
On Some Combinatorial Problems Concerning the

Harmonic Structure of Musical Chord Sequences

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

{cantone | cristofaro | faro}@dmi.unict.it

Abstract. We present some combinatorial problems which arise in the fields of music
representation and music processing, especially in contexts such as the analysis of
the harmonic structure of chord sequences. We concern ourselves with those chord
sequences which exhibit a certain kind of regular harmonic structure, and discuss some
problems related to them. We provide also algorithms to solve some of these problems.

Keywords: music processing, harmonic structure analysis, chord sequences.

1 Introduction

Musical chord sequences, or chord progressions, possess a combinatorial structure
very rich and complex, which require efficient computational methods to be fully
understood and analyzed.

By using a convenient symbolic representation of musical notes and chords, it is
possible to apply suitable mathematical methods to discover that kind of regularity
in the harmonic structure which many chord sequences seem to exhibit [7, 8].

Musical notes can be coded in various ways. A typical example is provided by
the standard MIDI representation, where notes are coded by integers [9]. Once a
particular coding of the notes is fixed, a chord can be conveniently represented by
the collection of the symbols corresponding to the notes in the chord. Notice that
in codings like the standard MIDI representation, notes that differ by one or more
octaves are represented by distinct symbols. Such kind of codings are especially ap-
propriate in the context of Music Information Retrieval, where the representation of
(monophonic) musical sequences by strings of integers gives the possibility of apply-
ing powerful string matching techniques to discover musical pattern repetitions and
melodic similarity [2, 4, 5, 3].

However, in many cases, especially when one is interested in the interval content
of chords, it is more convenient to assume octave equivalence of notes, i.e., to regard
as equal any two notes which are one or more octaves apart [6]. In such a case,
only 12 symbols are needed to represent notes, at least in the equal temperament
system of western music. For example, let us consider the two simple chord sequences
S1 and S2 represented in Figure 1. If we assume octave equivalence, and use the
traditional naming of notes with the symbols C, C♯, D, D♯, E, F, F♯, G, G♯, A, A♯, B, as
shown in Figure 2, then we may represent both sequences as the following list of sets

{C, E, G}, {C, E, A}, {C, F, A}, {D, F, A}, {D, F, B}, {D, G, B}, {E, G, B} .

In fact, the corresponding chords of the sequences are made up of the same notes but
in different octaves, i.e., they differ only in the voicings. Thus the two chord sequences

Proceedings of the Prague Stringology Conference ’06

G 7
4 ˇˇˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ ˇˇ ˇ Chord Sequence S1

G 7
4 ˇˇˇ ˇˇˇ ˇˇˇ ˇˇ ˇ ˇˇˇ ˇˇˇ ˇˇˇ Chord Sequence S2

Figure 1. Two chord sequences related by octave equivalence. Chord sequence S1 exhibits a regular
harmonic structure.

G
C

ˇ
C♯

4ˇ
D

ˇ
D♯

4ˇ
E

ˇ
F

ˇ
F♯

4ˇ
G

ˇ
G♯

4ˇ
A

ˇ
A♯

4ˇ
B

ˇ

Figure 2. The traditional naming of notes with symbols C,C♯,D,D♯,E,F,F♯,G,G♯,A,A♯,B

can be really considered as two distinct variants, or voice leadings,1 of a same chord
sequence (assuming octave equivalence). However, if we regard the chords as ordered
sets of notes, we may discover some regularities in the structure of the sequence S1.
Indeed, if we order the notes of each chord from the lowest to the highest one, i.e., if
we look at the voicings of the chords, we get a representation of each chord as a string
of symbols, and the chord sequence can be conveniently represented by a matrix M
whose columns correspond to such strings:

M =




G E C A F D B

E C A F D B G

C A F D B G E



 .

A simple inspection of the matrix M reveals the regular structure of the chord se-
quence. Simply look at the secondary diagonal elements of each square submatrix of
M. Also, observe that any two consecutive chords of the sequence share at least two
notes, and any three consecutive chords share at least one note, so that the chords are
connected in such a way that the “transition” from a chord to a next one is gradually
achieved by a series of smooth chord-passages: from a perceptual point of view, this
translates into a pleasant sensation when the chord sequence is heard.

Notice also that if we “glue” at the left (or right) end of the matrix M a copy
of itself, we get a matrix with the very same structure of M. Musically speaking,
this property can be interpreted by saying that the chord sequence has a kind of
“circular” harmonic structure which, when heard, tends to resolve on itself, i.e., when
the chord sequence is heard for the first time, one expects that it will be played
again. This is strictly related to the phenomenon of musical expectation, which plays

1 Notice that in music, the usual meaning of voice leading concerns the horizontal motion of the
notes, or voices, of the chords inside a chord sequence, where a chord sequence is regarded as the
superimposition of two or more melodies played simultaneously. For us, a voice leading is simply
a sequence of chord-voicings. But from a formal point of view, the two notions are equivalent, up
to minor details (see Section 2 and [10]).

50

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

a fundamental role in music composition. Thus, the ability of creating and discovering
harmonic structures similar to that of the chord sequence S1 in Figure 1 may have
important applications in the fields of automatic music composition and automatic
music analysis.

Chord sequences having a harmonic structure of the kind described above will be
referred to as regular chord progressions.

In this paper we report some preliminary results concerning an ongoing inves-
tigation on various combinatorial questions about regular chord progressions and
voicings.

