
Proceedings of the

Prague Stringology Conference 2008

Edited by Jan Holub and Jan Žd’́arek

Department of Computer Science
and Engineering

September 2008

Prague Stringology Club
http://www.stringology.org/

Proceedings of the Prague Stringology Conference 2008
Edited by Jan Holub and Jan Žd’́arek
Published by: Prague Stringology Club

Department of Computer Science and Engineering
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo náměst́ı 13, Praha 2, 121 35, Czech Republic.

URL: http://www.stringology.org/
E-mail: psc@cs.felk.cvut.cz Phone: +420-2-2435-7470 Fax: +420-2-2492-3325
Printed by Česká technika – Naklatelstv́ı ČVUT, Thákurova 550/1, Praha 6, 160 41, Czech Republic

c© Czech Technical University in Prague, Czech Republic, 2008

ISBN 978-80-01-04145-1

Conference Organization

Program Committee

Amihood Amir (Bar-Ilan University, Israel)
Gabriela Andrejková (P. J. Šafárik University, Slovakia)
Maxime Crochemore (Université de Marne la Vallée, France)
Frantǐsek Franěk (McMaster University, Canada)
Jan Holub, Co-chair (Czech Technical University in Prague, Czech Republic)
Costas S. Iliopoulos (King’s College London, United Kingdom)
Shmuel T. Klein (Bar-Ilan University, Israel)
Thierry Lecroq (Université de Rouen, France)
Bořivoj Melichar, Co-chair (Czech Technical University in Prague, Czech Republic)
Yoan J. Pinzon (King’s College London, United Kingdom)
Marie-France Sagot (Université Claude Bernard, Lyon, France)
William F. Smyth (McMaster University, Canada)
Bruce W. Watson (Technische Universiteit Eindhoven, Netherlands)

Organizing Committee

Miroslav Baĺık
Jan Holub

Bořivoj Melichar
Ladislav Vagner

Michal Voráček
Jan Žd’́arek

External Referees

Pavlos Antoniou
Miroslav Baĺık
Jérémie Bourdon
Arturo Carpi
Joseph Chan

Loek Cleophas
Jackie Daykin
Lucian Ilie
Inuka Jayasekera
Arnaud Lefebvre

Spiros Michalakopoulos
Laurent Mouchard
Elise Prieur
Tinus Strauss
Niko Valimaki

Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2008 (PSC’08) which was held at the Department of Computer Sci-
ence and Engineering of the Czech Technical University in Prague, Czech Republic,
on September 1–3, 2008. The conference focused on stringology and related topics.
Stringology is a discipline concerned with algorithmic processing of strings and se-
quences.

The papers submitted were reviewed by the program committee and twenty were
selected for presentation at the conference, based on originality and quality. This
volume contains not only these selected papers but also abstract of one invited talk
devoted to the road coloring problem.

The Prague Stringology Conference has a long tradition. PSC’08 is the thirteenth
event of the Prague Stringology Club. In the years 1996–2000 the Prague Stringol-
ogy Club Workshops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in
2001–2006 preceded this conference. The proceedings of these workshops and confer-
ences had been published by Czech Technical University in Prague and are available
on WWW pages of the Prague Stringology Club. Selected contributions were pub-
lished in special issues of the journal Kybernetika, the Nordic Journal of Computing,
the Journal of Automata, Languages and Combinatorics, and the International Jour-
nal of Foundations of Computer Science. The series of stringology conferences was
interrupted in 2007 when the members of the Prague Stringology Club were hon-
oured to organize Conference on Implementation and Application of Automata 2007
(CIAA2007).

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of the Prague Stringology Club is to study algorithms on strings,
sequences, and trees with emphasis on finite automata theory. The first event orga-
nized by the Prague Stringology Club was the workshop PSCW’96 featuring only a
handful of invited talks. However, since PSCW’97 the papers and talks are selected
by a rigorous peer review process. The objective is not only to present new results
in stringology and related areas, but also to facilitate personal contacts among the
people working on these problems.

I would like to thank all those who had submitted papers for PSC’08 as well as the
reviewers. Special thanks go to all the members of the program committee, without
whose efforts it would not have been possible to put together such a stimulating pro-
gram of PSC’08. Last, but not least, my thanks go to the members of the organizing
committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2008

Jan Holub

iv

Table of Contents

Invited Talk

The Road Coloring and Černy Conjecture by Avraham N. Trahtman 1

Contributed Talks

Dynamic Burrows-Wheeler Transform by Mikaël Salson, Thierry Lecroq,
Martine Léonard, and Laurent Mouchard . 13

Lossless Image Compression by Block Matching on Practical Massively
Parallel Architectures by Luigi Cinque and Sergio De Agostino 26

Speeding up Lossless Image Compression: Experimental Results on a
Parallel Machine by Luigi Cinque, Sergio De Agostino, and Luca Lombardi 35

Huffman Coding with Non-Sorted Frequencies by Shmuel T. Klein and Dana
Shapira . 46

In-place Update of Suffix Array while Recoding Words by Matthias Gallé,
Pierre Peterlongo, and François Coste . 54

The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees and
Suffix Arrays by Jie Lin, Yue Jiang, and Don Adjeroh . 68

Parameterized Suffix Arrays for Binary Strings by Satoshi Deguchi, Fumihito
Higashijima, Hideo Bannai, Shunsuke Inenaga, and Masayuki Takeda 84

An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings
by William F. Smyth, Shu Wang, and Mao Yu . 95

Conservative String Covering of Indeterminate Strings by Pavlos Antoniou,
Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, and Gad M.
Landau . 108

On the Uniform Distribution of Strings by Sébastien Rebecchi and
Jean-Michel Jolion . 116

Infinite Smooth Lyndon Words by Geneviève Paquin . 126

New Lower Bounds for the Maximum Number of Runs in a String by
Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, and
Ayumi Shinohara . 140

Efficient Variants of the Backward-Oracle-Matching Algorithm by Simone
Faro and Thierry Lecroq . 146

Fast Optimal Algorithms for Computing All the Repeats in a String by
Simon J. Puglisi, William F. Smyth, and Munina Yusufu 161

v

New Efficient Bit-Parallel Algorithms for the δ-Matching Problem with
α-Bounded Gaps in Musical Sequences by Domenico Cantone, Salvatore
Cristofaro, and Simone Faro . 170

Average Value of Sum of Exponents of Runs in Strings by Kazuhiko Kusano,
Wataru Matsubara, Akira Ishino, and Ayumi Shinohara 185

Usefulness of Directed Acyclic Subword Graphs in Problems Related
to Standard Sturmian Words by Pawe l Baturo, Marcin Pia֒tkowski, and
Wojciech Rytter . 193

Edit Distance with Single-Symbol Combinations and Splits by Manolis
Christodoulakis and Gerhard Brey . 208

A Concurrent Specification of an Incremental DFA Minimisation Algorithm
by Tinus Strauss, Derrick G. Kourie, and Bruce W. Watson 218

On Regular Expression Hashing to Reduce FA Size by Wikus Coetser,
Derrick G. Kourie, and Bruce W. Watson . 227

Author Index . 242

vi

The Road Coloring and Černy Conjecture

Avraham N. Trahtman

Bar-Ilan University, Dep. of Math., 52900, Ramat Gan, Israel
trakht@macs.biu.ac.il

http://www.cs.biu.ac.il/∼trakht

Abstract. A synchronizing word of a deterministic automaton is a word in the alpha-
bet of colors (considered as letters) of its edges that maps the automaton to a single
state. A coloring of edges of a directed graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.
The road coloring problem is the problem of synchronizing coloring of a directed fi-
nite strongly connected graph with constant outdegree of all its vertices if the greatest
common divisor of lengths of all its cycles is one. The problem was posed by Adler,
Goodwyn and Weiss over 30 years ago and evoked noticeable interest among the spe-
cialists in the theory of graphs, deterministic automata and symbolic dynamics.
The positive solution of the road coloring problem is presented.
Some consequences on the length of the synchronizing word are discussed.

Keywords: road coloring problem, graph, deterministic finite automaton, synchro-
nization

Introduction

The road coloring problem originates in [2] and was stated explicitly in [1] for a
strongly connected directed finite graph with constant outdegree of all its vertices
where the greatest common divisor (gcd) of lengths of all its cycles is one. The edges
of the graph are unlabelled. The task is to find a labelling of the edges that turns the
graph into a deterministic finite automaton possessing a synchronizing word. So the
road coloring problem is connected with the problem of existence of synchronizing
word for deterministic complete finite automaton.

The condition on gcd is necessary [1], [6]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets V1, V2,
..., Vk+1 = V1 (k > 1) such that every edge which begins in Vi has its end in Vi+1 [6],
[20]. The outdegree of the vertex can be considered also as the size of an alphabet
where the letters denote colors.

The road coloring problem is important in automata theory: a synchronizing col-
oring makes the behavior of an automaton resistant against input errors since, after
detection of an error, a synchronizing word can reset the automaton back to its orig-
inal state, as if no error had occurred. The problem appeared first in the context of
symbolic dynamics and is important also in this area.

Together with the Černy conjecture [22], [24], the road coloring problem belongs
to the most fascinating problems in the theory of finite automata. The problem was
discussed even in “Wikipedia” – the popular Internet Encyclopedia. However, at the
same time it was considered as a “notorious open problem” [18], [6] and “unfeasible”
[13]. For some positive results in this area see [4], [5], [11], [12], [13], [15], [16], [20],
[21].

Avraham N. Trahtman: The Road Coloring and Černy Conjecture, pp. 1–12.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

2 Proceedings of the Prague Stringology Conference 2008

The road coloring conjecture is settled in the affirmative: A finite strong digraph
with constant outdegree has a synchronizing coloring if and only if the greatest com-
mon divisor of the lengths of its cycles is 1.

The concept of a stable pair of states [6], [16] of Culik, Karhumaki and Kari with
corresponding results and consequences is used below. The first version of our paper
had also used results from [11]. However, we are now able to simplify the proof using
idea from [3], [25] and [26].

A problem of the minimal length of synchronizing word, best known as Černy’s
conjecture, was raised independently by distinct authors. Jan Černy found in 1964
[7] n-state complete DFA with shortest synchronizing word of length (n − 1)2 for
alphabet size q = 2. He conjectured that it is an upper bound for the length of the
shortest synchronizing word for any n-state complete DFA. The best known upper
bound is now equal to (n3 − n)/6 [10], [17]. The conjecture holds true for a lot of
automata, but in general the problem still remains open. Moreover, the examples of
automata with shortest synchronizing word of length (n − 1)2 are infrequent. After
the sequence found by Černy and example of Černy, Piricka and Rosenauerova [8] of
1971 for q = 2, the next such example was found by Kari [16] only in 2001 for n = 6
and q = 2. Roman [23] had found an analogous example for n = 5 and q = 3 in 2004.
There are no examples of automata for the time being such that the length of the
shortest synchronizing word is greater than (n− 1)2.

We use a new efficient algorithm for finding a synchronizing word. The known
algorithm of Eppstein [9] finds a synchronizing word for n-state DFA in O(n3 + n2q)
time. The actual running time of our algorithm (O(n2q)) on a lot of examples proved
to be less than in the case of O(n3q) time complexity (the worst case). It gives a
chance to extend noticeably the class of considered DFA.

The program had studied all automata with strongly connected transition graph
of size n ≤ 10 for q = 2, of size n ≤ 8 for q ≤ 3 and of size n ≤ 7 for q ≤ 4. All known
together with some new examples of DFA with shortest synchronizing word of length
(n − 1)2 from this class of automata were obtained. So all examples of DFA with
shortest synchronizing word of length (n− 1)2 in this area are known for today. The
size of the alphabet of the examples is two or three. The contradictory examples for
the Černy conjecture do not exist in this class of automata. Moreover, the program
does not find examples of DFA with reset word of length (n − 1)2 for n > 4 as well
as for q > 3. No such examples exist also for alphabet of size four if n ≤ 7 and of size
three if n ≤ 8.

All examples on the Černy border (n−1)2 except one have loops and therefore by
some recoloring have shortest synchronizing word of length not greater than n − 1.
It supports the conjecture that by some coloring every synchronizing automaton has
synchronizing word of length less than (n− 1)2.

Preliminaries

A finite directed strongly connected graph with constant outdegree of all its vertices
where the gcd of lengths of all its cycles is one will be called AGW graph as aroused
by Adler, Goodwyn and Weiss.

The bold letters will denote the vertices of a graph (the states of an automaton).
If there exists a path in an automaton from the state p to the state q and the

edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈ Σ+

let us write q = ps and p � r.

Avraham N. Trahtman: The Road Coloring and Černy Conjecture 3

Let Ps be the map of the subset P of states of an automaton by help of s ∈ Σ+

and let Ps−1 be the maximal set of states Q such that Qs ⊆ P . For the transition
graph Γ of an automaton let Γs denote the map of the set of states of the automaton.
|P | – the size of the subset P of states from an automaton (of vertices from a

graph).
A word s ∈ Σ+ is called a synchronizing (or2-reset) word of the automaton with

transition graph Γ if |Γs| = 1.
A coloring of a directed finite graph is synchronizing if the coloring turns the

graph into a deterministic finite automaton possessing a synchronizing word.
A pair of distinct states p,q of an automaton (of vertices of the transition graph)

will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite case, if for
any s ps 6= qs, we call the pair deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for any word
u the pair pu,qu is also synchronizing [6], [16].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

The subset of states (of vertices of the transition graph Γ) of maximal size such
that every pair of states from the set is deadlock will be called an F -clique.

