk, then de-
compressed and finally intersected. To avoid the decompression of many coordinates,
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p p

fixed variable

Header  −H Coordinate  − c

ws s w

Figure 2. Layout of a compressed coordinate

it is convenient to partition the compressed file into two parts: the variable length
compressed coordinates in one file, which we call the Coordinates file, and the fixed
length headers in a Headers file. A high level schematic representation of the layout
of the compressed files is given in Figure 3.
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Figure 3. Layout of the compressed concordance

The concordance is accessed via the Dictionary , including all the different words
of the text. The dictionary may be stored in a variety of ways, e.g., in lexicographic
order of the terms, or sorted first by length and only internally in alphabetic order,
or in form of a trie or even as a hash table. The main purpose is fast and direct access
to the information stored for each word. The size of the dictionary is usually of a
lower order of magnitude than that of the concordance, and by Heaps’s Law [11, p.
206–208], its size is α Nβ, where α and β are suitable constants, 0.4 ≤ β ≤ 0.6, and
N is the number of words in the text.

Each word wi in the dictionary is stored along with two pointers ci and hi, to
the corresponding entries in the Coordinates and Headers files, respectively. In the
Headers file, the items are grouped by document number: let ni be the number of
documents the i-th word, wi, appears in, and let di,1, di,2, . . . , di,ni

be the indices of
these documents; let fi,j, 1 ≤ j ≤ ni be the number of times wi appears in document
di,j. The entry in the Headers file corresponding to wi then starts with the pair
(di,1, fi,1), followed by fi,1 fixed length headers, followed then by (di,2, fi,2), etc.

Note that by grouping the coordinates by documents, the document fields can be
omitted, but this comes at the cost of having to add the corresponding number fi,j at
the beginning of each group. This is very often a reasonable overhead, especially in
Information Retrieval systems supporting, as many do, also a ranking of the passages
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to be retrieved. The ranking is performed by means of some scores that are usually
based, among others, on the local frequencies fi,j, so that these are needed anyway.

The Coordinates file consists of the sequence of the variable length (p, s, w) fields.
There is no need to separate the elements belonging to different words, since the
pointers ci provide direct access to the elements belonging to wi. In fact, if for a given
word wi one would always process the full list L(wi), the data mentioned so far would
be enough to restore the full list. However, since we wish to move as much of the
processing as possible to the compressed domain, we would like to perform much of
the work on the Headers file and access the Coordinates file only occasionally. We
thus need, in addition to the pointer ci, a sequence of pointers Di,j, for 2 ≤ j ≤ ni

(the darker elements in Figure 3), pointing to the first element in the Coordinates file
belonging to document di,j.

3.2 Compression of Coordinates

p, s and w fields To compress the coordinates, one has first to collect statistics
about the exact distribution on the values that appear in the different fields. These
lengths are then partitioned into classes, e.g., according to the number of bits needed
to represent each of the values. That is, the 1-bit class corresponds to the single value
1, the 2-bit class corresponds to 2 and 3, etc. On the basis of the frequencies of each
of the classes, a Huffman code could be devised, for optimal compression. We prefer,
however, to use a fixed length encoding of the classes, to facilitate the work directly
on the compressed file. Table 2 gives the distribution of the values in the various fields
for our test database. The columns correspond to the number of bits needed (up to
and including the leading 1-bit) to represent the given numbers, and the values in
the table are percents.

Bits 1 2 3 4 5 6 7 8 9 10 11-15

Range 1 2–3 4–7 8–15 16–31 32–63 64–127 128–511 512–1023 1024-2043 2048–65535

p-field 6 21 25 23 15 7 3 1
s-field 25 30 20 12 7 4.5 1 0.5 0.01
w-field 1.4 4 9.2 14 20 21 18 12 0.4

delta 0.5 1.2 13 55.8 17.8 7.6 2.9 0.9 0.3 0.1 < 0.01

Table 2. Distribution of values grouped by lengths (in bits) of the numbers

As can be seen in Figure 2, the fixed length header allocated to each coordinate
consists of 8 bits: 3 bits for each of the p and s fields, and 2 bits for the w field. This
allows eight options for p and s and four options for w, which are depicted in Table 2.
Option 0 for the p and s fields represent the fact that one copies the corresponding
values from the previous coordinate, extending thereby the POM technique. The last
line of Table 3 shows the number of times (in percent) a value is equal to that of
the preceding coordinate. Since for the w field, this happens only rarely, the copy
option is not used for w. To understand the values in Table 3, consider for example
the w-field: if the code in the corresponding 2-bit header is 10, the w-field in the
coordinate itself will be encoded by 7 bits.

The following amendment should be mentioned, which saves actually quite a few
bits: when one considers the number of bits needed to encode an integer, one usually
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p-field (3 bits) s-field (3 bits) w-field (2 bits)

lengths of coord. fields 0 1 2 3 4 5 6 8 0 1 2 3 4 5 6 9 5 6 7 9

possible omissions 36% 42% 3%

Table 3. Interpretation of the codes in the header

refers to the number of significant bits, up to and including the leftmost 1-bit. So
for the number 12, in binary 1100, one needs 4 bits. However, if one knows the exact
number of bits needed, then the leftmost bit is in fact superfluous, since it must be
a 1. That is, if the number to be encoded is 12, and we store the information that
4 bits are needed, then one needs only 3 additional bits, giving the relative index
in the range [23, 24 − 1]. Returning to Table 3, one can save a bit in the coordinate
fields in all cases where the header field gives the exact number of bits. Only for the
others, indicated in bold-face in Table 3, one really needs all the bits as indicated
by the value in the header. For example, the code 111 in the p-field header stands
for a length of 8 bits, but since there is no code for a 7-bit integer, one cannot be
sure that the highest bit is a 1, thus all 8 bits are needed; but if the code were 110,
the corresponding length would be 6 and here we see that there is also a code for a
length of 5, thus the encoded integer must be in the range [32, 63], for which 5 bits
are enough.

document, frequency and delta The 3-byte document index is first translated into
a running index. Since the number of documents is only about 68000, one can encode
an element of the index in 17 bits. The first element di,1 for each word wi will indeed
be encoded that way, but the subsequent elements di,j for j > 1 will be delta encoded,
that is, we store actually di,j − di,j−1. These differences have a skew distribution, and
need, on the average, only 3.55 bits for their encoding. The classes corresponding to
the different lengths are Huffman encoded, yielding an average codeword length of
3.45 bits.

The best encoding for the the frequencies fi,j is a unary one. Table 4 lists for
the first few values, the percentage of (d, f) pairs having that value in their fi,j field,
indicating that there is a rapid exponential decrease. The value 1 can thus be encoded
by a single bit 1, the value 2 by 01, 3 by 001, etc. This yields an average of 2.13 bits
for each fi,j value.

fW,j 1 2 3 4 5 6 7 8 9 · · ·
% 67 15 6 3 2 1 1 0.7 0.5 · · ·

Table 4. Distribution of fW,j

The location pointers Di,j, for j > 1, pointing into the Coordinates file, can also
be encoded by their differences, similarly to the di,j values. Partitioned into classes
by their lengths in bits (refer to the last line of Table 3), one needs 3.3 bits on the
average for each value, plus 1.96 bits for an average Huffman codeword indicating to
which class it belongs.

Table 5 summarizes the average lengths for one word. The first column is the
parameter we compute, the second column holds the average number of times the
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corresponding parameter appears for a single word in the concordance, and the third
column holds the average number of bits needed to represent that parameter.

parameter mult factor number of bits
di,1 1 17 bits
di,j for j > 1 51.33 3.55+3.45 = 7.0 bits
fW,j 52.33 2.13 bits
Di,j for j > 1 51.33 3.3+1.96 = 5.26 bits
header block 111.48 8 bits
coordinate 111.48 7.33 bits

Table 5. Components of the compressed coordinate

To calculate the total number of bits needed for each coordinate in the suggested
compressed concordance, we multiply the second and third columns, and then divide
the total sum by the average number of coordinates per a word. Following the above
statistics, we get an average of 22.12 bits = 2.77 bytes for each coordinate. Recall that
the original, uncompressed coordinate was of length 8 bytes, so we get a compression
ratio of 2.9, in spite of the fact that we have added also information on the local
frequencies fi,j.

3.3 The Algorithm

The algorithm below shows how to work with the compressed concordance. Given a
query

Q = q1 (l1, u1) q2 (l2, u2) · · · qm−1 (lm−1, um−1) qm,

where qi (1 ≤ i ≤ m) is a term. The couple (li,ui) imposes a lower an upper limit
on the distance from qi to qi+1, that is, an m-tuple of coordinates (c1, . . . , cm) is
considered relevant if ci belongs to the list of coordinates of qi and

li ≤ dist(ci, ci+1) ≤ ui for 1 ≤ i < m.

Negative distance means that qi+1 may appear before qi in the text. The distance is
measured in words. Note that this is a conjunctive query, and in real life applications,
each terms qi would in fact stand for a disjunction of several terms, all considered
equivalent for the given query.

In the algorithm below, we use the following notations: HVal(w) and CVal(w)
return the pointers h and c, respectively, of the word w from the dictionary. fp holds
the position (in bits) in the Headers file. index(w) returns the index of the word w in
the dictionary. The constant HS denotes the size of each header block (8 bits in our
implementation).
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AND Processing(q1, q2)

1 i ← 1, j ← 1

2 a ← index(q1), b ← index(q2)

3 fp1 ← HV al(q1), fp2 ← HV al(q2)

4 Queue1 ← empty, Queue2 ← empty

5 limit1 ← HV al(a + 1), limit2 ← HV al(b + 1)

6 pos1 ← 0, pos2 ← 0

7 mask ← 11111100

8 read 〈da,i, fa,i〉 from H(q1)

9 read 〈db,j , fb,j〉 from H(q2)

10 WHILE fp1 < limit1 AND fp2 < limit2 DO:

11 IF da,i < db,j THEN:

12 IF i > 1 THEN:

13 read deltaCode from H(q1)

14 Push deltaCode into Queue1

15 fp1 ← fp1 + HS · fa,i

16 i ← i + 1

17 read 〈da,i, fa,i〉 from H(q1)

18 ELSE IF da,i > db,j THEN:

19 IF j > 1 THEN:

20 read deltaCode from H(q2)

21 Push deltaCode into Queue2

22 fp2 ← fp2 + HS · fb,j

23 j ← j + 1

24 read 〈db,j , fb,j〉 from H(q2)

25 ELSE: //the same document number

26 ii ← 1

27 jj ← 1

28 WHILE ii < fa,i AND jj < fb,j DO:

29 IF h1ii ∧ mask < h2jj ∧ mask THEN: //compare first 6 bits of the header

30 ii ← ii + 1

31 ELSE IF h1ii ∧ mask > h2jj ∧ mask THEN:

32 jj ← jj + 1

33 ELSE: // p and s fields in the header are equal

34 //compute the position of two corresponding coordinates

35 pos1 ← CV al(q1) + sum of elements in Queue1

36 pos2 ← CV al(q2) + sum of elements in Queue2

37 //compare the extracted coordinates

38 WHILE h1ii ∧ mask = h2jj ∧ mask DO:

39 read Coord1.p, s from pos1

40 read Coord2.p, s from pos2

41 IF Coord1.p, s < Coord2.p, s THEN:

42 ii ← ii + 1

43 ELSE IF Coord1.p, s > Coord2.p, s THEN:

44 jj ← jj + 1
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45 ELSE: // Coord1.p,s = Coord2.p,s

46 //make sure that the w fields are in the right range

47 read Coord1.w and Coord2.w

48 IF l ≤ Coord1.w − Coord2.w ≤ u THEN:

49 return Coord1 and Coord2

50 ELSE IF Coord1.w < Coord2.w THEN:

51 ii ← ii + 1

52 ELSE:

53 jj ← jj + 1

54 //we compared all the headers that has the same p and s codes

55 //and didn’t find a match

56 return false

57 //we finished to compare all H(q1) and H(q2) and found no match

58 return false

Note that up to line 38, the processing deals only with the Headers file, which is
used in its compressed form, the main idea of the suggested compression being that
compressed headers can be compared directly as if they were numbers, that is, the
compression methods preserve order.

4 Experimental design

It obviously makes no sense to try to compare empirically the retrieval time by the
compressed algorithm to that of decompression and afterwards retrieval, using a set
of “random” queries. A query consisting of random terms will most probably retrieve
an empty set of locations. An empirical study should thus involve what could be
called a “typical query”, though this is hard to define. We therefore leave the present
proposal on the theoretical level.

5 Conclusions

Although the compression methods presented do not necessarily give the most effec-
tive compression, they give a quite good compression ratio after all on the one hand,
and on the other hand allow working directly with the compressed concordance, thus
saving expensive I/O and CPU operations.
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Abstract. We present a data structure to index a specific kind of factors, that is of
substrings, called gapped-factors. A gapped-factor is a factor containing a gap that is
ignored during the indexation. The data structure presented is based on the suffix tree
and indexes all the gapped-factors of a text with a fixed size of gap, and only those.
The construction of this data structure is done online in O(n × |Σ|) time and space,
with n the length of the text and |Σ| the size of the alphabet. Such a data structure
may play an important role in some pattern matching and motif inference problems,
for instance in text filtration.

Keywords: suffix tree, k-factor factor tree, string index, gapped-factor, gapped-factor
tree

1 Introduction

The indexation and extraction of repeated short words (called k-factors4 for words
of length k) has become a widely used technique in many text algorithmic prob-
lems. One can mention their use in, for instance, fasta [17] and blast [2,3]. In-
deed, many algorithms for efficiently computing string matches [10,24,29] or align-
ments [5,4,9,12,16,18,21] use k-factors. In particular, filtration algorithms that have
been created for quickly discarding large portions of the input before applying a more
expensive algorithm on the remaining data are often based on the identification of
such short repeated words [6,7,8,15,25,26,28].

Among the exact filtration algorithms (exact in the sense that they discard only
portions of the text that can not be part of the final solution sought), some consider k-
factors composed of non consecutive letters [7,8,15,26], or sets of k-factors [6,25,28].
Both present advantages for filtering purposes in comparison with single k-factors
with no letters skipped as shown in [7,14,15].

In order to efficiently use such k-factors, one needs data structures to index them.
Depending on the kind of k-factor adopted, different types of data structures may be
considered. For instance, sets of k-factors may be indexed in a hash table or using a
labelling technique as proposed in [13]. In this paper, we introduce a data structure
designed for the indexation of sub-words composed of a k-factor, a gap of length d not
taken into account during the indexation and a k′-factor. Such a sub-word is called a
gapped-factor as it contains a unique gap.

The new data structure is an adaptation of the suffix tree [20]. More precisely,
the construction we describe in this paper is an adaptation of the construction of a

⋆ Supported by the ACI Nouvelles Interfaces des Mathématiques π-vert project of the French Min-
istry of Research, the ARC BIN project from the INRIA, and the ANR project REGLIS.

4 Another currently used term for designing k-factors is q-grams
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k-factor tree [1], which itself is an extension of the Ukkonen construction of a suffix
tree [31]. A k-factor tree is a tree indexing all k-factors of a text.

As indicated in Section 5, the new data structure, called a gapped-factor tree,
allows to extract in linear time all the repeated gapped-factors of a text or of a set
of texts. Furthermore, it offers the possibility to obtain in time O(k + k′) the list of
all the positions of a gapped-factor.

The paper is organised as follows. In Section 2, we provide the context and some
definitions about text and trees. In Section 3, we formally introduce gapped-factors
and the gapped-factor tree. In Section 4, we present the algorithm to construct a
gapped-factor tree for indexing the gapped-factors of a text after recalling the Ukko-
nen construction of a suffix tree and the Allali construction of a k-factor tree. We end
by indicating two basic uses of gapped-factor trees.

2 Preliminaries

A text, also called a string, is a sequence of zero or more symbols from an alphabet Σ.
A text t of length n is denoted by t[0, n−1] = t0t1 . . . tn−1, where ti ∈ Σ for 0 ≤ i < n.
The length of t is denoted by |t|. A string w is a factor of t if t = uwv for u, v ∈ Σ∗;
in this case, the string w occurs at position |u| in the string t. A k-factor denotes a
factor of length k. If t = uv for u, v ∈ Σ∗ then v is called a suffix of t. A suffix
starting at position i in t is denoted by ti....

A tree is a data structure composed of nodes connected together by edges. Except
for a special node called the root, each node has exactly one father. Nodes with no
children are called the leaves while all other nodes are called the internal nodes of
the tree. An internal node having at least two children is called a branching node.

We call the depth of a node N the sum of the lengths of the edges that need
to be traversed from the root of the tree to reach N . By definition, the depth of the
root is thus 0.

Nodes and edges may be labelled. For instance, in Figure 1, edges are labelled
with letters from a given alphabet.

A T

A C

A C

Internal nodes

leaves

root

Figure 1. Example of a tree labelled with letters from a given alphabet.
Reading all paths from the root to the leaves, leads to the strings AA, AC, CA and
CT .
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Let N be a node of a tree, we denote by path(N ) the text corresponding to the
concatenation of the letters from a given alphabet labelling the edges from the root
to N .

For instance, if N0 denotes the leftmost leaf of the tree presented in Figure 1,
path(N0) = AA.

The suffix trie of a text t is a tree with edges labelled with elements of Σ. For
each factor of t, there exists a node N such that path(N ) is equal to that factor. If t
has an ending symbol, all nodes N for which the path from the root spells a suffix of
t are leaves.

