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Abstract. An asymptotic lower bound for the maxrun function ρ(n) = max {number

of runs in string x | all strings x of length n} is presented. More precisely, it is shown
that for any ε > 0, (α−ε)n is an asymptotic lower bound, where α = 3

1+
√

5
≈ 0.927. A

recent construction of an increasing sequence of binary strings “rich in runs” is modified
and extended to prove the result.
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1 Introduction

An important structural characteristic of a string over an alphabet is its periodicity.
Repetitions (tandem repeats) have always been in the focus of the research into
periodicities. The notion of runs captures maximal repetitions which themselves are
not repetitions and allows for a succinct notation ([5]). Even though it had been
known that there could be O(n log n) of repetitions in a string of length n ([1]), it
was shown in 2000 by Kolpakov and Kucherov that number of runs was linear in
the length of the input string ([4]). Their proof was existential and thus did not
specify the constants of linearity. The behaviour of the maxrun function ρ(n) =
max{number of runs in string x | all strings x of length n} became an interest
of study to many. Smyth et al. (e.g. [3], [6], [2]) presented a set of conjectures about
ρ(n):

1. ρ(n) < n,
2. ρ(n+1) ≤ ρ(n)+2,
3. ρ(n) = ρ2(n), the maxrun function for binary strings.

Just recently, Rytter improved the upper bound of ρ(n) to 6.3n (see [7]).

[3] introduced a construction of an increasing sequence {xn : n < ∞} of binary

strings “rich in runs” so that limn→∞
r(xn)
|xn| = α, where α = 3

1+
√

5
≈ 0.927 and

r(x) = number of runs in x. Although any such sequence does not establish a lower
bound (not even an asymptotic one), it has been “viewed” as such. The assumption
underneath that view is that ρ(n) behaves “reasonably”, i.e. that ρ(n) does not

exhibit wild jumps up, or equivalently, that
ρ(n)

n
does not exhibit wild oscillations,
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which is generally expected to be the case (cf. the second conjecture). However, since
the “reasonable behaviour” of ρ(n) is yet to be established, we modify and extend
the method from [3] to provide formally a family of true asymptotic lower bounds
arbitrarily close to αn by proving

Theorem: For any ε > 0 there is a positive integer N so that for any n ≥ N ,
ρ(n) ≥ (α−ε)n.

2 Basic notation, facts, and methods

A run R in a string x is a four-tuple of positive integers (s, p, e, t), where

1. s is the starting position of R.
2. p is the size of its period.
3. e ≥ 2 is its exponent, i.e. the maximal value e so that x[s..s+p−1] =

x[s+p..s+2p−1] = · · · = x[s+(e−1)p..s+ep−1].
4. The period of R, x[s..s+p−1] itself is not a repetition.
5. The square part of the run R, x[s..s+p−1] = x[s+p..s+2p−1] is left-maximal,

i.e. x[s−1..s+p−2] 6= x[s+p−1..s+2p−2].
6. t is the tail of R and indicates how far to the right the run can be extended,

i.e. t is a maximal number so that for any 0 < t′ ≤ t, x[s+t′..s+t′+p−1] =
x[s+t′+p..s+t′+2p−1] = · · · =
x[s+t′+(e−1)p..s+t′+ep−1].

Not too much is known about the behaviour of the maxrun function:

• For any n, ρ(n+2) ≥ ρ(n)+1.
Take a string x of length n with r(x) = ρ(n). Take a letter c that does not occur in
x. Then xcc is a string of length n+2 and ρ(n+2) ≥ r(xcc) = r(x)+1 = ρ(n)+1.

• For any n, ρ(n+1) ≤ ρ(n)+⌊n
2
⌋.

Take a string x of length n+1 with r(x) = ρ(n+1). There can be at most
⌊n

2
⌋ squares starting at position 1. Then ρ(n) ≥ r(x[2..n+1]) ≥ r(x)−⌊n

2
⌋ ≥

ρ(n+1)−⌊n
2
⌋.

• For some n, ρ(n+1) = ρ(n).
Established by computations, it is not clear if this as an asymptotic property (for
instance, ρ(33) = 27 while ρ(34) = 27).

• For some n, ρ(n+1) = ρ(n)+2.
Established by computations, it is not clear if this as an asymptotic property (for
instance, ρ(13) = 8 while ρ(14) = 10).

Note that the function
ρ(n)

n
may thus not be monotonic. It is not even clear whether

limn→∞
ρ(n)

n
exists, as

ρ(n)

n
may be oscillating with a non-decreasing magnitude.