A state [a vertex] r is called sink of an automaton [of a graph] if p � r for all
states p.

The direct product Γ 2 of two copies of the graph Γ over the alphabet Σ consists
of vertices (p, r) and edges (p, r)→ (pσ, rσ) labelled by σ. Here p, r ∈ Γ , σ ∈ Σ.

1 Some properties of F -clique

The road coloring problem was formulated for AGW graphs [1] and only such graphs
are considered below. We exclude from the consideration also the primitive cases of
graphs with loops and of only one color [1], [20].

Let us recall that a binary relation ρ on the set of the states of an automaton is
called congruence if ρ is equivalence and for any word u from p ρ q follows pu ρ qu.
Let us formulate an important result from [16] in the following form:

Theorem 1. [16] Let us consider a coloring of AGW graph Γ . Stability of states is a
binary relation on the set of states of the obtained automaton; denote this relation by
ρ. Then ρ is a congruence relation, Γ/ρ presents an AGW graph and synchronizing
coloring of Γ/ρ implies synchronizing recoloring of Γ .

Lemma 2. Let F be F -clique via some coloring of AGW graph Γ . For any word s
the set Fs is also an F -clique and any state [vertex] p belongs to some F -clique.

Proof. Any pair p, q from an F -clique F is a deadlock. To be deadlock is a stable
binary relation, therefore for any word s the pair ps, qs from Fs also is a deadlock.
So all pairs from Fs are deadlocks.

For any r from a strongly connected graph Γ , there exists a word u such that
r = pu for p from the F -clique F , whence r belongs to the F -clique Fu.

Lemma 3. Let A and B (|A| > 1) be distinct F -cliques via some coloring without
stable pairs of the AGW graph Γ . Then |A| − |A ∩B| = |B| − |A ∩B| > 1.

4 Proceedings of the Prague Stringology Conference 2008

Proof. Let us assume the contrary: |A| − |A ∩ B| = 1. By the definition of F -clique,
|A| = |B| and |B| − |A ∩B| = 1, too.

The pair of states p ∈ A\B and q ∈ B \A is not stable. Therefore for some word
s the pair (ps,qs) is a deadlock. Any pair of states from the F -clique A and from the
F -clique B as well as from F -cliques As and Bs is a deadlock. So any pair of states
from the set (A ∪B)s is a deadlock.

One has |(A ∪ B)s| = |A|+ 1 > |A| in spite of maximality of the size of F -clique
A among the sets of states such that every pair of its states is deadlock.

Lemma 4. Let some vertex of AGW graph Γ have two incoming bunches. Then any
coloring of Γ has a stable couple.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the couple
q, r is stable for any coloring because qα = rα = p for any letter (color) α ∈ Σ.

2 The spanning subgraph of cycles and trees with maximal
number of edges in the cycles

Définition 1 Let us call a subgraph S of the AGW graph Γ a spanning subgraph of
Γ if to S belong all vertices of Γ and exactly one outgoing edge of every vertex.

A maximal subtree of the spanning subgraph S with root on a cycle from S and
having no common edges with cycles from S is called a tree of S.

The length of path from a vertex p through the edges of the tree of the spanning
set S to the root of the tree is called the level of p in S.

Remark 5. Any spanning subgraph S consists of disjoint cycles and trees with roots
on cycles; any tree and cycle of S is defined identically, the level of the vertex from
cycle is zero, the vertices of trees except root have positive level, the vertex of maximal
positive level has no incoming edge from S.

Lemma 6. Let L be a set of vertices of level l from some tree of the spanning
subgraph S of AGW graph Γ and let all edges of S have a color α by some coloring
of Γ . Then for any F -clique F of the coloring holds |F ∩ L| ≤ 1.

Proof. Some power of α synchronizes all states of given level of the tree and maps
them into the root. Any couple of states from an F -clique could not be synchronized
and therefore could not belong to L.

Lemma 7. Let AGW graph Γ have a spanning subgraph R of only disjoint cycles
(without trees). Then Γ also has another spanning subgraph with exactly one vertex
of maximal positive level.

Proof. The spanning subgraph R has only cycles and therefore the levels of all vertices
are equal to zero. In view of gcd =1 in the strongly connected graph Γ , not all
edges belong to a bunch. Therefore there exist two edges u = p → q 6∈ R and
v = p → s ∈ R with common first vertex p but such that q 6= s. Let us replace the
edge v = p→ s from R by u. Then only the vertex s has maximal level L > 0 in the
new spanning subgraph.

Lemma 8. Let any vertex of an AGW graph Γ have no two incoming bunches.
Then Γ has a spanning subgraph such that all its vertices of maximal positive level
belong to one non-trivial tree.

Avraham N. Trahtman: The Road Coloring and Černy Conjecture 5

Proof. Let us consider a spanning subgraph R with a maximal number of vertices
[edges] in its cycles. In view of Lemma 7, suppose that R has non-trivial trees and
let L > 0 be the maximal value of the level of a vertex.

Further consideration is necessary only if at least two vertices of level L belong
to distinct trees of R with distinct roots.

Let us consider a tree T from R with vertex p of maximal level L and edge b̄
from vertex b to the tree root r ∈ T on the path of length L from p. Let the root r
belong to the cycle H of R with the edge c̄ = c → r ∈ H. There exists also an edge
ā = a→ p that does not belong to R because Γ is strongly connected and p has no
incoming edge from R.

p

r
a

d

c

b· · ·

· · ·

· · · · · · · · · · · ·

ā

w̄

c̄
b̄

H

T

Let us consider the path from p to r of maximal length L in T . Our aim is to
extend the maximal level of the vertex on the extension of the tree T much more
than the maximal level of vertex of other trees from R. We plan to use the following
three changes:

1) replace the edge w̄ from R with first vertex a by the edge ā = a→ p,

2) replace the edge b̄ from R by some other outgoing edge of the vertex b,

3) replace the edge c̄ from R by some other outgoing edge of the vertex c.

If one of the ways does not succeed let us go to the next assuming the situation
in which the previous way fails and excluding the successfully studied cases. So we
diminish the considered domain. We can use sometimes two changes together. Let us
begin with

1) Suppose first a 6∈ H. If a belongs to a path in T from p to r then a new cycle
with part of the path and edge a→ p is added to R extending the number of vertices
in its cycles in spite of the choice of R. In opposite case the level of a in the new
spanning subgraph is L + 1 and the vertex r is a root of the new tree containing all
vertices of maximal level (in particular, the vertex a or its ancestors in R).

So let us assume a ∈ H and suppose w̄ = a → d ∈ H. In this case the vertices
p, r and a belong to a cycle H1 with new edge ā of a new spanning subgraph R1. So
we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of path from r to a in H
is r1 then H1 has length L + r1 + 1. A path to r from the vertex d of the cycle H
remains in R1. Suppose its length is r2. So the length of the cycle H is r1 + r2 + 1.
The length of the cycle H1 is not greater than the length of H because the spanning
subgraph R has maximal number of edges in its cycles. So r1 + r2 + 1 ≥ L + r1 + 1,
whence r2 ≥ L. If r2 > L, then the length r2 of the path from d to r in a tree of R1

(and the level of d) is greater than L and the level of d (or of some other ancestor of
r in a tree from R1) is the desired unique maximal level.

So assume for further consideration L = r2 and a ∈ H. Analogously, for any
vertex of maximal level L with root in the cycle H and incoming edge from a vertex
a1 the proof can be reduced to the case a1 ∈ H and L = r2 for the corresponding
new value of r2.

2) Suppose the set of outgoing edges of the vertex b is not a bunch. So one can
replace in R the edge b̄ from the vertex b by an edge v̄ from b to a vertex v 6= r.

6 Proceedings of the Prague Stringology Conference 2008

The vertex v could not belong to T because in this case a new cycle is added to R
and therefore a new spanning subgraph has a number of vertices in the cycles greater
than in R.

If the vertex v belongs to another tree of R but not to cycle, then T is a part of
a new tree T1 with a new root of a new spanning subgraph R1 and the path from p
to the new root is extended. So only the tree T1 has states of new maximal level.

If v belongs to some cycle H2 6= H from R, then together with replacing b̄ by v̄,
we replace also the edge w̄ by ā. So we extend the path from p to the new root v
at least by the edge ā = a → p and by almost all edges of H. Therefore the new
maximal level L1 > L has either the vertex d or its ancestors from the old spanning
subgraph R.

Now there remains only the case when v belongs to the cycle H. The vertex p
also has level L in new tree T1 with root v. The only difference between T and T1

(just as between R and R1) is the root and the incoming edge of the root. The new
spanning subgraph R1 has also a maximal number of vertices in cycles just as R. Let
r3 be the length of the path from d to the new root v ∈ H.

For the spanning subgraph R1, one can obtain L = r3 just as it was done on the
step 1) for R. From v 6= r follows r3 6= r2, though L = r3 and L = r2.

So for further consideration suppose that the set of outgoing edges of the vertex
b is a bunch to r.

3) The set of outgoing edges of the vertex c is not a bunch to r because r has
another bunch from b.

Let us replace in R the edge c̄ by an edge ū = c→ u such that u 6= r. The vertex
u could not belong to the tree T because in this case the cycle H is replaced by a
cycle with all vertices from H and some vertices of T whence its length is greater
than |H|. Therefore the new spanning subgraph has a number of vertices in its cycles
greater than in spanning subgraph R in spite of the choice of R.

So remains the case u 6∈ T . Then the tree T is a part of a new tree with a new
root and the path from p to the new root is extended at least by a part of H from
the former root r. The new level of p therefore is maximal and greater than the level
of any vertex in some another tree.

Thus anyway there exists a spanning subgraph with vertices of maximal level in
one non-trivial tree.

Theorem 9. Any AGW graph Γ has a coloring with stable couple.

Proof. By Lemma 4, in the case of vertex with two incoming bunches Γ has a coloring
with stable couples. In opposite case, by Lemma 8, Γ has a spanning subgraph R
such that the vertices of maximal positive level L belong to one tree of R.

Let us give to the edges of R the color α and denote by C the set of all vertices
from the cycles of R. Then let us color the remaining edges of Γ by other colors
arbitrarily.

By Lemma 2, in a strongly connected graph Γ for every word s and F -clique F
of size |F | > 1, the set Fs also is an F -clique of the same size and for any state p
there exists an F -clique F such that p ∈ F .

In particular, some F has non-empty intersection with the set N of vertices of
maximal level L. The set N belongs to one tree, whence by Lemma 6 this intersection
has only one vertex. The word αL−1 maps F on an F -clique F1 of size |F |. One has
|F1 \C| = 1 because the sequence of edges of color α from any tree of R leads to the
root of the tree, the root belongs to a cycle colored by α from C and only for the set

Avraham N. Trahtman: The Road Coloring and Černy Conjecture 7

N with vertices of maximal level holds NαL−1 6⊆ C. So |NαL−1 ∩ F1| = |F1 \ C| = 1
and |C ∩ F1| = |F1| − 1.

Let the integer m be a common multiple of the lengths of all considered cycles
from C colored by α. So for any p from C as well as from F1 ∩ C holds pαm = p.
Therefore for an F -clique F2 = F1α

m holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common vertices. So

|F1 \ (F1 ∩ F2)| = 1. Consequently, in view of Lemma 3, there exists a stable couple
in the considered coloring.

Theorem 10. Every AGW graph Γ has synchronizing coloring.

The proof follows from Theorems 9 and 1.

3 Some auxiliary properties

Lemma 11. Suppose p 6∈ Γs. Then p 6∈ Γus for any word u.

Proof follows from Γu ⊆ Γ .

Lemma 12. Suppose p 6∈ Γs for a word s and a state p of transition graph Γ of
DFA.

Then there exist two minimal integer k and r such that psk = psk+r. The pair
of states p,psr has 2-reset word sk and for every i < k the pair of states psi,psr+i

has 2-reset word sk−i. The word sk is a 2-reset word for at least k different pairs of
states.
In the case r = 1, the word sk maps the set of states p,ps, ...,psk on psk.

Proof. The sequence ps,ps2, ...,pst, ... is finite and belongs to Γs. Therefore such k
and r exist. Two states psi and psr+i are mapped by the power sk−i on psk = psk+r

as well as the states p and psr are mapped by the power sk on psk. All states psi

are distinct for i ≤ k, whence the word sk unites at least k distinct pairs of states.
In the case r = 1, psk = psjsk for any j. All states psi are distinct for 0 ≥ i ≤ k,

whence the word sk unites in this case at least k + 1 distinct states.

Lemma 13. Suppose rα = tα for a letter α and two distinct states r, t of transition
graph Γ of DFA and let the states r and rα be consecutive states of a cycle C of Γ .

Then there exists a word s of length of the cycle C such that rs = r and |Γs| < |Γ |.
For some state p ∈ Γ \ Γs there exists a minimal integer k such that psk = psk+1.
The pair of states p,psk has 2-reset word sk and for every i < k the pair of states
psi,psk has 2-reset word sk−i. The word sk unites at least k + 1 distinct states.