The implicit suffix tree of t is a tree with edges labelled by non-empty elements
of Σ∗. The suffix tree is a compressed version of the suffix trie. Each internal node
N of the suffix trie that has only one child is deleted and its two adjacent edges are
replaced by an edge that goes from the father of N to its child. The label of the new
edge is equal to the concatenation of the label of the edge going from the father of
N to N and of the label of the edge from N to its child. This tree is called implicit
because not all suffixes of t lead to a leaf. The true suffix tree is obtained when a
special ending symbol $ not in Σ is added at the end of t. A suffix tree indexes all
the |t| suffixes of a text t.

3 Gapped-factor tree

A gapped-factor tree indexes gapped-factors that are defined as follows:

Definition 1 (Gapped-factor). A gapped-factor is a concatenation of a factor of
length k, a gap of length d and another factor of length k′. A gapped-factor occurring
at position i in a text t is t[i, i+k−1].t[i+k+d, i+k+d+k′−1]. Such a gapped-factor
is called a (k-d-k′)-gapped-factor.

An example of a (2-1-3)-gapped-factor is given in Figure 2.

0 1 2 3 4 5 6 7 8 9

k

10

GGA AA ACAGAG

d k’

Figure 2. Example of a (2-1-3)-gapped-factor. The first factor length is k = 2,
the gap is of length d = 1 and the second factor has a length k′ = 3. It occurs
at position 1 in the text. With these parameters, the content of the gapped-factor
occurring at position 1 is GGGAG composed by GG and GAG.

We propose a new data structure, called a gapped-factor tree, to index all the (k-
d-k′)-gapped-factors of a text or of a set of texts. This is a modification of the suffix
tree [20] data structure. The gapped-factor tree takes into account the gap of length
d of the gapped-factors it indexes. This means that the tree contains a region up to
which the k-factors are indexed as in a classical suffix tree, while below this region
the second factors (of length k′) of the (k-d-k′)-gapped-factors starting with the same
k-factor start from the same node. This region is called the invisible region.

An intuitive idea of such a data structure is given in Figure 3.
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Figure 3. An intuitive view of a gapped-factor tree. Even if this is not the way
the gapped-factor tree is constructed, a gapped-factor tree can be seen as a truncated
suffix tree where a part has been removed, provoking merges in the lower part of the
tree.

Definition 2 (Path in a Gapped-Factor Tree). Let w be a (k-d-k′)-gapped-factor
starting at position i < |t| − k − d − k′ that is indexed in such a tree. Let N be the
node at depth z ≤ k + k′ corresponding to this (k-d-k′)-gapped-factor. Then:

path(N ) =

{
t[i, i + z − 1] if z ≤ k
t[i, i + k − 1].t[i + k + d, i + d + z − 1] otherwise

An example of gapped-factor tree and of a path in such a tree is presented in
Figure 4.

AGGAGAGACAA
0 1 2 3 4 5 6 7 8 9 10

A

7

0 5 14

6

3 2

A A G

A

C G

G

A

AA

G

AA

A A A C G A

A

C G

C

A

G

GA

Figure 4. Example of gapped-factor tree. The input sequence is
AGGAGAGACAA. The dashed lines correspond to the invisible region of the
tree. In this case, the gapped factors indexed are (2-1-3)-gapped-factors. The
information attached to one of the leaves corresponds to the starting positions of a
gapped-factor in the text.

In the next section, we present the algorithm which performs the online construc-
tion of a gapped-suffix tree.
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4 Construction

The algorithm for constructing a gapped-factor tree is an extension of the algo-
rithm for constructing a k-factor tree [1], which is itself an extension of the suffix tree
construction algorithm due to Ukkonen[31]. Therefore, in the following, we start by
presenting the construction of a suffix tree, then the one of a k-factor tree, and finally
we describe the construction of a gapped-factor tree.

4.1 Ukkonen construction of the suffix tree

To present the Ukkonen algorithm, we follow the description given in [11]. This algo-
rithm constructs a full suffix tree of a text t in O(|t|) time and space. An example of
a suffix tree is given in the Figure 5.

A $ G

G A $ G

$

A

G

$

$ G

A

G

$

G

A G G A G

Figure 5. Example of a suffix tree for the text AGGAG$. The dashed lines rep-
resent the suffix links.

The algorithm is divided into |t| phases. The ith phase (for 0 ≤ i < |t|) consists
in the insertion of all the i + 1 suffixes of t[0, i] into the tree. The naive approach
divides each phase i into i+1 steps, one step j (0 ≤ j < i) consisting in the insertion
of the suffix t[j, i] into the tree. This naive version of the construction algorithm is
presented in Algorithm 9. Clearly this algorithm is in O(|t|3).

Algorithm 9 Naive suffix tree construction algorithm
Require: A text t
Ensure: The suffix tree ST (t) of t
1: for i from 0 to |t| − 1 do
2: for j from 0 to i do
3: Add(ST (t),t[j, i])
4: end for
5: end for

The Ukkonen algorithm uses three tricks in order to reduce the time complexity
to O(|t|).
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Before we present those three tricks, we describe the encoding of a suffix tree. The
suffix tree created by this algorithm does not store the text: each node N contains
a couple of integers (s, e) corresponding to the starting and ending positions of the
factor in the text that led to the creation of the node itself. In the following, we denote
by Ns,e such a node. Thus, by definition, in the suffix tree of a text t, path(Ns,e) is
equal to t[s, e].

The Ukkonen algorithm uses suffix links. A suffix link is an oriented link between
two branching nodes of a suffix tree. Given a node Ns,e, its suffix link is denoted
by Sl(Ns,e) and the node pointed by Sl(Ns,e) is denoted by Sn(Ns,e). In this case,
path (Sn(Ns,e)) = path(Ns,e)

[
1, |path(Ns,e)|

]
. For instance, if path(Ns,e) = AGGT ,

then, path(Sn(Ns,e)) = GGT .
In Figure 5, the suffix links are represented by dashed lines.
We present the three ideas leading to a linear time complexity for constructing a

suffix tree for the text t.

1. Let us assume that the suffix tree is constructed for t[0, i−1]. During the ith phase,
all the leaves have to be lengthened by one in order to take the character ti into
account. In other terms, the ending integer e of each leaf has to be incremented
by one. Since by definition, all leaves have the same ending integer, the latter can
be coded by a global variable that is incremented by one at each phase of the
Ukkonen algorithm. This global variable is equal to i during phase i. Thus, the
extension of the leaves is implicit and done in constant time.

2. (a) Fast Insertion: during the ith phase, let Ns,e be the last branching node reached
during the insertion of t[j, i]. By construction this node contains a suffix link. In
this case, t[j, i] = path(Ns,e).w.σ where w ∈ Σ∗ and σ ∈ Σ. In order to insert
t[j +1, i], w (which is necessarily already in the tree) is read from Sn(Ns,e) and
σ is added if needed.
To avoid having to read all the letters of w from Sn(Ns,e), the following trick is
used. At each branching node met during the reading of w, an edge is chosen
depending on the current letter in w. Once the edge is identified, the node
pointed by this edge is reached and we advance in the reading of w by the
number of letters in the edge. The process is repeated while w is not totally
read. Thus the complexity of the reading of w is related to the number of nodes
traversed and not to |w|.
If σ is added, a branching node is created. The suffix link of such a node points
to the last branching node met during the next insertion (it can be a created
one).
The pseudo-code of this algorithm is given in appendix in Figure 10.

(b) During phase i, all the suffixes of t[0, i] have to be inserted. Yet if during the
insertion of t[j, i], this word is already in the tree, then, by definition, all the
words {t[k, i], k ∈ [j, i]} are already in the tree as well. In this case, the ith

phase stops here. Similarly, the (i + 1)th phase can start inserting t[j, i + 1]:
with the implicit extension of the leaves, the factors {t[k, i + 1], k ∈ [1, j − 1]}
are already in the tree.

A pseudo-code of this construction algorithm is given in appendix in Algorithm A.
Each phase of the algorithm is not done in constant time. However the amortised

construction time is linear with respect to the input text length. The demonstration
of this complexity is given in [11]. It consists in bounding the overall number of nodes
traversed during all insertions.
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4.2 Construction algorithm of a k-factor tree

The k-factor tree, also called truncated suffix tree, has been presented in [22] and [1].
A k-factor tree is a suffix tree cut such that each word spelt from the root to a leaf
has a length bounded by k. An example of k-factor tree is given in Figure 6. This
structure finds applications in various areas such as data compression [22,23] where
the indexation is made over a sliding window, or string matching and computational
biology [19,27,30] where the length of the motifs searched for in the text is bounded.

The linear time construction algorithm we describe here is based on the Ukkonen
suffix tree construction algorithm. For further details on implementation and proof
of validity, the reader is referred to [1].

This algorithm is divided in two parts:

1. Build the suffix tree for t[0, k − 2].
2. Add in |t| − k + 1 phases the suffixes of t[i − k, i] for i from k − 1 to |t| − 1.

The first part is achieved using the Ukkonen algorithm. During this part, the leaves
created are added to a queue called queueℓeaf .

In the second part, we have to modify the Ukkonen algorithm so that:

– for each phase i, we start by inserting t[j, i] with j not smaller than i − k + 1;
– implicit leaf extensions are stopped when the length k is reached for the path of

a leaf.

To do this last point, we use the queue queueℓeaf .
During the whole construction, each leaf created is added at the end of queueℓeaf .

In the second part, for each phase i, there are two possibilities: either queueℓeaf is
empty or not.

Suppose queueℓeaf contains at least one leaf. Let Ls,e denote a leaf starting position
s and ending position e. We then have queueℓeaf = L1

s1,e . . .Lp
sp,e. We start by fixing

the end position of L1
s1,e to i, that is L1

s1,e becomes L1
s1,i. Indeed, we know that

path(L1
s1,i) has a length of k.

Suppose we are in phase i = k−1. Then queueℓeaf contains at least one leaf which
corresponds to the one created during the insertion of t[0] in the tree (first insertion
of the first phase). This leaf is L1

0,e. In phase i = k, the leaf is now L1
0,k−1, so its length

is equal to k. If there is another leaf in the queue, it corresponds to L1
1,e and it is clear

that its length will be equal to k at the next phase. And so on, as the leaves Ls,e are
created with s incremented by one between two leaves.

Once the leaf at the beginning of queueℓeaf is fixed, we apply again the Ukkonen
algorithm from the last leaf in queueℓeaf (the last created which can be the one we
have just fixed). At the end of phase (i.e. no leaf created during the last insertion),
we remove the leaf at the head of queueℓeaf .

We describe now the case when there is no leaf in the queue. Suppose there were
a leaf in the queue at the previous phase i − 1. By fixing the end value of this leaf,
we have fixed the leaf corresponding to t[i − k, i − 1]. Then we started by inserting
t[i − k + 1, i − 1] in the tree. This insertion did not create a leaf (queueℓeaf is empty
in phase i) and lead to a position p in the tree that corresponds to the spelling of
t[i − k + 1, i − 1]. In the current phase i, since queueℓeaf is empty, we have to start
by inserting t[i− k + 1, i] in the tree. This can be done in constant time by trying to
insert t[i] from the position p. If this insertion creates a leaf, its end value is directly
set to i (not added in queueℓeaf ) and it is used to try to insert t[i− k +1, i]. If no leaf
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is created, then we continue by trying to insert t[i − k + 1, i] from the leaf reached
(we know that the insertion of t[i − k, i] leads to a leaf since the path length of the
leaves is bounded by k). If the insertion of t[i− k +1, i] does not create a leaf, we use
the position reached in the tree to start the next phase.

A pseudo-code of this algorithm is given in appendix in Algorithm A.
The time and space complexities of the algorithm are linear in the size of the

input text (see[1] for details).

A G G A G

A $ G

G A $ G

A$ G G

k=3

Figure 6. Example of a k-factor tree for the text AGGAG$ with k = 3

4.3 Gapped-factor tree construction

We now present the construction algorithm of a gapped-factor tree (gft for short).
Once again, the construction algorithm is done online. As shown in Figure 4, a gft
is composed of three different regions: the upper part of depth k, the invisible region
corresponding to the gap of length d, and the lower part of depth k′:

1. During the construction of the gft, the first region is treated exactly as for a k-
factor tree. The queue containing the leaves in extension is denoted by queueleaf up.

2. When a leaf reaches the depth k, it enters in the invisible region for d phases. To
simulate this behaviour, a queue is created that contains the leaves in extension
in the invisible region. This queue is denoted by queueinvisible. Leaves entering
queueinvisible stay inside for d phases. During those phases, leaves inside the queue
are ignored. After d phases, a leaf in the queue is virtually reaching the depth
k + d. It is then removed from the queue.

3. The construction algorithm of the lower part of the tree is again very similar to
the one of a k-factor tree. All the tricks applied for the suffix tree construction are
still available. Once more a queue is used to store the leaves in extension in the
lower part of the tree. This queue is denoted by queueleaf low. The ending integer
of the leaves in extension in the queue is the global variable i. The leaves stay in
the queue during k′ phases before they become leaves that stay fixed, and contain
the positions of the gapped-factors corresponding to the path leading to them
from the root.
However, for the construction of the lower part, the use made of suffix links is
slightly different than in the upper part of the tree. This is due to the following
particularity of the gapped-factor tree: a node in the lower part of the tree may
have up to |Σ| suffix links. Indeed, one node in this tree may correspond to several
paths. According to the first letter in the invisible region leading to a node, the
suffix link to follow will not be the same. Figure 7 illustrates this observation.

The algorithm 15 given in appendix gives an overview of the whole gapped-factor
tree construction algorithm.
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A

A

A B

B

B A

A

BB

B

A B

B

B

A

A

Figure 7. Example of multiple suffix links. The node pointed by an arrow has
two suffix links (in dotted line). One is labelled with an A and the other is labelled
with a B. The correct suffix link to follow depends on the path that leads to the node.
If the node is reached reading ABA.w (w ∈ Σ∗), the correct suffix link to follow is
the one labelled with an A; it goes to a node reachable reading the text BA.w. Any
other suffix link leaving the node would be labelled differently and would reach a
node corresponding to the text B.σ.w, with σ ∈ Σ and σ 6= A.

Complexity of the Gft construction The algorithm for constructing a gft uses
all the tricks employed by Ukkonen and Allali to lead to a linear time and memory
complexity. However, the multiple suffix links add a multiplicative term in |Σ| to
both complexities. Thus the total time and memory complexity for the construction
of a gapped-factor tree for a text t is in O(|t| × |Σ|). One can notice that once the
gapped-factor is constructed, the (multiple) suffix links are not useful anymore and
can be removed. In this case, the memory complexity falls back to O(|t|).

Generalisation to more than one text As for the suffix tree or the k-factor tree,
the gft can be extended to a generalised gapped-factor tree and accept a set of m > 1
texts t0, t1, . . . , tm−1.

In this case, each text i ∈ [0,m − 1] ends with a special character $i and the
leaves are labelled not only with the positions of a gapped-factor but also with the
sequence number in [0,m−1] where the factors occur. The complexity for constructing

a generalised gapped-factor tree is in O

((
m−1∑
i=0

|ti|
)
× |Σ|

)
.

5 Basic uses of a gapped-factor tree

To find all the positions where a (k-d-k′)-gapped-factor occurs in a text given a
(k-d-k′)-gapped-factor tree for the text one needs to find the leaf corresponding to
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the given gapped-factor. This is done straightforwardly by traversing the gapped-
factor tree from the root to the node as in a suffix tree. The list attached to the leaf
corresponds to the positions of the occurrences of the gapped-factors.

This algorithm takes a time proportional to the number of nodes traversed, which
is in the worst case k + k′. Thus retrieving the positions of a given (k-d-k′)-gapped-
factor is done in O(k + k′).

The gft data structure allows also to easily find all the repeated gapped-factors of
a text or of a set of texts. If we are interested in finding all gapped-factors occurring
at least r times in a text, for r a positive integer, we just have to visit the leaves. For
each leaf, if the number of elements of the list attached to it is greater or equal to r,
the corresponding gapped-factor is considered as repeated.

As the number of elements of each list may be stored in the leaves, this extraction
is done in time proportional to the number of leaves. If n denotes the length of the
indexed text, the number of leaves is no greater than n. The extraction is therefore
done in time O(n).

In the generalised case, one may want to extract all gapped-factors occurring in
at least r different texts. In this case, to each leaf is attached the number of different
texts in which the corresponding gapped-factor occurs. Thus extracting all gapped-
factors occurring in at least r different texts is done by checking each leaf in constant

time leading to a complexity in O(
m∑

i=1

|ti|).