In [3] a special concatenation operator ◦ for binary strings was introduced:

x[1..n] ◦ y[1..m] =

{

x[1..n]y[2..m] = x[1..n−1]y[1..m] if x[n] = y[1],

x[1..n−1]y[2..m] if x[n] 6= y[1].

Morphism g was defined by

g(x) =











010010 if x = 0

101101 if x = 1

g(x[1..n]) = g(x[1]) ◦ g(x[2]) ◦ · · · ◦ g(x[n]) if |x| > 1.

(1)
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The strings 010010 and 101101 were selected as they provide in the concatenation
one extra run:
r(g(0) ◦ g(0)) = 6 = 2r(g(0))+2, the same for g(1) ◦ g(1), r(g(0) ◦ g(1)) = 5 =
r(g(0))+r(g(1))+1, the same for r(g(1)◦g(0)). Let us remark that a computer search
carried to the length of 20 did not discover any better pair of strings with such
properties.

An important aspect of the morphism is that it “preserves” the runs in x: it is a
bit tedious to prove and thus not included in the paper, but any left-maximal square
in x induces a square in g(x). It follows that every run in x induces a run in g(x). It
is also important to show that two distinct runs in x do not get “glued” together by
g.

Let us fix a string x. Let λ(x) denote the number of pairs 00 or 11 in x. We can
calculate the length of g(x):

|g(x)| = 6|x|−λ(x)−2(|x|−λ(x)−1) = 4|x|+λ(x)+2 (2)

the number of pairs 00 or 11 in g(x):

λ(g(x)) = |x| (3)

the number of runs in g(x):

r(g(x)) = r(x)+2|x|+(|x|−1) = r(x)+3|x|−1 (4)

|x

i

|
 |x


i+1

|


Figure 1. ρ(n) function between |xi| and |xi+1|

In [3] a sequence of strings was generated inductively from a starting string, for
instance: x0 = 0, x1 = g(0) = 010010, and xi+1 = g(xi) for i ≥ 1. Then |xi+1| =
4|xi|+|xi−1|+2 according (2) and r(xi+1) = r(xi)+3|xi|−1 according to (4). It is not

hard to show that the limit limi→∞
|xi|

|xi+1| exists and β = limi→∞
|xi|

|xi+1| = −2+
√

5.

The limit limi→∞
r(xi)
|xi| also exists and α = limi→∞

r(xi)
|xi| = β(α+3) giving α = 3

1+
√

5
.

The sequence {|xi| : i < ∞} is only “probing” the domain of the function ρ(n)
and r(xi) is “pushing” the value of ρ(n) above αn in these “probing” points (see
Figure 1). Since the size of xi+1 is more than 4 times the size of xi, the gaps between
|xi| and |xi+1| are getting bigger and bigger.

5
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The basic idea of establishing an asymptotic lower bound for ρ(n) is to start
similar sequences from various “starting” strings to cover the domain of ρ(n) densely
enough with the “probing” points to get any n close to some “probing” point and
hence the value of ρ(n) close to αn. To be able to do so, we must change a bit the
way the sequences are generated. The details of this are in the next section.

3 The proof of the theorem

Let ε > 0 be given. We have to find N so that for any n ≥ N , ρ(n) ≥ (α−ε)n.

First we will chose and fix three parameters k, δ, and R that we will use throughout
the proof. These parameters depend on the given ε: choose and fix a positive integer
k so that α

k+1
< ε; choose and fix a positive real δ so that δ ≤ k+1

k
(ε− α

k+1
). It follows

that k
k+1

(α−δ) ≥ α−ε. Let R be the smallest integer so that
(

k+1
k

)R ≥ 5.

Consider an increasing sequence Sa,b of positive integers with two integer parameters
a and b defined by n0(a, b) = a, n1(a, b) = 4a+b, and ni+2(a, b) = 4ni+1(a, b)+ni(a, b)

for i ≥ 0. It is not hard to show that limi→∞
ni(a,b)

ni+1(a,b)
exists and that

limi→∞
ni(a, b)

ni+1(a, b)
= −2+

√
5

Importantly, ranges of such sequences are “tied” together based on the parameters,
i.e. for any integer t ≥ 1 and any i

ni(ta, tb) = tni(a, b). (5)

For 0 ≤ j < R, set

a(j) = 3(k+1)jk(R−j) and b(j) =
a(j)

3
= (k+1)jk(R−j). (6)

It follows that k+1
k

a(j) = a(j+1), k+1
k

b(j) = b(j+1), and b(j) ≥ 3.