Proof. A word s with first letter α can be obtained from consecutive letters on the
edges of the cycle C. Therefore |s| is equal to the length of the cycle and rs = r.
|Γs| < |Γ | follows from rα = tα.

From rs = r 6= t and rα = tα follows that ts = r 6= t, whence r = tsi 6= t for any
integer i. In the case t ∈ Γ \ Γs suppose p = t, and so the state p is defined.

In opposite case the state t has by mapping s some preimage ts−1 and in view of
tsi 6= t for all i there exists an integer k (only one) such that the state ts−k belongs
to Γ \ Γs. Now suppose p = ts−k. One has psk = psk+1 = r for p from Γ \ Γs.

So the pair of states p,psk has 2-reset word sk and for every i < k the pair of
states psi,psk has 2-reset word sk−i. The states psi for i ≤ k and p are distinct
because k is unique. The word sk maps all these states on the state r.

8 Proceedings of the Prague Stringology Conference 2008

Lemma 14. Let Γ be strongly connected graph of synchronizing automaton with tran-
sition semigroup S. Suppose Γa = Γb for reset words a and b. Then a = b. Any reset
word is an idempotent.

Proof. The elements a and b from S induce equal mappings on the set of states of
Γ . S can be embedded into the semigroup of all functions on the set of states under
composition. Therefore a = b in S. Γa = Γa2, whence a = a2 for any reset word a
and the element a ∈ S is an idempotent.

4 Synchronizing Algorithms

The following help construction was supposed by Eppstein [9]. Let us keep for any pair
of states r,p the first letter α of the minimal 2-reset word w of the pair together with
the length of the word w. The second letter of w is the first letter of the analogical
word of the pair of states rα,pα. Therefore the 2-reset word w of minimal length
can be restored on this way. The time and space complexity of this preprocessing is
O(n2) [9] for n-state automaton.

4.1 Checking synchronizability

A help algorithm with O(n2q) time complexity in the worst case verifies whether or
not a given n-state DFA of alphabet size q is synchronizing. The algorithm follows
[9]. Our modification of the algorithm finds first all SCC of the graph (the first-depth
search is a linear) and then checks the minimal SCC Γs of sink states of the graph (if
exists). If there is no sink state then the automaton is not synchronizing. Exactly one
sink state implies synchronizability. The time and space complexity of the algorithm
in both these cases are linear.

Let us consider the graph Γs with at least two sink states. The next step is the
consideration of Γ 2

s . We unite any pair of states (p, r) and (r,p), all states (r, r) are
united in one state (0, 0). Then let us mark sink state (0, 0) and all ancestors of (0, 0)
using the first-depth search on the reverse of the obtained graph G. The graph Γ is
synchronizing if any node of G will be marked.

4.2 An efficient algorithm for reset word

An efficient semigroup algorithm, essential improvement of the algorithm [9], based
on the properties of transition semigroup and inspired mostly by results from the
previous section plays a central role in the program.

We consider the square Γ 2 and the reverse graph I of Γ . The graph I is not
deterministic for synchronizing graph Γ . Suppose that the graph Γ is synchronizing,
all sink states are found on the stage of checking of the synchronizability, the graph
Γ 2 and the reverse graph I were build.

Let us find by help of the reverse graph I for any pair of states r,p from Γ 2 the
first letter of the minimal 2-reset word w of the pair and the length of w [9]. So for
any pair r,p can be restored a 2-reset word w of minimal length.

Let us order the set of states (r,p) according to the length of the word w. The
ordering can be made linear in the size of the set in the following way:

Let us find first the number ci of all states (r,p) with given length i of minimal
2-reset word for any i, then adjust the intervals of size ci for to place the pairs and
then allocate in every interval the pairs with common length. It needs O(n2) time.

Avraham N. Trahtman: The Road Coloring and Černy Conjecture 9

We use also a complementary idea for to reorder the pairs of states. If a word w
unites at least two states let us find the number of states united by powers of w and
use this value for complementary order.

The important part of the preprocessing supposed by Eppstein was the computing
of the mapping Γw of the graph Γ induced by the minimal 2-reset word w of the pair
of states r,p. This stage begins from the shortest words w and therefore is linear for
any considered pair of states r,p. Nevertheless, the time complexity of the stage is
O(n3). For to avoid the extremes of this step, our algorithm stops on linear number
of pairs. The obtained set G of 2-reset words is considered as a set of generators of
some subsemigroup from A and will be marked together with corresponding pairs
of states. The time complexity of this step is therefore O(n2). Let us reorder G in
the complementary order and use the mapping of the graph induced by powers of
generators.
Let Γi be consecutive images of the graph Γ = Γ0 such that for wi ∈ A holds
Γiwi+1 = Γi+1 and |Γi| > |Γi+1|. Let Ai be a semigroup generated by the set w1, ...
wi. Let us check pairs of states corresponding to the words from G. If the pair belongs
to Γi then the corresponding minimal reset word wi+1 together with its powers may
be used for to find the image Γi+1.

In the case no minimal 2-reset word of a pair from Γi was marked, let us consider
the products of marked words. If some product unites a pairs of states of Γi, then let
us use the mapping, mark the product of words and the pair of states. Let us notice
that on this step are considered not all marked pairs. The number of considered
products must be linear in the size of Γ . The product of two mappings can be found
in linear time. Therefore the time complexity of this stage is O(nk) for the defect k
of the mapping of Γi.

If two considered stages still do not find a reset word, then the new generator
must be added to considered subsemigroup Ai. Let us take a pair of states r,p from
Γi with reset word wi. Suppose wi = uivi such that the word vi was marked. Then
the mapping wi can be found in n|ui| time. Let us notice that only on this step the
time complexity may by greater than quadratic.

Lemma 15. Let Γi be consecutive images of the graph Γ = Γ0 such that for vi from
semigroup A Γivi+1 = Γi+1, |Γi| > |Γi+1| and |Γs| = 1 for some integer s. Let Ai be a
semigroup generated by the set w1, ... wi such that wi = uivi is a reset word for some
pair of states from Γi−1 and vi is a marked element of the subsemigroup Ai−1.

Then the considered algorithm has max(O(|Γ |2q), O(|Γ ||u1...us|) time complexity.

Proof. The time complexity of the step of the building of Γ 2 is O(|Γ |2q). So O(|Γ |2q)
is a lower bound for the complexity of the considered algorithm.

Let the set w1, ... wi generate Ai. The creation of the mapping wi needs |Γ ||ui|+1
steps because for the marked element vi the mapping is known.

The element will be marked and used only if it is either a generator from Ai or a
product of two marked elements. With a marked semigroup element will be associated
the mapping of Γ defined by the element. The finding of the mapping of the product
of two elements with known images is linear in the size of the graph.

We repeat the process with the obtained image Γi. The defect of the mapping is
growing on every step. After not over than |Γ | − 1 steps Γ will be synchronized.

As for complexity of the algorithm, let us notice that the length of the synchroniz-
ing word found by the algorithm was less than n2 in all considered cases. The stage
of adding of new generators was used only in a small number of cases, only some per-

10 Proceedings of the Prague Stringology Conference 2008

cents of considered automata. The number of generators of the semigroup A is usually
small. For instance, for Černy graphs there are only two generators. Therefore the
time complexity of the algorithm is O(n2q) in majority of cases and the algorithm
can be considered as subquadratic.

4.3 An algorithm for reset word of minimal length

A straightforward algorithm for finding synchronizing word of minimal length is used
by the program on its last stage. The algorithm is not polynomial in the most worst
case (the finding of the synchronizing word of minimal length is NP-hard [9], [19]).
The size of the transition semigroup is in general not polynomial in the size of the
transition graph. The program for search of minimal reset word uses this algorithm
relatively rare.

We find mappings of the graph of the automaton induced by the letters of the al-
phabet of the labels. Mappings with the same set of states are identified. It essentially
simplifies the process. Distinct mappings are saved. For this aim, any two mappings
must to be compared, so we have O(s(s− 1)/2) steps for s mappings.
The mappings correspond to semigroup elements. With any mapping let us connect
a previous mapping and the letter that creates the mapping. On this way, the path
on the graph of the automaton can be constructed. The time complexity of the con-
sidered procedure is O(nqs2) with O(ns) space complexity.

Proposition 16. The algorithm finds a list of all words (elements of transition semi-
group) of length k where k is growing. The first synchronizing word of the list has
minimal length.

5 Experimental data

The considered synchronization algorithms were used in a program for search of auto-
mata with minimal reset word of relatively great length. The program has investigated
all complete DFA for n ≤ 10, q = 2 and for n ≤ 7, q ≤ 4.
An automaton with k states outside sink SCC A of the transition graph can be
mapped on A by word of length not greater than k(k − 1)/2. Therefore only auto-
mata with strongly connected transition graphs need investigation. The graphs with
synchronizing proper subgraph obtained by moving off letters from the alphabet are
omitted too. In particular, there are no synchronizing 3-state automata for q ≥ 3 such
that by removing any letter the obtained automata are not synchronizing. Therefore
such automata are not studied and in the table below for n = 3 appears zero.

The known n-state automata with minimal reset word of length (n − 1)2 are
presented by sequence of Černy [7] (here n=28):

a a a a a a a a a a a a ab b b b b b b b b b b b b

a b a

a a a a a a a a a a a a a

b b b b b b b b b b b b b b

by automata supposed by Černy, Piricka and Rosenauerova [8], by Kari [16] and
Roman [23].

Avraham N. Trahtman: The Road Coloring and Černy Conjecture 11

b a

b

a b

a
a

a a

a a

a

a

b b
b

b

b

c c

a

ab

a, b c a, b

b

Our program has found five new following examples on the border (n− 1)2.

b

a

a

c

c b, c

a, b

a

a a
c

c abb

b
a
b

baa c

a

a, b

b c b a

c
a, b

b

c

The corresponding reset words of minimal length are: abcacabca, acbaaacba, baab,
acba, bacb. All considered algorithms have found the same reset word for every ex-
ample. The size of the transition semigroup found by the package TESTAS is 148,
180, 24, 27 and 27 correspondingly.

There are no contradictory examples for the Černy conjecture in considered class
of automata. Moreover, there are no new examples of automata with reset word of
length (n − 1)2 for n > 4 and q > 3 in this class. And what is more, the examples
with minimal length of reset word disappear even for values near the Černy bound
(n − 1)2 with growth of the size of the automaton and of the size of the alphabet.
The following table displays this noteworthy trend for the maximum of lengths of
minimal reset words of length less than (n−1)2. By ∗ are denoted here non-isomorphic
automata having minimal reset words of length (n− 1)2 that do not belong to Černy
sequence.

size of the automaton n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
(n− 1)2 4 9 16 25 36 49 64 81

max length, 2 letters 3 ∗ 8 ∗ 15 23 ∗ 32 44 58 74
max length, 3 letters 0 ∗ ∗ 8 ∗ ∗ 15 ∗ 23 31 ≤44 – –
max length, 4 letters 0 8 15 22 30 – – –

The gap between (n−1)2 and the maximum of considered length of the minimal reset
word grows with n and q. This gap supports the following funny

Conjecture The set of n-state DFA with minimal reset word of length not less
than (n− 1)2 contains only the sequence of Černy and the eight automata mentioned
above, three of size 3, three of size 4, one of size 5 and one of size 6.

and also
Conjecture Any AGW graph has coloring with minimal reset word of length less

than (n− 1)2.

References

1. R.L. Adler, L.W. Goodwyn, B. Weiss: Equivalence of topological Markov shifts, Israel J.
of Math. 27(1977), 49–63.

2. R.L. Adler, B. Weiss: Similarity of automorphisms of the torus, Memoirs of the Amer. Math.
Soc., Providence, RI, 98(1970).

3. M.P. B’eal, D. Perrin: A quadratic algorithm for road coloring. arXiv:0803.0726v2 [cs.DM].
4. G. Budzban, A. Mukherjea: A semigroup approach to the Road Coloring Problem, Proba-

bility on Algebraic Structures. Contemporary Mathematics, 261(2000), 195–207.

12 Proceedings of the Prague Stringology Conference 2008

5. A. Carbone: Cycles of relatively prime length and the road coloring problem, Israel J. of Math.,
123(2001), 303–316.

6. K. Culik II, J. Karhumaki, J. Kari: A note on synchronized automata and Road Coloring
Problem, Developments in Language Theory (5th Int. Conf., Vienna, 2001), Lecture Notes in
Computer Science, 2295(2002), 175–185.

7. J.Černy: Poznamka k homogenym eksperimentom s konechnymi automatami, Math.-Fyz. Čas.,
14(1964) 208–215.

8. J. Černy, A. Piricka, B. Rosenauerova: On directable automata, Kybernetika 7(1971),
289–298.

9. D. Eppstein: Reset sequences for monotonic automata. SIAM J. Comput., 19(1990), 500–510.
10. P. Frankl: An extremal problem for two families of sets, Eur. J. Comb., 3(1982), 125–127.
11. J. Friedman: On the road coloring problem, Proc. of the Amer. Math. Soc. 110(1990), 1133–

1135.
12. E. Gocka, W. Kirchherr, E. Schmeichel: A note on the road-coloring conjecture. Ars

Combin. 49(1998), 265–270.
13. R. Hegde, K. Jain: Min-Max theorem about the Road Coloring Conjecture EuroComb 2005,

DMTCS proc., AE, 2005, 279–284.
14. P.M. Higgins: The range order of a product of I-transformation from a finite full transformation

semigroup, Semigroup Forum, 37(1988), 31–36.
15. N. Jonoska, S. Suen: Monocyclic decomposition of graphs and the road coloring problem,

Congressum numerantium, 110(1995), 201–209.
16. J. Kari: Synchronizing finite automata on Eulerian digraphs, Springer, Lect. Notes in Comp.

