Efficient Automata Constructions and
Approximate Automata

Bruce W. Watson?34, Derrick G. Kourie'®, Ernest Ketcha Ngassam®®, Tinus
Strauss'?, and Loek Cleophas®®

I FASTAR Research group
bruce@bruce-watson.com
2 FST Labs Inc., Kelowna, Canada bruce@fst-labs.com
3 Department of Computer Science, University of Pretoria,
Pretoria, South Africa
{tstrauss, dkourie, bwatson}@cs.up.ac.za
4 Sagantec Inc., Fremont, California, USA
bruce@sagantec.com
5 School of Computing, University of South Africa
Pretoria, South Africa
ngassekOcs.unisa.ac.za
6 Faculty of Computing Science and Mathematics
Eindhoven University of Technology, Eindhoven, Netherlands
loek@loekcleophas.com

Abstract. In this paper, we present data structures and algorithms for efficiently
constructing approximate automata. An approximate automaton for a regular language
L is one which accepts at least L. Such automata can be used in a variety of practical
applications, including network security pattern matching, in which false-matches are
only a performance nuisance. The construction algorithm is particularly efficient, and
is tunable to yield more or less exact automata.

Keywords: Automaton construction, approximate automata, memory efficiency, hash
functions

1 Introduction

In this paper, we present data structures and algorithms for efficiently construct-
ing an ‘approximate automaton’ from a regular expression. Very large automata are
finding application in areas as diverse as computational linguistic, network intrusion
detection, text indexing, and silicon chip design. These problem domains intrinsically
have very large amounts of data—both in the form of input strings being processed
by finite automata, and also in the size of the automata themselves.

A great deal of effort has been invested in tuning algorithms for processing a
string for acceptance by an automaton, or for pattern matching using the automa-
ton”. Recently, much less research and implementation effort has been devoted to the
efficiency during construction of very large automata®. In some of the newer applica-
tion domains, the ‘exactness’ of the automata is proving to be less of an issue than

7 Cf. the proceedings of conferences such as Prague Stringology Workshop, Conference on Imple-
mentations and Applications of Automata and Combinatorial Pattern Matching.

8 In the last decades, asymptotic improvements were made by Champarnaud, Ponty, Ziadi, Chang,
Paige, Antimirov, and Watson, among others.

Efficient Automata Constructions and Approzimate Automata

the performance of the algorithms constructing and using the automata. In particu-
lar, in network intrusion detection, a pattern matching finite automaton may accept
some ‘extra’ words without ill effects—the algorithm merely detects an additional
matched pattern (corresponding to a network security attack), which is subsequently
discarded during further vetting of the pattern®. In such an application, we can use
an approximate automaton—one which accepts the intended language and perhaps
some additional strings. Approximate automata have also been derived for a field of
pattern matching, where they are known as factor oracles [1, 3].

Section 2 gives a definition of the problem, along with discussion of some of the
existing solutions. Section 3 gives the new algorithm, while Section 4 discusses choices
of hash functions. Finally, Section 5 gives some discussion points, conclusions and
future work. Throughout this paper, we use standard definitions of deterministic
finite automata, which are not discussed or defined further in detail.

2 Problem statement

In this section, we give a brief overview of the problem and existing work on solu-
tions. In Algorithm 2.1, we begin with Brzozowski’s automata construction algorithm
[2,10]. (Note that the skip statement does nothing — it is included for complete-
ness so that the if-fi statement has two branches.) The algorithm takes as input a
regular expression over alphabet Y and directly produces a finite automaton. (This
algorithm is arguably one of the simplest and most elegant algorithms, although it
is not always efficiently implemented, giving the incorrect impression that some of
the bitvector-based algorithms (such as those of Glushkov, McNaughton-Yamada,
Berry-Sethi, among others) are intrinsically more efficient.)