1.1 Paper’s organization

The paper is organized as follows. In Section 2 we introduce some basic notions
and give a formal definition of regular chord progression. Subsequently, in Section 3
we present algorithms, based on the bit-parallelism technique, for some problems
concerning combinatorial aspects of regular chord progressions, and also we discuss
some other related questions. Then, in Section 4 we draw our conclusions. Finally, an
appendix containing some theoretical results concludes the paper.

2 Basic definitions and properties

Before entering into details, we need a bit of notations and terminology. Let Σ be a
finite alphabet. A string X of length m ≥ 0 is represented as a finite array X[0 ..m−1].
For m = 0 we obtain the empty string ε. The length of X is denoted by |X|. By X[i]
we denote the (i+1)-th symbol of X, for 0 ≤ i < |X|. Likewise, by X[i .. j] we denote
the substring of X contained between the (i + 1)-th symbol and (j + 1)-th symbol of
X, for 0 ≤ i ≤ j < |X|.

For convenience, we do not distinguish between a symbol s and the one-character
string “s”. Thus, for any two strings X and Y and any symbol s, we write X s Y for
the string Z of length |X| + |Y | + 1 such that

- Z[0 .. |X| − 1] = X,
- Z[|X|] = s, and
- Z[|X| + 1 .. |X| + |Y |] = Y .
A chord over Σ is a nonempty set C of two or more symbols of Σ. The size of

a chord C, denoted by size(C) or by |C|, is the number of symbols in C. A voicing
over Σ is a string V of symbols of Σ such that |V | ≥ 2 and V [i] 6= V [j], for all distinct
i, j ∈ {0, 1, . . . , |V | − 1}. The base chord Set(V) of a voicing V is the collection of
the symbols occurring in V . A voicing V is said to be a voicing of a chord C if
Set(V) = C.2 A chord progression is a sequence C = 〈C0, C1, . . . , Cn〉 of chords
with the same size.

A voice leading over Σ is a sequence V = 〈V0, V1, . . . , Vn〉 of voicings over Σ
of the same length. A voice leading V = 〈V0, V1, . . . , Vn〉 is a voice leading of a
chord progression C = 〈C0, C1, . . . , Cm〉, provided that n = m and Vi is a voicing
of the chord Ci, for i = 0, 1, . . . , n.

Let V and W be voicings over the alphabet Σ. We say that V is (immediately)
connected to W , and write V −→ W , if W = s V [0 .. |V | − 2], for some symbol
s ∈ Σ. Plainly, when V −→ W , the voicings V and W must have the same length. A

2 Thus, there are m! distinct voicings of any chord C of size m.

51

Proceedings of the Prague Stringology Conference ’06

voice leading V = 〈V0, V1, . . . , Vn〉 is connected if Vi −→ Vi+1, for i = 0, 1, . . . , n−1;
V is circularly connected if it is connected and in addition Vn −→ V0.

3

A voicing V is connectable to a voicing W with respect to an alphabet Σ, in
symbols V =⇒ W , if there is a connected voice leading V = 〈V0, V1, . . . , Vn〉 over Σ,
with n ≥ 1, such that V0 = V and Vn = W . In such a case, we say that the voice
leading V connects V to W (with respect to Σ).

The connectivity relation “=⇒” is an equivalence relation, as shown in the follow-
ing lemma.

Lemma 1. Let V , W , and Z be voicings over an alphabet Σ. Then

(1) V =⇒ V ;
(2) if V −→ W then W =⇒ V ;
(3) if V =⇒ W then W =⇒ V ;
(4) if V =⇒ W and W =⇒ Z, then V =⇒ Z.

Therefore the relation =⇒ is an equivalence relation.

Proof. We give only the proof of (1) and (2), since (4) is an immediate consequence
of the definition of the relation “=⇒” and (3) follows from (2) and (4).

Let V , W , and Z be voicings of the same length m, over the alphabet Σ.
Concerning (1), it can easily be verified that V is connected to V by the voice

leading 〈V0, V1, . . . , Vm〉, where V0 = V and

Vi+1 =
Def

Vi[m − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 1.

Next, let V −→ W . In order to verify (2), we distinguish two cases, according
to whether V [m − 1] = W [0] or V [m − 1] 6= W [0]. If V [m − 1] = W [0], then W is
connected to V by the voice leading 〈V0, V1, . . . , Vm−1〉, where V0 = W and

Vi+1 =
Def

Vi[m − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 2.
On the other hand, if V [m−1] 6= W [0], then W is connected to V by the voice leading
〈V0, V1, . . . , Vm〉, where V0 = W and

Vi+1 =
Def

V [m − i − 1] Vi[0 ..m − 2] ,

for i = 0, 1, . . . ,m − 1. ⊓⊔

A chord C is connected to a chord D, written C −→ D, if V −→ W , for some
voicings V of C and W of D.4 A chord progression C is connected (resp., circu-
larly connected) if it has a connected (resp., circularly connected) voice leading.
A chord progression C = 〈C0, C1, . . . , Cn〉 is regular if it is circularly connected and,
in addition, Ci 6= C(i+1) mod (n+1), for i = 0, 1, . . . , n. It can easily be verified that the
chord progression S1 in Figure 1 is regular.

We conclude the section with some examples.

3 Notice that if a voice leading 〈V0, V1, . . . , Vn〉 is circularly connected, then n ≥ |V0| − 1.
4 From the context it will always be clear whether the symbol “−→” denotes the connectivity

relation between voicings or between chords.

