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Abstract. In this paper two concurrent versions of Brzozowski’s deterministic finite
automaton (DFA) construction algorithm are developed from first principles, the one
being a slight refinement of the other. We rely on Hoare’s CSP as our notation.

The specifications that are proposed of the Brzozowski algorithm are in terms of the
concurrent composition of a number of top-level processes, each participating process
itself composed of several other concurrent processes. After considering a number of
alternatives, this particular overall architectural structure seemed like a natural and
elegant mapping from the sequential algorithm’s structure.

While we have carefully argued the reasons for constructing the concurrent versions
as proposed in the paper, there are of course, a large range of alternative design choices
that could be made. There might also be scope for a more fine-grained approach to
updating sets or checking for similarity of regular expressions. At this stage, we have
chosen to abstract away from these considerations, and leave their exploration to future
research.
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1 Introduction

This research is inspired by two contemporary trends. On the one hand, finite au-
tomaton technology is being applied to ever-larger applications. On the other hand,
hardware is tending towards ever-increasing support for concurrent processing. Chip
multiprocessors [6], for example, implement multiple CPU cores on a single die. Ad-
ditionally, scale-out systems [1] – collections of interconnected low-cost computers
working as a single entity – also provide parallel processing facilities. These hardware
developments present the challenging task of producing quality concurrent software
[5, 7, 8].

It seems, though, that relatively little thought has been given in the finite automa-
ton research community to developing concurrent versions of the various sequential
algorithms that are widely in use. The only parallel algorithm that converts a regular
expression into an automaton of which we are aware has been described by Ziadi and
Champarnaud [9].

Here, two concurrent versions of Brzozowski’s deterministic finite automaton
(DFA) construction algorithm are developed from first principles, the one being a
slight refinement of the other. This will be the theme of section 3. However, before
developing the concurrent algorithm, we provide a brief overview of the sequential
version in section 2. A brief reflection on this work is given in section 6.
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2 Sequential Algorithm

Brzozowski’s DFA construction algorithm [2] employs the notion of derivatives of
regular expressions to construct a DFA. The algorithm takes a regular expression E
as input and constructs an automaton which accepts the language represented by E.

The automaton is represented using the normal five-tuple notation (D,Σ, δ, S, F )
where D is the set of states; Σ the alphabet; δ the transition relation mapping a
state and an alphabet symbol to a state; and S, F ⊆ D are the start and final states,
respectively. L is an overloaded function giving the language of a finite automaton or
a regular expression.

Since each regular expression in D is represented by a node in the automaton, we
will sometimes refer to an element in a set as a regular expression, and at other times
we will refer to it as a node.

The well-known sequential version of the algorithm is given in Dijkstra’s guarded
command language in figure 1. The notation assumes that the set operations ensure
“uniqueness” of the elements at the level of similarity, i.e. a ∈ A implies that there
is no b ∈ A such that a and b are similar regular expressions.

func Brz(E,Σ) →
δ, S, F := ∅, {E}, ∅;
D,T := ∅, S;

do (T 6= ∅) →
let q be some state such that q ∈ T
D, T := D ∪ {q}, T \ {q};
for (i : Σ) →

d := d
di

q;
if d /∈ (D ∪ T ) → T := T ∪ {d}
[] d ∈ (D ∪ T ) → skip

fi;
δ(q, i) := d;

rof ;
if ε ∈ L(q) → F := F ∪ {q}
[] ε /∈ L(q) → skip

fi;
od;
return (D,Σ, δ, S, F );

Figure 1. Brzozowski’s DFA construction algorithm

Walking through this sequential algorithm, it will be seen that it relies on two sets:
a set T containing the nodes (regular expressions) for which derivatives need to be
calculated; and another set D containing the nodes for which derivatives have been
found already.

The algorithm then works through all the nodes q ∈ T , finding derivatives with
respect to all the alphabet symbols and depositing these nodes (regular expressions)
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into T in those cases where no equivalent regular expression has already been de-
posited into T ∪ D. Each node, q, dealt with in this fashion from T is then removed
from T and added into D.

In each iteration of the inner for loop (i.e. for each alphabet symbol), the δ
relation is updated to contain the mapping from node q to its derivative with respect
to the relevant alphabet symbol.