Sci., 2136(2001), 432–438.
17. A.A. Kljachko, I.K. Rystsov, M.A. Spivak: An extremely combinatorial problem connected

with the bound on the length of a recurrent word in an automata. Kybernetika. 2(1987), 16–25.
18. D. Lind, B. Marcus: An Introduction of Symbolic Dynamics and Coding, Cambridge Univ.

Press, 1995.
19. A. Mateescu, A. Salomaa: Many-Valued Truth Functions, Černy’s Conjecture and Road

Coloring, Bull. of Eur. Ass. for TCS, 68(1999), 134–148.
20. G.L. O’Brien: The road coloring problem, Isr. J. of Math., 39(1981), 145–154.
21. D. Perrin, M.P. Schützenberger: Synchronizing prefix codes and automata, and the road

coloring problem, In Symbolic Dynamics and Appl., Contemp. Math., 135(1992), 295–318.
22. J.E. Pin: On two combinatorial problems arising from automata theory, Annals of Discrete

Math., 17(1983), 535–548.
23. A. Roman: Synchronization of finite automaton. Computations for different alphabet sizes,

Workshop on words and automata. S-Petersburg. 2006.
24. A.N. Trahtman: Notable trends concerning the synchronization of graphs and automata,

CTW06, El. Notes in Discrete Math., 25(2006), 173-175.
25. M.V. Volkov: A private letter.
26. W.H. Wheeler: A note on Trakhtman’s proof of the road coloring theorem. Submitted.

Dynamic Burrows-Wheeler Transform

Mikaël Salson1⋆, Thierry Lecroq1, Martine Léonard1, and Laurent Mouchard1,2

1 LITIS EA 4108, University of Rouen, 76821 Mont Saint Aignan Cedex, France
2 Algorithm Design Group, Department of Computer Science, King’s College London, Strand,

London WC2R 2LS, England
Laurent.Mouchard@univ-rouen.fr

Abstract. The Burrows-Wheeler Transform is a building block for many text com-
pression applications and self-index data structures. It reorders the letters of a text T to
obtain a new text bwt(T) which can be better compressed. This forward transform has
been intensively studied over the years, but a major problem still remains: bwt(T) has
to be entirely recomputed whenever T is modified. In this article, we are considering
standard edit operations (insertion, deletion, substitution of a letter or a factor) that
are transforming a text T into T ′. We are studying the impact of these edit operations
on bwt(T) and are presenting an algorithm that converts bwt(T) into bwt(T ′). More-
over, we show that we can use this algorithm for converting the suffix array of T into
the suffix array of T ′. Even if the theoretical worst-case time complexity is O(|T |), the
experiments we conducted indicate that it performs really well in practice.

1 Introduction

Data compression plays an important role in computer science. Its main goal is to
reduce the normal consumption of data storage (one can easily store a large selec-
tion of books on a single USB key or CD). Nowadays, one of its main interests is
to save network bandwith, enabling fast access to large distant resources, permit-
ting the development of services such as Video On Demand or WebTV broadcasting
over DSL [2]. While efficient image, video or sound compressions are traditionnally
achieved using lossy algorithms, text compression only tolerates lossless algorithms,
as no letter of the text should be omitted.

Some of the most popular lossless text compression tools, such as bzip, 7Z or
winzip, are using a preprocessing engine that reorders the letters of the original text
and eases the compression, paving the way for Run-Length Encoding, entropy encod-
ing or Prediction by Partial Matching methods [4,3]. This preprocessor, the Burrows-
Wheeler Transform [1], is a very interesting block-sorting algorithm: conceptually
speaking, it is very close to the suffix array proposed in [17,12] and has been proved
to be a particular case of the Gessel-Reutenauer transforms [5].
Due to its intrinsic structure and its similarity with the suffix array, it has been
also used for advanced compressed index structures [8,9] that authorize approximate
pattern matching, and therefore can be used by search engines.

The Burrows-Wheeler Transform of a text T of length n, bwt(T), is often obtained
from the fitting suffix array. Its construction is based on the construction of the suffix
array, usually performed in O(n)-time [19]. Storing the intermediate suffix array is
still one of the main technological bottlenecks, as it requires Ω(n log n) bits, while
storing bwt(T) and T only require O(n log σ) bits, where σ is the size of the alphabet.

Even if this transform has been intensively studied over the years [10], one essential
problem still remains: bwt(T) has to be totally reconstructed as soon as the text T is

⋆ Funded by the French Ministry of Research – Grant 26962-2007

Mikaël Salson, Thierry Lecroq, Martine Léonard, Laurent Mouchard: Dynamic Burrows-Wheeler Transform, pp. 13–25.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

14 Proceedings of the Prague Stringology Conference 2008

altered. Although some authors already addressed the issue of maintaining an index
for a dynamic text [6,7,14], their answer cannot be fully applied to the Burrows-
Wheeler Transform.

In this article, we are considering the usual edit operations (insertion, deletion,
substitution of a letter or a factor) that are transforming T into T ′. We are studying
their impact on bwt(T) and are presenting an algorithm for converting bwt(T) into
bwt(T ′). Moreover, we show that we can use this algorithm for changing the suffix
array of T into the suffix array of T ′.

The article is organized as follows: in section 2 we introduce the Burrows-Wheeler
Transform and all associated vocabulary and structures and state the formal problem
we are facing. In section 3, we present a detailed explanation of the proposed algorithm
when considering an insertion. We then extend the algorithm to handle the other
edit operations, exhibiting their respective complexities. In section 4, we expose our
results and compare them with the theoretical assumptions and finally in section 5
we conclude and draw perspectives.

2 Preliminaries

Let the text T = T [0 . . n] be a word of length n + 1 over a finite ordered alphabet
Σ of size σ. Mimicking the suffix tree and suffix array structures, we are considering
here that the rightmost letter of T is a sentinel letter $. This letter has been added
to the alphabet Σ and is smaller than any other letter of Σ.
A factor starting at position i and ending at position j is denoted by T [i . . j] and a
single letter is denoted by T [i] (or Ti to facilitate the reading). We add that when
i > j, T [i . . j] is the empty word. The cyclic shift of order i of the text T is T [i] =
T [i . . n]T [0 . . i− 1] for a given 0 ≤ i ≤ n.

Remark 1. Ti = T [(i+1) mod |T |][n] that will be simply denoted by T
[(i+1) mod |T |]
n there-

after.

The Burrows-Wheeler Transform of T , denoted bwt(T), is the text of length n+ 1
corresponding to the last column L of the conceptual matrix whose rows are the
lexicographically sorted T [i] (see Fig. 1b).Note that F , the first column of this matrix,
is sorted, so can be trivially deduced from L, and that in Fig. 1c, π is the fitting sort
function.

T = G
0

T
1

C
2

T
3

$
4

T [0] G T C T $

T [1] T C T $ G

T [2] C T $ G T

T [3] T $ G T C

T [4] $ G T C T

(a) Cyclic shifts

lexicographic

sort

−→

T [4] $ G T C T

T [2] C T $ G T

T [0] G T C T $

T [3] T $ G T C

T [1] T C T $ G
F L

(b) Sorted cyclic shifts

fitting

sort

function

−→

i π(i)

0 4
1 2
2 0
3 3
4 1

(c) π

Figure 1. bwt(GTCT$) = L =TT$CG

M.Salson et al.: Dynamic Burrows-Wheeler Transform 15

Remark 2. We can observe that π corresponds to the suffix array of T , SA confirming
the adjacency between L (letters) and SA (integers). Moreover, we simply have L[i] =
T [(SA[i]− 1) mod |T |], meaning we can deduce L from SA.

Combining Remarks 1 and 2, one can easily recover the original word T when

considering both columns L and π. We know that: T0=T
[1]
4 , T1=T

[2]
4 , T2=T

[3]
4 , T3=T

[4]
4

and T4=T
[0]
4 . The orders of the cyclic shifts are (1, 2, 3, 4, 0) in the π(i)-column, that

is (4, 1, 3, 0, 2) in the i-column and finally (G, T, C, T, $) in the L-column. We obtain
T=GTCT$.
Similarly, a right-to-left reconstruction of T will use sequence (0, 4, 3, 2, 1), that is
(2, 0, 3, 1, 4) in the i-column and finally ($, T, C, T, G) in the L-column. Reading this
sequence from right to left, we obtain T=GTCT$.

We clearly know how to progress in the π(i)-column, if we consider a value j in this
column, its predecessor is (j−1) mod 5. Starting with j = 0, we obtain the sequence
(0, 4, 3, 2, 1). We have now to study how to progress in the i-column. Considering a
value j in this column, the corresponding value in π(i)-column is obviously π(j). Its
predecessor in π(i)-column is (π(j)−1) mod 5) and finally the associated value back
in the i-column is π−1((π(j)− 1) mod 5).

i π(i) (π(i)− 1) mod 5 π−1((π(i)− 1) mod 5)
0 4 3 3
1 2 1 4
2 0 4 0
3 3 2 1
4 1 0 2

Using this formula, we obtain a permutation 0→3, 3→1, 1→4, 4→2, 2→0. We have
to start with i such that π(i) =0, that is i = 2, corresponding to (2, 0, 3, 1, 4) in the
i-column and subsequently ($, T, C, T, G) in the L-column. Reading this sequence
from right to left, we obtain T=GTCT$.

This function is of crucial importance, since it creates a link between two consec-
utive elements of L or more precisely between an element of L and its equivalent in
F , as described in Fig. 2. It has been shown [8] that this function, which creates a
table LF of size n + 1, can be computed using only L and the functions rankc(U, i)
that return the number of c in U [0 . . i].

i F L LF

0 $ T 3

1 C T 4

2 G $ 0

3 T C 1

4 T G 2

T = G
0

T
1

C
2

T
3

$
4

The second T in L (rankT(L, 1)=2) is linked to the second T in F

(rankT(F, 4)=2). This specific T occurs at position 1 in the text.
LF [1]=4 so L[1]=T is immediately preceded by L[LF [1]]=L[4]=G.

Figure 2. LF : Establishing a relation between L and F

Remark 3. Without the added sentinel letter $, LF can not be necessarily determined
from bwt(T), e.g. T=AAA. It is clear that F and L would be both equal to AAA and
that rankA(L, i) = rankA(F, i) for all 0 ≤ i < 3, annihilating all possible relation
between consecutive elements of L.

To cut a long story short, LF provides a convenient way of navigating between
cyclic shifts of order i and i− 1 and will be intensively used in this article.

16 Proceedings of the Prague Stringology Conference 2008

We already explained that L is conceptually very close to SA, with a simple forward
transform from the former to the latter. It follows that most of the algorithms con-
structing L are using the existing O(n)-time (theoretical) algorithms that build SA
[19] and are applying the forward transform afterwards. Storing SA is still the main
technological bottleneck, as it requires Ω(n log n) bits while L and T only require
O(n log σ) bits. Such a requirement prevents large texts to be encoded, even if a re-
cent promising result [15] authorizes large texts to be processed by computing the
suffix array, a block at a time.

Nevertheless, L is a text that accepts no direct modification: a simple transfor-
mation of T into T ′ traditionally leads to the computation of its Burrows-Wheeler
Transform, L′, from scratch. Our goal is to study how L is affected when standard
edit operations (insertion, deletion or substitution of a block of letters) are applied
to T . Based on these observations, we are presenting an algorithm for transforming
L into L′ with only a very limited extra space and prove its correctness.

3 A Four-stage Algorithm for Updating L

We start by conducting a complete study on how an edit operation, transforming
T into T ′, is impacting L (either directly or implicitly). To illustrate this study, we
are considering the simple case consisting of the insertion of a single letter. Based
on this study, we propose a four-stage algorithm for transforming L into L′. We are
conducting a parallel study for F , which is required for the construction of L′. In
order to do so, we are maintaining a two-column matrix gathering F and L. Each
row contains the F and L values corresponding to a given cyclic shift (as described
in Fig. 2). At the end of the process, L is equal to bwt(T ′). Finally, we extend our
approach to the insertion of a factor, and explain how we can consider substitutions
and deletions.

In order to study the impact the insertion of a single letter has, we have first to
recall that L′ strongly depends on the ranking of all cyclic shifts of T ′. We thus have
to study how the insertion of a letter is modifying the cyclic shifts. Assume we are
inserting a letter c at position i in T . Depending on the cyclic shift we are considering,
we can formalize these four cases, remembering that Tn=$, by:

T ′[j] =

T [j − 1 . . n− 1] $ T [0 . . i− 1] c T [i . . j − 2] if i + 1 < j ≤ n + 1 (Ia)

T [i . . n− 1] $ T [0 . . i− 1] c if j = i + 1 (Ib)

c T [i . . n− 1] $ T [0 . . i− 1] if j = i (IIa)

T [j . . i− 1]c T [i . . n− 1] $ T [0 . . j − 1] if 0 ≤ j < i (IIb)

(II) $ (I) c appears: (I) right to $, (II) left to $.
ւ ց ւ ց That means:

(IIa) (IIb) $ (Ia) (Ib) c appears: (Ia) between $ and L, (Ib) in L.
F L c appears: (IIa) in F , (IIb) between F and $.