6 Conclusion

We presented a new data structure used for indexing factors containing a gap (called
the gapped-factors). This data structure is based on the suffix tree structure. Fur-
thermore, we indicated an online construction algorithm of this data structure for a
text t on an alphabet Σ in O(|t| × |Σ|) time and space. This algorithm is based on
the Ukkonen algorithm for constructing a suffix tree.
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A Pseudo-codes

Algorithm 10 Fast Insertion
Require: N ,t,start,end
Ensure: Insert a string tstart...end from a node N assuming that the tree is already constructed for

tstart...end−1 from N
1: endJump ← false
2: while (not endJump) and ((end − start) 6= 0) do
3: set child to the child of N that starts with the letter tstart

4: if (end − start) ≥ length(N , child) then
5: start ← start + length(N , child)
6: N ← child
7: else
8: endJump ← true
9: end if

10: end while
11: if (end − start) = 0 and N has not a child for letter tend then
12: add a child to N with edge label start equal to end
13: end if
14: e ←the label of the edge between N and child
15: if eend−start+1 6= send then
16: split e at position end − start
17: add a leaf with start position equal to end to the new node
18: end if

Algorithm 11 Factor Tree
Require: R, t , k , queueleaf

Ensure: The k-factor tree of t
1: do the first k−1 phases using Suffix Tree algorithm, filling queueleaf with each new leaf created
2: for i from k to |t| do
3: if queueleaf is not empty then
4: set lastLeaf to the leaf at the end of queueleaf

5: else
6: add ti from last position reached during the last insertion
7: if a leaf is created then
8: add this leaf at the end of queueleaf

9: set lastLeaf to this leaf
10: else
11: set lastLeaf to the leaf reached
12: end if
13: end if
14: Phase (R, t , k, i, queueleaf , lastLeaf)
15: remove the leaf at the head of queueleaf and set its end value to i
16: end for
17: return R
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Algorithm 12 Function Phase (Suffix tree and k-factor tree construction)
Require: R, t, k, i, queueleaf , lastLeaf
Ensure: One phase of the construction of the suffix tree and of the k-factor tree. The underlined

parts stand only for the k-factor tree construction.
1: endPhase ← false
2: repeat
3: forward ← length(Father(lastLeaf), lastLeaf) − 1
4: if Sl(Father(lastLeaf)) is undefined and Father(lastLeaf)! = R then
5: forward ← forward + length(Father(Father(lastLeaf)), Father(lastLeaf))
6: if Father(Father(lastLeaf)) is R then
7: AddString(R,t,i − forward + 1,i)
8: else
9: AddString(Sl(Father(Father(lastLeaf))),t,i − forward,i)

10: end if
11: else
12: if Father(lastLeaf) is R then
13: AddString(R,t,i − forward + 1,i)
14: else
15: AddString(Sl(Father(lastLeaf)),t,i − forward,i)
16: end if
17: end if
18: if a node was created during the previous step then
19: set the suffix link of this node to the last node reached during the insertion
20: end if
21: if a leaf was created in the call to AddString then
22: set lastLeaf to this leaf
23: add this leaf at the end of queueleaf

24: end if
25: if no node was created during the call to AddString then
26: endPhase ← true
27: end if
28: until not endPhase

Algorithm 13 Suffix Tree
Require: t
Ensure: The suffix tree of t
1: Add to R a leaf L with edge label t0
2: lastLeaf ← L
3: for i from 1 to |t| − 1 do
4: Phase (R, t , k, i, lastLeaf)
5: end for
6: return R
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Algorithm 14 Lower Part Tree
Require: R, t , k , d, i, queueleaf low, lastLeafLow
Ensure: A construction phase of the lower part of the gapped-factor tree
1: endPhaseLow ← false
2: repeat
3: forward ← length(Father(lastLeafLow), lastLeafLow) − 1
4: if Sl(t, Father(lastLeafLow)) is defined but not labeled with the good character then
5: Point the Father(lastLeafLow) node as the node created during the previous step
6: end if
7: if Sl(tα, Father(lastLeafLow)) is undefined and Father(lastLeafLow)! = R then
8: forward ← forward + length(Father(Father(lastLeafLow)), Father(lastLeafLow))
9: if Father(Father(lastLeafLow)) is R then

10: AddString(R,t,i − forward + 1,i)
11: else
12: AddString(Sl(tα, F (F (lastLeafLow)))t,i − forward,i)
13: end if
14: else
15: if Father(lastLeafLow) is R then
16: AddString(R,t,i − forward + 1,i)
17: else
18: AddString(Sl(tα, F (lastLeafLow),t,i − forward,i)
19: end if
20: end if
21: if a node was created during the previous step then
22: set the suffix link labeled tα of this node to the last node reached during the insertion
23: end if
24: if a leaf was created during the call to AddString then
25: set lastLeafLow to this leaf
26: add this leaf at the end of queueleaf low

27: end if
28: if no node was created in the call to AddString then
29: endPhaseLow ← true
30: end if
31: if the width of the last position reached during the fast insertion was ≤ k + d then
32: endPhaseLow ← true
33: end if
34: until not endPhaseLow

NOTE : α is the first character in the invisible region on the lastLeafLow path
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Algorithm 15 GappedFactor Tree
Require: R, t , k , d, queueleaf up, queueleaf low, queueinvisible

Ensure: Complete construction algorithm of a gapped factor tee
1: do the first k phases using Suffix Tree algorithm, filling queueleaf up with each new leaf created
2: for i from k to |t| do
3: if index of node at the head of queueinvisible = k + 1 then
4: create a new edge from this node labeled ti
5: add the new leaf at the end of queueleaf low

6: remove the node at head of queueinvisible

7: end if
8: if queueleaf up is not empty then
9: set lastLeafUp to the leaf at the end of queueleaf up

10: else
11: add ti from last position reached during the last insertion on the upper part of the tree
12: if a leaf is created then
13: add this leaf at the end of queueleaf up

14: set lastLeafUp to this leaf
15: else
16: set lastLeafUp to the leaf reached
17: end if
18: end if
19: Phase(R, t, k, i, queueleaf up, lastLeafUp)
20: remove the pseudo leaf at the head of queueleaf up

21: if the pseudo leaf is new then
22: set the pseudo leaf index value to 0 (invisible zone)
23: add the pseudo leaf at the end of queueinvisible

24: end if
25: if i > k + d //the lower part of the tree is on construction then
26: if queueleaf low is not empty then
27: set lastLeafLow to the leaf at the end of queueleaf low

28: else
29: add ti from last position reached during the last insertion on the low part of the tree
30: if a leaf is created then
31: add this leaf at the end of queueleaf low

32: set lastLeafLow to this leaf
33: else
34: set lastLeafLow to the leaf reached
35: end if
36: end if
37: Lower Part Tree(R, t, k, d, i, queueleaf low, lastLeafLow)
38: if i ≥ k + d + k // End the extention of the tree then
39: remove the leaf at the head of queueleaf low

40: set the leaf end value to i
41: end if
42: end if
43: end for
44: return R
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Abstract. The suffix tree of string w represents all suffixes of w, and thus it supports
full indexing of w for exact pattern matching. On the other hand, a sparse suffix tree
of w represents only a subset of the suffixes of w, and therefore it supports sparse
indexing of w. There has been a wide range of applications of sparse suffix trees, e.g.,
natural language processing and biological sequence analysis. Word suffix trees are a
variant of sparse suffix trees that are defined for strings that contain a special word
delimiter #. Namely, the word suffix tree of string w = w1w2 · · ·wk, consisting of k
words each ending with #, represents only the k suffixes of w of the form wi · · ·wk.
Recently, we presented an algorithm which builds word suffix trees in O(n) time with
O(k) space, where n is the length of w. In addition, we proposed sparse directed acyclic
word graphs (SDAWGs) and an on-line algorithm for constructing them, working in
O(n) time and space. As a further achievement of this research direction, this paper
introduces yet a new text indexing structure named sparse compact directed acyclic
word graphs (SCDAWGs). We show that the size of SCDAWGs is smaller than that of
word suffix trees and SDAWGs, and present an SCDAWG construction algorithm that
works in O(n) time with O(k) space and in an on-line manner.

1 Introduction

Suffix trees have played a very central role in combinatorial pattern matching as they
have wide applications such as data compression [10,12,6] and bioinformatics [11,2,5].
Suffix trees are fairly useful since they can be constructed in linear time and space
in the input string length [14]. On the other hand, there have been great demands to
deal with the common case that only certain suffixes of the input string are relevant.
Suffix trees that contain only a subset of all suffixes are called sparse suffix trees.
Among several versions of sparse suffix trees, we in this paper concentrate on word
suffix trees introduced in [1].

Let D be a dictionary of words and w be a string in D+ of length n, namely, w
be a sequence w1 · · ·wk of k words in D. The word suffix tree of w w.r.t. D is a tree
structure which represents only the k suffixes of w in the form wi · · ·wk. Although
the normal suffix tree of w requires O(n) space, the word suffix tree of w w.r.t. D
needs only O(k) space. One typical application of word suffix trees is a word- and
phrase-level index for documents written in a natural language. Note that normal
suffix trees report all occurrences of a keyword in the text string, which may cause
unwanted matchings (e.g., an occurrence of “other” in “mother” is possibly retrieved).
Andersson et al. introduced an algorithm to build the word suffix tree for w w.r.t. D
with O(k) space, but in O(n) expected time [1]. Lately, we invented a faster algorithm
that constructs word suffix trees with O(k) space and in O(n) time in the worst
case [8]. This is optimal, since the whole string w needs to be read at least once.

It is noteworthy that our word suffix tree construction algorithm gives a practical
solution to linear-time construction of sparse suffix trees for arbitrary subsets of
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suffixes. Given a set S of k−1 positions in string w, we insert a unique word delimiter
# into w at the positions listed in S. Now we get a string which consists of k words,
each separated by #. The word suffix tree of this modified string is alternative to the
sparse suffix tree of w w.r.t. S. In the matching phase, we simply ignore any #’s in
the edge labels of the tree.

In this paper, we introduce a new data structure named sparse compact directed
acyclic word graphs (SCDAWGs) as an alternative to the word suffix trees and to the
sparse suffix trees as well. SCDAWGs are a sparse text indexing version of compact
directed acyclic word graphs (CDAWGs) of [4]. We define SCDAWGs based on ‘word-
position-sensitive’ equivalence relations on string w and dictionary D, and show the
asymptotic size of SCDAWGs to be O(k). Moreover, the fact is that SCDAWGs are
a minimization of sparse suffix trees, and therefore require no more space than sparse
suffix trees. Finally, we present an on-line algorithm for building SCDAWGs, which
is based on the on-line algorithm for building normal CDAWGs in [7]. By using the
minimum DFA MD which accepts D, and by tailoring suffix links accordingly, the
modified algorithm constructs SCDAWGs. Since our algorithm directly constructs
SCDAWGs (namely, not constructing sparse suffix trees as an intermediate), it works
with space linear in the output size. We also show that the proposed algorithm runs in
O(n) time. Furthermore, our algorithm can be seen as a generalization of the normal
CDAWG construction algorithm of [7]. Assume just for now D = Σ, and consider a
DFA which accepts Σ with only two states that are a single initial state and a single
final state. Then this DFA plays the same role as the auxiliary ‘⊥’ node used in [7],
and as a result normal CDAWGs are generated.

2 Preliminaries

2.1 Notations

Let Σ be a finite set of symbols, called an alphabet. Throughout this paper we assume
that Σ is fixed. A finite sequence of symbols is called a string. We denote the length
of string w by |w|. The empty string is denoted by ε, that is, |ε| = 0. Let Σ∗ be the
set of strings over Σ. For any symbol a ∈ Σ, we define a−1 such that a−1a = ε.

Strings x, y, and z are said to be a prefix, substring, and suffix of string w = xyz,
respectively. A prefix, substring, and suffix of string w are said to be proper if they
are not w. Let Prefix (w) and Suffix (w) be the set of the prefixes and suffixes of string
w, respectively. For set S of strings, let Prefix (S) =

⋃
w∈S Prefix (w).

Definition 1 (Prefix property). A set L of strings is said to satisfy the prefix
property if no string in L is a proper prefix of another string in L.

The i-th symbol of string w is denoted by w[i] for 1 ≤ i ≤ |w|, and the substring
of string w that begins at position i and ends at position j is denoted by w[i..j] for
1 ≤ i ≤ j ≤ |w|. For convenience, let w[i..j] = ε for i > j. For any strings x,w ∈ Σ∗,
let

Begposw(x) = {i | x = w[i..i + |x| − 1]}, and

Endposw(x) = {j | x = w[j − |x| + 1..j]}.

Let D be a set of strings called a dictionary. A factorization of string w w.r.t.
D is a list w1, . . . , wk of strings in D such that w = w1 · · ·wk and wi ∈ D for each
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1 ≤ i ≤ k. In the rest of the paper, we assume that D = Σ∗# where # is a special
symbol not belonging to Σ, and that w ∈ D+. Then, a factorization of w w.r.t. D is
always unique, since D clearly satisfies the prefix property because of # not being in
Σ.

For any string w = w1 · · ·wk ∈ D+, let u be any prefix of w. Then we can write
as u = w1 · · ·wℓv with 1 ≤ ℓ < k, where v is a prefix of wℓ+1. For any 1 ≤ i ≤ ℓ,
let ui = wi · · ·wℓv, and for convenience, let uℓ+1 = v and uℓ+2 = ε. Now, we define a
word-oriented subset SuffixD(u) of Suffix (u) as follows:

SuffixD(u) = {ui | 1 ≤ i ≤ ℓ + 2}.

Namely, SuffixD(u) consists only of u, the suffixes of u which immediately follow any
# in u, and the empty string ε.

Example 2. Let Σ = {a, b}, D = Σ∗#, w = ab#b#aa#, and u = ab#b#a. Then
SuffixD(u) = {ab#b#a, b#a, a, ε}.
Further, we define set WordposD(u) of the word-starting positions in u, as follows:

WordposD(u) = {|u| − |s| + 1 | s ∈ SuffixD(u) − {ε}}.

Example 3. For the running string u = ab#b#a, WordposD(u) = {1, 4, 6}.

2.2 Equivalence Classes on Strings over D

For set S of integers and integer i, we denote S ⊕ i = {j + i | j ∈ S} and S ⊖ i =
{j − i | j ∈ S}. Let w ∈ D+. For any u ∈ Prefix (SuffixD(w)) and x, y ∈ (Σ ∪ {#})∗,
we define the begin- and end-equivalence relations ≡B

u and ≡E
u , as follow:

x ≡B

u y ⇔ Begposu(x) ∩ WordposD(u) = Begposu(y) ∩ WordposD(u),

x ≡E

u y ⇔ Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(y) ∩ (WordposD(u) ⊕ |y| ⊖ 1).

We note that the above equivalence relations are ‘word-position-sensitive’ versions of
the equivalence relations introduced in [3], where the intersections with WordposD(u)
make them word-position-sensitive. We denote by [x]Bu and [x]Eu the equivalence classes
of x w.r.t. ≡B

u and ≡E
u , respectively.

Proposition 4. All strings that are not in Prefix (SuffixD(u)) form one equivalence
class under ≡B

u (and ≡E
u ), called the degenerate class.

Proof. For any x 6∈ Prefix (SuffixD(u)), clearly WordposD(u) = ∅. Thus Begposu(x)∩
WordposD(u) = ∅. Hence, any strings not belonging to Prefix (SuffixD(u)) form one
equivalence class. Similar discussion holds for ≡E

u . ⊓⊔

Proposition 5. For any strings x, y ∈ Prefix (SuffixD(u)), if x ≡B
u y, then either

x ∈ Prefix (y), or vice versa.

Proof. Assume, without loss of generality, that |x| ≤ |y|. Since x ≡B
u y, Begposu(x)∩

WordposD(u) = Begposu(y) ∩ WordposD(u). Let S be this set of positions. For any
i ∈ S, we have that x = u[i..i + |x| − 1] and y = u[i..i + |y| − 1]. Since |x| ≤ |y|,
x ∈ Prefix (y). ⊓⊔
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Example 6. For the running string u = ab#b#a, [b#a]Bu = {b#a, b#, b}. For any
pair of strings x, y ∈ [b#a]Bu , we have x ∈ Prefix (y) or y ∈ Prefix (x).

Proposition 7. For any strings x, y ∈ Prefix (SuffixD(u)), if x ≡E
u y, then either

x ∈ SuffixD(y), or vice versa.

Proof. Assume, without loss of generality, that |x| ≤ |y|. Since x ≡E
u y, Endposu(x)∩

(WordposD(u)⊕|x|⊖1) = Endposu(y)∩ (WordposD(u)⊕|y|⊖1). Let S be this set of
positions. For any i ∈ S, we have that x = u[i−|x|+1..i] and y = u[i−|y|+1..i]. Since
x ∈ Prefix (u[i − |x| + 1..|u|]), u[i − |x| + 1..|w|] ∈ SuffixD(u), and WordposD(u) =
{|u| − |s| + 1 | s ∈ SuffixD(u) − {ε}}, we have i − |x| + 1 ∈ WordposD(u). Similarly,
i − |y| + 1 ∈ WordposD(u). Since |x| ≤ |y|, we have x ∈ SuffixD(y). ⊓⊔
Example 8. For the running string u = ab#b#a, [ab#b]Eu = {ab#b, b}. Then b ∈
SuffixD(ab#b).

From Propositions 5 and 7, each non-degenerate equivalence class under ≡B
u or

≡E
u has a unique longest member, which is called the representative of the equivalence

class. For any x ∈ Prefix (SuffixD(u)), the representatives of [x]Eu and [x]Bu are denoted

by
u←−x and

u−→x , respectively.

For any x ∈ Prefix (SuffixD(u)) such that
u−→x = xα and

u←−x = βx with α, β ∈
(Σ ∪ {#})∗, we denote

u←→x = βxα.

Proposition 9. For any x ∈ Prefix (SuffixD(u)),
u←→x =

u←−−
(

u−→x ) =

u−−→
(

u←−x ).

Proof. Let
u−→x = xα and

u←−x = βx with α, β ∈ (Σ ∪ {#})∗. Then,
u←→x = βxα. Since

u−→x = xα, we have

x ≡B

u xα ⇔ Begposu(x) ∩ WordposD(u) = Begposu(xα) ∩ WordposD(u)

⇔ (Begposu(x) ⊕ |xα| ⊖ 1) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= (Begposu(xα) ⊕ |xα| ⊖ 1) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= Endposu(xα) ∩ (WordposD(u) ⊕ |xα| ⊖ 1). (1)

On the other hand, since
u←−x = βx, we have

x ≡E

u βx ⇔ Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(βx) ∩ (WordposD(u) ⊕ |βx| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |x| ⊕ |α| ⊖ 1)

= (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βx| ⊕ |α| ⊖ 1)

⇔ (Endposu(x) ⊕ |α|) ∩ (WordposD(u) ⊕ |xα| ⊖ 1)

= (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1). (2)

Let

A = (Endposu(βxα)) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1), and

B = (Endposu(βx) ⊕ |α|) ∩ (WordposD(u) ⊕ |βxα| ⊖ 1)
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We show A = B. Since Endposu(βxα) ⊆ (Endposu(βx)⊕ |α|), it is clear that A ⊆ B.
For any i ∈ B, let k = i − |x| − |α| + 1. Then u[k..k + |x| − 1] = x and thus
k ∈ Begposu(x). Let j = i − |βx| − |α| + 1. Then u[j..j + |βx| − 1] = βx. We have
j ∈ WordposD(u) since i ∈ B. By Proposition 7 we have x ∈ SuffixD(βx), and
therefore βx[|β|] = β[|β|] = u[j + |β| − 1] = #. Hence j + |β| ∈ WordposD(u). On
the other hand, j + |β| = i − |βx| − |α| + 1 + |β| = k, thus k ∈ WordposD(u). Since

u[k..k + |x| − 1] = x and
u−→x = xα, u[k..k + |xα| − 1] = xα. Now we get

u[j..j + |βxα| − 1] = u[j..j + |β| − 1]u[j + |β|..j + |βxα| − 1]

= u[j..j + |β| − 1]u[k..k + |xα| − 1]

= βxα.