52

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

Example 2. Given the alphabet Σ = {a, b, c, d, e}, the following strings

V1 = abcd , V2 = dabc , V3 = edab , V4 = edabc

are voicings over Σ. The voicings V1, V2, and V3 have length 4, whereas V4 has length
5. On the other hand, the strings

X = abca , Y = deece , Z = abcdf

are not voicings over Σ. Indeed, X[0] = X[3] = a, Y [1] = Y [2] = Y [4] = e, and
Z[4] = f is not a symbol of Σ (however, Z is a voicing over the extended alphabet
Σ∪{f}). Moreover, the voice leading V = 〈V1, V2, V3〉 is connected, so that the voicing
V1 is connectable to voicing V3 with respect to Σ. ⊓⊔

Example 3. The following chord progression over the alphabet Σ = {a, b, c, d, e, f}

C = 〈{f, a, c}, {a, b, c}, {c, e, b}, {c, e, b}, {f, c, e}, {f, a, c}〉

is circularly connected since it has the circularly connected voice leading

V = 〈caf , bca, ebc, ceb, fce, afc〉 .

However, C is not regular since the first and the last chord coincides.
Notice that the above voice leading V can also be represented by the matrix

M =




f a c b e c
a c b e c f
c b e c f a



 ,

whose columns correspond, from left to right, to the voicings of V , oriented from
bottom to top (as are the notes in the staff). Observe that the secondary diagonal
elements in each square submatrix of M are equal. ⊓⊔

Example 4. The chord progression

〈{a, b, c}, {a, b, f}, {a, d, f}, {b, d, f}〉

over the alphabet Σ = {a, b, c, d, e, f} is connected but not circularly connected, as
can be easily verified by trying out all of its possible connected voice leadings. ⊓⊔

3 Discovering regular structures: some algorithms

In this section we discuss some problems concerning combinatorial properties of reg-
ular chord progressions, and provide also algorithms to solve them.
We begin by addressing the following question.

Problem 5. Given a chord progression C = 〈C0, C1, . . . , Cn〉 over an alphabet Σ, a
voicing V of C0, and a voicing W of Cn, construct, if it exists, a voice leading of
C connecting V to W , i.e., a connected voice leading V = 〈V0, V1, . . . , Vn〉 such that
V0 = V , Vn = W , and Set(Vi) = Ci, for i = 0, 1, . . . , n. ⊓⊔

53

Proceedings of the Prague Stringology Conference ’06

We can solve Problem 5 as follows. Let m be the length of V . We show how to
construct the desired connected voice leading V of C, or determine that such a voice
leading does not exist, by a sequence of n + 1 stages. We start by setting V0 = V
(this is the initial stage 0). Next, let us suppose that at the end of stage i we have
constructed a connected voice leading Vi = 〈V0, V1, . . . , Vi〉 of Ci = 〈C0, C1, . . . , Ci〉,
with 0 ≤ i < n. Then, we form the set Si =

Def
Set(Vi[0 ..m − 2]) and check whether

Si ⊆ Ci+1. If this is the case, we prolongate the voice leading Vi with the new voicing
Vi+1 defined by

Vi+1 =
Def

c Vi[0 ..m − 2] ,

where c ∈ Ci+1 \ Si, and proceed to the next stage. Otherwise, we stop the process
and announce that there is no connected voice leading of C from V to W . If all stages
are completed successfully and, in addition, the last voicing of Vn equals W , then it
is immediate to check that Vn is a voice leading of C which connects V to W . The
correctness of the above procedure follows immediately from the observation that if
a voice leading of C connecting V to W does exist, then it is unique.

In Figure 3 we show the pseudo-code of an algorithm, named ALGO1, which
implements the above construction process.

Remark 6. Notice that during the execution of the algorithm ALGO1, the string-
variable X contains the voicings Vi, which form a connected voice leading of C from
V to W , provided that it exist. Therefore, if immediately after line 8 of ALGO1 we
add an instruction OUTPUT(X), we get as by-product the sequence V1, V2, . . . , Vk,
where k is the largest index less than or equal to n such that the chord progression
Ck = 〈C0, C1, . . . , Ck〉 has a connected voice leading starting at V . In fact, Vk =
〈V, V1, . . . , Vk〉 turns out to be a voice leading of Ck. ⊓⊔

Concerning the complexity of the algorithm ALGO1, we notice that in the worst
case we need to compute all the partial voice leadings V0,V1, . . . ,Vn; thus the total
time spent in the whole process is O(n · f(m)), where f(m) is an upper bound to
the time needed to check whether Si ⊆ Ci+1 and to construct the voicing Vi+1, for
i = 0, 1, . . . , n − 1.

If we represent sets by linear arrays, we get f(m) = O(m2), yielding an overall
running time of O(nm2).

However, if the alphabet Σ is sufficiently small to fit into a computer word, we
can conveniently use the bit-parallelism technique [1] to reduce the running time to
O(n+m). Indeed, let us assume that σ = |Σ| ≤ ω, where ω is the number of bits in a
computer word. Then, any subset of Σ can be represented by a bit mask of length σ,
which fits into a computer word. By using such a representation, the set operations
of union, intersection, and complement, as well as the set containment test, can be
executed in constant time by suitable combinations of the bitwise operations “OR”,
“AND”, and “NOT” (denoted by the symbols “∨”, “∧”, and “∼”, respectively).