Figure 3. All possible locations of c in T ′[j] after the insertion

3.1 Cyclic Shifts of Order j > i (I)

In this section, we are considering all cyclic shifts associated with positions in T
that are strictly greater than i. We show that the two stages (Ia) and (Ib) are not
modifying the respective ranking of the corresponding cyclic shifts.

M.Salson et al.: Dynamic Burrows-Wheeler Transform 17

From Fig. 3 (Ia), T ′[j+1] = T [j . . n − 1]$T [0 . . i − 1]cT [i . . j − 1], ∀j ≥ i meaning
that T ′[j+1] and T [j] are sharing a common prefix T [j . . n− 1]$T [0 . . i− 1].

Lemma 4. Inserting a letter c at position i in T has no effect on the respective
ranking of cylic shifts whose orders are strictly greater than i. That is, for all j ≥ i
and j′ ≥ i, we have T [j] < T [j′] ⇐ : T ′[j+1] < T ′[j

′+1].

Proof. In order to prove this lemma, we have to prove that the relative lexicographical
rank of two cyclic shifts, of orders strictly greater than i is the same before and after
the insertion.

Assume without loss of generality that j > j′ and T [j] < T [j′].
We know that for every k < |T |, T [j][0 . . k] ≤ T [j′][0 . . k]. The prefix of T [j] ending
before the sentinel letter $ is of length n− j < |T |, and therefore T [j][0 . . n− j− 1] ≤
T [j′][0 . . n − j − 1]. That is, T [j . . n − 1] ≤ T [j′ . . j′ + n − j − 1] (grey rectangles
below). Moreover $, the smallest letter of Σ, occurs only once in T . The fact that
T [j + n − j] is equal to $ induces T [j′ + n − j] 6=$, and is therefore strictly greater
than $. It follows that T [j][0 . . n− j] < T [j′][0 . . n− j].

T
[j]

$

j n− 1 0 j−1

$

T
[j′]

j′ n−1 0 j′ −1

insertion of c

insertion of c

$

T
′[j+1]

c

j + 1 n 0 i j

$

T
′[j′+1]

c

j′ +1 n 0 i j′

Since T ′[j + 1 . . n]$ = T [j . . n− 1]$ and T ′[j′+ 1 . . n + j′− j + 1] = T [j′ . . n + j′− j],
we have T ′[j + 1 . . n]$ < T ′[j′+ 1 . . n+ j′− j + 1]. So T ′[j + 1 . . n]$u < T ′[j′+ 1 . . n+
j′ − j + 1]v, for all texts u, v over Σ. Finally, T [j] < T [j′]:T ′[j+1] < T ′[j

′+1].
The proof of T ′[j+1] < T ′[j

′+1]:T [j] < T [j′] is done in a similar way.

Remark 5. This lemma can be generalized to the insertion of a factor of length k by
considering T ′[j+k] < T ′[j

′+k] instead of T ′[j+1] < T ′[j
′+1].

Cyclic Shifts of Order j > i + 1: (Ia) c between $ and L It follows, from
Lemma 4, that the ranking of all cyclic shifts T ′[j+1] is identical to the ranking of all
cyclic shifts T [j]. In the rows corresponding to T ′[j], F and L are unchanged.

Cyclic Shift of Order i + 1: (Ib) c in L → Modification of L The respective
ranking of this cyclic shift with respect to the cyclic shifts of greater order is preserved.
Since c is inserted at position i, it follows that T ′[i+1] = T [i]c. These two cyclic shifts
are sharing a common prefix T [i]. In the row corresponding to T ′[i+1], F is unchanged
while L, which was equal to Ti−1, is now equal to c.
We find the position of T ′[i+1] by using a subsampling of π (see [9,16]) and computing
k such that π(k)=i.

Insertion of G at position i=2 in T

T=C
0

T
1

C
2

T
3

G
4

C
5

$
6

→ T ′=C
0

T
1

G

2

C
3

T
4

G
5

C
6

$
7

(Ia): no modification.

(Ib): T [i] is at position k=3 (π(3)=2), L[3]←G.

After stage (Ib), we have: one G in F and two Gs in L, two

Ts in F and one T in L.

π F L F L

6 $ C $ C
5 C G C G
0 C $ C $

i= 2 C T
(Ib)−→ C G

4 G T G T
1 T C T C
3 T C T C

18 Proceedings of the Prague Stringology Conference 2008

3.2 Cyclic Shifts of Order j ≤ i

Cyclic Shift of Order i: (IIa) c in F → Insertion of a new row After
considering the cyclic shift T ′[i+1] that ends with the added letter c, we now have to
consider the brand new cyclic shift that starts with the added c, that is T ′[i] = cT [i] =
cT [i . . n − 1]$T [0 . . i − 1] which ends with Ti−1. Since T ′[i+1] is located at position
k, T ′[i] has to be inserted in the table at position LF [k] (derived from the function
rankc(L, k)).

Insertion of G at position i=2 in T

T=C
0

T
1

C
2

T
3

G
4

C
5

$
6

→ T ′=C
0

T
1

G

2

C
3

T
4

G
5

C
6

$
7

(IIa): T ′[i] is inserted in the table at position LF [k].

For this inserted row F=c=G and L=Ti−1=T.

T ′[i+1] finishes with a G which is the second G in L.

T ′[i] begins with this G which has to be the second G in F .

After stage (IIa), we have: two Gs in F and two Gs in L, two Ts in

F and two Ts in L.

F L F L

$ C $ C
C G C G
C $ C $

C G
(IIa)−→ C G

G T G T
T C G T

T C T C
T C

Cyclic Shifts of Order j < i: (IIb) c between F and $ → Reordering So
far, the L-value of one row has been updated (Ib) and one new row has been inserted
(IIa). However, cyclic shifts T ′[j], for any j < i, may have a different lexicographical
rank than T [j] (e.g. AAG$ < AG$A but ATAG$ > AG$AT). Consequently, some
rows corresponding to those cyclic shifts may be moved.

To know which rows have to move, we compare the position of T [j] with the
computed position of T ′[j], from j = i − 1 downto 0, until these two positions are
equal. The position of T [j] is obtained from T [j+1] and the LF -table we updated while
considering T [j+1] (UpdateLF in the algorithm). The position of T ′[j] is obtained
from T ′[j+1] and the current LF -table.
When these two positions are different, the row corresponding to T [j] is moved to the
computed position of T ′[j] (MoveRow in the algorithm).

We give the pseudocode of the reordering step. The function index returns the
position of a cyclic shift in the matrix.

Reorder(L, i)

1 j ← index(T [i−1]) ⊲ Gives the position of T [i−1]

2 j′ ← LF [index(T ′[i])] ⊲ Gives the computed position of T ′[i−1]

3 while j 6= j′ do

4 new j← LF [j]
5 MoveRow(j, j′)
6 UpdateLF(j′, new j)
7 j ← new j

8 j′ ← LF [j′]

We now prove that the algorithm Reorder is correct: it ends as soon as all the
cyclic shifts of T ′ are sorted. In the following lemma, we denote by C a succinct
representation of F . Since the letters of the text are lexicographically sorted in F ,
we only need to store the number of times each letter appears in the text. Thus, C[c]
is defined as the number of letters in the text strictly lower than c, e.g. when F =
$AAACCGGT, C[$] = 0 and C[G] = 6.

Lemma 6. ∀j < i, ∀j′ > j, T ′[j] < T ′[j
′] ⇐ : index(T ′[j]) < index(T ′[j

′]), after the
iteration considering T [j], in Reorder.

M.Salson et al.: Dynamic Burrows-Wheeler Transform 19

Proof. We prove the lemma recursively for any j ≤ i + 1.
From the previous lemma, ∀j′ ≥ i + 1 we have T ′[i+1] < T ′[j

′] ⇐ : T [i] < T [j′−1].
Obviously, the property we want to prove is true for any j, on the text T and the
original BWT. Thus T ′[i+1] < T ′[j

′] ⇐ : index(T [i]) < index(T [j′−1]). Neither T ′[i+1]

nor T ′[j
′] have been moved in the algorithm. Thus, index(T ′[i+1]) < index(T ′[j

′]) ⇐
: index(T [i]) < index(T [j′−1]) ⇐ : T ′[i+1] < T ′[j

′].
We have shown that the lemma is true for j = i+1, now let us prove it recursively

for j − 1.

By definition, T
′[j−1]
0 = T

′[j]
n+1, let r = rank

T
′[j]
n+1

(L, index(T ′[j])). The index of T ′[j−1] is

computed using LF with the following formula:

index(T ′[j−1]) = C[T
′[j−1]
0] + r − 1. We distinguish two different cases:

– if the first letter of T ′[j−1] is different from the first one of T ′[j
′], then C[T

′[j−1]
0] 6=

C[T
′[j′]
0]. Without loss of generality, consider T

′[j−1]
0 < T

′[j′]
0 . By definition, r ≤

C[T
′[j′]
0]−C[T

′[j−1]
0]. Thus C[T

′[j−1]
0]+r−1 ≤ C[T

′[j′]
0]−1. However, the rank com-

puted for the index of T ′[j
′] is strictly positive. Finally T

′[j−1]
0 < T

′[j′]
0 :index(T ′[j−1]) <

index(T ′[j
′]).

– otherwise, both letters are equal. Then, we can write T ′[j−1] < T ′[j
′] ⇐ : T ′[j−1][1 . . n+

1] < T ′[j
′][1 . . n + 1] ⇐ : T ′[j−1][1 . . n + 1]T

′[j−1]
0 < T ′[j

′][1 . . n + 1]T
′[j′]
0 ⇐ : T ′[j] <

T ′[j
′+1]. We know that the lemma is true for j, thus we have T ′[j] < T ′[j

′+1] ⇐
: index(T ′[j]) < index(T ′[j

′+1]).

Let k = index(T ′[j]), k′ = index(T ′[j
′+1]), r′ = rank

T
′[j′+1]
n−1

(L, k′) and c = T
′[j−1]
0 =

T
′[j′]
0 .

index(T ′[j−1]) = C[c] + rankc(L, k)− 1
index(T ′[j

′]) = C[c] + rankc(L, k′)− 1

We know that T
′[j]
n+1 = Lk = c, T

′[j′+1]
n+1 = Lk′ = c and k′ > k. So rankc(L, k′) >

rankc(L, k) and eventually index(T ′[j−1]) < index(T ′[j
′]).

Finally, T ′[j−1] < T ′[j
′]:index(T ′[j−1]) < index(T ′[j

′]). We can prove T ′[j−1] <
T ′[j

′] ⇐= index(T ′[j−1]) < index(T ′[j
′]) in a similar way.

Thus, if the property is true for j, it is also true for j − 1. Finally, when the
algorithm finishes (with j = 0), we have ∀j, j′, T ′[j] < T ′[j

′] ⇐ : index(T ′[j]) <
index(T ′[j

′]). In other words, at the end of the algorithm, the cyclic shifts are ordered.

We now have to prove that stopping the algorithm when the computed position
and the initial one are identical is sufficient, all cyclic shifts being ordered.

Lemma 7. index(T [k]) = index(T ′[k]):index(T [j]) = index(T ′[j]), for j < k < i.

Proof. Given index(T [k]),

index(T [k−1]) = C[T
[k]
n] + rank

T
[k]
n

(L, index(T [k]))

= C[T
′[k]
n+1] + rank

T
′[k]
n+1

(L, index(T ′[k])) = index(T ′[k−1])

Therefore, index(T [k]) = index(T ′[k]):index(T [k−1]) = index(T ′[k−1]).
By induction, we prove the property for each j < k.

Consider a cyclic shift T [j] and k the number of times T
[j]
n appears in L from the

beginning to the position of T [j]. The LF -value for the cyclic shift T [j] is the position

corresponding to T [j−1] in L which is the k-th cyclic shift beginning with a T
[j]
n .

20 Proceedings of the Prague Stringology Conference 2008

At the position of T ′[i−2], we have the first $ in L, and at the position of T [i−3], we
have the first $ in F . Therefore, we do not need to move a cyclic shift anymore. In
fact, we reach the leftmost position of the text, preventing us from considering further
move.
Finally, L = bwt(T ′).

3.3 Insertion of a Factor rather than a Single Letter

We can generalize our approach to handle the insertion of a factor S at position i in
T . Consider T ′ = T [0 . . i− 1]S[0 . . m− 1]T [i . . n] with m > 1.
The four stages can be extended as follows:

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.
(Ib) Cyclic shift T ′[i+m]: modification L=Sm−1 instead of Ti−1.

(IIa) Cyclic shifts T ′[j] from j=i + m− 1 downto i + 1:
insertion F=Sj−i and L=Sj−i−1.

T ′[i]: insertion F=S0 and L=Ti−1.
(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm on page 18.

However a problem arises: we delete Ti−1 from L during stage (Ib), and reintroduce it
after all the other insertions at the end of stage (IIa). During this stage, all rankTi−1

values that have been computed before the final insertion may be wrong. These values
have to be computed only if a Sj, j > 0, is such that Sj = Ti−1.

A simple solution consists in not relying on rankTi−1
and, depending on the loca-

tion we are considering and the location of the original Ti−1, adding 1 to the obtained
value.