Thus i = j + |βxα| − 1 ∈ A, and we obtain B ⊆ A.
From Equations (1) and (2), and A = B, we get xα ≡E

u βxα. It is easy to see that

βxα is the representative of [xα]Eu . Finally,

u←−−
(

u−→x ) =
u←−xα = βxα =

u←→x . Similarly we can

show

u−−→
(

u←−x ) =
u←→x . ⊓⊔

3 Sparse Compact Directed Acyclic Word Graphs

In this section we introduce our new text indexing structure, sparse compact directed
acyclic word graphs (SCDAWGs).

3.1 Definitions and Size Bounds

We first give a formal definition of sparse (word) suffix trees.

Definition 10 (Sparse suffix tree). The sparse suffix tree of string w ∈ D+, de-
noted by SSTreeD(w), is a tree (V,E) such that

V = {
w−→x | x ∈ Prefix (SuffixD(w))},

E =

{
(

w−→x , aβ,
w−→xa)

∣∣∣∣∣
x, xa ∈ Prefix (SuffixD(w)), a ∈ Σ ∪ {#},
β ∈ (Σ ∪ {#})∗, and

w−→x aβ =
w−→xa

}
.

Theorem 11 ([1]). For any string w = w1 · · ·wk ∈ D+, SSTreeD(w) has O(k) nodes
and edges.

To prove the above theorem, it suffices to show the two following claims:

Claim. SSTreeD(w) has at most k leaves.

Proof. Recall that w = w1 · · ·wk and that |SuffixD(x) − {ε}| = k. For any x ∈
Prefix (SuffixD(w)) − (SuffixD(w) − {ε}), it follows from Definition 10 that there

exist a symbol a ∈ Σ ∪ {#} and a string β ∈ (Σ ∪ {#})∗ satisfying
w−→x aβ =

w−→xa ∈
Prefix (SuffixD(w)). Thus there can be at most k leaves in SSTreeD(w). ⊓⊔

Claim. All internal nodes of SSTreeD(w) are branching (of out-degree at least 2).
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Figure 1. SCDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗# is shown on
the upper, and normal CDAWG(w) is shown on the lower for comparison. Observe
that SCDAWGD(w) contains only suffixes in SuffixD(w), while CDAWG(w) has all
the suffixes in Suffix (w).

Proof. Assume for contrary that
w−→x = x and internal node

w−→x is not branching, i.e.,

there exists a unique symbol a ∈ Σ ∪ {#} such that Begposw(
w−→x ) = Begposw(

w−→x · a).

Then we have x ≡B
w xa, which contradicts with the precondition that

w−→x = x. Thus
all internal nodes of SSTreeD(w) are branching. ⊓⊔

Now we define sparse compact directed acyclic word graphs (SCDAWGs), as fol-
lows.

Definition 12 (Sparse compact directed acyclic word graph). The sparse
compact directed acyclic word graph of string w ∈ D+, denoted by SCDAWGD(w),
is a DAG (V,E) such that

V = {[
w−→x ]Ew | x ∈ Prefix (SuffixD(w))},

E =

{
([

w−→x ]Ew , aβ, [
w−→xa]Ew)

∣∣∣∣∣
x, xa ∈ Prefix (SuffixD(w)), a ∈ Σ ∪ {#},
β ∈ (Σ ∪ {#})∗, and

w−→x aβ =
w−→xa

}
.

SCDAWGD(w) has single source node [
w−→ε ]Ew = [ε]Ew of in-degree zero, and single sink

node [
w−→w ]Ew = [w]Ew of out-degree zero.

We associate each node [
w−→x ]Ew of SCDAWGD(w) with length([

w−→x ]Ew) = |
w←−−

(
w−→x )| =

|
w←→x |.

Figure 1 shows SCDAWGD(w) with w = a#b#a#bab# and D = {a, b}∗#,
together with normal CDAWG(w) representing all suffixes of w.

Due to the reflexivity of equivalence relations, for any string x, we have x ∈ [x]Ew .
Consequently, from Definitions 10 and 12, and Theorem 11, we obtain the following
theorem regarding the asymptotic size bound of SCDAWGs.
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Theorem 13. For any string w = w1 · · ·wk ∈ D+, SCDAWGD(w) has O(k) nodes
and edges.

Notice that SCDAWGD(w) is a minimized version of SSTreeD(w) by the end-
equivalence classes. As a matter of fact, SCDAWGD(w) can be constructed by ap-
plying to SSTreeD(w) the DAG minimization algorithm of [13], in time proportional
to the number of edges in SSTreeD(w). Due to [8], SSTreeD(w) can be constructed in
O(n) time and O(k) space, thus it is possible to build SCDAWGD(w) in O(n) time
and O(k) space. However, this indirect construction wastes extra time and space of
once building SSTreeD(w). In the following section, we present our on-line, linear-
time algorithm that directly constructs SCDAWGD(w) in O(n) time and O(k) space.
Hence our algorithm consumes only linear space in the output size.

4 On-line Construction Algorithm for SCDAWGs

In this section we present our SCDAWG construction algorithm. Our algorithm is on-
line, namely, it sequentially processes the input string w ∈ D+ from left to right, one
by one. To discuss this on-line construction, we extend the definition of SCDAWGD(·)
to any prefix u of w ∈ D+, by replacing string w with its arbitrary prefix u in
Definition 12.

4.1 Suffix Links

In this section we define the suffix links of SCDAWGs. We modify the suffix links of
normal CDAWGs so that they are suitable for constructing SCDAWGs. The tailored
suffix links are essential to the linearity of our SCDAWG construction algorithm.

Let us consider the minimum DFA MD which accepts D = Σ∗#. Then it is easy
to see that MD requires only constant space, with a unique final state (refer to the
left of Figure 2). Let qs and qf be the initial and final states of MD, respectively.
Then we attach MD to the SCDAWG, by replacing qf with the source node of the
SCDAWG. Now we are ready to define the suffix links of SCDAWGs.

Definition 14 (Suffix links of SCDAWGs). For any node [
u−→x ]Eu of SDAWGD(u),

let z be the shortest member of [
u−→x ]Eu .

1. If
u−→x 6= u and z ∈ Σ∗, the suffix link from node [

u−→x ]Eu goes to the initial state qs of
MD;

2. If
u−→x 6= u and z ∈ (Σ ∪ {#})+, the suffix link from node [

u−→x ]Eu goes to to node

[y]Eu , where y is the longest string in SuffixD(z) such that y /∈ [
u−→x ]Eu ;

3. Otherwise (If
u−→x = u), the suffix link from [

u−→x ]Eu is undefined.

The suffix link of the node in Group 3 is undefined, as it is never used in our con-
struction algorithm to be shown later. See Figure 2 showing SCDAWGD(u) and its
suffix links, where u = a#b#a#bab#b.

4.2 Updating SCDAWGD(u) to SCDAWGD(ua)

In what follows, we consider to update SCDAWGD(u) to SCDAWGD(ua) with u, ua ∈
Prefix (w), a ∈ Σ ∪ {#}, and w ∈ D+.

The next proposition describes what happens to Wordpos and Endpos .
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Figure 2. To the left is the minimum DFA MD accepting dictionary D = Σ∗#.
To the right is SCDAWGD(u) with u = a#b#a#bab#b, where Node 1 is its source
node. The suffix links are displayed by broken arrows. Nodes 1 and 4 are those of
Group 1, Nodes 3 is that of Group 2, and Node 2 is that of Group 3 of Definition 14.

Proposition 15 ([9]). Let w ∈ D+ and u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}. Then,

WordposD(ua) =

{
WordposD(u) ∪ {|ua|}, if u[|u|] = #;
WordposD(u), otherwise.

Also, for any string x ∈ (Σ ∪ {#})∗,

Endposua(x) =

{
Endposu(x) ∪ {|ua|}, if x ∈ Suffix (ua);
Endposu(x), otherwise.

From here on we consider what happens to the nodes of SCDAWGD(u) when
updated to SCDAWGD(ua).

Proposition 16. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}, ≡B
ua

and ≡E
ua are a refinement of ≡B

u and ≡E
u , respectively.

Let lrsD(ua) denote the longest string in SuffixD(ua) ∩ Prefix (SuffixD(u)). Then
we have:

Proposition 17. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ∪{#}, [ua]Eua =
SuffixD(u) · a − SuffixD(lrsD(ua)).

The above proposition implies that the new sink node [ua]Eua can be created by
extending the incoming edges of the old sink node [u]Eu with symbol a, and by
inserting a new a-labeled edge from each node [s]Eu to the old sink node, where
s ∈ SuffixD(u) − SuffixD(lrsD(ua) · a−1) − [u]Eu .

Locating lrsD(ua) in the SCDAWG can be done according to the following propo-
sition.

Proposition 18. Let w ∈ D+. For any u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#},
lrsD(ua) ∈ SuffixD(lrsD(u)) · a.

The above proposition implies that we can locate lrsD(ua) by checking, for each
t ∈ SuffixD(lrsD(u)), the transitivity from [t]Eu with new symbol a in the SCDAWG,
in the decreasing order of the lengths. When we encounter the first string y ∈
SuffixD(lrsD(u)) such that ya ∈ SuffixD(ua), then ya is lrsD(ua). Locating [t]Eu can
be done efficiently by using suffix links of Definition 14.
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Figure 3. We postpone creating a node corresponding to s ∈ SuffixD(u) −
SuffixD(lrsD(ua) ·a−1)− [u]Eu until we get the first symbol a satisfying a 6= b = u[i+1]
for any i ∈ Endposu(s) ∩ (WordposD(u) ⊕ |s| ⊖ 1).

Creating new nodes. While searching for lrsD(ua), due to Proposition 17, we
create a new a-labeled edge from the nodes corresponding to strings s ∈ SuffixD(u)−
SuffixD(lrsD(ua) ·a−1)− [u]Eu . However, the following proposition suggests a difficulty
of linear time maintenance of those nodes at each stage of updating the SCDAWG.

Proposition 19. Let w ∈ D+ and u ∈ Prefix (w). For any t ∈ SuffixD(u),
u−→
t = t.

What is worse, it is possible that
ua−→
t 6= t. Thus if we explicitly create a node for every

s ∈ SuffixD(u)−SuffixD(lrsD(ua)·a−1)−[u]Eu for each u ∈ Prefix (w), it can take O(n2)
time in total. To avoid this, we ‘postpone’ creating such a node until we get the first
symbol a satisfying a 6= b = u[i+1] for any i ∈ Endposu(s)∩ (WordposD(u)⊕|s|⊖1).
(see Figure 3.) This timing coincides with when we insert a new a-labeled edge to the
old sink node as mentioned above.

Due to Proposition 7, the new node [s]Eua can contain more than one string from
SuffixD(s). The equivalence test can be performed according to Lemma 21 given
below. Before that, we show Lemma 20 which supports Lemma 21.

Lemma 20. Let w ∈ D+, u ∈ Prefix (w), and x ∈ Prefix (SuffixD(u)). Let
u−→x = z1.

For any i ∈ Begposz1
(x) such that i > 1, we have z1[i−1] 6= #. Similarly, let

u←−x = z2.
For any j ∈ Begposz2

(x) such that j ≤ |z2| − |x|, we have z2[j − 1] 6= #.

Proof. Assume for contrary that z1[i − 1] = #. Then, Begposu(x) ∩ WordposD(u) =
(Begposu(z1) ∪ (Begposu(z1) ⊕ (i − 1)) ∩ WordposD(u). Since i > 1, Begposu(z1) ⊕
(i − 1) 6= Begposu(z1). Moreover, Begposu(z1) ⊕ (i − 1) ⊆ WordposD(u). Thus,
(Begposu(z1)∪ (Begposu(z1)⊕ (i− 1))∩WordposD(u) 6= Begposu(z1)∩WordposD(u),
which implies that Begposu(x) ∩ WordposD(u) 6= Begposu(z1) ∩ WordposD(u). How-

ever, this contradicts with x ≡B
u z1. Similar arguments hold for

u←−x = z2. ⊓⊔

Lemma 21. Let w ∈ D+ and u ∈ Prefix (w). For any x, y ∈ Prefix (SuffixD(u)) such
that y ∈ SuffixD(x),

x ≡E

u y ⇔ [
u−→x ]Eu = [

u−→y ]Eu .

Proof. If x ≡E
u y, then

u←−x =
u←−y . By Proposition 9,

u←−−
(

u−→x ) =

u−−→
(

u←−x ) and

u←−−
(

u−→y ) =

u−−→
(

u←−y ). Thus

we get

u←−−
(

u−→x ) =

u←−−
(

u−→y ), which implies that [
u−→x ]Eu = [

u−→y ]Eu .

Now suppose [
u−→x ]Eu = [

u−→y ]Eu . Let
u−→x = xα and

u←−x = βx for some strings α, β ∈
(Σ ∪ {#})∗. Let z =

u←→x . Then z = βxα by definition. Since y ∈ SuffixD(x), there
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Figure 4. A new node is created in the update of SCDAWGD(u) to SCDAWGD(ua),
where u = a#b#a#b. The stars represent the location from which we check a tran-
sitivity with a new symbol a. When the transitivity check failed on an edge (namely,
not right on a node), we divide the edge into two at the check point (where the star
lies) and create a new node there (Node 3 in this figure) together with a new edge
labeled with the new character leading to the sink node. Assume that the next tran-
sitivity check point also lies on an edge. We apply Lemma 21 and if it is the case,
we ‘shorten’ the edge till the check point and merge this shortened edge to the above
created node, as seen in the conversion from the second graph to the third one of this
figure.

exists some string γ ∈ (Σ ∪ {#})∗ such that γy = x. Because
u←→x =

u←→y , z = βγyα.

By Lemma 20,
u−→y = yα and

u←−y = βγy. Hence,

Endposu(x) ∩ (WordposD(u) ⊕ |x| ⊖ 1)

= Endposu(βx) ∩ (WordposD(u) ⊕ |βx| ⊖ 1)

= Endposu(βγy) ∩ (WordposD(u) ⊕ |βγy| ⊖ 1)

= Endposu(y) ∩ (WordposD(u) ⊕ |y| ⊖ 1),

which implies that x ≡E
u y. ⊓⊔

Figure 4 displays how a new node is created.

Splitting a node. Lastly, we remark that there is a possibility that a certain node
of SCDAWGD(u) can be split into two nodes in SCDAWGD(ua), as shown in the
following lemma that has inherently been shown in [9].
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Figure 5. Illustration for node splitting. Node 3 is split in the update of SDAWGD(u)
to SCDAWGD(ub) with u = a#b#a#bab#. The stars represent the location from
which we check a transitivity with a new symbol.

Lemma 22. Let w ∈ D+, and let u, ua ∈ Prefix (w) with a ∈ Σ ∪ {#}. Let z =
lrsD(ua). Then, for any x ∈ Prefix (SuffixD(u)), we have

[x]Eu =

{
[

u←→x ]Eua ∪ [z]Eua, if z ∈ [x]Eu and z 6=
u←→x ;

[x]Eua, otherwise.

To node [x]Eu such that z ∈ [x]Eu , we examine whether z =
u←→x or not by checking

the length of
u←→x and z, as follows. Consider edge ([y]Eu , α, [x]Eu ) such that

u←→y · α = z.
Then, it is easy to see that

z =
u←→x ⇔ |

u←→y · α| = |
u←→x | ⇔ |

u←→y | + |α| = |
u←→x | ⇔ length([y]Eu ) + |α| = length([x]Eu ).

Setting the length of the initial state qs of MD to be −1, no contradiction occurs even
in case that z = ε.

See Figure 5 for a concrete example of node splitting.

Pseudo Code. A pseudo code of our on-line algorithm to build SCDAWGs is shown
in Figures 6 and 7. Any edge label α ∈ (Σ∪{#})+ is implemented as an ordered pair
(i, j) of positions such that u[i..j] = α, in order to implement the SCDAWG with
O(k) space. To neglect to extend the existing in-coming edges of sink node (refer to
Proposition 17), we implement by (i,∞) the label of any edge leading to the sink
node. This is the same idea as in [14].