Finally if q is nullable, it is added to the set of final states F .
In the forthcoming sections we present a concurrent specification of the algorithm

in which we attempt to allow as much concurrency as possible.

3 Concurrent specification

We present here an approach to parallelising the algorithm. Of the many process
algebras have been developed to concisely and accurately model concurrent systems,
we have selected CSP [4, 3] as a fairly simple and easy to use notation. It is arguably
better known and more widely used than most other process algebras. Below, we
provide a brief introduction to the CSP operators that are used, and indicate some
of the assumptions we make in regard to atomicity of operations.

3.1 Introductory Remarks

CSP is concerned with specifying a system of concurrent sequential processes (hence
the CSP acronym) in terms of sequences of events, called traces. In fact, the semantics
of a concurrent system is seen as being precisely described by the set of all possible
traces that characterise such as system. A fundamental assumption is that events are
instantaneous and atomic—i.e. they cannot occur concurrently. Various operators are
available to describe the sequence in which events may occur, as well as to connect
processes. Table 1 briefly outlines the main operators used in this article.

a → P event a then process Q

a → P |b → Q a then P choice b then Q

x : A → P (x) choice of x from set A then P (x)
P ‖ Q P in parallel with Q

Synchronize on common events in the alphabet of P and Q

b!e on channel b output event e

b?x from channel b input to variable x

P <| C >| Q if C then process P else process Q

P ;Q process P followed by process Q

P ✷Q process P choice process Q

Table 1. Selected CSP Notation

Full details of the operator semantics and laws for their manipulation are available in
[4, 3]. Note that SKIP designates a special process that engages in no further event,
but that simply terminates successfully. Parallel synchronization of processes means
that if A ∩ B 6= ∅, then process (x : A → P (x)) ‖ (y : B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) ‖ Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such
parallel synchronization is the process (b!e → P ) ‖ (b?x → Q(x)). This should be
viewed a process that engages in the event b.e and thereafter behaves as the process
P ‖ Q(e).
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3.2 Atomicity Assumptions

In deploying CSP, we have made the following assumptions relating to atomic execu-
tion.

Firstly, if an event maps to a function call, then that function is assumed to be a
sequence of code in the original sequential algorithm which runs uninterruptedly to
completion on some processor.

Furthermore, in the interest of conciseness and without loss of generality, it will
sometimes be convenient to subsume certain assignment operations of the sequential
program into the actual parameter list of a process invocation. For example, instead
of specifying some recursive parameterised process P (D) as P (D) = · · · (D : = D ∪
{q}); P (D), we will regard the specification P (D) = · · ·P (D ∪ {q}) as equivalent.
This means that operations that are needed to compute the actual parameters for
a process invocation are regarded as taking place atomically—i.e. they cannot be
interrupted by any other process’s activity.

Similarly, where the CSP syntax for a conditional is used, as in P <| C >| Q, it will
be assumed that the computation of the condition, C, takes place atomically and prior
to the activation of any first event possible in the constituent processes, P and Q.
This is specifically the case where similarity between regular expressions as implied
in the Boolean expression d /∈ (D ∪ T ) has to be computed.

These instances of atomic activity are highlighted, not because they deviate from
CSP syntax, but because they represent potential opportunities for a more fine-
grained specification of the algorithm than what will be proposed below. However,
deeper consideration of whether such a more fine-grained specification would be de-
sirable or possible was deemed to be outside the scope of this present endeavour.

4 The BRZ process

The specification that is proposed of the Brzozowski algorithm is in terms of the
concurrent composition of three top-level processes, each participating process itself
composed of several other concurrent processes. After considering a number of al-
ternatives, this particular overall architectural structure seemed like a natural and
elegant mapping from the sequential algorithm’s structure.

The first of these three processes is called OUTER. It corresponds to the actions of
the outer loop of the sequential program. Another process called DERIVE caters for
the computation of derivatives in the inner loop of the sequential version. Finally, an
UPDATE process caters for the determination of which derived regular expressions
should be used to update the “to do” set T , and also for updating the transition
function, δ. The concurrent specification of the Brzozowski algorithm is thus:

BRZ (D,T ) = OUTER(D,T ) ‖ DERIVE ‖ UPDATE

Note the sets D and T are required as parameters for the OUTER process, because
they are explicitly altered within this process. However, we will assume that these sets
are globally available for read-only purposes within the other two processes, DERIVE

and UPDATE. It will be convenient to regard the alphabet Σ as well as the sets F
and δ as being a globally available to all sub-processes of the concurrent version of
BRZ.