The abstract states in Algorithm 2.1 have ‘internal structure’, meaning that they
are in fact regular expressions. In practice, the regular expressions are mapped on-
the-fly to integers to store the transition function ¢ in a lookup table and final state
set [’ as a bitvector (indexed by state). That gives Algorithm 2.2, in which state
set () is replaced by a set of integers, the start state is state zero, the signature of
0 is appropriately changed, and a ‘remapping’ data structure is used to map the
abstract states to integers. In this algorithm, an abstract state is remapped (assigned
an integer representation) when it is first encountered/created (as opposed to when
its out-transitions are constructed), since the integer representation may be needed as
a transition destination immediately. The worst-case running time of this algorithm
(indeed, of all deterministic finite automata construction algorithms) is exponential
in the size of the regular expression. However, we are more concerned with those parts
of the algorithm and data structures which are tunable.

We make the following observations about Brzozowski’s construction algorithm!°:

1. The sets done and todo both contain abstract states, whereas they could just
contain the integer representations of states, while using the inverse of remap to
recover the abstract state (which is needed in building the out-transitions). We do
not discuss this optimization further, as it is already used in most implementations.

9 Such further vetting is characteristic of intrusion detection, in which network traffic is rapidly
scanned for patterns; pattern ‘hits’ are subsequently examined for further characteristics before
classifying them as a real network security attack.

10" Some of these observations were previously made in [11, 12]-—though about another construction
algorithm.

101

Proceedings of the Prague Stringology Conference 06

Algorithm 2.1 (Brzozowski’s construction):

func Brzconstr(E) —
Q,6,F:=0,0,0;
done, todo := 0, {E};
do todo #) —
let p be some state such that p € todo;
done, todo := done U {p}, todo \ {p};
Q:=QU{pk
{ build out-transitions from p on all alphabet symbols }
for a: X —
{ compute the left derivative of p with respect to a }
destination := a™'p;
if destination & done U todo —
{ destination’s out-transitions are still to be built }
todo := todo U {destination}
| destination € done U todo — skip
fi;
{ make a transition from p to destination on a }
0(p, a) := destination
rof’;
{ if p is nullable, make it a final state }
if e € L(p) —
{ p should be a final state }
F:=FU{p}
| e¢&L(p)— skip
fi
od;
{ language of automaton (Q, X, d, E, F') = language of regular expression £ }
return (Q,X,4,E, F)
cnuf

102

Efficient Automata Constructions and Approzimate Automata

Algorithm 2.2 (Brzozowski’s construction with remapping):

func Brzconstr'(E) —
next, 0, F, remap := 0,0, 0, 0;
remap|FE], next : = next, next + 1;
done, todo := 0, {E};
do todo #) —
let p be some state such that p € todo;
done, todo := done U {p}, todo \ {p};
{ build out-transitions from p on all alphabet symbols }
for a: X —
{ compute the left derivative of p with respect to a }
destination := a~p;
if destination ¢ done U todo —
{ destination’s out-transitions are still to be built }
todo := todo U {destination};
{ give destination an integer representation now though }
remap|destination], next : = next, next + 1
| destination € done U todo — skip
fi;
{ make a transition from p to destination on a }
d(remap[p], a) := remap|destination]
rof;
{ if p is nullable, make it a final state }
if e € L(p) —
{ p should be a final state }
F := F U {remap[p]}
| e¢L(p) — skip
fi
od;
{ language of automaton ({0,...,next — 1}, X,6,0, F) = language of regular expression E }
return ({0,...,next — 1}, X,6,0, F)
cnuf

103

Proceedings of the Prague Stringology Conference 06

2. In pathological examples, the todo set (containing abstract states that still need
to be constructed) can grow at one time during construction to contain all states
which will ever be built (except for the current state p). The only solutions to
this problem are domain-specific; that is, the size of todo is sometimes bounded
by representing todo as a queue or as a stack (yielding, respectively, a depth-first
or a breadth-first construction of the automaton’s transition graph).

3. The performance of the algorithm depends heavily on the quality of the remap
representation for fast lookups. There are numerous efficient implementations for
remap, including hash tables, balanced trees, etc. This is not discussed further
here.

4. During construction, the remapper (data structure remap) grows to include a
mapping from all abstract states to their respective integer representations. The
memory consumed by remap is therefore significant; worse-still, it is only freed
after the entire automaton is constructed.

