
Song Classifications for Dancing

Manolis Christodoulakis1,4, Costas S. Iliopoulos1,3,⋆, M. Sohel Rahman1,3,⋆⋆,⋆ ⋆ ⋆, and
William F. Smyth4,5,†

1 Algorithm Design Group
Department of Computer Science, King’s College London

Strand, London WC2R 2LS, England
http://www.dcs.kcl.ac.uk/adg

2 Algorithms Research Group,
Department of Computing and Software,

McMaster University, Canada
3 {csi, sohel}@dcs.kcl.ac.uk

4 manolis.christodoulakis@kcl.ac.uk
5 smyth@mcmster.ca

Abstract. A fundamental problem in music is to classify songs according to their
rhythm. A rhythm is represented by a sequence of Quick (Q) and Slow (S) symbols,
which correspond to the (relative) duration of notes, such that S = QQ. In this paper
we present a linear algorithm for locating the maximum-length substring of a music
text t that can be covered by a given rhythm r. An efficient algorithm to solve this
problem, can then be used to find which rhythm, from a given set of such rhythms,
covers the largest part of the music sequence under question, and thus best describes
that sequence.

Keywords: algorithms, music sequence

1 Introduction

The subject of musical representation for use in computer application has been studied
extensively in computer science literature [2, 1, 4, 9, 13, 11]. Computer assisted music
analysis [12, 10] and music information retrieval [5, 8, 7, 6] has a number of tasks that
can be related to fundamental combinatorial problems in computer science and in
particular to stringology. A survey of computational tasks arising in music informa-
tion retrieval can be found in [3]. We, in this paper, are interested in automatic music
classification which is one of the fundamental tasks in the area of computational mu-
sicology. Songs need to be classified by one or more of their characteristics, like genre,
melody, rhythm, etc. For human beings, the process of identifying those characteris-
tics seems natural. Computerized classification though is hard to achieve, given that
there does not exist a complete agreement on the definition of those features.

In this work, we will be concerned with classification by dancing rhythm. We will
define what a dancing rhythm is, and how it can be identified in a musical sequence,
a song. The musical sequences we will be considering consist of a series of onsets (or
events) that correspond to music signals, such as drum beats, guitar picks, horn hits,
etc. It is the intervals between those events, that characterize how the song is danced.

⋆ Supported by EPSRC and Royal Society grants.
⋆⋆ Supported by the Commonwealth Scholarship Commission in the UK under the Commonwealth

Scholarship and Fellowship Plan (CSFP).
⋆ ⋆ ⋆ On Leave from Department of CSE, BUET, Dhaka-1000, Bangladesh.

† Supported in part by an NSERC grant.

Proceedings of the Prague Stringology Conference ’06

In particular, there are two types of intervals in the dancing rhythm of a song:
quick (Q) and slow (S). Quick means that the duration between two (not necessarily
successive) onsets is q milliseconds, while the slow interval is equal to 2q. For exam-
ple, a cha-cha is given as the sequence SSQQSSSQQS while a foxtrot is given as
SSQQSSQQ, and a jive is given as SSQQSQQS.

The paper is organized as follows. In Section 2 we describe the notation that is
used throughout the paper, and we define the terms matching and covering in musical
sequences. In Section 3 we describe in detail our algorithm for finding the largest area
in a musical sequence that is covered by a given rhythm. As will be seen, under the
restrictions we impose on our problem, the algorithms we devise run in linear time.
Finally, Section 4 contains our concluding remarks.

2 Definitions

A musical sequence t is a string t = t[1]t[2] . . . t[n], where t[i] ∈ N
+, for all 1 ≤ i ≤ n.

For example the sequence

[0, 50, 100, 200, 250, 300, 350, 400, 500, 550]

represents a sequence of events occurring at 0 milliseconds, 50 milliseconds, 100 mil-
liseconds, and so on, in the original music signal. Alternatively, we can represent
musical sequences by the duration of the events, as follows

[50, 50, 100, 50, 50, 50, 50, 100, 50]

The two definitions above are equivalent. We prefer the latter here for the sake of
clarity. The above musical sequence can then be represented graphically as shown in
the following figure.