More precisely, after fixing an (arbitrary) ordering

s0, s1, . . . , sσ−1

of the symbols of Σ, we use the following representations:

– a singleton {si} ⊆ Σ is represented as the bit mask B(si) = b0b1 · · · bσ−1 (of length
σ), where

bj =

{
1 if j = σ − 1 − i
0 otherwise ,

54

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

ALGO1(C, V, W)
–It is assumed that C is a chord progression, V is a voicing of
–the first chord of C, and W is a voicing of the last chord of C.

1. m := |V|
2. n := length(C) − 1
3. S := {V[0], . . . ,V[m − 2]}
4. X := V
5. for i := 1 to n do
6. if S ⊆ C[i] then
7. - let z be such that C[i] = S ∪ {z}
8. X := z X[0 ..m − 2]
9. S := (S \ {X[m − 2]}) ∪ {z}

10. else
11. return false
12. if X 6= W then
13. return false
14. return true

Figure 3. Pseudo-code of the algorithm ALGO1 for determining whether a chord progression C has
a voice leading which connects a voicing V to a voicing W

for j = 0, 1, . . . , σ − 1 ;5

– a nonempty subset A = {si0 , si1 , . . . , sik} of Σ is represented as the bit mask

B(A) =
Def

B(si0) ∨ B(si1) ∨ · · · ∨ B(sik) ;

– the empty subset of Σ is represented by the bit mask 0σ, i.e., the string consisting
of σ copies of the bit 0;

– a chord progression C = 〈C0, C1, . . . , Cn〉 is represented as an array C[0 .. n] of
n + 1 bit masks, where C[i] = B(Ci) for i = 0, 1, . . . , n;

– a voicing V is represented as an array V[0 ..m − 1] of m bit masks, where
V[i] = B(V [i]), for i = 0, 1, . . . ,m − 1 (this amounts to represent a voicing
V = v0v1 · · · vm−1 as the ordered tuple of the bit masks corresponding to the
singletons {v0}, {v1}, . . . , {vm−1}).

It is convenient to use a queue Q to store the first m− 1 symbols (represented as
singleton bit masks) of the voicings V0, V1, . . . , Vn, as they are generated during the
construction process. More precisely, at stage i of the construction, the queue Q will
have the following configuration

B(Vi[0]) , B(Vi[1]) , . . . , B(Vi[m − 2]) ,

with the head pointing to the rightmost bit mask, B(Vi[m− 2]), and the tail pointing
to the leftmost one, B(Vi[0]). Notice that there is no need to store the last symbol
of voicing Vi, as the subsequent voicing Vi+1 is completely determined by the partial
voicing Vi[0 ..m − 2] and by the chord Ci+1. The collection Si = Set(Vi[0 ..m − 2])
can be conveniently maintained in a bit mask S, so that the test Si ⊆ Ci+1 becomes
S ∧ C[i + 1] = S. Then the construction of the voicing Vi+1 can be accomplished by
the following sequence of steps:

5 Notice that this amounts to representing the singleton {si} by the “machine integer” (1 ≪ i),
where “≪” denotes the bitwise operation of left-shifting.

55

Proceedings of the Prague Stringology Conference ’06

– retrieve the unique element z in Ci+1 \ Si, which will be the first symbol of Vi+1,
by setting Z := C[i + 1]∧ ∼ S (plainly, Z contains the bit mask B(z));

– retrieve the first bit mask D in Q by executing the operation dequeue(Q);
– enqueue Z in Q.

After these steps, Q will have the following configuration

Z , B(Vi[0]) , B(Vi[1]) , . . . , B(Vi[m − 3])

and Vi+1[0 ..m − 2] will be correctly stored in Q. As a final step, S will be set to
(S∧ ∼ D) ∨ Z, so as to represent the set Si+1.

Remark 7. Since each dequeue operation on Q is always followed by an enqueue oper-
ation, the queue Q may be conveniently implemented as an array Q[0 ..m− 2] of bit
masks with a pointer h, which at stage i stores the partial voicing Vi[0 ..m − 2] into
the array Q in a circular manner, starting at position h. Then a dequeue(Q) opera-
tion is just performed by retrieving the element Q[h] and the subsequent operation
enqueue(Q, Z) is simply performed by setting Q[h] to Z and then shifting circularly
the pointer h one position to the right. ⊓⊔

The complete algorithm, named ALGO2, is presented in details in Figure 4. By
inspection, it is immediate to see that ALGO2 has a O(n + m)-running time.

Remark 8. Analogously to the observation in Remark 6 relative to the algorithm
ALGO1, also algorithm ALGO2 can be adapted so as to produce as output the
longest connected voice leading starting at V (of an initial segment) of C, by using
an additional string-variable X and adding the following lines of code between lines
11 and 12:

X := decode(Z)
for j := 0 to m − 2 do

X := X decode(Q[(h + m − 2 − j) mod (m − 1)])
OUTPUT(X)

The one-argument function decode yields the symbol si, when applied to the bit mask
B(si) which represents the singleton {si}, for si ∈ Σ. The function decode admits a
simple constant-time implementation. To begin with, let us represent the alphabet Σ
as an array Σ[0 .. σ−1], so that Σ[i] = si, for i = 0, 1, . . . , σ−1. Then, if x = B(si), we
have immediately si = Σ[⌈log2 x⌉], for i = 0, 1, . . . , σ − 1. Therefore, we can just put
decode(x)=

Def
Σ[⌈log2 x⌉]. If we further assume that the symbols of the alphabet Σ are

the first σ nonnegative integers, i.e. si = i, for 0 ≤ i ≤ σ − 1, the decoding function
becomes more simply decode(x)=

Def
⌈log2 x⌉. Additionally, under such an assumption,

we have also that B(s) = (1 ≪ s), where ≪ denotes the bitwise operation of left-
shifting, implying that also the coding of a singleton {s} as the bit mask B(s) can be
performed in constant time, for any symbol s ∈ Σ.