The most promising area for improvement is the last point, for which the following
solutions exist:

1. [8,6,7,5] give a space-efficient data structure combining representations of regular
expression F, all of the derivative regular expressions in remap (the set of states)
and the automaton itself.

2. A reachability-based algorithm was presented in [11,12]. That algorithm limits
remap to those states which are reachable from states still in todo.

We now turn to the new algorithm, which is combinable with these two pre-existing
solutions.

3 New algorithm

One implementation of remap uses a hash table with hash function A, which maps
regular expressions (the abstract states) to integers. In the event that two regular
expressions hash-collide, a mechanism is normally used to check whether the regular
expressions are indeed identical—typically using ‘hash-buckets’, rehashing, etc. (as is
found in elementary data structure textbooks such as [4]). Unfortunately, all of those
collision-resolution mechanisms involve representing the abstract states themselves.
Our new algorithm eliminates this, thereby allowing hash collisions: two abstract
states which hash to the same value are simply mapped to the same integer state.
Indeed, the hashed values can be directly used as the states, as in Algorithm 3.1 where
we reintroduce state set (Q; state sets (), F' and done can now be implemented as sets
of integers. Note that the test destination ¢ todo can also be efficiently implemented
using h.

4 Hash functions and their implications

The primary difference between a normal automaton construction algorithm (such as
Brzozowski’s algorithm) and Algorithm 3.1 is that the latter will merge two states
whenever there is a hash collision; such merging would not otherwise have occurred
in any of the standard construction algorithms. The resulting automaton is an ap-
prozimate automaton as it will accept additional words not in the language of regular
expression F. Precisely how often additional words are accepted clearly depends on

104

Efficient Automata Constructions and Approzimate Automata

Algorithm 3.1 (New hash-based construction):

func Brzconstr” (E) —
Q,6, F remap :=0,0,0,0;
done, todo := 0, {E};
do todo #) —
let p be some state such that p € todo;
done, todo := done U {h(p)},todo \ {p};
Q:=QU{h(p)}
{ build out-transitions from p on all alphabet symbols }
for a: Y —
{ compute the left derivative of p with respect to a }
destination := a~'p;
if h(destination) & done A destination & todo —
{ destination’s out-transitions are still to be built }
todo := todo U {destination}
| h(destination) € done V destination € todo — skip
fi;
{ make a transition from h(p) to h(destination) on a }
0(h(p),a) := h(destination)
rof;
{ if p is nullable, make it a final state }
if e € L(p) —
{ p should be a final state }
Fi= FU{h(p)}
| = ¢ L(p) — skip
fi
od;
{ language of automaton (Q, X, d, h(E), F') = language of regular expression E }
return (Q,X,0,h(E),F)
cnuf

105

Proceedings of the Prague Stringology Conference 06

how often hash collisions occur, which depends in turn on the hash function h. The
approximate automaton can be forced arbitrarily close to an exact automaton for F
by increasing the number of bits in the range of h and making h appropriately more
intricate!!.

While the design of h is crucial, our ongoing experiments give these guiding re-
quirements:

— It should be structurally inductive on regular expressions.

— It should map to unsigned integers.

— The atomic ‘letter’ (single symbol) regular expressions should map to the character
itself, e.g. h(a) = unsigned(a).

— The remaining two atomic regular expressions (empty string and empty set) should
map to infrequently or unused characters, such as —1 and —2.

— The hash of Kleene closure (the star operator) should set a high-bit in the hash
of the star’s operand’s hash, e.g. h(F*) = h(F)&(1 << (numbits — 1)). In this
case, the hash function can also be designed for idempotence of Kleene closure,
i.e. h(F**) = h(F™), etc. Such ‘design-for-identities’ allows us to specifically hash-
collide states which look dissimilar, but are equivalent, thereby achieving a mea-
sure of minimization'?.

— The hash of a union/or regular expression should combine the two sub-hashes via
an associative and commutative operator, such as exclusive-or.

— The hash of two concatenated regular expressions should combine the two sub-
hashes while simultaneously being anti-symmetrical (as concatenation is), such
as bitwise concatenation, or left-shifting the first sub-hash before exclusive-oring
with the second sub-hash.