For each i = 1, . . . , n, we call function Update which converts SCDAWGD(w[1..i−
1]) to SCDAWGD(w[1..i]) and returns the location of lrsD(w[1..i]) by pair (s, k). Here,
s is the lowest node in the path that spells out lrsD(w[1..i]) from the source node.
Let lrsD(w[1..i]) = xy such that x belongs to the equivalence class of node s and y is
the rest. Then, k is the integer such that w[k : i] = y.
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Input: w = w[1..n] ∈ D+ and MD with initial state qs and final state qf .
Output: SCDAWGD(w).
{

/* We assume Σ = {w[−1], w[−2], . . . , w[−m]} */.
/* Replace the edge labels of MD with appropriate integer pairs */.
length(qf ) = 0; length(qs) = −1; length(sink) = ∞;
source = qf ; link(source) = qs; link(sink) = nil;
(s, k) = (source, 1);
for (i = 1; i ≤ n; i++) (s, k) = Update(s, (k, i));

}

(node,integer)-pair Update(s, (k, i)) {
oldr = nil; s′ = nil;
while (CheckEndPoint(s, (k, i − 1), w[i]) == false) {

if (k ≤ i − 1) { /* (s, (k, i − 1)) is implicit. */
if (s′ == Extension(s, (k, p − 1))) {

let (s, (k′, p′), s′) be the w[k]-edge from s;
replace the edge by edge (s, (k′, k′ + p − k − 1), r);
(s, k) = Canonize(link(s), (k, p − 1));
continue;

}
else {

s′ = Extension(s, (k, p − 1));
r = CreateNode(s, (k, p − 1));

}
} else r = s; /* (s, (k, i − 1)) is explicit. */
create new edge (r, (i,∞), sink);
if (oldr 6= nil) link(oldr) = r;
oldr = r;
(s, k) = Canonize(link(s), (k, i − 1));

}
if (oldr 6= nil) link(oldr) = s;
return SplitNode(s, (k, i));

}

Figure 6. Main routine and function Update of our SCDAWG construction algorithm.
For any node s, link(s) denotes the node to which the suffix link of s goes. By ‘implicit’
we mean that the location is on an edge, and by ‘explicit’ we mean that it is on a
node.

208



Sparse Compact Directed Acyclic Word Graphs

boolean CheckEndPoint(s, (k, p), c) {
if (k ≤ p) { /* (s, (k, p)) is implicit. */

let (s, (k′, p′), s′) be the w[k]-edge from s;
return (c == w[k′ + p − k + 1]);

} else return (there is a c-edge from s);
}

node Extension(s, (k, p)) {
if (k > p) return s; /* (s, (k, p)) is explicit. */
find the w[k]-edge (s, (k′, p′), s′) from s;
return s′;

}

(node,integer)-pair Canonize(s, (k, p)) {
if (k > p) return (s, k); /* (s, (k, p)) is explicit. */
find the w[k]-edge (s, (k′, p′, s′) from s;
while (p′ − k′ ≤ p − k) {

k = k + p′ − k′ + 1;
s = s′;
if (k ≤ p) find the w[k]-edge (s, (k′, p′), s′) from s;

}
return (s, k);

}

node CreateNode(s, (k, p)) {
let (s, (k′, p′), s′) be the w[k]-edge from s;
create new node r;
replace the edge by edges (s, (k′, k′ + p − k), r) and (r, (k′ + p − k + 1, p′), s′);
length(r) = length(s) + (p − k + 1);
return r;

}

(node,integer)-pair SplitNode(s, (k, p)) {
(s′, k′) = Canonize(s, (k, p));
if (k′ ≤ p) return (s′, k′); /* (s′, (k′, p)) is implicit. */
/* (s′, (k′, p)) is explicit. */
if (length(s′) == length(s) + (p − k + 1)) return (s′, k′);
create node r′ as a duplication of s′ with the out-going edges;
link(r′) = link(s′); link(s′) = r′;
length(r′) = length(s) + (p − k + 1);
do {

replace the w[k]-edge from s to s′ by edge (s, (k, p), r′);
(s, k) = Canonize(link(s), (k, p − 1));

} while ((s′, k′) = Canonize(s, (k, p)));
return (r′, p + 1);

}

Figure 7. The other functions of our on-line SCDAWG construction algorithm. All
these functions are identical to those in [7].
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Function CheckEndPoint returns true if the location indicated by triple (s, (k, i))
corresponds to lrsD(w[1..i]), and false otherwise. Due to Proposition 17, in the while
loop of function Update, we create new edges (r, (i,∞), sink). This is continuously
done until finding lrsD(w[1..i]), according to Proposition 18. Consider the case that
(s, (k, i)) lies on an edge, and that we have created a new node r in the first else
condition of the while loop. Due to Proposition 21, when the second if condition is
satisfied, we shorten the edge and redirect it to node r . Note that, since s′ is initially
set to nil, this second if condition can be satisfied only after the else condition is
once satisfied and s′ gets a non-nil value. After creating new edge (r, (i,∞), sink),
we traverse the suffix link of node s to find lrsD(w[1..i]).

After the insertion of all the new edges, we call function SplitNode that splits the
node corresponding to lrsD(w[1..i]) into two nodes, when needed. This operation is
due to Lemma 22.

We remark that the only difference between our algorithm and the on-line algo-
rithm of [7] for constructing normal CDAWGs is the initialization steps of the main
routine where we set the source of the SCDAWG to the final state qf of MD and the
suffix link of the source to the initial state qs of MD. These simple modifications make
the proposed algorithm construct SCDAWGs together with their suffix links.

For the correctness of the algorithm, we attach an end-marker $ to any input string
w ∈ D+, which appears nowhere in w. Possible problems that may be caused by the
‘delay’ of creating new nodes, can be cleared by this end-marker, since $ appears
nowhere in w.

Theorem 23. For any string w ∈ D+, the algorithm of Figures 6 and 7 correctly
constructs SCDAWGD(w$).

Now the only remaining matter is the time complexity of the algorithm. The
following theorem can be proven by the same idea as the linearity proof of the normal
CDAWG construction algorithm in [7].

Theorem 24. For any w ∈ D+ such that w = w1 · · ·wk and |w| = n, the algorithm
of Figures 6 and 7 runs in O(n) time using O(k) space.

5 Conclusions and Open Problems

In this paper we introduced a new text indexing structure, sparse compact directed
acyclic word graphs (SCDAWGs) for strings w = w1 · · ·wk over dictionary D = Σ∗#.
We showed that SCDAWGs require only O(k) space and are strictly smaller than
sparse (word) suffix trees. Furthermore, we presented an on-line algorithm that builds
SCDAWGs in O(n) time, where n = |w|. The proposed algorithm correctly builds
SCDAWGs with the help of the minimum DFA MD accepting D, and the tailored
suffix links. SCDAWGs are expected to become a space-economical alternative to
sparse suffix trees in application areas such as natural language processing, biological
sequence analysis, etc.

Here are some open problems regarding sparse text indexing structures:

1. Exact numbers of nodes and edges of SCDAWGs. Being a tree with k leaves and
only branching internal nodes, any sparse suffix tree can have at most 2k−1 nodes
and 2k − 2 edges. Thus, it is guaranteed that any SCDAWG has less nodes and
edges than these.
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2. Would it be possible to construct sparse suffix arrays efficiently? Sparse suffix
arrays can be obtained from the leaves of the corresponding sparse suffix trees,
but is it possible to build sparse suffix arrays directly, and in O(n) time with O(k)
space?
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Abstract. We analyze the complexity of graph reachability queries on ST-graphs,
defined as directed acyclic graphs (DAGs) obtained by merging the suffix tree of a given
string and its suffix links. Using a simplified reachability labeling algorithm presented
by Agrawal et al. (1989), we show that for a random string of length n, its ST-graph can
be preprocessed in O(n log n) expected time and space to answer reachability queries in
O(log n) time. Furthermore, we present a series of strings that require Θ(n

√
n) time and

space to answer reachability queries in O(log n) time for the same algorithm. Exhaustive
computational calculations for strings of length n ≤ 33 have revealed that the same
strings are also the worst case instances of the algorithm. We therefore conjecture that
reachability queries can be answered in O(log n) time with a worst case time and space
preprocessing complexity of Θ(n

√
n).

Keywords: algorithms and data structures, suffix trees, graph reachability

1 Introduction

The reachability query for two nodes u, v of a given directed graph is to answer
whether or not there exists a path in the graph that starts from u and ends at v.
For any given graph, the query can be answered in O(n + e) time by conducting a
simple depth-first traversal on the graph, where n is the number of nodes and e is
the number of edges in the graph.

There have been several studies on preprocessing a graph in order to answer reach-
ability queries more efficiently [5,1,7,3,9]. A simple approach would be to construct
the transitive closure of the graph, achieving O(1) time query at the cost of O(n2)
time and space for the preprocessing. For graphs with specific properties, there ex-
ists methods with smaller complexity bounds. Graph reachability for planar graphs
with a single source node and sink node was considered in [5]. Reachability queries
for such graphs can be answered in O(1) time given O(n + e) time and O(n) space
preprocessing. For partial lattices, a method which achieves O(1) time query with
O(n2) time and O(n

√
n) space preprocessing was shown in [7], where n is the size

of the ground set. When considering arbitrary graphs with n vertices and e edges, it
has been shown in [3] that for any labeling scheme, there exists a graph such that the
reachability labeling has total size of Ω(n

√
e).

In this paper, we consider the graph reachability query problem on ST-graphs,
which are DAGs derived from suffix trees and suffix links. ST-graphs are not planar,
are not partial lattices. A suffix tree of a given string is a data structure that captures
important information concerning the substrings of the string [10]. We present and
analyze a version of the interval labeling algorithm of [1] tailored for ST-graphs. It can
be shown that for a random string, the ST-graph can be preprocessed in O(n log n)
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expected time and space to answer reachability queries in O(log n) time. Further-
more, we present a series of strings for which their ST-graphs require Θ(n

√
n) time

and space of preprocessing when the algorithm is applied. Exhaustive computational
calculations indicate that the series gives the worst case instances of the algorithm for
the strings of length up to 33, strongly supporting that the worst case complexity of
the preprocessing is Θ(n

√
n) time and space. Assuming this is true, this would break

the O(n2) barrier for total time and space used when conducting O(n) queries.
Reachability on ST-graphs solve the problem of whether or not the string repre-

sented by the path from the root to the given query nodes are substrings of each other.
The algorithm has possible applications in substring pattern set discovery, where the
objective is to find best set of substrings that characterizes a given set (or sets) of
strings: Consider two substring patterns such that one is a substring of the other. The
set of strings which contain the former pattern as a substring is obviously a subset
of the set of strings which have the latter pattern as a substring. This property may
allow us choose the best pattern set more efficiently, for example, by quickly detecting
non-interesting pattern sets.

2 Preliminaries

Let Σ be a finite alphabet. An element of Σ∗ is called a string. Strings x, y, and z are
said to be a prefix, substring, and suffix of string w = xyz, respectively. The length of
a string w is denoted by |w|. The empty string is denoted by ε, that is, |ε| = 0. Unless
otherwise noted, we shall only consider strings of a fixed alphabet. Also, we assume
that all strings end with a unique character $ ∈ Σ that does not occur anywhere else
in the strings.

A suffix tree suftree(s) for a given string s is a rooted tree whose edges are labeled
with non-empty substrings of s, satisfying the following characteristics. For any node
v in the suffix tree, let path(v) denote the string spelled out by concatenating the edge
labels on the path from the root to v. For each leaf node v, path(v) is a distinct suffix
of s, and for each suffix of s, there exists such a leaf v. Furthermore, each internal
node has at least two children, and the first character of the labels on the edges to
its children are distinct. The parent of node v is denoted by parents(v), and the set
of children of node v is denoted by childrens(v). The length of node v is defined to be
|path(v)|. The depth of node v with respect to the suffix tree is the number of edges
on the path from the root to the node, and is always less than or equal to |path(v)|.
The height of a suffix tree is the maximum depth of all nodes with respect to the
suffix tree. Also, let subtrees(v) be the subtree of the suffix tree rooted at node v.

For a node v where path(v) = σx for some σ ∈ Σ and x ∈ Σ∗, we denote the
suffix link of v as parent l(v) = u where path(u) = x. It is easy to see that a unique
parent l(v) exists for each node v in suftree(s), except for the root node. Therefore,
the suffix links also form a tree structure, which we denote by suflinktree(s). Let
children l(v) = {u : parent l(u) = v}. Note that the depth of node v with respect
to the suffix link tree is always equivalent to |path(v)|. Also, let subtree l(v) be the
subtree of the suffix link tree rooted at node v.

2.1 ST-graphs

Let V be the set of nodes of suftree(s). Let us denote the set of (backward) edges of
suftree(s) by Es = {(v, parents(v)) : v ∈ V } and the set of edges of the suflinktree(s)
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by El = {(v, parent l(v)) : v ∈ V }. We define the ST-graph of a string s as the
directed graph G = (V,E) where E = Es ∪ El. It is well known that the suffix tree
and its suffix links for a string of length n can be constructed and represented in O(n)
time and space [10,6,8,4]. Figure 1 shows an example of an ST-graph for the string
ababbabbba$. It is easy to see that the graph is not planar nor a partial lattice.
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Figure 1. A graph induced from the suffix tree of string ababbabbba$. Solid edges
represent edges of the suffix tree. The dashed edges represent suffix links.

node interval labels node interval labels
1 [1,1] [1,1] 11 [1,11] [1,11]
2 [1,2] [1,2] 12 [12,12] [1,5],[12,12]
3 [1,3] [1,3] 13 [12,13] [1,6],[12,13]
4 [1,4] [1,4] 14 [12,14] [1,8],[12,14]
5 [1,5] [1,5] 15 [15,15] [1,6],[12,13],[15,15]
6 [1,6] [1,6] 16 [12,16] [1,9],[12,16],[17,18]
7 [1,7] [1,7] 17 [17,17] [1,8],[17,17]
8 [1,8] [1,8] 18 [17,18] [1,9],[12,12],[17,18]
9 [1,9] [1,9] 19 [17,19] [1,10],[12,13],[15,15],[17,19]

10 [1,10] [1,10] 20 [1,20] [1,20]

Table 1. Post-order interval and labels assigned to ST-graph of Fig. 1 by Algorithm 1

The problem we shall consider in this paper is as follows:

Problem 1 (ST-graph reachability query). Given the ST-graph G = (V,E) of string
s and an arbitrary pair of node u, v ∈ V , rquery(u, v) returns true if there exists a
path from node u to v in G, and false otherwise.

The query rquery(u, v) is equivalent to the query of whether the string path(v) is a
substring of path(u) or not.
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Lemma 2. Given an ST-graph G = (V,E) of string s and nodes u, v ∈ V ,

rquery(u, v) = true ⇐⇒ path(v) is a substring of path(u)

Proof. (⇒) Suppose v is reachable from u. An edge (p, q) ∈ Es implies that path(q) is
a substring (prefix) of path(p). An edge (p, r) ∈ El implies that path(r) is a substring
(suffix) of path(p). Since any path from u to v consists of edges in Es∪El, this implies
that v is a substring of u.
(⇐) Suppose path(v) is a substring of path(u), i.e. there exists x, z ∈ Σ∗ such that
path(u) = xpath(v)z. If x = ε, then path(v) is a prefix of path(u) which implies
u ∈ subtrees(v), and that v is reachable from u using edges of Es. For x = x1 · · ·xk

(k ≥ 1), the nodes reachable from u using edges in El will have corresponding paths:
x2 · · ·xkpath(v)z, x3 · · ·xkpath(v)z, . . ., path(v)z. Let v′ be the node where path(v′) =
path(v)z. Then, since path(v) is a prefix of path(v′), v is reachable from v′, and
therefore reachable from u. ⊓⊔
Corollary 3. For any two distinct nodes u, v ∈ V in an ST-graph (V,E), if there
exists a path from u to v, then there exists a path: v0 → v1 → . . . → vt where t > 0,
u = v0, vt = v, and for some 0 ≤ i ≤ t, (vj−1, vj) ∈ El for all 1 ≤ j ≤ i and
(vj−1, vj) ∈ Es for all i + 1 ≤ j ≤ t.

Proof. Since there exists a path from u to v, path(v) is a substring of path(u) by
Lemma 2. The Corollary follows from the argument for the (⇐) part of the proof of
Lemma 2. ⊓⊔

3 Interval Labeling Algorithm

In this paper, we analyze the complexity of the interval labeling algorithm for general
DAGs presented in [1], when applied to ST-graphs. The original algorithm works as
follows: First, create a spanning tree of the DAG by examining the nodes in topological
order. The parent of each node is chosen so that the number of ancestors of each node
is the largest. Then, intervals based on a postorder numbering of the spanning tree
are assigned to each node. Further, the intervals of each node are propagated to all its
ancestor nodes of the DAG, and as a result, each node will hold a set of interval labels.
During the propagation, for a given set of interval labels at each node, redundant
intervals which are subsumed by larger intervals in the same set are removed.

The interval labeling algorithm of [1] modified for ST-graphs is given in Algo-
rithm 1, and Algorithm 2 shows how to answer rquery(, ) using the labels. Algorithm 1
has been simplified as follows: First, the topological ordering and spanning tree con-
struction is not necessary. This is because each node v will only have at most two
parents, one from the suffix tree, and the other from the suffix link tree. It is easy
to verify that the path from the root to v using the edges of the suffix link tree is
always at least as long as the path using the edges of the suffix tree. Therefore, the
suffix link tree already corresponds to the desired spanning tree, by which intervals
are assigned to each node based on a postorder numbering. Second, although the
original interval labeling algorithm requires labels to be propagated across all edges,
this is not required for ST-graphs, and are propagated only across edges in Es.

The correctness of the algorithm can be proved as follows. Suppose node v is
reachable from node u. Then, node v must hold an interval label which subsumes
the interval of u for Algorithm 2 to correctly answer rquery(u, v). From lines 1-1
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in Algorithm 1, node v holds all intervals of nodes in subtrees(v), which includes
the interval for node vi that can be reached by traversing suffix links starting from
u as in Corollary 3. Since the interval of vi subsumes the interval of u defined by
the postorder numbering assigned in lines 1-1, v will contain an interval label which
subsumes the interval of u.

4 Complexity

In this section, we will derive estimates on the complexity of Algorithm 1. In particu-
lar, we will consider the expected running time, as well as lower bounds for the worst
case.