Furthermore, we assume that the first statement of the sequential algorithm—
δ, S, F : = ∅, {E}, ∅;—takes place before the concurrent algorithm starts off. Given
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a regular expression, E, the concurrent process BRZ (∅, {E}) is equivalent to the
sequential algorithm BRZ ({E}, Σ).

In the subsequent sections these constituent processes of BRZ are explored and
defined in greater detail. Figure 2 provides a graphical representation of the structure
of BRZ. However, it also includes a refinement to this model that incorporates buffers
for greater efficiency. This refinement is described in subsection 5.2.

4.1 The OUTER process

This process corresponds to the iterations of the outer loop in the sequential algo-
rithm, in that it selects the next q to be processed, and caters for the updating of the
two sets T and D.

The OUTER process has these two sets as parameters. As in the sequential case,
D contains all the regular expressions for which derivatives have been found and
will become nodes in the automaton. T is the set of regular expressions for which
derivatives are still to be found.

The process is responsible for extracting an arbitrary node from T and then pass-
ing it on to the DERIVE process. It also updates the sets D, T , and F .

The process is defined in terms of a choice between two sub-processes. This is
indicated by the CSP process choice operator, ✷. The first sub-process operand in
the choice is initiated by engaging in an event that consists of selecting one of the
regular expressions in T . The selected regular expression is called q. Thereafter, the
OUTER process behaves as the parallel composition of two processes that take q
as a parameter: EXTRACT and FINAL. This parallel composition has to run to
completion before the OUTER process repeats, now with q added to D and removed
from T .

Before considering the detail of the processes EXTRACT and FINAL that consti-
tute the parallel composition, consider the second sub-process operand of the process
choice operator in OUTER. It monitors a channel that is called insert, inputting a
regular expression represented by the variable q from the channel whenever such an
input becomes available. Thereafter OUTER repeats with q added to T . Again, we
assume that this set union operation is atomic. This corresponds to the part in the
sequential algorithm where the derivative d is added to T inside the inner loop.

OUTER(D,T ) = (q : T → (EXTRACT (q) ‖ FINAL(q));OUTER(D ∪ {q}, T \ {q}))

✷

(insert?q → OUTER(D,T ∪ {q}))

Now consider the two processes within OUTER which are to execute as a parallel
composition: EXTRACT and FINAL.

We begin with EXTRACT. Our task here is to express the fact that its parame-
ter q should be broadcast to a set of processes that will independently compute the
derivative of q, each with respect to a different symbol in the alphabet. To this end,
EXTRACT is regarded as the parallel composition of a set of processes, designated
EXTRACT i for each i in the alphabet Σ. Each EXTRACT i process passes its pa-
rameter, q, along its own channel, dIni, and then terminates successfully. The CSP
specification to express the above is as follows:

EXTRACT (q) =‖i:Σ EXTRACT i(q) where
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EXTRACT i(q) = (dIni!q → SKIP)

As will be seen a little later, there is a DERIVE i process for each alphabet symbol
i in Σ. Each of these processes will receive the outputted q on the associated dIni

channel.
The FINAL process checks whether q is nullable and then adds q to the set of

final states and then terminates successfully; otherwise FINAL terminates successfully
without engaging in any action.

FINAL(q) = F := F ∪ {q} <| ε ∈ L(q) >| SKIP

Note that the set of events that take place in EXTRACT and FINAL are disjoint.
The parallel composition of these two processes can therefore be described by the
arbitrary interleaving of their respective event trace sets.

4.2 The DERIVE Process

The DERIVE process finds, in parallel, the derivatives of a regular expression with
respect to all the symbols i ∈ Σ. The objective is to define DERIVE in such a way
that each of its sub-processes can resume computing yet another derivative for a given
alphabet symbol as soon as its task is complete, independently of the progress of its
peer sub-processes. Here, a first order definition of DERIVE is given that does not
fully meet this objective. This can be achieved by a simple refinement of the overall
specification, as will be discussed later.