Notice, however, that if we modify the ALGO2 algorithm so as to output a voice
leading as described above, its running time increases to O(nm), provided that log2 x
can be computed in constant time. ⊓⊔

A second question we address is the following.

Problem 9. Given a chord progression C = 〈C0, C1, . . . , Cn〉, check whether C is regu-
lar. ⊓⊔

56

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

ALGO2(C, V, W)
1. m := length(V)
2. n := length(C) − 1
3. for h = m − 2 down to 0 do
4. Q[h] := V[m − 2 − h]
5. S := 0σ

6. for i := 0 to m − 2 do
7. S := S ∨ V[i]
8. h := 0
9. for i := 1 to n do

10. if (C[i] ∧ S) = S then
11. Z := (C[i]∧ ∼ S)
12. D := Q[h]
13. Q[h] := Z

14. h := (h + 1) mod (m − 1)
15. S := (S∧ ∼ D) ∨ Z

16. else
17. return false
18. for j := 0 to m − 2 do
19. if Q[(h + j) mod (m − 1)] 6= W[m − 2 − j] then
20. return false
21. return true

Figure 4. An optimized variant with bit-parallelism of the ALGO1 algorithm

To solve this problem, a natural but inefficient solution could be the following one.
Let m be the size of the chords C0, C1, . . . , Cn. We start by checking that Ci 6= Ci+1,
for i = 0, 1, . . . , n − 1. Then we form all possible voicings of the first chord C0, and
for each such voicing V we run the algorithm ALGO2 to search for a connected
voice leading of C from V to the voicing W = V [1 ..m − 1] w, where w is the only
symbol of Cn not contained in C0 (if, indeed, |Cn \ C0| 6= 1, then, certainly, C would
not be regular). Since there are m! possible voicings of C0, such an approach has a
O(m!(n + m))-time complexity.

However, we note some facts. First of all, given the two distinct chords Ci and
Ci+1, we have that Ci −→ Ci+1 if and only if Ci and Ci+1 share exactly m−1 symbols.
Thus we can check easily if C0 −→ C1 −→ · · · −→ Cn −→ C0, which is a necessary
condition for the chord progression C to be regular. Thence, if we find a pair of chords
Ci and Ci+1 such that Ci −→ Ci+1 does not hold, we conclude immediately that C is
not regular. But we point out that the condition C0 −→ C1 −→ · · · −→ Cn −→ C0 is
not, in general, a sufficient condition for C to be regular. For instance, let us consider
the chords C ′ = {a, b, c}, C ′′ = {a, b, x} and C ′′′ = {a, b, d}. Although C ′ −→ C ′′ −→
C ′′′ −→ C ′ and C ′ 6= C ′′ 6= C ′′′ 6= C ′, the chord progression 〈C ′, C ′′, C ′′′〉 is not
regular.

We observe, however, that if C = 〈C0, C1, . . . , Cn〉 is regular, and we set

Xk =
m−1−k⋂

i=0

Ci , for k = 0, 1, . . . ,m − 1, 6

where Xm−1 = C0, then each of the m− 1 sets X0, X1, . . . , Xm−1, except the last one,
must be a nonempty proper subset of the set which immediately follows it; i.e., there

6 Notice that C cannot be regular unless n ≥ m − 1.

57

Proceedings of the Prague Stringology Conference ’06

ALGO3(C, m)
1. n := length(C) − 1
2. for i := 0 to n − 1 do
3. if C[i] = C[i + 1] then
4. return false
5. Xm−1 := C[0]
6. for k := m − 2 down to 0 do
7. Xk := Xk+1 ∩ C[m − k − 1]
8. if |Xk+1 \ Xk| = 1 then
9. - let z be such that Xk+1 = Xk ∪ {z}

10. V [k + 1] := W [k] := z
11. else
12. return false
13. - let c be such that X0 = {c}
14. V [0] := c
15. if c /∈ C[n] and |C[n] ∩ C[0]| = m − 1 then
16. - let w be such that C[n] \ C[0] = {w}
17. W [m − 1] := w
18. return ALGO1(C, V,W)
19. else
20. return false

Figure 5. The algorithm ALGO3 checks if a given chord progression C is regular. The size of the
chords in C is m.

must be m − 1 distinct symbols c0, c1, . . . , cm−2 of C0 such that

X0 = {c0} , X1 = {c0, c1} , . . . , Xm−2 = {c0, c1, . . . , cm−2}.

Additionally, if cm−1 is the symbol of C0 distinct from c0, c1, . . . , cm−2, then a circularly
connected voice leading V = 〈V0, V1, . . . , Vn〉 of C must begin necessarily with the
voicing c0c1 · · · cm−2cm−1; i.e. V0[i] = ci, for i = 0, 1, . . . ,m − 1. These considerations
are indeed immediate consequences of Theorem 19 in Appendix A. In addition, we
must also have that Cn = {c1, . . . , cm−1, w}, for some symbol w distinct from c0,
because Cn 6= C0 and Vn −→ V0, with Vn a voicing of Cn.