More precisely, if we are computing LF(ℓ) such that L[ℓ] = Ti−1 and ℓ > π−1(i),
then we must add one to the result of LF(i) (see Fig. 4).

3.4 Deletion of a Factor

Consider a deletion of m consecutive letters in T , starting at position i. The resulting
text is T ′ = T [0 . . i− 1]T [i + m . . n]. The four stages can be modified as follows:

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.
(Ib) Cyclic shift T [i+m]: modification L=Ti−1 instead of Ti+m−1.

(IIa) Cyclic shifts T [j] from j=i + m− 1 downto i:
deletion of the corresponding row.
We still have to pay attention to rankTi−1

: during the deletion of cyclic shifts,
Ti−1 appears twice in L. Therefore, we may have to subtract one from the value
returned by rankTi−1

.
(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm page 18.

M.Salson et al.: Dynamic Burrows-Wheeler Transform 21

π F L F L i
6 $ C $ C 0
5 C G C G 1
0 C $ C $ 2
2 C T C T 3
4 G T G T 4

1 T C
(Ib)−→ T G 5

3 T C T C 6

Assume we are having an insertion at position 1 which
causes such a modification in L.
During step (Ib) a disequilibrium is introduced between
L and F (two G in L, one G in F and two C in L, three
C in F).

Computing LF at position 6 gives position 2 (ie. the position of the second C in F). However it
should be position 3: π(6) = 3 and π(3) = π(6)− 1 = 2. To correct this, we have to remember, until
we insert back the original C, that at position p = 5 we had a C.
Using the solution we proposed, since L[6] = C and 6 > π−1(1) = 5, we must add one to the original
LFvalue obtained and finally the value is correct (that is 3).

Figure 4. Example of the problem induced by the insertion of a factor.

3.5 Substitution of a Factor

Consider the substitution of T [i . . i + m − 1] by S[0 . . m − 1]: that is T ′=T [0 . . i −
1]S[0 . . m− 1]T [i + m . . n].

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.

(Ib) Cyclic shift T ′[i+m]: modification L=Sm−1 instead of Ti+m−1.

(IIa) Cyclic shifts T ′[j] from j=i + m− 1 downto i + 1:
substitution F=Sj−i and L=Sj−i−1

move this row to the appropriate position.
T ′[i]: modification F=S0.

(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm on page 18.

3.6 Complexity

After the three first stages, a modification and an insertion have modified the two
columns. The fourth stage, that consists in finding the new ranking of all extended
cyclic shifts of order less than i, is the greediest part of the algorithm. The worst-case
scenario occurs when the new ranking is obtained after each cyclic shift has been
considered (e.g. Am$ → AmC$). It follows that the worst-time complexity depends
on the O(n) iterations presented in the algorithm on page 18.

Since we are dealing with insertions and deletions, we cannot use constant-time
static structures in the functions MoveRow and UpdateLF. Very recent dynamic
data structures can handle insertions and deletions while allowing to perform rankc,
insertions and deletions in logarithmic time [16,13], leading to an overall practical
complexity bounded by O(n log n log σ).

These structures [16,13] can store any text in nH0 + o(n log σ) bits. However
Mäkinen and Navarro proved [16] that storing the BWT with such structures needs
only nHk + o(n log σ) bits, where Hk corresponds to the k-th order entropy of the
text. C is represented in little space using O(σ log n) bits. Our algorithm by itself
needs only constant space consisting in few variables which store values that have
been replaced.

22 Proceedings of the Prague Stringology Conference 2008

4 Experiments and Results

In the previous section, we presented a four-stage algorithm for updating the Burrows-
Wheeler Transform of a modified text. We conducted experiments on real-life texts
as follows: we downloaded four texts from the Pizza&Chili corpus1 on March, 15th
2008. We added two other type of texts: a random text drawn on an alphabet of size
100 and a Fibonacci word. These texts are of various types (length, content, entropy
and alphabet size). For each category, we extracted randomly 10 texts of length 100,
250 and 500 KB, and 1 MB. For each text T , the letter at a random position i was
replaced by another letter c drawn from T , resulting in T ′. Because of the closeness
between the Burrows-Wheeler Transform and the suffix array, we generated, for each
sample, the two suffix arrays, one for T and one for T ′. We measured the number of
differences between these two suffix arrays and repeated this operation 100 times to
compute an average value. We used substitution, instead of insertion, in these tests
because the number of modifications is much easier to compute: with an insertion at
position i, the suffix beginning at position j > i in T begins at position j + 1 in T ′.
Thus, all values greater than i in the original suffix array are incremented by one in
the modified suffix array. Note that the impact an insertion or a deletion has on the
lexicographical order of suffixes (or cyclic shifts) is not different from the impact of a
substitution.

The results are presented in Table 1.

Ratio
Entropy H0 100 KB 250 KB 500 KB 1 MB 1 MB:100 KB

DNA 1.982 10.12 9.52 10.26 10.91 1.08
English 4.53 7.75 7.94 9.03 10.31 1.33
Fibo 0.96 25,414.13 63,527.09 119,780.37 261,910.49 10.31
Random 6.60 3.89 4.03 4.21 4.36 1.12
Source 5.54 92.88 55.76 118.54 72.22 0.77
XML 5.23 26.43 28.84 34.8 44.08 1.67

Table 1. Number of modifications for a random substitution of a single letter.

These results are encouraging since multiplying the size of the text by 10 does
not increase by the same factor the number of differences (apart from Fibonacci).
Moreover, the number of modifications is closer to log(n) rather than n. We would
like to conduct an in-depth study of these experiments to examine the impact of the
size of the alphabet, the entropy and other possible factors that are impacting the
update.

Using dynamic structures implemented by Gerlach [11], we compare the time
needed for running our update algorithm to a total reconstruction of the Burrows-
Wheeler Transform (with both static and dynamic structures). The computation of
the Burrows-Wheeler Transform using static structures is due to Maniscalco and
Puglisi [18] and is one of the most time-efficient.

Due to technical restrictions of the implementation of the dynamic structures, we
run the tests on different kinds of texts: DNA, random text and Fibonacci word. We
are considering two types of updates with our algorithm: factor insertion (of length
500) and 500 insertions of a single letter.

1 http://pizzachili.dcc.uchile.cl/texts.html

M.Salson et al.: Dynamic Burrows-Wheeler Transform 23

The tests are conducted on a machine under Linux 2.6.24 and the programs were
compiled using gcc 4.2. The results are presented in Fig. 5. Note that in the graphs,
y-axis uses a logarithmic scale.

Figure 5. Time for updating and reconstructing the Burrows-Wheeler Transform.

24 Proceedings of the Prague Stringology Conference 2008

We note that the insertion of a factor outperforms Maniscalco and Puglisi’s very
efficient algorithm. For the Fibonacci word, as soon as the text is long enough, our
algorithm is still more efficient for the insertion of a factor although the number of
iterations in step (IIb) is very high (see Table 1). However, due to the very particular
structure of a Fibonacci word, one insertion of a single letter is as costly as the
insertion of a 500-letter block, which explains the upper curve for Fibonacci. Note
also that the reconstruction using dynamic structures is about 10 times slower than
the static reconstruction, and thus our implementation may suffer from the slowdown
induced by the dynamic structures.

5 Conclusions and Perspectives

We proposed an algorithm of theoretical worst-case time complexity O(|T |) that mod-
ifies the Burrows-Wheeler Transform of a text T whenever standard edit operations
are modifying T . The correctness of this algorithm has been proved and its efficiency
in practice has been demonstrated: we selected various texts, edited randomly these
texts and, with respect to the results, we confirmed that we are far from the worst-
case bound. Yet, determining precisely the average-case bound of our algorithm still
needs some extra work.

Moreover, this algorithm can be adapted for updating a suffix array. From a suffix
array, we deduce the corresponding L, update it and retrieve the updated suffix array.
Here is a pseudocode for retrieving the suffix array SA from L:

RetrieveSA(L)

1 j ← index(L, T [n])
2 i← 0
3 repeat SA[j]← i

4 j ← LF[j]
5 i← (i− 1) mod (n + 1)
6 until i = 0

From the practical viewpoint, the dynamic structures that need to be maintained
during the conversions are slowing down the process, losing the fight against “from
scratch” SA constructions. Nevertheless, as far as we know, this is the first method
for updating a suffix array rather than reconstructing it from scratch.

Our plan is now to adapt our strategy for updating directly a suffix array without
using intermediate Burrows-Wheeler Transforms.

The algorithm we developed is also of interest for compressed indexes. Structures
that are based on the Burrows-Wheeler Transform, such as FM-index, can be main-
tained in a way that is very similar to the one we developed for the transform, paving
the way for the first fully-dynamic compressed full-text index.

References

1. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm., Tech.
Rep. 124, DEC, Palo Alto, California, 1994.

2. C. C. Chen, C. Lee, and C. H. Ke: Compression-based broadcast strategies in wireless
information systems, in Proc. of Advanced Information Networking and Applications (AINA),
2003, pp. 13–18.

3. J. G. Cleary, W. J. Teahan, and I. Witten: Unbounded length contexts for PPM. Comput.
J., 40(2/3) 1997, pp. 67–76.

M.Salson et al.: Dynamic Burrows-Wheeler Transform 25

4. J. G. Cleary and I. Witten: Data compression using adaptive coding and partial string
matching. IEEE Trans. Commun., 32(4) 1984, pp. 396–402.

5. M. Crochemore, J. Désarménien, and D. Perrin: A note on the Burrows-Wheeler trans-
formation. Theor. Comput. Sci., 332(1-3) 2005, pp. 567–572.

6. P. Ferragina and R. Grossi: Fast incremental text editing, in Proc. of Symposium on
Discrete Algorithms (SODA), 1995, pp. 531–540.

7. P. Ferragina and R. Grossi: Optimal on-line search and sublinear time update in string
matching, in Proc. of Foundations of Computer Science (FOCS), 1995, pp. 604–612.

8. P. Ferragina and G. Manzini: Opportunistic data structures with applications, in Proc. of
Foundations of Computer Science (FOCS), 2000, pp. 390–398.

9. P. Ferragina, G. Manzini, V. Mäkinen, and G. Navarro: Compressed representation of
sequences and full-text indexes. ACM Trans. Alg., 3 2007, p. article 20.

10. P. Ferragina, G. Manzini, and S. Muthukrishnan: The Burrows-Wheeler Transform
(special issue). Theor. Comput. Sci., 387(3) 2007, pp. 197–360.

11. W. Gerlach: Dynamic FM-Index for a collection of texts with application to space-efficient
construction of the compressed suffix array, Master’s thesis, Universität Bielefeld, Germany,
2007.

12. G. H. Gonnet, R. A. Baeza-Yates, and T. Snider: New indices for text: Pat trees and
pat arrays. Information Retrieval: Data Structures & Algorithms, 1992, pp. 66–82.

13. R. González and G. Navarro: Improved dynamic rank-select entropy-bound structures, in
Proc. of the Latin American Theoretical Informatics (LATIN), vol. 4957 of Lecture Notes in
Computer Science, 2008, pp. 374–386.

14. W. K. Hon, T. W. Lam, K. Sadakane, W. K. Sung, and S. M. Yiu: Compressed index
for dynamic text, in Proc. of Data Compression Conference (DCC), 2004, pp. 102–111.

15. J. Kärkkäinen: Fast BWT in small space by blockwise suffix sorting. Theor. Comput. Sci.,
387(3) 2007, pp. 249–257.

16. V. Mäkinen and G. Navarro: Dynamic entropy-compressed sequences and full-text indexes.
ACM Trans. Alg., 2008, p. , To appear.

17. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches, in Proc.
of Symposium on Discrete Algorithms (SODA), 1990, pp. 319–327.

18. M. A. Maniscalco and S. J. Puglisi: Faster lightweight suffix array construction, in Proc.
of International Workshop On Combinatorial Algorithms (IWOCA), 2006, pp. 16–29.

19. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction
algorithms. ACM Comp. Surv., 39(2) 2007, pp. 1–31.

Lossless Image Compression by Block Matching

on Practical Massively Parallel Architectures

Luigi Cinque and Sergio De Agostino

Computer Science Department
Sapienza University

Via Salaria 113, 00198 Roma, Italy
{cinque, deagostino}@di.uniroma1.it

Abstract. Work-optimal O(log M log n) time implementations of lossless image com-
pression by block matching are shown on the PRAM EREW, where n is the size of
the image and M is the maximum size of the match, which can be implemented on
practical architectures such as meshes of trees, pyramids and multigrids. The work-
optimal implementations on pyramids and multigrids are possible under some realistic
assumptions. Decompression on these architectures is also possible with the same par-
allel computational complexity.

Keywords: lossless compression, sliding dictionary, bi-level image, parallel architec-
ture.

1 Introduction

Storer suggested that fast encoders are possible for two-dimensional lossless compres-
sion by showing a square greedy matching heuristic for bi-level images, which can
be implemented by a simple hashing scheme [8]. Rectangle matching improves the
compression performance, but it is slower since it requires O(M log M) time for a
single match, where M is the size of the match [9]. Therefore, the sequential time to
compress an image of size n by rectangle matching is Ω(n log M).

The technique is a two-dimensional extension of LZ1 compression [7]. Simple and
practical heuristics exist to implement LZ1 compression by means of hashing tech-
niques [1], [10], [11]. The hashing technique used for the two-dimensional extension
is even simpler.