50 50 100 50 50 50 50 100 50

0 50 100 200 250 300 350 400 500 550

A rhythm r is a string r = r[1]r[2] . . . r[m], where r[j] ∈ {Q,S}, for all 1 ≤ j ≤ m.
For example, r = QSS. Q and S correspond to intervals between events, such that
the length of an interval represented by an S is double the length of an interval
represented by Q. However, the exact length of Q or S is not a priori known. The
length m of the rhythm, in practical cases, is usually 10-13 characters and thus we
can consider it to be constant.

Let Q represent intervals of size q ∈ N
+ milliseconds, and S represent intervals of

size 2q. Then Q is said to match with the substring t[i..i′] of the musical sequence t,
if and only if

q = t[i] + t[i + 1] + . . . + t[i′]

where 1 ≤ i ≤ i′ ≤ n. If i = i′ then the match is said to be solid. Similarly, S is said
to match with t[i..i′] if and only if either of the following is true

– i = i′ and t[i] = 2q, or
– i 6= i′ and there exists i ≤ i1 < i′ such that

q = t[i] + t[i + 1] + . . . + t[i1] = t[i1 + 1] + t[i1 + 2] + . . . + t[i′]

42

Song Classifications for Dancing

1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50
︸ ︷︷ ︸ ︸ ︷︷ ︸

q = 150 Q S

︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸

q = 100 Q Q S

Figure 1. Q- and S-matching in musical sequences

As with Q, the match of S is said to be solid if i = i′.
For example, consider the musical sequence shown in Figure 1. For q = 150, Q

matches with t[2..3] and S matches with t[5..9]. For q = 100, Q matches with t[1..2],
t[3] etc. and S matches with t[6..8]. However, note that for q = 100, S does not match
with t[7..9] despite the fact that

∑
9

i=7
t[i] = 2q.

Consequently, a rhythm r = r[1] . . . r[m] is said to match with the substring t[i..i′]
of the musical sequence t, if and only if there exists an integer q ∈ N

+, and integers
i1 < i2 < . . . < im < im+1 such that

1. i1 = i, im+1 = i′ + 1, and
2. r[j] matches t[ij..ij+1 − 1], for all 1 ≤ j ≤ m

For instance, the rhythm r = QSS matches with t[2..5] as well as with t[5..8], in
Figure 2, for q = 50.

Finally, a rhythm r is said to cover the substring t[i..i′] of the musical sequence
t, if and only if there exist integers i1, i

′
1, i2, i

′
2, . . . , ik, i

′
k, for some k ≥ 1, such that

– r matches t[iℓ..i
′
ℓ], for all 1 ≤ ℓ ≤ k, and

– i′ℓ−1
≥ iℓ − 1, for all 2 ≤ ℓ ≤ k

In our example, Figure 2, r = QSS covers t[2..8] for q = 50.

1 2 3 4 5 6 7 8 9

50 50 100 50 50 50 50 100 50
︸ ︷︷ ︸

r ︸ ︷︷ ︸

r

Figure 2. Matches of r = QSS in t, for q = 50

3 Maximal Coverability Algorithm

In this section, we tackle the maximal coverability problem, which is formally defined
as follows:

Problem 1. Given a musical sequence t = t[1]t[2] . . . t[n], t[i] ∈ N
+, and a rhythm

r = r[1]r[2] . . . r[m], r[j] ∈ {Q,S}, find the largest (longest) substring t[i..i′] of t that
is covered by r.

Note that the definition above is very general, allowing extreme cases like the
following: consider a musical sequence consisting of a single tone repeated every 1ms,
t = 111 . . . 1. Consider also a rhythm r consisting of Q’s and S’s. Then r will match
t in every position i regardless of the value of q, since any Q in r will match with a

43

Proceedings of the Prague Stringology Conference ’06

Algorithm 6 Stage 1: Computing vectors first and next
1: function FindOccurrences(t[1..n])
2: first[1..|Σ|] ← 00 . . . 0
3: next[1..n] ← 00 . . . 0
4: last[1..|Σ|] ← 00 . . . 0 ⊲ Keeps track of the last occurrence of a particular σ ∈ Σ so far
5: for i ← 1 to n do

6: if last[t[i]] = 0 then

7: first[t[i]] ← i
8: else

9: next[last[t[i]]] ← i

10: last[t[i]] ← i

11: return first, next

sequence of q 1’s, and any S in r will match with a sequence of 2q 1’s. To avoid such
cases, we introduce the following restriction for the matching of a rhythm r with a
substring t[i..i′] of t:

Restriction 1. For each match of r with a substring t[i..i′], there must exist at least

one S in r whose match in t[i..i′] is solid; that is, there exists at least one 1 ≤ j ≤ m
such that r[j] = t[k] = 2q, i ≤ k ≤ i′, for some value of q.