Then, given the chord progression C, in order to check whether C is regular,
we proceed as follows. We begin by forming the sets X0, X1, . . . , Xm−1, and check
whether |Xk+1 \ Xk| = 1, for k = 0, 1, . . . ,m − 2. If this is not the case, we conclude
immediately that C is not regular. Otherwise, we extract the symbols c0, c1, . . . , cm−1

such that ck+1 ∈ Xk+1 \Xk, for 0 ≤ k ≤ m− 2, and c0 ∈ X0, and then check whether
Cn = {c1, . . . , cm−1, w}, for some symbol w distinct from c0. If this is not the case, we
conclude again that C is not regular; otherwise we form the voicings V = c0c1 · · · cm−1

and W = c1c2 · · · cm−1w, and run the algorithm ALGO1 with inputs C, V , and W
to search for a connected voice leading of C from V to W . The resulting algorithm,
named ALGO3, is presented in Figure 5. Plainly, the time complexity of ALGO3 is
O(nm2) (at least in case in which sets are represented as linear arrays.)

However, by using the bit-parallelism technique, thus representing as usual sets
as bit masks, and voicings as arrays of bit masks, we can obtain an efficient variant
of the ALGO3 algorithm, called ALGO4. The algorithm ALGO4, shown in Figure 6,
uses the algorithm ALGO2 (the variant of ALGO1 based on bit-parallelism) as a
subroutine. It assumes that the input chord progression C is given as an array C of
bit masks representing the chords in C. By a simple inspection, it is easy to see that

58

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

ALGO4(C, m)
1. n := length(C) − 1
2. for i := 0 to n − 1 do
3. if C[i] = C[i + 1] then
4. return false
5. X := C[0]
6. for k := m − 2 down to 0 do
7. Y := X ∧ C[m − k − 1]
8. if Y 6= 0σ and Y 6= X then
9. V[k + 1] := W[k] := X∧ ∼ Y

10. X := Y
11. else
12. return false
13. V[0] := X
14. if X ∧ C[n] = 0σ and (C[n] ∧ C[0]) ∨ X = C[0] then
15. W[m − 1] := C[n]∧ ∼ C[0]
16. return ALGO2(C,V,W)
17. else
18. return false

Figure 6. An optimized variant with bit-parallelism of the ALGO3 algorithm

the ALGO4 algorithm has an O(n + m)-running time and requires only O(m)-extra
space.

3.1 Further questions on the connectivity of chords and voicings

We discuss next a few further questions concerning the connectivity of chords and
voicings. We begin by observing that

Property 10. Any two chords of the same size can always be connected by a voice
leading. ⊓⊔

Indeed, let C ′ and C ′′ be two chords of size m, and let V0 be any voicing of C ′. We
define a connected voice leading V = 〈V0, V1, . . . , Vm〉, in such a way that

– Vi+1[1 ..m − 1] = Vi[0 ..m − 2], and
– Vi+1[0] is any symbol in C ′′ \ Set(Vi+1[1 ..m − 1]),

for i = 0, 1, . . . ,m − 2.
Since Vm is a voicing of C ′′, it follows that V is indeed a voice leading connecting

C ′ to C ′′.

We observe that in the above construction the voicing V0 of C ′ has been selected
arbitrarily. Therefore, we can conclude that the following property holds too:

Property 11. Any given chord progression C = 〈C0, C1, . . . , Cn〉 can always be embed-
ded into a connected chord progression C′ = 〈C ′

0, C
′
1, . . . , C

′
p〉, in the sense that Ci =

C ′
ki

, for some strictly increasing sequence of indices 0 ≤ ki ≤ p, for i = 0, 1, . . . , n. ⊓⊔

An interesting problem is then the following:

Open Problem 12. Find a minimal connected chord progression which extends a given
chord progression. ⊓⊔

59

Proceedings of the Prague Stringology Conference ’06

The connectivity relation between voicings depends on the richness of the alpha-
bet. For instance, let us consider the voicings V = abcd and W = abdc of the same
chord C = {a, b, c, d}. If we try to connect V to W by using only symbols of the
alphabet Σ = {a, b, c, d}, then we end up with the periodic voice leading

V = 〈V1, V2, V3, V4, V1, V2, V3, V4, V1, V2, V3, V4, . . .〉 ,

where V1 = V = abcd, V2 = dabc, V3 = cdab and V4 = bcda, proving that V can not
be connected to W with respect to the alphabet Σ.

However, if we are allowed to use a new symbol, say x, then it is immediate to
see that

〈abcd, xabc, cxab, dcxa, bdcx, abdc〉

is a voice leading which connects V to W (with respect to the alphabet Σ ∪ {x}).
An immediate consequence of Theorem 16 in Appendix A is the following con-

nectability test for voicings:

Given any two voicings V and W of the same length over an alphabet Σ, if
Set(V) 6= Σ or Set(W) 6= Σ, then V can be connected to W with respect to
Σ, otherwise V can be connected to W if and only if W is a substring of V V .

But despite the simplicity of the above test, the related optimization problem does
not seem to possess a simple and efficient algorithmic solution:

Open Problem 13. Given two voicings V and W of the same length over an alphabet
Σ, determine a shortest voice leading connecting V to W . ⊓⊔

Notice that Open Problems 12 and 13 above may have practical applications in
various musical situations, as for instance in the case in which one wants to compose a
chord progression by using certain fixed or preferred chords or chord-voicings, eventu-
ally interspacing them by some other chords, and the length of the chord progression
is constrained so as to fit within a given maximum number of available bars.