Among the different ways of reading an image, we assume that the rectangle
matching compression heuristic is scanning an m x m′ image row by row (raster
scan). A 64K table with one position for each possible 4x4 subarray is the only data
structure used. All-zero and all-one rectangles are handled differently. The encod-
ing scheme is to precede each item with a flag field indicating whether there is a
monochromatic rectangle, a match, or raw data. When there is a match, the 4x4
subarray in the current position is hashed to yield a pointer to a copy. This pointer
is used for the current rectangle greedy match and then replaced in the hash table by
a pointer to the current position. As mentioned above, the procedure for computing
the largest rectangle match with left upper corners in positions (i, j) and (k, h) takes
O(M log M) time, where M is the size of the match. Obviously, this procedure can be
used for computing the largest monochromatic rectangle in a given position (i, j) as
well. If the 4 x 4 subarray in position (i, j) is monochromatic, then we compute the
largest monochromatic rectangle in that position. Otherwise, we compute the largest
rectangle match in the position provided by the hash table and update the table
with the current position. If the subarray is not hashed to a pointer, then it is left

Luigi Cinque, Sergio De Agostino: Lossless Image Compression by Block Matching on Practical Massively Parallel Architectures, pp. 26–34.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

L.Cinque et al.: Lossless Image Compression by Block Matching on Practical Massively. . . 27

uncompressed and added to the hash table with its current position. The positions
covered by matches are skipped in the linear scan of the image and the sequential
time to compress an image of size n by rectangle matching is Ω(n log M). We want
to point out that besides the proper matches we call a match every rectangle of the
parsing of the image produced by the heuristic. We also call pointer the encoding of
a match.

The analysis of the running time of these algorithms involve a so called waste
factor, defined as the average number of matches covering the same pixel. In [9], it
is conjectured that the waste factor is less than 2 on realistic image data. Therefore,
the square greedy matching heuristic takes linear time while the rectangle greedy
matching heuristic takes O(n log M) time. On the other hand, the decoding algorithms
are both linear.

Work-optimal parallel coding algorithms for lossless image compression by block
matching were shown on the PRAM-EREW [3], [4] and the mesh of trees [5], which is
a hybrid network architecture based on arrays and trees [6], requiring O(log M log n)
time and O(n/ log n) processors. The design of a parallel decoder was left as an open
problem as well as the implementation on even simpler architectures as pyramids and
multigrids. By slightly modifying the encoder, new parallel coding and decoding algo-
rithms were shown in [2] still requiring O(log M log n) time and O(n/ log n) processors
on the PRAM-EREW. On the mesh of trees though the decoder required O(log2 n)
time. In this paper, we show how to implement O(log M log n) time, O(n/ log n)
processors coding and decoding algorithms on the PRAM EREW, mesh of trees,
pyramidal, and multigrid architectures.

In section 2, we describe the PRAM EREW encoder and decoder. In section 3,
we explain how the parallel encoder and decoder are implemented on the mesh of
trees. In section 4, we explain how the parallel encoder and decoder are implemented
on the pyramid with the same parallel complexity under some realistic assumptions.
Conclusions and future work are given in section 4 where the implementations on the
multigrid, which is the simplest of the architectures mentioned above, are discussed.

2 The PRAM EREW Encoder and Decoder

To achieve sublinear time we partition an m x m′ image I in x x y rectangular areas,
where x and y are Θ(log1/2 n), and n is the size of the image. In parallel for each
area, one processor applies the sequential parsing algorithm so that in O(log M log n)
time each area will be parsed in rectangles, some of which are monochromatic. Before
encoding we wish to compute larger monochromatic rectangles.

2.1 Computing the Monochromatic Rectangles

Differently from [3], we compute larger monochromatic rectangles by merging adja-
cent monochromatic areas without considering those monochromatic rectangles prop-
erly contained in some area. In practice, these areas are very small and such limitation
has no relevant effect on the compression ratio.

We denote with Ai,j for 1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which
the image is partitioned. In parallel for 1 ≤ i ≤ ⌈m/x⌉, if i is odd, a processor merges
areas A2i−1,j and A2i,j provided they are monochromatic and have the same color. The
same is done horizontally for Ai,2j−1 and Ai,2j. At the k-th step, if areas A(i−1)2k−1+1,j,
A(i−1)2k−1+2,j, . . ., Ai2k−1,j, with i odd, were merged, then they will merge with areas

28 Proceedings of the Prague Stringology Conference 2008

Ai2k−1+1,j, Ai2k−1+2,j, . . ., A(i+1)2k−1,j, if they are monochromatic with the same color.
The same is done horizontally for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . ., Ai,j2k−1 , with j
odd, and Ai,j2k−1+1, Ai,j2k−1+2, . . ., Ai,(j+1)2k−1 . After O(log M) steps, the procedure is
completed and each step takes O(log n) time and O(n/ log n) processors since there is
one processor for each area of logarithmic size. Therefore, the image parsing phase is
realized with O(log M log n) time and O(n/ log n) processors on the PRAM EREW.

2.2 The Parallel Encoder

We derive the sequence of pointers from the image parsing computed above. In
O(log n) time with O(n/ log n) processors we can identify every upper left corner
of a match (proper, monochromatic, or raw) by assigning a different segment of log-
arithmic length on a row to each processor. Each processor detects the upper left
corners on its segment. Then, by parallel prefix we obtain a sequence of pointers
decodable by the decompressor paired with the sequential heuristic. However, the
decoding of such sequence seems hard to parallelize. In order to design a parallel
decoder, it is more suitable to produce the sequence of pointers by a raster scan of
each of the areas into which the image was originally partitioned, where the areas are
ordered by a raster scan themselves. Then, again we can easily derive the sequence
of pointers in O(log n) time with O(n/ log n) processors by detecting in each of the
areas the upper left corners of a match and producing the sequence of pointers by
parallel prefix.

As mentioned in the introduction, the encoding scheme for the pointers uses a flag
field indicating whether there is a monochromatic rectangle (0 for the white ones and
10 for the black ones), a proper match (110), or raw data (111). For the feasibility
of the parallel decoder, we want to indicate the end of the encoding of the sequence
of matches with the upper left corner in a specific logarithmic area. Therefore, we
change the encoding scheme by associating the flag field 1110 to the raw match so
that we can indicate with 1111 the end of the sequence of pointers corresponding to a
given area. Moreover, since some areas could be entirely covered by a monochromatic
match 1111 is followed by the index associated with the next area by the raster scan.
The pointer of a monochromatic match has fields for the width and the length while
the pointer of a proper match also has fields for the coordinates of the left upper
corner of the copy in the window. In order to save bits, the value stored in any of
these fields is the binary value of the field plus 1 (so, we employ the zero value).
This coding technique is more redundant than others previously designed, but its
compression effectiveness is still better than the one of the square greedy matching
technique.

2.3 The Parallel Decoder

The parallel decoder has three phases. Observe that at each position of the binary
sequence encoding the image, we read a subsequence of bits that is either 1111 (recall
that the k bits following 1111 provide the area index, where k is the number of bits
used to encode it) or can be interpreted as a flag field of a pointer. Then, in the
first phase we reduce the binary sequence to a doubly-linked structure and apply the
well-known Euler tour technique in order to identify for each area the corresponding
pointers. The reduction works as follows: link each position p of the sequence to the
position next to the end of the subsequence starting in position p that either can be

L.Cinque et al.: Lossless Image Compression by Block Matching on Practical Massively. . . 29

interpreted as a pointer or is equal to 1111 followed by k bits. For those suffixes of
the sequence which can be interpreted as pointers, their first positions are linked to a
special node denoting the end of the coding. For those suffixes of the sequence which
cannot be interpreted as pointers, their first positions are not linked to anything. The
linked structure is a forest with one tree rooted in the special node denoting the end
of the coding and the other trees rooted in the first position of a suffix of the encoding
sequence not interpretable as a pointer. The first position of the binary sequence is
a leaf of the tree rooted in the special node. The sequence of pointers encoding the
image is given by the path from the first position to the root. In order to compute
such path we need the children to be doubly-linked to the parent. Then, we need
to reserve space for each node to store the links to the children. Each node has at
most five children since there are only four different pointer sizes (white, black, raw,
or proper match). So, for each position p of the binary sequence we set aside five
locations [p, 1] · · · [p, 5], initially set to zero. When a link is added from position p′

to p, depending on whether the subsequence starting in position p′ is 1111 or can
be interpreted as a pointer to a raw, white, black or proper match, the value p′ is
overwritten on location [p, 1], [p, 2], [p, 3] [p, 4] or [p, 5], respectively. Then, by means
of the well-known Euler technique we can linearize the linked structure and apply list
ranking to obtain the path from the first position of the sequence to the root of its
tree. It is well-known that all this can be computed in O(log n) time with O(n/ log n)
processors on the PRAM EREW, since the row image size is greater than the size of
the sequence. Then, still in O(log n) time with O(n/ log n) processors we can identify
the positions on the path corresponding to 1111.

In the second phase of the parallel decoder a different processor decodes the
sequence of pointers corresponding to a different area. As far as the pointers to
monochromatic matches are considered, each processor decompresses either a match
contained in an area or the portion of the match corresponding to the left upper area.
Therefore, after the second phase an area might not be decompressed. Obviously, the
second phase requires O(log n) time and O(n/ log n) processors on the PRAM EREW.

The third phase completes the decoding. In the previous subsection, we denoted
with Ai,j for 1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which the im-
age was partitioned by the encoder. At the first step of the third phase, one pro-
cessor for each area A2i−1,j decodes A2i,j, if A2i−1,j is the upper left portion of a
monochromatic match and the length field of the corresponding pointer informs that
A2i,j is part of the match. The same is done horizontally for Ai,2j−1 and Ai,2j (using
the width field of its pointer) if it is known already by the decoder that Ai,2j−1 is
part of a monochromatic match. Similarly at the k-th step, one processor for each
of the areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, . . ., Ai2k−1,j, with i odd, decodes the areas
Ai2k−1+1,j, Ai2k−1+2,j, . . ., A(i+1)2k−1,j, respectively. The same is done horizontally for
Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . ., Ai,j2k−1 , with j odd, and Ai,j2k−1+1, Ai,j2k−1+2, . . .,
Ai,(j+1)2k−1 . After O(log M) steps the image is entirely decompressed. Each step takes
O(log n) time and O(n/ log n) processors since there is one processor for each area
of logarithmic size. Therefore, the decoder is realized with O(log M log n) time and
O(n/ log n) processors on the PRAM EREW.

3 The Mesh of Trees Implementations

A mesh of trees is a network of 3N2 − 2N processors with N being a power of 2,
consisting of an N x N grid where a complete binary tree of processors is built on

30 Proceedings of the Prague Stringology Conference 2008

Figure 1. The construction of a mesh of trees with a 4x4 processor grid.

each row and each column as shown in Figure 1. First, we give a detailed description
of the mesh of trees compression algorithm. Then, we provide the implementation of
the parallel decoder.

Let max be equal to max {m,m′}. We assume m and m′ have the same order
of magnitude, as in practice with the height and the width of an image. Let N be
the smallest power of two greater than ⌈max/ log1/2 n⌉, where n is the size of an
m x m′ image. Then, the number of processors of the mesh of trees is O(n/ log n)
and we can store the logarithmic rectangular areas into which the parallel algorithm
partitions the image into the N x N grid. Starting from the upper left corner of the
grid, a different processor stores a different rectangular area and applies the sequential
compression heuristic to such area. The remaining processors are inactive. From now
on, we will refer only to the active processors.

3.1 Computing the Monochromatic Rectangles

After the compression heuristic has been executed on each area, it is easy to see
that the PRAM EREW procedure to compute larger monochromatic rectangles can
be implemented on a mesh of trees with the same number of processors without

L.Cinque et al.: Lossless Image Compression by Block Matching on Practical Massively. . . 31

slowing it down. In fact, if i is odd, the processors storing areas A2i−1,j and A2i,j

merge them provided they are monochromatic and have the same color. The same
is done horizontally for Ai,2j−1 and Ai,2j. At the k-th step, if areas A(i−1)2k−1+1,j,
A(i−1)2k−1+2,j, . . ., Ai2k−1,j, with i odd, were merged, the processor storing area Ai2k−1,j

will broadcast to the processors storing the areas Ai2k−1+1,j, Ai2k−1+2,j, . . ., A(i+1)2k−1,j

to merge with the above areas, if they are monochromatic with the same color. This
is done in logarithmic time using the column trees. The same is done horizontally
for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . ., Ai,j2k−1 , with j odd, and Ai,j2k−1+1, Ai,j2k−1+2, . . .,
Ai,(j+1)2k−1 , using the row trees. After O(log M) steps, the procedure is completed and
each step takes O(log n) time and O(n/ log n) processors since there is one processor
for each area of logarithmic size. Therefore, the image parsing phase is realized with
O(log M log n) time and O(n/ log n) processors on the mesh of trees.

3.2 The Parallel Encoder

The sequence of pointers for each area can be trivially produced on the grid. If
we assume the possibility of a parallel output, the sequences can be put together
by parallel prefix. This can be realized in O(log n) time on a mesh of trees with
O(n/ log n) processors.