As explained before, the value of q is not a priori given. Therefore each σ ∈ Σ
should be considered as a candidate q, provided of course that 2σ ∈ Σ, and for that
particular q all the occurrences of the rhythm r must be identified. Equivalently, we
can consider each σ to be equal to S = 2q, provided that σ/2 ∈ Σ. In our algorithm,
we will be using the latter form. Then, for each such σ ∈ Σ, the algorithm sets
S = 2q = σ and proceeds in three stages:

– Stage 1 : Find all occurrences of S in t.
– Stage 2 : Transform the areas around all the S’s into a sequences of Q’s.
– Stage 3 : Find the maximal area covered by r, for the current q.

We next explain each of these stages in detail.

3.1 Stage 1 – Finding all occurrences

In this stage, we need to find all occurrences of S = σ, for the chosen σ, so that we
can (in Stage 2) transform the areas around each of those occurrences to sequences
of Q’s. A single scan through the input string suffices to find all occurrences of σ.
Since the stage is repeated for every distinct σ ∈ Σ, overall the algorithm would need
O(|Σ|n) time on this stage alone.

However, it is easy to speedup this stage, by collectively computing linked lists
of the occurrences of all the symbols. Given that the alphabet Σ is indexed and its
size is bounded, this can be done in O(n) time and O(n + |Σ|) space in the following
manner. Consider vectors first, of size |Σ|, and next, of size n, such that

– first[σ] = i if and only if the first occurrence of the symbol σ appears at position i
– next[i] = j if and only if t[i] = t[j] and for all k, i < k < j, t[k] 6= t[i]; if no such

j exists, then next[i] = 0

A single scan through t suffices to compute vectors first and next. Algorithm 6 shows
how this is done in detail.

44

Song Classifications for Dancing

3.2 Stage 2 – Transformation

The task of this stage is to transform t, which is a sequence of integers, into a sequence
t′, over {Q,S} for the chosen q = σ/2, so that all the matches of r into t′ (and
consequently, into t) are identified. However, this transformation is ambiguous, in
several ways, as the following example demonstrates.

Consider the musical sequence shown in Figure 3(a), and let q = 50. One does not
know whether two consecutive Q’s should be transformed as QQ or S, and creating all
the possible combinations is too time consuming. Moreover, as shown in Figure 3(b)
the transformation that is generated while processing t from left to right is different
from that generated while moving from right to left.

(a)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸

Q Q Q S Q Q Q

︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸

S Q S Q Q Q

︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸

Q S S Q Q Q
. .

(b)

1 2 3 4 5 6 7 8 9

50 50 50 100 15 35 15 50 50
︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸

Q Q Q S Q Q Q
=⇒

︸︷︷︸︸︷︷︸︸︷︷︸︸︷︷︸ ︸ ︷︷ ︸ ︸︷︷︸︸︷︷︸

Q Q Q S Q Q Q
⇐=

Figure 3. Ambiguities in transformation

For each occurrence of the current symbol σ = 2q = S, we convert the area
surrounding that S into sequences of Q’s. Algorithm 7 gives the details.

1 2 3 4 5 6 7 8 9 10 11 12 13 14

. . . 100 50 25 25 100 50 15 30 5 30 15 25 25 100 . . .

Figure 4. Transforming the area around t[5] = S = 100

3.3 Stage 3 – Maximal Covered Area

As soon as we get t′, a sequence over {Q,S}, transformed from t in Stage 2, our job
is to first identify all the occurrences of r in t′. To do that efficiently we exploit a
bit-masking technique as described below. We first define some notations that we use
for sake of convenience. We define St′ and Sr to indicate an S in t′ and r respectively.
Qt′ and Qr are defined analogously. We first perform a preprocessing as follows. We
construct t′′ from t′ where each St′ is replaced by 01 and each Qt′ is replaced by 1.
Note that we have to keep track of the corresponding positions of t′ in t′′. We then
construct the ’Invalid’ set I for t′′ where I includes each position of ’1’ of St′ in t′′.