A sub-process that is designated DERIVE i receives input on channel dIni and
outputs results of its computation to dOuti. The channels have the same alphabet,
namely, the set of all possible derivatives of regular expressions that can be con-
structed from Σ. Each DERIVE i process repeatedly accepts some arbitrary regular
expression, and then emits the associated derivative with respect to i.

The parent DERIVE is therefore the parallel composition of all DERIVE i pro-
cesses. Thus:

DERIVE = ‖i:ΣDERIVE i where

DERIVE i = dIni?q → dOuti!(q,
d

di
q) → DERIVE i

Recall that data is put onto the dIni channel by process EXTRACT i. Thus, in princi-
ple, the sub-processes DERIVE i and EXTRACT i can synchronise independently on
events on channel dIni and run ahead of a pair of their peer sub-processes, say DE-

RIVE j and EXTRACT j. Unfortunately, the parent process of the EXTRACT i pro-
cesses, namely EXTRACT, can only complete once all its constituent sub-processes
have completed. And a fresh regular expression, q, can only be offered to DERIVE i

via EXTRACT i once EXTRACT has completed, since only then can the recursive
call to OUTER take place. This deficiency will be corrected in subsection 5.1, where
a buffer will be placed on each channel.

At this stage, operations for updating δ and feeding the derivatives back to T are
discussed.

4.3 The UPDATE Process

The UPDATE process is designed to receive a regular expression and its derivative
with respect to i as a pair (q, d) from each dOuti channel. This is to happen in-
dependently of the state of readiness to receive some other regular expression and
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derivative pair on an alternative channel, say dOutj. In each case, the pair is passed
on for updating δ and the derivative is considered for possible updating of T . The
process is formed by the parallel composition of DERIVE i processes for each i in Σ.
This can be expressed as follows:

UPDATE =‖i:Σ UPDATE i

After receiving the regular expression and derivative pair on the dOuti channel, each
UPDATE i process behaves as the parallel composition of two sub-processes. One,
called UPT i, corresponds to the action of conditionally adding the derivative to T .
The other, called UPD i, corresponds to the action of unconditionally updating δ.

UPDATE i = (dOuti?(q, d) → (UPT i(d) ‖ UPD i(q, d)) );UPDATE i

UPT i(d) establishes whether or not d is in D∪T . If it is, then UPT i simply terminates
successfully. Otherwise, it outputs d on the insert channel, thus feeding d back to
OUTER where d is added to T . After this, the sub-process terminates successfully.

UPT i(d) = insert!d → SKIP <| d /∈ (D ∪ T ) >| SKIP

UPD i unconditionally updates δ and then terminates. The relation is updated by
adding an entry into δ that represents a transition from q to d as a result of symbol i.
Because each such update will always be with respect to a different (q, i) pair, there
is no need to protect the data structure used to represent δ from write conflicts. How
such concurrent access to the relevant data structure can actually be achieved is left
as an implementation issue.

UPD i(d) = δ(q, i) := d

Note that UPDATE i starts again after the two sub-processes terminate successfully.
Only then will a given UPDATE i sub-process be ready to input another (q, d) from its
respective channel. Once more, there is scope modelling each of the dOuti channels as
a buffer. This would ensure that any holdup in the execution of sub-processes UPT i

and UPD i (in particular, the computation of the Boolean result of the condition in
UPT i) will not delay the supplier of data on the dOuti channel. However, in the
interests of simplicity, this will not be modelled here. Instead, we illustrate below
how the idea of buffering can be included between the DERIVE i and EXTRACT i

processes, as previously suggested.

5 The BRZBUFF process

The DERIVE i and EXTRACT i processes are connected by synchronous channels.
A process outputting a message onto a channel can only proceed when the receiving
process inputs the message. This implies that EXTRACT will only terminate once q
has been read by all the DERIVE i processes. This will in turn prevent OUTER from
producing another q. So if, for example, there is a very slow DERIVE i process, all
the others will have to wait for it to complete before continuing. This is clearly not
desirable. Work for any processes should ideally be produced at least as fast as it can
consume the work.