Lemma 4. Assuming a constant size alphabet, Algorithm 1 runs in time linear in
the total number of labels assigned to the nodes of the ST-graph.

Proof. The maximum in-degree of each node is bounded by O(|Σ|). This is because
for the suffix tree, all labels on the edges must begin with a different character of
the alphabet. For the suffix link tree, |{v : path(v) = σpath(u), σ ∈ Σ}| ≤ |Σ| for
any node u. Therefore, assuming that |Σ| is constant, merging the sorted labels (and
removing subsumed intervals) from the in-coming nodes can be done in time linear
in the total size of the in-coming labels. ⊓⊔

From Lemma 4, we have only to count the number of labels that will be assigned
to the ST-graph by Algorithm 1 in order to estimate the complexity of the algorithm.

4.1 Expected running time

A simple bound relating the height of the suffix tree and the total number of labels
assigned to the ST-graph is shown in the following lemma.

Lemma 5. For an ST-graph for a string of length n whose suffix tree has height h,
the total number of interval labels assigned by Algorithm 1 is at most O(nh).

Proof. Notice that since the interval labels are only propagated through edges of
the suffix tree, the maximum number of labels at a given node v is bounded by the
number of nodes in subtrees(v). Therefore, at a given depth of the suffix tree, there
can only be a maximum total of O(n) labels, i.e., the total number of nodes in the
suffix tree, since the subtrees of nodes of the same depth cannot intersect. This results
in a maximum total of O(nh) labels for all nodes. ⊓⊔
Theorem 6. The expected running time of Algorithm 1 for a random string of length
n is O(n log n).

Proof. It is known that the expected height of the suffix tree of a random string of
length n is O(log n) [2]. The theorem follows from Lemma 4 and Lemma 5. ⊓⊔

4.2 Worst Case Lower Bounds

In this subsection, we will give a lower bound for the worst case complexity of Al-
gorithm 1. We will present a series of strings of length n whose ST-graphs will have
Θ(n

√
n) labels assigned by the algorithm. Prior to this, we show related properties

of suffix trees and suffix link trees.

216



Reachability on Suffix Tree Graphs

Algorithm 1: Assign labels to each node of the ST-graph.
Input: ST-graph G(V,E) of string s
Output: Labeled ST-graph (v.int and v.labels for all v ∈ V)
foreach node v ∈ V in post-order of suflinktree(s) do1

v.int := [min{post-order number of subtreel(v)},post-order number of v];2

v.labels := {v.int};3

endfch4

foreach node v ∈ V in post-order of suftree(s) do5

v.labels := merge and sort v.labels and {c.labels : c ∈ childrens(v)};6

Remove [i, j] ∈ v.labels if ∃[i′, j′] ∈ v.labels s.t. i′ ≤ i ≤ j ≤ j′;7

endfch8

Algorithm 2: rquery(u, v) on ST-graphs using labels assigned by Algorithm 1.

Input: Labeled ST-graph G(V,E) of string s and nodes u, v ∈ V
Output: rquery(u, v)
[i, j] = u.int;1

if ∃[i′, j′] ∈ v.label such that i′ ≤ i ≤ j ≤ j′ then return true;2

return false;3

Properties of ST-graphs. For |Σ| = 2, there can only be one string of a given
length n, and the structure of the ST-graph is determined uniquely (recall that all
strings terminate with a uniquely occurring character $ ∈ Σ). It is not difficult to
show that the total number of labels is 3(n− 1) = O(n) in such case. In what follows
we therefore consider the case for |Σ| ≥ 3.

Lemma 7. The number of interval labels assigned to each node of the ST-graph for
any string s is bounded by the number of leaves in suflinktree(s). More generally, the
exact number of labels assigned to node v is minW⊆subtrees(v){|W | : subtrees(v) ⊆
∪w∈W subtree l(w)}.

Proof. Let ℓ be the number of leaves in suflinktree(s). In the post-order traversal
on suflinktree(s) (lines 1-1 of Algorithm 1), each node receives exactly one interval
label, and there are exactly ℓ different values for the first element of the intervals.
In post-order traversal on suftree(s) (lines 1-1 of Algorithm 1), we remove subsumed
intervals and therefore each node gets at most ℓ interval labels. The exact number of
labels follows from a similar argument. ⊓⊔

Lemma 8. If and only if |childrens(v)| = 2 for any internal node v 6= root of
suftree(s), the number of internal nodes (excluding the root) is the maximum, which
is n − 3.

Proof. Because of $ there are always n leaves in suftree(s). Since there is always an
edge labeled with $ from the root, |childrens(root)| = |Σ|. ⊓⊔

Lemma 9. Assume suftree(s) satisfies the condition in Lemma 8. For the three fol-
lowing groups of the internal nodes of suftree(s),

n1: internal nodes with two leaf-children;
n2: internal nodes with one leaf-child and one internal-child;
n3: internal nodes with two internal-children;
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where n1 + n2 + n3 = n − 3, we have

n2 = n − 2n1 − 1, and

n3 = n1 − 2.

Proof. Because of $, suftree(s) always has n leaves. Since there are n1 internal nodes
with two leaf-children, and since the leaf corresponding to suffix $ is a child of the
root, we have n2 = n − 2n1 − 1. Finally n3 = n − 3 − n1 − n2 = n1 − 2. ⊓⊔
Lemma 10. Assume suftree(s) satisfies the condition in Lemma 8. For any node v,
if |children l(v)| ≥ 2, then v is a group n3 node in suftree(s).

Proof. Let x = path(v), and let u,w ∈ children l(v). Since u and w are nodes in the
suffix tree, there exists at least four possible suffixes whose paths must pass node
v. We denote these paths as xσ1y1, xσ2y2, xσ3y2, xσ4y4 where σi ∈ Σ and yi ∈ Σ∗

for 1 ≤ i ≤ 4. It must be that σi1 = σi2 and σi3 = σi4 for some {i1, i2, i3, i4} =
{1, 2, 3, 4}. Since all four paths must be distinct, it follows that there must exist
distinct child nodes of v where xσi1yi1 and xσi2yi2 diverge, and xσi3yi3 and xσi4yi4

diverge respectively. ⊓⊔
Lemma 11. Assume suftree(s) satisfies the condition in Lemma 8. The number ℓ of
leaves in suflinktree(s) is at most n1 + 1.

Proof. Let ℓ be the number of leaves in suflinktree(s). Since all leaves of suftree(s)
are included in one path of suffix links and this path leads to the root, the maximum
number of internal nodes v of suflinktree(s), such that |children l(v)| ≥ 2, is ℓ − 3
excepting the root. From Lemma 10, this leads to ℓ − 3 internal nodes with two
internal-children in suftree(s). Therefore, ℓ ≤ n3 + 3 = n1 + 1 by Lemma 9. ⊓⊔
Lemma 12. Assume suftree(s) satisfies the condition in Lemma 8. If ℓ = n3 + 3,
then the longest internal node in group n3 has at most ℓ − 1 labels.

Proof. It follows from Lemmas 9, 10, and 11. ⊓⊔

Lower Bound. Consider the following series of strings of length n = 3
2
i(i + 3) + 5

where i = 1, 2, 3, . . .:

Xi = abiabi+1abiab1abiabi−1abiab2abiabi−2a · · · abkabiabi−ka · · · abiab⌈i/2⌉abiabia$

In what follows, we analyze Xi in terms of internal nodes of suftree(Xi), shown in
Figure 2. We consider the structure of suftree(Xi) in Lemmas 14, 15, 16, 18, and
the structure of suflinktree(Xi) in Lemmas 19, 20, 21, 22. An important point in the
lemmas is that if a substring p appears only once in the string, then there is no
explicit internal node v such that path(v) = p, and the substring will correspond to
a position on an edge leading to a leaf node (or the leaf node itself). Also, if pσ1 and
pσ2 are both substrings of the string for distinct σ1, σ2 ∈ Σ, then there exists a node
v such that path(v) = p.

Lemma 13. suftree(Xi) satisfies the condition in Lemma 8.

Proof. Any occurrence of a in Xi is followed by either b or $, and any occurrence of
b in Xi is followed by either a or b. Moreover, $ appears only at the end of Xi. Thus,
for any internal node v of suftree(Xi), we have |childrens(v)| = 2. ⊓⊔
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Figure 2. Illustration for suftree(Xi). The four groups of the internal nodes are dealt
in Lemmas 14, 15, 16, and 18, respectively.

Lemma 14. For any k (0 ≤ k ≤ i), there exists an internal node corresponding to
bi−kabiabk, and this node belongs to group n1 of suftree(Xi).

Proof. We have three cases to consider:

– When k = 0.
Since there are two strings biabiab and biabia$ in Xi, there is an internal node for
biabia. Since there is no other occurrence of biabia, the two children of this node
are both a leaf node and thus it belongs to group n1.

– When 0 < k < i.
Consider a substring Yi of Xi such that

Yi = abk−1abiabi−k+1abiabkabiabi−kabiabk+1abia.

Then, bi−kabiabk appears twice in this substring, as underlined.
Now we show that each of bi−kabiabka and bi−kabiabkb appears only once in
Xi. For bi−kabiabka, it is clear because abka appears exactly once in Xi. String
bi−kabiabkb = bi−kabiabk+1 appears in Yi (the second underlined part). This is the
only occurrence of bi−kabiabk+1 in Xi, because the prefix bi−ka would appear in
substrings abi−k+xabiabk−xa with x ≥ 0, but then the suffix biabk+1 cannot match.

– When k = i.
By similar discussions to the case that k = 0. ⊓⊔

Lemma 15. For any x (0 ≤ x ≤ i) and y (0 ≤ y ≤ i), there exists an internal node
corresponding to bxaby, and this node belongs to group n2.

Proof. We have three cases to consider:
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– When y = 0.
Since there are more than one occurrences of biab, there are more than one oc-
currences of bxab. In addition, since there is exactly one occurrence of bia$, there
is exactly one occurrence of bxa$.

– When 0 < y < i.
Since there are more than one occurrences of bxabi, there are more than one
occurrences of bxaby+1. In addition, since there is exactly one occurrence of biabya

for each 0 < y < i, bxabya appears exactly once.
– When y = i.

There is exactly one occurrence of bxabia for each 0 ≤ x ≤ i. Since there is exactly
one occurrence of biabi+1, bxabi+1 appears exactly once for each 0 ≤ x ≤ i.

⊓⊔

Lemma 16. For any y (0 ≤ y < k), where 1 ≤ k ≤ i, there exists an internal node
corresponding to bi−kabiaby, and this node belongs to group n2.

Proof. By similar arguments to Lemmas 14 and 15. ⊓⊔

The next corollary follows Lemmas 15 and 16.

Corollary 17. For any k (0 ≤ k ≤ i), let path(u) = bi−ka and path(v) = bi−kabiabk.
Then, the path from u to v contains i + k + 2 internal nodes (including u and v).

Lemma 18. For any x (0 < x ≤ i), there is an internal node corresponding to bx.
The node for bi belongs to group n2, and the other nodes for bx with 0 < x < i belong
to group n3.

Proof. Since bia and bi+1 appear in Xi, there is an internal node for bx for any 0 <
x ≤ i. Since bia appears more than once and bi+1 appears exactly once, the node for
bi belongs to group n2. All the nodes for bx with 0 < x < i belong to group n3, since
both bxa and bx+1 appear more than once. ⊓⊔

From here on, we consider the suffix links of suftree(Xi).

Lemma 19. For any k (0 ≤ k ≤ i), let v be the internal node such that path(v) =
bi−kabiabk. Then we have |children l(v)| = 0.

Proof. For contrary, assume that |children l(v)| ≥ 1. Then there must exist a node
corresponding to either abi−kabiabk or bi−k+1abiabk. However, we show that these
strings can appear at most once in Xi.

First, we consider abi−kabiabk:

– When k = 0. abiabia appears only once (at the end of Xi).
– When 0 < k < i. Prefix abi−ka appears only once in Xi.
– When k = i. Prefix aa never appears in Xi.

Now let us consider bi−k+1abiabk. By Lemma 14, there is an internal node cor-
responding to bi−k+1abiabk−1 and this node belongs to group n1. This implies that
bi−k+1abiabk can appear at most once in Xi. ⊓⊔

The above lemma implies that the internal nodes v such that path(v) = bi−kabiabk

are the leaves of suflinktree(Xi). See also the upper diagram in Figure 3.
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Figure 3. Illustration for the suffix links of suftree(Xi). For the sake of visibility, the
suffix links of Xi are shown in two rounds. Moreover, for simplicity, the suffix links for
the leaves are omitted here.

Lemma 20. For any internal node vx,y such that path(vx,y) = bxaby (0 ≤ x ≤ i and
0 ≤ y ≤ i), we have |children l(vx,y)| = 1.

Proof. We have three cases to consider:

– When x = 0.
There is no occurrence of aaby, and we have two distinct occurrences of biabi in
Xi. Thus we have |children l(v0,y)| = 1.

– When 0 < x < i.
abxaby appears only once, since there is only one occurrence of abxabi. Because
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biaby appears more than once, there are more than one occurrence of bxaby. Thus
we have |children l(vx,y)| = 1.

– When x = i.
We have at least two occurrences of abiaby. Since bi+1 appears only once, there is
only one occurrence of bi+1aby. Thus we have |children l(vi,y)| = 1.

⊓⊔

Lemma 21. For any internal node vz such that path(vz) = bi−kabiabz (0 ≤ z < k),
where 1 ≤ k ≤ i, we have |children l(vz)| = 1.

Proof. By similar arguments to Lemma 20. ⊓⊔

Lemma 22. For any internal node vx such that path(vx) = bx (0 < x < i), we have
|children l(vx)| = 2. In addition, for the node vi such that path(vi) = bi, we have
|children l(vi)| = 1.

Proof. Due to Lemma 15, there exist internal nodes ux such that path(ux) = abx

for each 0 < x ≤ i, and therefore have (ux, vx) ∈ El. Due to Lemma 18, we have
(vx+1, vx) ∈ El for 0 < x < i. For x = i, however, we have (vi+1, vi) /∈ El because bi+1

does not correspond to a node (since it occurs only once in the string). ⊓⊔

From the above lemmas, only the nodes corresponding to bx (0 < x < i) are of
in-degree two in suflinktree(Xi). Plus, only the root node is of in-degree three in
suflinktree(Xi). See also Figure 3 for these observations.

The number of nodes covered in these lemmas are as follows:

Lemma 11 or 15 12 or 16 13 or 17 14 or 18
The number of nodes i + 1 (i + 1)2 i(i + 1)/2 i

the sum of these nodes is 3
2
i2 + 9

2
i+2 = n−3, which indicates that we have discussed

all nodes of the ST-graph for the string Xi.
Now we are finally ready to show the lower bound on the number of interval labels.

Theorem 23.The number of labels assigned to a suffix tree byAlgorithm1 is Ω(n
√

n).

Proof. From Lemmas 7, 12, 13, 14, 15, 16, 18, 19, 20, 21, 22, Corollary 17, we have
ℓ = i + 2 and achieve the following equations on the total number of interval labels
that are assigned to suftree(Xi):

(2 + 3 + · · · + ℓ − 1) × (i + 1) + ℓ ×
{
1 +

i∑

k=0

{(i + k + 2) − (ℓ − 2)}
}

+{(ℓ − 1) + (ℓ − 2) + · · · 3} + 1 × (n + 1)

= {2 + 3 + · · · + (i + 1)} × (i + 1) + (i + 2) × {1 +
i∑

k=0

(k + 2)}

+{(i + 1) + i + · · · 3} +
3i(i + 3)

2
+ 6

=
i(i + 3)(i + 1)

2
+

(i + 2){2 + i(i + 1) + 4(i + 1)}
2

+
(i − 1)(i + 4)

2
+

3i(i + 3)

2
+ 6

=
2i3 + 15i2 + 31i + 20

2
. (1)
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Since n = 3
2
i(i + 3) + 5 and i ≥ 1, we have

i =

√
24n − 39

6
− 3

2
.

By substituting this for the i’s in Equation (1), the total number of interval labels
assigned to suftree(Xi) is shown to be Θ(n

√
n). ⊓⊔

The worst case upper bound for Algorithm 2 is O(log n): From the argument in
Lemma 4, the labels at each node can be stored as sorted arrays. Also, the maximum
number of labels at each node is bounded by O(n) (Lemma 7). Therefore, line 2 in
Algorithm 2 can be run in O(log n) time using a standard binary search on the label
array.

5 Computational Experiments

We exhaustively enumerated all strings of length n ≤ 33 consisting of {a, b} and
ending with $, and applied Algorithm 1 to each string. For each n, the number of
labels in the worst case was recorded. The results are shown in Table 2.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
#labels 3 6 9 12 15 18 22 26 30 34 39 44 49 54 59 64

n 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33
#labels 69 74 79 85 91 97 103 109 115 121 127 133 139 145 151 158

Table 2. The maximum number of labels that is assigned by Algorithm 1 to any
string of length n.

We note that for n ≤ 7, the worst case corresponds to the string an−1$, and there-
fore the total number of labels is 3(n−1). For n = 11, 20, 32, the worst case instances
contain X1, X2, X3, and the total number of labels is as calculated in Theorem 23.
Generally for 7 ≤ n ≤ 33, we found that the total number of labels in the worst case
can be written exactly with the following formula:

max{f(⌊
√

(2n − 3)/3⌋), f(⌈
√

(2n − 3)/3⌉)}

where f(k) = (k + 2)n − k(k2 + 3)/2 − 3. We have also confirmed for smaller n
and with larger sized alphabets, the worst case instances will only contain one type
of character (excluding $) for n ≤ 7, and two types of characters (excluding $) for
n ≥ 7, therefore corresponding to the instances given above. (At n = 7, both types
had equal worst case label size of 18.) This seems natural since Lemma 8 indicates
that the more types of characters used, the less number of nodes there are in the
ST-graph.