45

Proceedings of the Prague Stringology Conference ’06

Algorithm 7 Stage 2: Transformation
1: function Transform(t[1..n],σ)
2: q ← σ/2
3: Rσ ← {}
4: i ← first[σ]
5: while i 6= 0 do

6: x ← “S′′

7: r ← 0
8: j ← i
9: while r < q and j < n do

10: j ← j + 1
11: r ← r + t[j]
12: if r = q then

13: Push Q at the back of x
14: r ← 0
15: r ← 0
16: j ← i
17: while r < q and j > 1 do

18: j ← j − 1
19: r ← r + t[j]
20: if r = q then

21: Push Q at the front of x
22: r ← 0
23: Rσ ← Rσ ∪ {x}
24: i ← next[i]

25: return Rσ

For example, if t′ = QQSQS then t′′ = 1101101 and I = 4,7. It is easy to see that
no occurrence of r can start at i ∈ I. We also construct r′ from r where each Sr

is replaced by 10 and each Qr is replaced by 0. This completes the preprocessing.
After the preprocessing is done, at each position i /∈ I of t′′ we perform a bitwise ‘or’
operation between t′′[i..i + |r′| − 1] and r′. If the result of the ‘or’ operation is all 1’s
then we report an occurrence at position i of t′′. The details are formally given in the
form of Algorithm 8.

We now discuss the correctness of Algorithm 8. We use the symbol ∼ and ≁ to
denote, respectively “matches” and “doesn’t match”. It is easy to see that for the
problem in hand we must meet the following conditions.

1. Qt′ ∼ Qr

2. Qt′Qt′ ∼ Sr

3. St′ ∼ Sr

4. St′ ≁ QrQr

All the conditions stated above are obeyed by the encoding we use as shown below.
Recall that we do bitwise or operation and that we report a match when the result
of the operation is all 1’s.

1. Qt′(= 1) and Qr(= 0) always matches: (1 or 0 = 1).
2. Qt′Qt′(= 11) always matches with Sr(= 10): (11 or 10 = 11).
3. St′(= 01) can only match with Sr(= 10) : (01 or 10 = 11).
4. Since St′(= 01) can’t give a match with QrQr(= 00): (01 or 00 = 01).

However we have a problem when the Sr and St′ are ‘miss-aligned’. We define
start(Sr) = 1 and end(Sr) = 0. Similarly, we have, start(St′) = 0 and end(St′) = 1.
Assume that we have an Sr(say Sk

r) miss-aligned with an St′(say Sl
t′).

46

Song Classifications for Dancing

Algorithm 8 Reporting Occurrences of r in t′

1: function FindMatch(t′,r)
2: Occ[1..|t′|] ← 0 0 . . . 0 ⊲ Preprocessing Step
3: I[1..|t′′|] ← 0 0 . . . 0
4: j = 1
5: for i = 1 to t′ do

6: track[j] = i
7: if t′[i] = “S” then

8: t′′[j] = “01”
9: I[j + 1] = 1 ⊲ Position j + 1 is invalid

10: j = j + 2
11: else

12: t′′[j] = “1”
13: j = j + 1

14: j = 1
15: for i = 1 to r do

16: if r[i] = “S” then

17: r′[j] = “10”
18: j = j + 2
19: else

20: r′[j] = “0”
21: j = j + 1

⊲ Matching Step
22: for i = 1 to t′′ do

23: if I[i] 6= 1 then

24: if t′[i..i + m1 − 1] or p′ = “11 . . . 1” then

25: Occ[track[i]] = 1

26: return Occ

Case 1- end(Sk
r) is aligned with start(Sl

t′): We have end(Sk
r) or start(Sl

t′) 0 or 0 =
0. So we have no match as required.