For the above reason it was decided to connect the DERIVE i and EXTRACT i

processes through buffers. New q’s can then be placed into the buffers without having
to wait for all the DERIVE i processes to complete.
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EXTRACTn

EXTRACTi

EXTRACT1

OUTER

buf1 : BUFFER

bufn : BUFFER

bufi : BUFFER

UPDATEn

UPDATEi

dOutn

dOuti

dOut1

DERIVEn

DERIVEi

DERIVE1

bufn .right

bufi .right

buf1 .right

bufn .left

bufi .left

buf1 .left
UPDATE1

insert

BUFFERS UPDATEDERIVE

Figure 2. Graphical representation of the BRZBUFF process

5.1 The BUFFERS process

As suggested in [4], a buffer may be modelled using a process called BUFFER. It
behaves like a queue—messages enter at the right and exit on the left in the same
order that they arrived.

BUFFER = P〈〉 with

P〈〉 = left?x → P〈x〉

P〈x〉⌢s = (left?y → P〈x〉⌢s⌢〈y〉

right!x → Ps)

Since each pair of processes, EXTRACT i and DERIVE i, need to be connected
through a buffer, multiple labelled copies of the BUFFER process are required. As
a matter of convenience we will define a process called BUFFERS as the parallel
composition of these BUFFER processes:

BUFFERS = ‖i:Σ(bufi : BUFFER)

The only remaining step is to modify the respective definitions of the DERIVE i and
EXTRACT i processes so that they interact through these buffers. This is necessary
since the alphabet of each of these processes should contain the alphabet of the
corresponding buffer process. Thus, each EXTRACT i(q) sub-process enters data on
the left channel of its associated buffer, and may thus be defined as

EXTRACT i(q) = (bufi.left!q → SKIP)

Each corresponding DERIVE i sub-process inputs data from the right channel of its
associated buffer. Its definition therefore changes to

DERIVE i = bufi.right?q → dOuti!(q,
d

di
q) → DERIVE i
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5.2 Putting everything together

A complete system that can be built from the preceding processes is designated
BRZBUFF (D,T ), because it provides for the buffering just discussed. It is defined
as follows:

BRZBUFF (D,T ) = OUTER(D,T ) ‖ BUFFERS ‖ DERIVE ‖ UPDATE

Thus, BRZBUFF (∅, {E}) is a more efficient alternative to BRZ (∅, {E}). It, too, is
therefore a concurrent specification of the sequential algorithm given in figure 1.

Figure 2 depicts the major constituent processes of BRZBUFF. It should be clear
from the diagram that each EXTRACT i,DERIVE i pair is now connected via a buffer.
The arrows in the diagram indicate the direction of information flow on the channels
that connect the processes.

6 Conclusion

Although CSP has proved to be a convenient paradigm and notation for unravelling
and articulating the concurrency inherent in the sequential algorithm, it has proven
to be deficient in one respect: there does not seem to be a convenient mechanism
for gracefully terminating the concurrent specification. As given above, the algorithm
terminates when T is empty and further synchronisation is expected on the input
channel. This means that the OUTER process does not terminate in a SKIP, but
instead awaits further input on this channel, which never appears. Notwithstanding
this deficiency, the problem can be easily overcome at the implementation level.

While we have carefully argued the reasons for constructing concurrent version
as proposed above, there are of course, a large range of alternative design choices
that could be made. These relate not only to overall architectural issues, but also to
the level of more or less granularity in the concurrency, and whether the number of
processors available should be explicitly taken into account.

Thus, we have already pointed out the scope for including even more buffering
than we have. There might also be scope for a more fine-grained approach to updating
sets or checking for similarity of regular expressions. At this stage, we have chosen
to abstract away from these considerations, and leave their exploration to future
research.

From an implementation point of view, it would be relatively easy to use a
threaded language such as Java to do the implementation on a single processor plat-
form. However, this does not appear to be particularly interesting, since the context
switching required would undoubtedly render the concurrent version less efficient than
its sequential counterpart. Instead, we are interested in implementing the concurrent
version proposed above on one or more multiprocessor platforms. We expect this to
be the immediate focus of our future research.
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