Another interesting question related to the connectivity relation between voicings,
with applications in music composition, is the following. When a composer is engaged
in assembling a harmonic progression, sometimes he or she has at hand only a limited
number of available tones to form the various chords of the progression; this is the case,
for instance, when the notes must belong to a particular scale, such as a pentatonic
scale, or a diatonic scale, or similar. In this case, the above cited Theorem 16 has the
consequence that if V and W are voicings of two distinct chords, then no additional
tone is required to connect V to W . However, the theorem does not say anything on
the fact that a voice leading V which connects V to W have to satisfy the additional
property that any two or more consecutive voicings of V must have distinct base
chords.

The ability of creating harmonic progressions with a certain degree of “dissim-
ilarity” between consecutive chords is an important issue in order for a harmonic
progression not to result too monotonous or uninteresting. From Corollary 18 in Ap-
pendix A, it follows that two extra symbols suffice to allow any two voicings V and
W of the same length to be connected by a voice leading V = 〈V0, V1, . . . , Vn〉 such
that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1. This implies also that given a chord
progression C, we can always extend C to a regular chord progression by adding at
most two new symbols. An interesting question is then the following:

60

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

Open Problem 14. Given a chord progression C = 〈C0, C1, . . . Cn〉 and a fixed bound
k > n, determine the minimum number of new symbols we need to add in order that
C can be extended to a regular chord progression of length at most k. ⊓⊔

4 Conclusions

We have presented some combinatorial problems on strings which arise in the fields
of music processing and music analysis. We have also provided algorithms to solve
some of these problems, whereas some others have been raised but left unsolved (at
least in the sense that no efficient algorithm has been provided). We plan to address
in more details such problems in the future and to provide also efficient algorithmic
solutions to them.

References

[1] R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Communications of
the ACM, 35(10) 1992, pp. 74–82.

[2] E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.
Pinzon: Algorithms for computing approximate repetitions in musical sequences, in Proc. of
the 10th Australasian Workshop on Combinatorial Algorithms, R. Raman and J. Simpson, eds.,
Perth, WA, Australia, 1999, pp. 129–144.

[3] T. Crawford, C. Iliopoulos, and R. Raman: String matching techniques for musical
similarity and melodic recognition. Computing in Musicology, 11 1998, pp. 71–100.

[4] M. Crochemore, C. S. Iliopoulos, T. Lecroq, and Y. J. Pinzon: Approximate string
matching in musical sequences, in Proc. of the Prague Stringology Conference ’01, M. Baĺık and
M. Šimánek, eds., Prague, Czech Republic, Annual Report DC–2001–06, 2001, pp. 26–36.

[5] M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and G. Navarro: A bit-parallel suffix
automaton approach for (δ, γ)-matching in music retrieval, in Proc. of the 10th International
Symposium on String Processing and Information Retrieval (SPIRE’03), E. S. D. Moura and
A. L. Oliveira, eds., vol. 2857 of Lect. Notes in Comp. Sci., Springer-Verlag, 2003, pp. 211–223.

[6] A. Forte: The Structure of Atonal Music, Yale University Press, New Heaven, 1973.
[7] D. Lewin: Generalized Musical Intervals and Transformations, Yale University Press, New

Heaven, 1987.
[8] G. Mazzola: The Topos of Music, Basel: Birkhäuser Verlag, 2003.
[9] C. MIDI Manufacturers Association, Los Angeles: The Complete Detailed MIDI 1.0

Specification, 1996.
[10] D. Tymoczko: Scale Theory, Serial Theory, and Voice Leading, Princeton University, 2006.

61

Proceedings of the Prague Stringology Conference ’06

A Some theoretical results on voicings and connected chord

progressions

In this appendix we present in details some theoretical results that have been already
referenced in Section 3.

We need first some further definitions. Let Σ be an alphabet, and let X and Y
be strings over Σ. We say that X is a prefix of Y , and write X ❁ Y , if Y = X Z
for some string Z. If s is a symbol of Σ and 0 ≤ k < |X|, we denote by X(k : s) the
string obtained from X by replacing its (k + 1)-th symbol by s, so that the following
equality holds

X(k : s) = X[0 .. k − 1] s X[k .. |X| − 1] .

Moreover, we put also X(k : s) = X when k ≥ |X|.

Lemma 15. Let V be a voicing of length m over the alphabet Σ, and let s ∈ Σ \
Set(V). Then, for each k ≥ 0, V (k : s) is a voicing and V =⇒ V (k : s).

Proof. Plainly, V (k : s) is a voicing, since s /∈ Set(V). To show that V =⇒ V (k : s),
we set S = V (k : s) V and Vi = S[|S| − m − i .. |S| − 1 − i], for i = 0, 1, . . . , |S| − m.
Then it is easy to verify that 〈V0, V1, . . . , V|S|−m〉 is a voice leading connecting V to
V (k : s). ⊓⊔

Theorem 16. Any two voicings of the same length m over an alphabet Σ of size
larger than m are connectable in Σ.

Proof. Let V and W be two voicings of length m over an alphabet Σ of size σ > m.
We will show that V =⇒ W , by proving by induction that for each ℓ = 0, 1, . . . ,m
there is a voicing Z of length m such that V =⇒ Z and W [0 .. ℓ − 1] ❁ Z.

For ℓ = 0, it is enough to take Z = V , since V =⇒ V (by (1) of Lemma 1), and
W [0 .. ℓ − 1] = ε ❁ V .

For the inductive step, let 1 ≤ ℓ ≤ m−1, and let us assume that there is a voicing
U (of length m) such that V =⇒ U and W [0 .. ℓ − 1] ❁ U . Since |U | < σ, the set
Σ \ Set(U) is nonempty, so we can pick an s ∈ Σ \ Set(U). Let

k = min({0 ≤ i < m : U [i] = W [ℓ]} ∪ {m}) ,

Û = U(k : s) ,

Z = Û(ℓ : W [ℓ]) .