Although we have not been able to give a rigorous proof for an upperbound of
O(n

√
n), the above results strongly suggest this bound.

6 Discussion

We presented an algorithm that can processes an ST-graph for a string of length n, so
that reachability queries between arbitrary pairs of nodes can be answered in O(log n)
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time. The expected time and space complexity of the preprocessing algorithm for a
random string is O(n log n). We also presented a series of strings for which the algo-
rithm requires Θ(n

√
n) time and space for preprocessing. Exhaustive computational

search for n ≤ 33 showed that the strings of the series also achieve the worst case
instances of the algorithm. Although we have not been able to give a direct proof,
this provides strong evidence that the worst case time complexity of the algorithm is
also Θ(n

√
n).

Since a suffix tree can have a height of O(n), a näıve consideration of Lemma 5
only gives an O(n2) bound for the number of labels for an ST-graph of a suffix tree
of height O(n), rather than O(n

√
n). There seems to be a delicate tradeoff between

deep paths in the suffix tree and deep paths in the suffix link tree. For example, the
suffix tree for string an$ will have a path of depth O(n). However, the number of
total labels in this case is also limited to O(n), since there are only two leaves in the
suffix link tree, which bounds the number of labels for each node to 2 (Lemma 7).
There also exists strings ak bbccddeeff...︸ ︷︷ ︸

k character types

$ (n = 3k +1), where their suffix trees have

a path of depth O(n), and their suffix link trees have O(n) leaves. However, the total
number of labels in this case is also O(n), since all but two of the leaves in the suffix
link tree are very shallow.

6.1 Open Problems

There are several open problems that are of interest concerning reachability queries
on ST-graphs.

1. Whether or not there exists an algorithm which can do better: O(n
√

n) prepro-
cessing and O(1) query, or ultimately O(n) preprocessing and O(1) query.

2. Whether or not we can simulate reachability queries on suffix trie graphs. All
nodes in the suffix tree correspond to a substring of the original string. However,
there can exist substrings in the string without a corresponding explicit node. An
implicit node of a suffix tree is a position in the suffix tree which ends somewhere
in the middle of an edge. So far we have considered reachability queries between
explicit nodes of the ST-graph. Although reachability between implicit nodes of
the ST-graph is straightforward with respect to the ST-graph, the result does not
correspond to the substring relation between implicit nodes, as it does for explicit
nodes shown in Lemma 2.
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Abstract. In an earlier work [6] we presented a simple FM-index variant, based on
the idea of Huffman-compressing the text and then applying the Burrows-Wheeler
transform over it. The main drawback of using Huffman was its lack of synchronizing
properties, forcing us to supply another bit stream indicating the Huffman codeword
boundaries. In this way, the resulting index needed O(n(H0 +1)) bits of space but with
the constant 2 (concerning the main term). There are several options aiming to mitigate
the overhead in space, with various effects on the query handling speed. In this work
we propose Kautz-Zeckendorf coding as a both simple and practical replacement for
Huffman. We dub the new index FM-KZ. We also present an efficient implementation
of the rank operation, which is the main building brick of the FM-KZ. Experimental
results show that our index provides an attractive space/time tradeoff in comparison
with existing succinct data structures, and in the DNA test it even wins both in search
time and space use. An additional asset of our solution is its relative simplicity.

1 Introduction

A full-text index is a data structure that enables to determine the occ occurrences
of a short pattern P = p1p2 . . . pm in a large text T = t1t2 . . . tn without a need of
scanning over the whole text T . Text and pattern are sequences of characters over an
alphabet Σ of size σ. The pattern may appear at any position in T , and its length is
also arbitrary. In practice one wants to know not only the value occ, i.e., how many
times the pattern appears in the text (counting query) but also the text positions of
those occ occurrences (reporting query, and usually also a text context around them
(display query).

Classic full-text indexes, albeit powerful and versatile, need space several times
greater than the text itself. Hence, a natural interest in succinct full-text indexes has
been observed in recent years. A comprehensive survey of existing techniques in this
very active research area can be found in [13].

A truly exciting perspective has been originated in the work of Ferragina and
Manzini [3]; they showed a full-text index may discard the original text, as it contains
enough information to recover the text. We denote a structure with such a property
with the term self-index.

The FM-index of Ferragina and Manzini [3] was the first self-index with space
complexity expressed in terms of kth order (empirical) entropy and pattern search
time linear only in the pattern length. Its space complexity, however, contains an
exponential dependence on the alphabet size; a weakness eliminated in a practical
implementation [4] for the price of not achieving the optimal search time anymore.
Therefore, it has been interesting both from the point of theory and practice to
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construct an index with nicely bound both space and time complexities, preferably
with no (or mild) dependence on the alphabet size.

The large alphabet dependence of the original FM-index shows up not only in the
space usage, but also in the time to show an occurrence position and display text

substrings. The FM-index needs up to 5Hkn+O
(
(σ log σ + log log n) n

log n
+ nγσσ+1

)

bits of space, where 0 < γ < 1. The time to search for a pattern and obtain the
number of its occurrences in the text is the optimal O(m). The text position of each
occurrence can be found in O

(
σ log1+ε n

)
time, for some ε > 0 that appears in the

sublinear terms of the space complexity. Finally, the time to display a text substring
of length L is O

(
σ (L + log1+ε n)

)
. The last operation is important not only to show

a text context around each occurrence, but also because a self-index replaces the text
and hence it must provide the functionality of retrieving any desired text substring.

One of the proposals to eliminate an exponential dependence on the alphabet
size was Huffman FM-index [6]: It was based on the backward search idea of [4] but
the novelty was to Huffman encode the text (and the pattern) so as to reduce the
alphabet to binary. As a result, any dependence on the alphabet size was removed.
We showed that our index can operate using n(2H0 + 3 + ε)(1 + o(1)) bits, for any
ε > 0. No alphabet dependence is hidden in the sublinear terms.

At search time, our index finds the number of occurrences of the pattern in
O(m(H0 + 1)) average time. The text position of each occurrence can be reported in
worst case time O

(
1
ε
(H0 + 1) log n

)
. Any text substring of length L can be displayed

in O ((H0 + 1) L) average time, in addition to the mentioned worst case time to find
a text position.

Since the original presentation, its implementation has been optimized and also a
variant with 4-ary Huffman has been checked [7]. Albeit not among the most succinct,
the 4-ary Huffman FM-index appears to be among the fastest and thus practical
indices.

In this paper we present an alternative to Huffman coding variants. Instead, we use
Kautz-Zeckendorf coding [9,15], capable of instant detection of codeword boundaries.
To give the flavor of this idea, we note that in its basic variant, the Kautz-Zeckendorf
code has no codeword with any two adjacent 1’s.

2 The FM-index Structure

The FM-index [3] is based on the Burrows-Wheeler transform (BWT) [1], which
produces a permutation of the original text, denoted by T bwt = bwt(T ). String T bwt is
a result of the following forward transformation: (1) Append to the end of T a special
end marker $, which is lexicographically smaller than any other character; (2) form
a conceptual matrix M whose rows are the cyclic shifts of the string T$, sorted in
lexicographic order; (3) construct the transformed text L by taking the last column
of M. The first column is denoted by F .

The suffix array (SA) A of text T$ is essentially the matrix M: A[i] = j iff the
ith row of M contains string tjtj+1 · · · tn$t1 · · · tj−1. Given the suffix array, the search
for the occurrences of the pattern P = p1p2 · · · pm is trivial. The occurrences form
an interval [sp, ep] in A such that suffixes tA[i]tA[i]+1 · · · tn, sp ≤ i ≤ ep, contain the
pattern as a prefix. This interval can be searched for by using two binary searches in
time O(m log n).
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The suffix array of text T is represented implicitly by T bwt. The novel idea of the
FM-index is to store T bwt in compressed form, and to simulate the search in the suffix
array. To describe the search algorithm, we need to introduce the backward BWT
that produces T given T bwt:

1. Compute the array C[1 . . . σ] storing in C[c] the number of occurrences of charac-
ters {$, 1, . . . , c− 1} in the text T . Notice that C[c] + 1 is the position of the first
occurrence of c in F (if any).

2. Define the LF-mapping LF [1 . . . n + 1] as LF [i] = C[L[i]] + Occ(L,L[i], i), where
Occ(X, c, i) equals the number of occurrences of character c in the prefix X[1, i].

3. Reconstruct T backwards as follows: set s = 1 and T [n] = L[1] (because M[1] =
$T ); then, for each n − 1, . . . , 1 do s ← LF [s] and T [i] ← L[s].

We are now ready to describe the search algorithm given in [3] (Fig. 1). It finds
the interval of A containing the occurrences of the pattern P . It uses the array C
and function Occ(X, c, i) defined above. Using the properties of the backward BWT,
it is easy to see that the algorithm maintains the following invariant [3]: At the ith
phase, the variable sp points to the first row of M prefixed by P [i,m] and the variable
ep points to the last row of M prefixed by P [i,m]. The correctness of the algorithm
follows from this observation.

Algorithm FM Search(P ,T bwt)
(1) i = m;
(2) sp = 1; ep = n;
(3) while ((sp ≤ ep) and (i ≥ 1) do
(4) c = P [i];
(5) sp = C[c] + Occ(T bwt, c, sp − 1)+1;
(6) ep = C[c] + Occ(T bwt, c, ep);
(7) i = i − 1;
(8) if (ep < sp) then return “not found” else return “found (ep − sp + 1) occs”.

Figure 1. Algorithm for counting the number of occurrences of P [1 . . . m] in T [1 . . . n]

Ferragina and Manzini [3] describe an implementation of Occ(T bwt, c, i) that uses
a compressed form of T bwt. They show how to compute Occ(T bwt, c, i) for any c and i
in constant time. However, to achieve this they need exponential space (in the size of
the alphabet). In a practical implementation [4] this was avoided, but the constant
time guarantee for answering Occ(T bwt, c, i) was no longer valid.

The FM-index can also show the text positions where P occurs, and display any
text substring. The details are deferred to Section 5.

3 Rank and Select Queries on Bit Arrays

A crucial building block we use is a data structure to perform rank operations over a
bit array. Given a bit sequence B[1 . . . n], rank(B, i) is the number of 1’s in B[1 . . . i],
rank(B, 0) = 0. This function can be computed in constant time using only o(n) extra
bits [8,11,2]. The solution, as well as its more practical implementation variants, are
described in [5]; here we present a novel implementation, which seems to be fastest
in practice.
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For an input bit array B of size n and a given parameter bs we create a lookup
table N with ⌈n/2bs⌉ entries. Namely, for each k = 0 . . . ⌊n/2bs⌋ − 1 we compute:
N [k] = rank(B, (k+1)∗2bs). If ⌈n/2bs⌉ > ⌊n/2bs⌋, then we also compute: N [⌊n/2bs⌋] =
rank(B, n). The above structure needs 32 ∗ ⌈n/2bs⌉ = O(n) bits, where the constant
32 is the number of bits per entry of N .

Now, we calculate rank(B, i) as follows.
If i < 2bs, then rank(B, i) = popcount(B, 0 . . . i). Otherwise, rank(B, i) = N [⌊i/2bs⌋−
1] + popcount(B, (⌊i/2bs⌋ ∗ 2bs) . . . i). The operation popcount(B, a . . . b) returns the
number of set bits in the interval B[a . . . b], a ≤ b, making use of a precomputed table.
As long as the interval width is on the order of machine word, this is a constant time
operation.

Sometimes we need to calculate the inverse function, select(B, j), which gives
the position of the j-th bit set in B. It can also be implemented in constant time
using o(n) additional space [8,11,2]. More practical implementations exist [5], but it
is always significantly slower than rank , and also more rarely needed.

4 First Huffman, then Burrows-Wheeler

We focus now on our index representation, starting from the original variant. Imagine
that we compress our text T$ using Huffman. The resulting bit stream will be of length
n′ < (H0 +1)n, since (binary) Huffman poses a maximum representation overhead of
1 bit per symbol4. Let us call T ′ this sequence. Let us also define a second bit array
Th, of the same length of T ′, such that Th[i] = 1 iff i is the starting position of a
Huffman codeword in T ′. Th is also of length n′. (We will not, however, represent T ′

nor Th in our index.)
The idea is to search the binary text T ′ instead of the original text T . Let us

apply the Burrows-Wheeler transform over text T ′, so as to obtain B = (T ′)bwt. The
terminator character, “$”, is excluded from T ′ so as to have a binary alphabet.

More precisely, let A′[1 . . . n′] be the suffix array for text T ′, that is, a permutation
of the set 1 . . . n′ such that T ′[A′[i] . . . n′] < T ′[A′[i + 1] . . . n′] in lexicographic order,
for all 1 ≤ i < n′. In a lexicographic comparison, if a string x is a prefix of y, assume
x < y. Suffix array A′ will not be explicitly represented. Rather, we represent bit
array B[1 . . . n′], such that B[i] = T ′[A′[i]− 1] (except that B[i] = T [n′] if A′[i] = 1).
We also represent another bit array Bh[1 . . . n′], such that Bh[i] = Th[A′[i]]. This
tells whether position i in A′ points to the beginning of a codeword.

Our goal is to search B exactly like the FM-index. For this sake we need array C
and function Occ. Since the alphabet is binary, however, Occ can be easily computed:
Occ(B, 1, i) = rank(B, i) and Occ(B, 0, i) = i− rank(B, i). Also, array C is so simple
for the binary text that we can do without it: C[0] = 0 and C[1] = n′ − rank(B, n′),
that is, the number of zeros in B (of course value n′ − rank(B, n′) should be pre-
computed in practice). Therefore, C[c] + Occ(T bwt, c, i) is replaced in our index by
i − rank(B, i) if c = 0 and n′ − rank(B, n′) + rank(B, i) if c = 1.

There is a small twist, however, due to the fact that we are not putting a termina-
tor to our binary sequence T ′ and hence no terminator appears in B. Let us call “#”
the terminator of the binary sequence so that it is not confused with the terminator
“$” of T$. In the position p# such that A′[p#] = 1, we should have B[p#] = #.

4 Note that these n and H0 refer to T$, not T . However, the difference between both is only O(log n),
and will be absorbed by the o(n) terms that will appear later.
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Instead, we are setting B[p#] to the last bit of T ′. This is the last bit of the Huffman
codeword assigned to the terminator “$” of T$. Since we can freely switch left and
right siblings in the Huffman code, we will ensure that this last bit is zero. Hence
the correct B sequence would be of length n′ + 1, starting with 0 (which corresponds
to T ′[n′], the character preceding the occurrence of “#”, since # < 0 < 1), and it
would have B[p#] = #. To obtain the right mapping to our binary B, we must correct
C[0] + Occ(B, 0, i) = i − rank(B, i) + [i < p#], that is, add 1 to the original value
when i < p#. The computation of C[1] + Occ(B, 1, i) remains unchanged.

Therefore, by preprocessing B to solve rank queries, we can search B exactly as
the FM-index. The extra space required by the rank structure is o(H0n), without
any dependence on the alphabet size. Overall, we have used at most n(2H0 + 2)(1 +
o(1)) bits for our representation. This will grow slightly in the next sections due to
additional requirements.

Our search pattern is not the original P , but its binary coding P ′ using the
Huffman code we applied to T . Converting P to P ′ takes O(m) time. If we assume
that the characters in P have the same distribution of T , then the length of P ′ is
< m(H0 + 1). This is the number of steps to search B using the FM-index search
algorithm.

The answer to that search, however, is different from that of the search of T for
P . The reason is that the search of T ′ for P ′ returns the number of suffixes of T ′ that
start with P ′. Certainly these include the suffixes of T that start with P , but also
other superfluous occurrences may appear. These correspond to suffixes of T ′ that do
not start a Huffman codeword, yet they start with P ′.

This is the reason why we have marked the suffixes that start a Huffman code-
word in Bh. In the range [sp, ep] found by the search for P ′ in B, every bit set in
Bh[sp . . . ep] represents a true occurrence. Hence the true number of occurrences can
be computed as rank(Bh, ep) − rank(Bh, sp − 1).

Figure 2 depicts the search algorithm.

Algorithm Huff-FM Search(P ′,B,Bh)
(1) i = m′;
(2) sp = 1; ep = n′;
(3) while ((sp ≤ ep) and (i ≥ 1)) do
(4) if P ′[i] = 0 then

sp = (sp − 1) − rank(B, sp − 1) + 1 + 1 − [sp − 1 ≥ p#];
ep = ep − rank(B, ep) + 1 − [ep ≥ p#];

else sp = n′ − rank(B,n′) + rank(B, sp − 1) + 1;
ep = n′ − rank(B,n′) + rank(B, ep);

(7) i = i − 1;
(8) if ep < sp then occ = 0 else occ = rank(Bh, ep) − rank(Bh, sp − 1);
(9) if occ = 0 then return “not found” else return “found (occ) occs”.

Figure 2. Algorithm for counting the number of occurrences of P ′[1 . . . m′] in
T ′[1 . . . n′]

Therefore, the search complexity is O(m(H0 + 1)), assuming that the zero-order
distributions of P and T are similar. It is well-known that the longest Huffman code-
word does not exceed O(m log n) bits. From this we immediately obtain the worst
case search cost of O(m log n) for our index. This matches the worst case search time
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of the compressed suffix array (CSA) of Sadakane [14]. An exceptional situation oc-
curs when P contains a character not present in T . This is easier, however, as we
immediately know that P does not occur in T .

Is it in fact possible to achieve O(m log n) search complexity also for the worst
case, for the price of 2n extra bits. Basically, the idea is to use a length-limited
Huffman coding variant but we omit the details and analysis due to lack of space.
This idea, however, does not have much importance in practice because extremely
skew symbol distributions almost never happen and thus optimizing the worst case
is hardly worth any effort.