In short, the hash function should reflect the algebraic properties of the regular op-
erators themselves.

4.1 Fixing the automaton size a priori

Interestingly, the use of a hash function to generate the state-set enables us to a priori
choose the number of states in the final automaton. Rather than accumulating the
hashed values in variable), we initially fix our state set as {0,...,n} (for some n).
Subsequently, we always use h(p) mod n instead of h(p), thereby bringing all states
into the appropriate range. This can be particularly useful in cases where dynamic
memory (re)allocation is costly while building the automaton.

5 Discussion and future work

We have presented an efficient new algorithm for constructing approximate determin-

istic finite automata. The ‘approximateness’ of the finite automata (that is, how few

‘extra’ words they accept over and above their intended language) can be controlled

by choice of a hash function, some guidelines for which were presented. Unlike other

automata construction algorithms, the number of states can be fixed a priori.
There remain a number of interesting research questions and tasks:

1 When the number of bits is equal to the largest derivative of E, h can be used to directly encode
each such derivative regular expression—giving perfect hashing.

12 Other regular identities which may be specifically hash-collidable include F' -0 = (), F - = F,
e* =g, etc.

106

Efficient Automata Constructions and Approzimate Automata

. The new algorithm and a variety of hash functions should be benchmarked; this

work is ongoing.

The effects of various hash functions should be tested in practice (for example,
in intrusion detection) for how close the resulting automaton is to the desired
language.

Some operations in the new algorithm can be parallelized. A parallelization of
Brzozowki’s algorithm is the subject of another paper submitted to PSC. It would
be interesting to know whether further parallelization opportunities exist in the
new algorithm.

. In data structure design, the size of the hash tables are typically chosen to be a

prime number (and therefore the hash key is reduced modulo this size), as this
reduces the probability of collisions. It would be interesting to know whether a
similar property exists in the new algorithm, with typical choices of hash functions.

References

[9]

C. ALLAUZEN, M. CROCHEMORE, AND M. RAFFINOT: Factor oracle: A new structure for
pattern matching, in Proceedings of SOFSEM, 1999, pp. 295-310.

J. A. BRZOzZOWSKI: Derivatives of reqular expressions. Journal of the ACM, 11(4) 1964,
pp. 481-494.

L. CLEOPHAS, B. W. WATSON, AND G. ZWAAN: Constructing factor oracles, in Proceedings of
the Eighth Prague Stringologic Conference, J. Holub, ed., Prague, Czech Republic, Sept. 2003,
Czech Technical University.

T. H. CorMEN, C. E. LEISERSON, R. L. RIVEST, AND C. STEIN: Introduction to Algorithms,
The MIT Press, second ed., 2001.

M. FRISHERT: Fire works € fire station: A finite automata and reqular expression playground,
Master’s thesis, Faculty of Computing Science, Eindhoven University of Technology, the Nether-
lands, 2005.

M. FRrISHERT, .. CLEOPHAS, AND B. W. WATSON: FIRE station: An environment for ma-
nipulating finite automata and regular expression views, in Salomaa [9].

M. FRISHERT AND B. W. WATSON: Combining regular expressions with (near-)optimal Brzo-
zowski automata, in Salomaa [9)].

M. FrISHERT, B. W. WATSON, AND L. CLEOPHAS: The effects of rewriting reqular expressions
on their accepting automata, in Proceedings of the Eighth Conference on Implementations and
Applications of Automata, O. Ibarra and D. Zhu, eds., Santa Barbara, USA, July 2003, Springer-
Verlag, pp. 304-305.

K. Salomaa, ed., Proceedings of the Ninth Conference on Implementations and Applications of
Automata, Kingston, Canada, July 2004, Springer-Verlag.

[10] B. W. WATSON: Tazonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty

of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.

[11] B. W. WATSON: An early-retirement plan for the states, in Proceedings of the Third Prague

Stringologic Workshop, J. Holub, ed., Prague, Czech Republic, Sept. 1998, Czech Technical
University, pp. 119-124.

[12] B. W. WATSON: Reducing memory requirements during finite automata construction. Software

— Practice & Experience, 34(3) 2004, pp. 239-248.

107