Then, by Lemma 15, the strings Û and Z are voicings of length m and, additionally,

U =⇒ Û and Û =⇒ Z hold. By the transitivity of the connectivity relation “=⇒”
(cf. Lemma 1) we have V =⇒ Z. To conclude the proof of the inductive step, we have
only to observe that W [0 .. ℓ] ❁ Z plainly holds. ⊓⊔

Remark 17. The proof of Theorem 16 suggests an algorithm to effectively construct
a voice leading V which connects any two given voicings V and W of the same length
m, over an alphabet Σ of size larger than m. Observe, however, that the voice leading
V so constructed is not, in general, the smallest possible. ⊓⊔

Corollary 18. Let V and W be voicings of length m over an alphabet Σ of size at
least m + 2. Then there is a connected voice leading 〈V0, V1, . . . , Vn〉, which connects
V to W with respect to Σ,such that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1.

62

On Problems Concerning the Harmonic Structure of Musical Chord Sequences

Proof. As usual, let σ = |Σ|. Since |Set(V)| = |Set(W)| < σ, there exist a, b ∈ Σ
such that a /∈ Set(V) and b /∈ Set(W). Let us put V ′ = V a and W ′ = W b. Then V ′

and W ′ are voicings of length m+1, and since σ > m+1, by Theorem 16, there exists
a connected voice leading U = 〈U0, U1, . . . , Un〉 such that U0 = V ′ and Un = W ′.

Next, we define a voice leading V = 〈V0, V1, . . . , Vn〉, by putting Vi = U [0 ..m−1],
for i = 0, 1, . . . , n. To begin with, notice that V0 = V and Vn = W . Moreover, since
Vi+1 = Ui+1[0] Vi[0 ..m− 2], for i = 0, 1, . . . , n− 1, it follows that V is a voice leading
which connects V to W , with respect to the alphabet Σ. It only remains to show
that Set(Vi) 6= Set(Vi+1), for i = 0, 1, . . . , n − 1, which we do as follows. By way of
contradiction, let us assume that Set(Vj) = Set(Vj+1), for some j ∈ {0, 1, . . . , n− 1}.
Then we would have Vj[m−1] = Vj+1[0], as Vj −→ Vj+1. But Vj[m−1] = Uj[m−1] =
Uj+1[m], as Uj −→ Uj+1, and Vj+1[0] = Uj+1[0]. Therefore, Uj+1[m] = Uj+1[0], which
is a contradiction, since Uj+1 is a voicing. ⊓⊔

Theorem 19. Let C = 〈C0, C1, . . . , Cm−1〉 be a connected chord progression, with
m = size(C0) ≥ 2, such that Ci 6= Ci+1, for i = 0, 1, . . . ,m − 2, and let 〈V0, V1, . . . ,
Vm−1〉 be a connected voice leading of C. Then

k⋂

i=0

Ci = Set(V0[0 ..m − k − 1]) ,

for k = 0, 1, . . . ,m − 1.

Proof. We begin by showing that

V0[0 ..m − k − 1] = Vi[i .. i + m − k − 1] , for 0 ≤ i ≤ k , (1)

by induction on k = 0, 1, . . . ,m − 1.
For k = 0, (1) reduces to V0 = V0, which is trivially true.
For the inductive step, let us suppose that (1) holds for some k such that 0 ≤ k ≤

m − 2. Then, in order to prove that (1) holds also for k + 1, we need to verify that
V0[0 ..m − k − 2] = Vk+1[k + 1 ..m − 1].

Since Vk −→ Vk+1, we have Vk[k ..m − 2] = Vk+1[k + 1 ..m − 1]. In addition, by
the inductive hypothesis, we have V0[0 ..m − k − 1] = Vk[k ..m − 1], which plainly
implies V0[0 ..m−k−2] = Vk[k ..m−2], by dropping the last symbol in both voicings.
Therefore we have V0[0 ..m − k − 2] = Vk+1[k + 1 ..m − 1], completing the proof of
(1).

From (1), it follows that

Set(V0[0 ..m − k − 1]) ⊆
k⋂

i=0

Set(Vi) =
k⋂

i=0

Ci ,

so that we are only left with proving the converse inclusion

k⋂

i=0

Ci ⊆ Set(V0[0 ..m − k − 1]) . (2)

Since
⋂k

i=0 Ci ⊆ C0 = Set(V0), to show (2) it is enough to prove that

Set(V0[m − k ..m − 1]) ∩
k⋂

i=0

Ci = ∅ , (3)

63

Proceedings of the Prague Stringology Conference ’06

which we do as follows. Let m − k ≤ h ≤ m − 1. Then 0 < m − h ≤ k, so that⋂k

i=0 Ci ⊆ Cm−h−1 ∩ Cm−h = Set(Vm−h−1) ∩ Set(Vm−h). Since Vm−h−1 −→ Vm−h, we
have Set(Vm−h−1[0 ..m − 2]) = Set(Vm−h[1 ..m − 1]). But Cm−h−1 6= Cm−h, hence

V0[h] = Vm−h−1[m − 1] /∈ Cm−h, which implies V0[h] /∈
⋂k

i=0 Ci. Therefore (3) holds,
which in turn implies (2), concluding the proof of the theorem. ⊓⊔

64