5 Reporting Occurrences and Displaying the Text

Up to now we have focused on the search time, that is, the time to determine the
suffix array interval containing all the occurrences. In practice, one needs also the
text positions where they appear, as well as a text context. Since self-indexes replace
the text, in general one needs to extract any text substring from the index.

Given the suffix array interval that contains the occ occurrences found, the FM-
index reports each such position in O(σ log1+ε n) time, for any ε > 0 (which appears
in the sublinear space component). The CSA can report each in O(logε n) time, where
ε is paid in the nH0/ε space. Similarly, a text substring of length L can be displayed
in time O(σ(L + log1+ε n)) by the FM-index and O(L + logε n) by the CSA.

Our index can do better than the FM-index in this respect, although not as well
as the CSA. Using (1 + ε)n additional bits, we can report each occurrence position
in O(1

ε
(H0 + 1) log n) time and display a text context in time O(L log σ + log n)

in addition to the time to find an occurrence position. On average, assuming that
random text positions are involved, the overall complexity to display a text interval
becomes O((H0 + 1)(L + 1

ε
log n)). Those complexities hold for all the variants of our

solution: based on the binary or higher arity Huffman, or on the Kautz-Zeckendorf
coding. Still, the overall idea of reporting and displaying via sampling sorted suffixes
at regular intervals was first presented in the seminal work on the FM-index, and is
now widely used in the field. Details can be found e.g., in [7].

A related query type concerns displaying the text around each pattern occurence.
More generally, we want to display a text substring T [l . . . r] of length L = r − l + 1.
Again, we make use of a known technique, on the overall obtaining the following time
complexities [7]: O((H0 + 1)(L + 1

ε
log n)) in the average case, and O(L log σ + (H0 +

1)1
ε
log n) in the worst case.

6 K-ary Huffman

The purpose of the idea of compressing the text before constructing the index is to
remove the sharp dependence of the alphabet size of the FM index. This compres-
sion is done using a binary alphabet. In general, we can use Huffman over a coding
alphabet of k > 2 symbols and use ⌈log k⌉ bits to represent each symbol. We call
this generalization the k-ary FM-Huffman. Varying the value of k yields interesting
time/space tradeoffs. We use only powers of 2 for k values, so each symbol can be
represented without wasting space.

The space usage varies in different aspects. Array B increases its size since the

compression ratio gets worse. B has length n′ < (H
(k)
0 + 1)n symbols, where H

(k)
0 is
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the zero order entropy of the text computed using base k logarithm, that is, H
(k)
0 =

−∑σ
i=1

ni

n
logk

(
ni

n

)
= H0/ log2 k. Therefore, the size of B is bounded by n′ log k =

(H0 + log k)n bits. The size of Bh is reduced since it needs one bit per symbol, and
hence its size is n′. The total space used by these structures is then n′(1 + log k) <

n(H
(k)
0 + 1)(1 + log k), which is not larger than the space requirement of the binary

version, 2n(H0 + 1), for 1 ≤ log k ≤ H0.
The rank structures also change their size. The rank structures for Bh are com-

puted in the same way of the binary version, and therefore they reduce their size,

using o(H
(k)
0 n) bits. For B, we no longer can use the rank function to simulate

Occ. Instead, we need to calculate the occurrences of each of the k symbols in
B. For this sake, we precalculate sublinear structures for each of the symbols, in-
cluding k tables that count the occurrences of each symbol in a chunk of b =

⌈logk(n)/2⌉ symbols. Hence, we need o(kH
(k)
0 n) bits for this structures. In total,

we need n(H
(k)
0 + 1)(1 + log k) + o(H

(k)
0 n(k + 1)) bits.

Regarding the time complexities, the pattern has length < m(H
(k)
0 + 1) symbols,

so this is the search complexity, which is reduced as we increase k. For reporting
queries and displaying text, we need the same additional structures TS, ST and S
that for the binary version. The k-ary version can report the position of an occurrence

in O
(

1
ǫ
(H

(k)
0 + 1) log n

)
time, which is the maximum distance between two sampled

positions. Similarly, the time to display a substring of length L becomes O((H
(k)
0 +

1)(L + 1
ǫ
log n)) on average and O(L log σ + (H

(k)
0 + 1)1

ǫ
log n) in the worst case.

7 Kautz-Zeckendorf Coding

The condition for getting rid of the Bh array is to have a coding for which the bit
stream enables instant synchronization at codeword boundaries. A solution could
be based on the representation of integers, first advocated by Kautz [9] for its syn-
chronization properties, which presents each number in a unique form as a sum of
Fibonacci numbers. This technique is better known from a work by Zeckendorf [15],
therefore we will call it Kautz-Zeckendorf coding.

Consider the Fibonacci sequence f1 = 1, f2 = 2, and fi+2 = fi+1+fi. The resulting
sequence of Fibonacci numbers is 1, 2, 3, 5, 8, 13, . . . It is easy to prove by induction
that any integer number N can be uniquely decomposed into a sum of Fibonacci
numbers, where each number is summed at most once and no two consecutive numbers
are used in the decomposition. (If two consecutive numbers fi and fi and fi+1 appear
in the decomposition we can use fi+2 instead.) Thus we can represent N as a bit
vector, whose i-th bit is set iff the i-th Fibonacci number is used to represent N . No
two consecutive bits can be set in this representation because this would mean that
we used two consecutive numbers in the decomposition. This can be generalized to
k consecutive ones [9]. The recurrence is now fi = i for i ≤ k and fi+k = fi+k−1 +
fi+k−2 + . . . + fi+1 + fi. In this representation we do not permit a sequence of k
consecutive numbers in the decomposition, and thus no stream of k 1’s appears in
the bit vector.

We use this encoding as follows. We sort the source symbols by frequency and
then assign the binary encoding of number N to the N -th most frequent symbol. In
addition, all the encodings are prepended with a sequence of k 1’s followed by one 0.
Note that nowhere else in the encoding are there k adjacent 1’s.

232



FM-KZ: An Even Simpler Alphabet-Independent FM-Index

If, during the LF-mapping, we read a 0 and then k successive 1’s from T ′, we
know that we are at a codeword beginning. Thus, Bh is no longer needed. A practical
side-effect is also that there is no need for select to find the successive matches: they
all are in a contiguous range of the matrix rows. All the rest of the operatory remains
unchanged.

Let us consider the performance of Kautz-Zeckendorf coding with the two most
practical (at least for natural languages) parameters, k = 2 and k = 3. The reg-
ular expressions for all valid codewords in those cases are 110(0|10) ∗ (ε|1) and
1110(0|10|110) ∗ (ε|1|11), respectively. We calculated the average codeword length
for the 80 MB English text used in Section 8. Note that all we needed to know for
this estimation was the knowledge of zero-order symbol distribution in the text. For
k = 2 and k = 3 the average lengths were 5.696 and 6.420 bits per symbol, respec-
tively. The only component of the index, apart from the B array, is the rank structure
for B. The fastest rank in the new implementation needs 25% of the text size. Tak-
ing this figure, we obtain approximately 0.89n and 1.00n overall space occupancy,
respectively. Those results are better than of any other variant of our index, but the
price is a longer search time. Note that even less space can be obtained with a rank
implementation using 10% of the text size [5], for a relatively little slow-down. Other
options can be better for other text types, e.g., for DNA using k = 1 (actually a
unary code) is a better choice.

8 Experimental Results

We implemented our indexes, both the original, the k-ary and the KZ versions, mak-
ing some practical considerations that differ from the theoretical ones. The main
difference is the calculation of rank and Occ, where we used the solution described
in [5], for the older index variants, or the new rank implementation described in Sec-
tion 3. The new indexes will be called FM-KZ1 and FM-KZ2, corresponding to the
parameters k = 1 and k = 2, respectively.

In this section we show experimental results on counting, reporting and displaying
queries and compare the efficiency to existing indexes. The indexes used for the
experiments were the FM-index implemented by Navarro [12], Sadakane’s CSA [14],
the RLFM index [10], the SSA index [10] and the LZ index [12]. Other indexes whose
implementations are available were not included because they are not comparable to
the FM Huffman / FM-KZ index due either to their large space requirement or their
high search times .

We considered three types of text for the experiments: 80 MB of English text
obtained from the TREC-3 collection 5 (files WSJ87-89), 60 MB of DNA and 55 MB
of protein sequences, both obtained from the BLAST database of the NCBI6 (files
month.est_others and swissprot respectively).

Our experiments were run on an Intel(R) Xeon(TM) processor at 3.06 GHz, 2 GB
of RAM and 512 KB cache, running Gentoo Linux 2.6.10. We compiled the code with
gcc 3.3.5 using optimization option -O9.

Now we show the results regarding the space used by our index and later the
results of the experiments divided in query type.

5 Text Retrieval Conference, http://trec.nist.gov
6 National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov
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8.1 Space results

For the experiments we considered the binary, the 4-ary, and the KZ versions of our
index. It is interesting to know how the space requirement of the Huffman-based
index varies according to the parameter k. Table 1 (left) shows the space that the
index takes as a fraction of the text for different values of k and the three types of
files considered. These values do not include the space required to report positions
and display text.

We can see that the space requirements are lowest for k = 4. For higher values
this space increases, although staying reasonable until k = 16. With higher values
the spaces are too high for these indexes to be comparable to the rest. It would be
interesting to study the time performance to the versions of the index with k = 8 and
k = 16. With k = 8 we do not expect an improvement on the query time since log k
is not a power (reasons omitted) of 2 and therefore the computation of Occ is slower.
The version with k = 16 could lead to a reduction in query time, but the access to 4
machine words for the calculation of Occ could negatively affect it. It is important to
say that this values are only relevant for the English text and proteins, since it does
not make sense to use them for DNA.

It is also interesting to see how the space requirement of the index is divided
among its different structures. Table 1 (right) shows the space used by each of the
structures for the index with k = 2 and k = 4 for the three types of texts considered.

k Fraction of text
English DNA Proteins

2 1,68 0,76 1,45
4 1,52 0,74 1,30
8 1,60 0,91 1,43
16 1,84 — 1,57
32 2,67 — 1,92
64 3,96 — —

FM-Huffman k = 2 FM-Huffman k = 4
Structure Space [MB] Space [MB]

English DNA Proteins English DNA Proteins

B 48.98 16.59 29.27 49.81 18.17 29.60
Bh 48.98 16.59 29.27 24.91 9.09 14,80
Rank(B) 18,37 6,22 10,97 37,36 13,63 22,20
Rank(Bh) 18,37 6,22 10,97 9,34 3,41 5,55

Total 134,69 45,61 80,48 121,41 44,30 72,15
Text 80,00 60,00 55,53 80,00 60,00 55,53
Fraction 1.68 0.76 1.45 1.52 0.74 1.30

Table 1. On the left, space requirement of our index for different values of k. The
value corresponding to the row k = 8 for DNA actually corresponds to k = 5,
since this is the total number of symbols to code in this file. Similarly, the value of
row k = 32 for the protein sequence corresponds to k = 24. On the right, detailed
comparison of k = 2 versus k = 4. We omit the spaces used by the Huffman table,
the constant-size tables for Rank, and array C, since they are negligible.

For higher values of k the space used by B will increase since the use of more
symbols for the Huffman codes increases the resulting space. On the other hand, the
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size of Bh decreases at a rate of log k and so do its rank structures. However, the
space of the rank structures of B increases rapidly, as we need k structures for an
array that reduces its size at a rate of log k, which is the reason of the large space
requirement for high values of k.

Now, let us take a look at the FM-KZ1 and FM-KZ2 space/time behavior. For
DNA, the FM-KZ1 is a clear winner: among the fastest and definitely the most
succinct, also it is hard to imagine a simpler full-text index (as the encoding is merely
the unary code).

On the English text, FM-KZ2 is takes about 1.0n space, much less than other
indexes from our family, but is also considerably slower, e.g. more than 1.5 times
slower than FM Huffman with k = 4.

8.2 Counting queries

For the three files, we show the search time as a function of the pattern length, varying
from 10 to 100, with a step of 10. For each length we used 1000 patterns taken from
random positions of each text. Each search was repeated 1000 times. We obtained
an average error of 2.6% with a confidence of 95%. Figure 3 (left) shows the time for
counting the occurrences for each index and for the three files considered. As the CSA
index needs a parameter to determine its space for this type of queries, we adjusted
it so that it would use approximately the same space that the binary FM-Huffman
index.

We also show the average search time per character along with the minimum space
requirement of each index to count occurrences. Unlike the CSA, the other indexes
do not need a parameter to specify their size for counting queries. Therefore, we show
a point as the value of the space used by the index and its search time per character.
For the CSA index we show a line to resemble the space-time tradeoff for counting
queries. The time per character for each pattern length is the search time divided by
the value of the length. The time per character shown on the plot is the average of
these times for each length. Figure 3 (right) shows the search time per character for
each index and for each type of text.

8.3 Reporting queries

We measured the time that each index took to search for a pattern and report the
positions of the occurrences found. From the English text and the DNA sequence
we took 1000 random patterns of length 10. From the protein sequence we used
patterns of length 5. We measured the time per occurrence reported varying the space
requirement for every index except the LZ, which has a fixed size. For the CSA we
set the two parameters, namely the size of the structures to report and the structures
to count, to the same value, since this turns out to be optimal. Our measures have
a 2.2% error with 95% confidence. Figure 4 shows the times per occurrence reported
for each index as a function of its size.

8.4 Displaying text

We measured the time that each index took to show the first character of a text
context around the occurrences found. More precisely, this is the time of searching
for a pattern, locating the position of an occurrence and showing one character of the
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Figure 3. On the left, search time as a function of the pattern length over, English
(80 MB), DNA (60 MB), and a proteins (55 MB). The times of the LZ index do not
appear on the English text plot, as they range from 0.5 to 4.6 ms. In the DNA plot,
the time of the LZ index for m = 10 is 2.6. The reason of this increase is the large
number of occurrences of these patterns, which influences the counting time for this
index. On the right, average search time per character as a function of the size of the
index.
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Figure 4. Time to report the positions of the occurrences as a function of the size
of the index. We show the results of searching on 80 MB of English text, 60 MB of
DNA and finally 55 MB of proteins.

text in the context area of the position located. Usually this character is the one at
the position of the occurrence, but it can also be a different close one, depending on
each index. We measured this time as a function of the size used by each index. We
used the same 1000 patterns used for the reporting experiment, obtaining an average
error of 1.6% with 95% confidence. Figure 5 (left) shows the time to display the first
character as a function of the space requirement for each index and for each type of
text.

In addition, we measured the time to display a context per character displayed.
That is, we searched for the 1000 patterns and displayed 100 characters around each
of the positions of the occurrences found. We subtracted from this time the time to
display the first character and divided it by the amount of characters displayed. For
this experiment, we obtained an average error of 6% with 95% confidence. Figure 5
(right) shows this time along with the minimum space required for each index for
the counting functionality, since the display time per character does not depend on
the size of the index. This is not true for the CSA index, whose time to display per
character does depend on its size. For this index we show the time measured as a
function of its size.

8.5 Analysis of Results

We can see that our FM-Hufman k = 4 and k = 16 indexes are among the fastest for
counting queries for the three types of files. The binary FM-Huffman index takes the
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Figure 5. On the left, time to show the first character of a text context around
the positions of the occurrences as a function of the size of the index. From top to
bottom, we show the results of searching 80 MB of English text, 60 MB of DNA
and 55 MB of proteins. In the plot of the DNA sequence, the point corresponding to
the LZ index is covered. Its value is: space=1.18, time=0.03. On the right, time per
character displayed around an occurrence and space for each index.
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same time that k = 4 version for DNA and it is a little bit slower that the FM-index
for the other two files. As expected, all those versions are faster than CSA, RLFM
and LZ, the latter not being competitive for counting queries. Regarding the space
usage, the FM-index turns out to be a better tradeoff alternative for the English text
and protein sequences, since it uses less space than our index and has low search
times. For DNA, all the Huffman based versions of our index are good alternatives,
considering their low space requirement and search time.

Still, the new player, FM-KZ index, is a particularly good choice for DNA. It is
way ahead of the competition in the space use, while belonging to the fastest. At the
same time its simplicity is striking.

Considering both speed and space use, for the English text and the proteins, the
SSA index is the best choice, still, our variants come close, especially for proteins.

For reporting queries, our index loses to the FM-index for English and proteins,
mainly because of its large space requirement. Also, it only surpasses the RLFM and
CSA for large space usages. For DNA, however, our index, with the two versions,
is better than the FM-index. This reduction in space is due to the low zero-order
entropy of the DNA, which makes our index compact and fast.

Regarding the time for displaying the first character, the FM-index is faster than
our index. Again, our index takes more space than the other indexes to get competitive
time for English and proteins, and reduces its space for DNA. Regarding display
time per character, our index with k = 4 is the fastest for DNA with a low space
requirement, becoming an interesting alternative for this type of query.

The version of our index with k = 4 improved both the space and time with
respect to the binary version and it became a very good alternative for counting and
reporting queries, especially for DNA, due to the low zero-order entropy of this text.

9 Conclusions

We have focused in this paper on a practical data structure inspired by the FM-index
[3], which removes its sharp dependence on the alphabet size σ. Our key idea is to
encode the text with the Kautz-Zeckendorf coding, offering instant synchronization
at codeword boundaries (a property missing in Huffman coding, thus implying a
significant space penalty in FM indexes), at still being quite succinct. While not
competitive to the best succinct indexes in theory, our solutions fare well in practice,
and are simpler conceptually and easier to implement than the other structures.
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Guéguen L. 123

Higa Y. 212
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