Based on the morphism g(x) (see (1)) we define a new morphism h(x) by removing
the last 2 letters from g(x):

if g(x) = y[1..n], then h(x) = y[1..n−2] (7)

We use the term string s ends with a square to indicate that s has a left-maximal
square as its suffix. We call a string good if it ends with at most one square.
Claim: (a) if x is good, then h(x) is good

(b) if x ends with 011, then h(x) ends with 011
(c) if x is good, then r(g(x)) ≥ r(h(x)) ≥ r(g(x)) − 2.

(the claim will be proven after completing the proof of the theorem)

Now we are in the position to define the “probing” sequences.
For any 0 ≤ j < R we define a sequence of binary strings {xi(j) : i < ∞} by:

x0(j) = (011)b(j)

and for any i ≥ 0,
xi+1(j) = h(xi(j))

6
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where b(j) is defined in (6). From (2) and (4) it follows that for any i ≥ 0,

|x0(j)| = 3b(j) = a(j),

|x1(j)| = 4a(j)+b(j), and

|xi+2(j)| = 4|xi+1(j)|+|xi(j)|.

Thus, the sequence {|xi(j)| : i < ∞} is the Sa(j),b(j) sequence and so

limi→∞
|xi(j)|

|xi+1(j)| = −2+
√

5.

Since our starting string x0(j) is good as it equals (011)b(j) and b(j) ≥ 3, according
to the Claim, every xi(j) is good and ends with 011, and

r(g(xi(j))) ≥ r(xi+1(j)) ≥ r(g(xi(j)))−2

and so

lim
i→∞

r(xi(j))

|xi(j)|
= α.

Therefore, for any 0 ≤ j < R there is a positive integer Ij so that for any i ≥ Ij,

ρ(|xi(j)|)
|xi(j)|

≥ r(xi(j))

|xi(j)|
≥ α−δ.

Let I = max{Ij : 0 ≤ j < R}. Then for any i ≥ I and any 0 ≤ j < R,

ρ(|xi(j)|)
|xi(j)|

≥ r(xi(j))

|xi(j)|
≥ α−δ. (8)

From (5) and (6) it follows, that for any i and any 0 ≤ j < R,

ni(a(j), b(j)) =
(k+1

k

)

ni(a(j−1), b(j−1)) = · · · =
(k+1

k

)j
ni(a(0), b(0)).

Set N = max{nI(a(j), b(j)) : 0 ≤ j < R}. This is the N we were searching for.

If n ≥ N , then for some i ≥ I,

ni(a(0), b(0)) < n ≤ ni+1(a(0), b(0)).

Then there is 0 ≤ j < R−1 so that

(k+1

k

)j
ni(a(0), b(0)) < n ≤

(k+1

k

)j+1
ni(a(0), b(0))

[

since
(

k+1
k

)R ≥ 5, then
(

k+1
k

)R
ni(a(0), b(0)) ≥ ni+1(a(0), b(0))

]

.

It follows that

ni(a(j), b(j)) < n ≤ k+1

k
ni(a(j), b(j)).

Now we can estimate the value of
ρ(n)

n
using (8):

ρ(n)

n
≥ ρ(ni(a(j), b(j))

n
≥ k

k+1

ρ(ni(a(j), b(j))

ni(a(j), b(j))
≥ k

k+1
(α−δ) ≥ α−ε.

Thus ρ(n) ≥ (α−ε)n. ⊓⊔

7
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Proof. (of Claim)
Let us assume that x ends with 011. Then g(x) ends with 010010110101101, and so
h(x) ends with 0100101101011. Consider all runs in g(x) that may be “destroyed”
by removing the last 2 letters from g(x):

(a) If x ends with a square, then the square may induce a left-maximal square in
g(x) and it will be “destroyed”. Since x is good, there may be at most 1 such run
destroyed.

(b) g(x) ends with square 101|101 that will get destroyed.
(c) The run 01011|01011|01 in g(x) becomes a left-maximal square suffix in h(x).

No other runs in g(x) are affected. Hence h(x) is good and at most 2 runs in g(x)
are destroyed. ⊓⊔

4 Conclusion and further research

We showed that the expectation of αn being a lower bound for the maxrun function
ρ(n) is valid by proving that there is a whole family of asymptotic lower bounds arbi-
trarily close to αn. The further research will include trying to push the lower bound
higher up to see whether the conjecture ρ(n) < n holds. This will involve finding
novel ways of creating strings “rich in runs” as the approach with concatenation ◦
seems to give as much as it could.
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