Case 2- start(Sk
r) is aligned with end(Sl

t′): Unfortunately here we have start(Sk
r)

or end(Sl
t′) = 1 or 1 = 1 which may create problems. We distinguish between two

subcases. We say an Sr is ‘inside’ r (or equivalently r′) if this Sr is not the start
of r.

Case2.a- Sk
r is inside r: There must be either a Qr or another Sr (say Sj

r) just
before this Sk

r . In any case we will have either Qr(= 0) or end(Sj
r)(= 0) to

align with start(Sl
t′)(= 0) which will give 0 after the or operation and hence

we have no problem.
Case2.b- Sk

r is the start of r: In this case we have start(Sk
r) or end(Sj

t′) = 1
which may give us a ‘false positive’ starting at this position. To exclude these
false positives we have the ‘Invalid’ set I. The main idea is that no occurrence
of the rhythm can start at end(St′). So each end(St′) is included in I. And we
check whether the position we are checking is in I or not.

Here we give an example of a ‘false positive’ as discussed above. Suppose t′ =
QQSQQ and r = SQ. Then we have t′′ = 110111 and r′ = 100. It is easy to see
that if we perform the bitwise or operation at each position of t′′ we get two matches
starting at t′′[3] and also at t′′[4]. But it is easy to verify that position 4 of t′′ doesn’t
really exist in t′. So its a ‘false positive’.

The above discussion establishes the correctness of Algorithm 8. Since the size of
the rhythm is considered constant, Algorithm 8 runs in O(|t′′|/w) time where w is

47

Proceedings of the Prague Stringology Conference ’06

the size of the word of the target machine. Finally, once we get the occurrences of the
rhythm r in t′ considering every choice of σ it is easy to report the maximal covered
area in linear time. In fact we can compute this area on the fly while computing all
the occurrences of r in t′ by slightly modifying Algorithm 8.

4 Open Problems

In this paper we have presented algorithms for computerized song classifications under
some specific constraints. A number of issues remain unsolved as follows:

1. Designing an algorithm that avoids the restriction that one symbol has to be solid.
2. Applying a limit on the number of “additions” in the numeric text to match a Q

and/or S.
3. Removing the dependency on m from the algorithm.

References

[1] A. R. Brinkman: PASCAL Programming for Music Research, The University of Chicago Press,
Chicago and London, 1990.

[2] D. Byrd and E. Isaacson: A music representation requirement specification for academia.
The Computer Music Journal, 27(4) 2003, pp. 43–57.

[3] T. Crawford, C. Iliopoulos, and R. Raman: String matching techniques for musical

similarity and melody recognition. Computing in Musicology, 11 1998, pp. 227–236.
[4] P. Howell, R. West, and I. Cross, eds., Representing Musical Structure, Academic Press

London, 1991.
[5] C. S. Iliopoulos, K. Lemstrom, M. Niyad, and Y. J. Pinzon: Evolution of musical motifs

in polyphonic passages, in Symposium on AI and Creativity in Arts and Science, Proceedings of
AISB’02, G. Wiggins, ed., 2002, pp. 67–76.

[6] K. Lemstrom: String matching techniques for music re trieval. PhD Thesis, University of
Helsinki, Department of Computer Science, 2000.

[7] K. Lemstrom and P. Laine: Musical information retrieval using musical parameters, in
International Computer Music Conference, 1998, pp. 341–348.

[8] K. Lemstrom and J. Tarhio: Detecting monophonic patterns within polyphonic sources, in
Multimedia Information Access Conference, vol. 2, 2000, pp. 1261–1279.

[9] A. Marsden and A. Pople, eds., Computer Representations and Models in Music, Academic
Press London, 1992.

[10] M. Mongeau and D. Sankoff: Comparison of musical sequences. Computers and the
Humanities, 24 1990, pp. 161–175.

[11] E. Selfridge-Field, ed., Beyond MIDI: The Handbook of Musical Codes, The MIT Press,
1997.

[12] D. Stech: A computerassisted approach to micro analysis of melodic lines. Computers and
the Humanities, 15 1981, pp. 211–221.

[13] G. A. Wiggins, E. Miranda, A. Smaill, and M. Harris: A framework for the evaluation

of music representation systems. The Computer Music Journal, 17(3) 1993, pp. 31–42.

48