3.3 The Parallel Decoder

We know that the end of the encoding of an area is indicated by 1111 followed
by the index of the area corresponding to the next encoding. Then, we can store the
encodings in the positions of the grid corresponding to the locations of the areas in the
image. In fact, the first phase of the PRAM EREW decoding algorithm corresponds to
the input process of a distributed memory system (as the mesh of trees is) and is not
part of our complexity analysis. At this point, each processor on the grid completes
the second phase of the decoder described in subsection 2.3. Then, it is easy to see
that the third and last phase of the PRAM decoder is implementable on a mesh of
trees with the same number of processor and no slowdown. In conclusion, the decoder
takes O(log M log n) time on a mesh of trees with O(n/ log n) processors.

4 The Pyramid Implementations

An N x N pyramid is a network consisting of log N + 1 two-dimensional grids with
N being a power of 2, each one of size N/2k x N/2k for 0 ≤ k ≤ log N . The grids
are interconnected so that the (i, j) processor on the 2k x 2k grid is connected to
processors (2i−1, 2j−1), (2i−1, 2j), (2i, 2j−1) and (2i, 2j) on the 2k+1 x 2k+1 grid,
as shown in Figure 2 for the 4 x 4 pyramid network. As for the mesh of trees, let N
be the smallest power of two greater than ⌈max/ log1/2 n⌉, where n is the size of an
m x m′ image and max is equal to max {m,m′}. If we assume that m and m′ have
the same order of magnitude, the number of processors of the pyramid is O(n/ log n)
and we can store the logarithmic rectangular areas into which the parallel algorithm
partitions the image into the N x N grid. Starting from the upper left corner of the
grid, a different processor stores a different rectangular area and applies the sequential
compression heuristic to such area while the other processors remain inactive. From
now on, we will refer only to the active processors.

32 Proceedings of the Prague Stringology Conference 2008

Figure 2. A 4 x 4 pyramid network.

4.1 Computing the Monochromatic Rectangles

After the compression heuristic has been executed on each area, we have to show how
the PRAM EREW procedure to compute larger monochromatic rectangles can be
implemented on a pyramid with the same number of processors without slowing it
down. This is possible by making some realistic assumptions. Let ℓR and wR be the
length and the width of a monochromatic match R, respectively. We define sR = max
{ℓR, wR}. We make a first assumption that the number of monochromatic matches R

with sR ≥ 2k⌈log1/2 n⌉ is O(N2/22k) for 1 ≤ k ≤ log N − 1. If i is odd, the processors
storing areas A2i−1,j and A2i,j merge them provided they are monochromatic and
have the same color. The same is done horizontally for Ai,2j−1 and Ai,2j. At the k-th
step, if areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, . . ., Ai2k−1,j, with i odd, were merged for
w1 ≤ j ≤ w2, the processor storing area Ai2k−1,w2

will broadcast to the processors
storing the areas Ai2k−1+1,j, Ai2k−1+2,j, . . ., A(i+1)2k−1,j to merge with the above areas
for w1 ≤ j ≤ w2, if they are monochromatic with the same color. The same is
done horizontally, that is, if Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . ., Ai,j2k−1 , with j odd,
were merged for ℓ1 ≤ i ≤ ℓ2, the processor storing area Aℓ2,j2k−1 will broadcast to
the processors storing the areas Ai,j2k−1+1, Ai,j2k−1+2, . . ., Ai,(j+1)2k−1 to merge with
the above areas for ℓ1 ≤ i ≤ ℓ2, if they are monochromatic with the same color.
After O(log M) steps, the procedure is completed. If the waste factor is less than 2,
as conjectured in [9], we can make a second assumption that each pixel is covered
by a constant small number of monochromatic matches. It follows from this second

L.Cinque et al.: Lossless Image Compression by Block Matching on Practical Massively. . . 33

Figure 3. A 4 x 4 multigrid network.

assumption that the information about the monochromatic matches is distributed
among the processors of a grid in a way very close to uniform. Then, it follows from
the first assumption that the amount of information each processor of the grid at
level k must broadcast is constant, for 1 ≤ k ≤ log N − 1. Therefore, each step takes
O(log n) time and the image parsing phase is realized with O(log M log n) time and
O(n/ log n) processors on the pyramid. Finally, we want to point out that the unique
processor of the 1 x 1 grid at level log n is not involved in the computation of the
image parsing and is used only for the ineherently sequential input/output operations
which have, generally speaking, standard solutions for network algorithms.

4.2 The Parallel Encoder

The sequence of pointers for each area can be trivially produced on the grid at level 0.
This is, obviously, realized in O(log n) time on a pyramid with O(n/ log n) processors.

4.3 The Parallel Decoder

As for the mesh of trees, we can store the encodings of each area in the positions of
the grid at level 0 corresponding to the locations of the areas in the image. At this

34 Proceedings of the Prague Stringology Conference 2008

point, each processor on the grid completes the second phase of the decoder described
in subsection 2.3. Then, it is easy to see that the third and last phase of the PRAM
decoder is implementable on a pyramid with the same number of processor and no
slowdown, if the same realistic assumptions are made. In conclusion, the decoder
takes O(log M log n) time on a pyramid with O(n/ log n) processors.

5 Conclusions

Parallel coding and decoding algorithms for lossless image compression by block
matching were shown requiring O(log M log n) time and O(n/ log n) processors on the
PRAM-EREW, the mesh of trees and the pyramid. The parallel coding algorithms are
work-optimal since the sequential time required by the coding is Ω(n log M). On the
other hand, the parallel decoding algorithms are not work-optimal since the sequen-
tial decompression time is linear. The mesh of trees and pyramid implementations of
the decoder have the same performance of the PRAM EREW implementation if we
do not consider the input process. The pyramid is a simpler architecture than the
mesh of trees [6] and needs some realistic assumptions to give the same performance.
There exist real parallel machines whose architecture is a pyramid. One of them is
at the University of Pavia in Italy (PAPIA). As future work, we wish to implement
our algorithm on this machine. An even simpler architecture than the pyramid is the
multigrid, which is computationally equivalent up to a factor of 2 in speed to the
pyramid [6]. Since the multigrid is a subgraph of the pyramid (Figure 3), we wish to
implement and experiment our algorithm on this architecture as well.

References

1. R. P. Brent: A linear algorithm for data compression. Australian Computer Journal, 19 1987,
pp. 64–68.

2. L. Cinque and S. DeAgostino: A parallel decoder for lossless image compression by block
matching, in Proceedings IEEE Data Compression Conference, 2007, pp. 183–192.

3. L. Cinque, S. DeAgostino, and F. Liberati: A work-optimal parallel implementation of
lossless image compression by block matching. Nordic Journal of Computing, 10 2003, pp. 13–20.

4. S. DeAgostino: A work-optimal parallel implementation of lossless image compression by block
matching, in Proceedings Prague Stringology Conference, 2002, pp. 1–8.

5. S. DeAgostino: Lossless image compression by block matching on a mesh of trees, in Proceed-
ings IEEE Data Compression Conference, Poster Session, 2006, p. 443.

6. F. T. Leighton: Introduction to Parallel Algorithms and Architectures, Morgan-Kaufmann,
1992.

7. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23 1977, pp. 337–343.

8. J. A. Storer: Lossless image compression using generalized lz1-type methods, in Proceedings
IEEE Data Compression Conference, 1996, pp. 290–299.

9. J. A. Storer and H. Helfgott: Lossless image compression by block matching. The Com-
puter Journal, 40 1997, pp. 137–145.

10. J. R. Waterworth: Data compression system. US Patent 4 701 745, 1987.
11. D. A. Whiting, G. A. George, and G. E. Ivey: Data compression apparatus and method.

US Patent 5016009, 1991.

Speeding up Lossless Image Compression:

Experimental Results on a Parallel Machine

Luigi Cinque1, Sergio De Agostino1, and Luca Lombardi2

1 Computer Science Department
Sapienza University

Via Salaria 113, 00198 Roma, Italy
{cinque, deagostino}@di.uniroma1.it

2 Computer Science Department
University of Pavia

Via Ferrara 1, 27100 Pavia, Italy
luca.lombardi@unipv.it

Abstract. Arithmetic encoders enable the best compressors both for bi-level images
(JBIG) and for grey scale and color images (CALIC), but they are often ruled out
because too complex. The compression gap between simpler techniques and state of
the art compressors can be significant. Storer extended dictionary text compression to
bi-level images to avoid arithmetic encoders (BLOCK MATCHING), achieving 70 per-
cent of the compression of JBIG1 on the CCITT bi-level image test set. We were able to
partition an image into up to a hundred areas and to apply the BLOCK MATCHING
heuristic independently to each area with no loss of compression effectiveness. On the
other hand, we presented in [5] a simple lossless compression heuristic for gray scale and
color images (PALIC), which provides a highly parallelizable compressor and decom-
pressor. In fact, it can be applied independently to each block of 8x8 pixels, achieving
80 percent of the compression obtained with LOCO-I (JPEG-LS), the current lossless
standard in low-complexity applications. We experimented the BLOCK MATCHING
and PALIC heuristics with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors
machine in Italy (avogadro.cilea.it) on a test set of large topographic bi-level images
and color images in RGB format. We obtained the expected speed-up of the compres-
sion and decompression times, achieving parallel running times about twenty-five times
faster than the sequential ones.

Keywords: lossless image compression, sliding dictionary, differential coding, paral-
lelization

1 Introduction

Lossless image compression is often realized by extending string compression meth-
ods to two-dimensional data. Standard lossless image compression methods extend
model driven text compression [1], consisting of two distinct and independent phases:
modeling [16] and coding [15]. In the coding phase, arithmetic encoders enable the
best model driven compressors both for bi-level images (JBIG [10]) and for grey scale
and color images (CALIC [20]), but they are often ruled out because too complex.
The compression gap between simpler techniques and state of the art compressors
can be significant.

Storer [18] extended dictionary text compression [17] to bi-level images to avoid
arithmetic encoders by means of a square greedy matching technique (BLOCK
MATCHING), achieving 70 percent of the compression of JBIG1 on the CCITT bi-
level image test set. The technique is a two-dimensional extension of LZ1 compression
[12] and is suitable for high speed applications by means of a simple hashing scheme.

Luigi Cinque, Sergio De Agostino, Luca Lombardi: Speeding up Lossless Image Compression: Experimental Results on a Parallel Machine, pp. 35–45.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

36 Proceedings of the Prague Stringology Conference 2008

Rectangle matching improves the compression performance, but it is slower since it
requires O(M log M) time for a single match, where M is the size of the match [19].
Therefore, the sequential time to compress an image of size n by rectangle matching
is Ω(n log M). However, rectangle matching is more suitable for polylogarithmic time
work-optimal parallel implementations on the PRAM EREW [3], [6] and the mesh of
trees [2], [7]. Polylogarithmic time parallel implementations were also presented for
decompression on both the PRAM EREW and the mesh of trees in [2].

Parallel models have two types of complexity, the interprocessor communication
and the input-output mechanism. While the input/output issue is inherent to any
sublinear algorithm and has standard solutions, the communication cost of the com-
putational phase after the distribution of the data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation. The simplest
model for this phase is, of course, a simple array of processors with no interconnec-
tions and, therefore, no communication cost. The parallel implementations mentioned
above require more sophisticated architectures than a simple array of processors to
be executed on a distributed memory system.

Dealing with square matches, we were able to partition an image into up to a
hundred areas and to apply the BLOCK MATCHING heuristic independently to
each area with no loss of compression effectiveness. With rectangles we cannot ob-
tain the same performance since the width and the length are shortened while the
corresponding pointers are more space consuming than with squares. So we would
rather implement the square BLOCK MATCHING heuristic on an array of size up
to a hundred processors.

The extension of Storer’s method to grey scale and color images was left as an open
problem, but it seems not feasible since the high cardinality of the alphabet causes
an unpractical exponential blow-up of the hash table used in the implementation.

As far as the model driven method for grey scale and color image compression is
concerned, the modeling phase consists of three components: the determination of the
context of the next pixel, the prediction of the next pixel and a probabilistic model
for the prediction residual, which is the value difference between the actual pixel and
the predicted one. In the coding phase, the prediction residuals are encoded. A first
step toward a good low complexity compression scheme was FELICS (Fast Efficient
Lossless Image Compression System) [11], which involves Golomb-Rice codes [9], [14]
rather than the arithmetic ones. With the same complexity level for compression (but
with a 10 percent slower decompressor) LOCO-I (Low Complexity Lossless Compres-
sion for Images) [13] attains significantly better compression than FELICS, only a few
percentage points of CALIC (Context-Based Adaptive Lossless Image Compression).
As explained in [5], also polylogarithmic time parallel implementations of FELICS
and LOCO-I would require more sophisticated architectures than a simple array of
processors.

The use of prediction residuals for grey scale and color image compression re-
lies on the fact that most of the times there are minimal variations of color in the
neighborood of one pixel. Therefore, differently than for bi-level images we should be
able to implement an extremely local procedure which is able to achieve a satisfying
degree of compression by working independently on different very small blocks. In
[5], we showed such procedure. We presented the heuristic for grey scale images, but
it could also be applied to color images by working on the different components [4].
We call such procedure PALIC (Parallelizable Lossless Image Compression). In fact,

L.Cinque et al.: Speeding up Lossless Image Compression: Experimental Results. . . 37

the main advantage of PALIC is that it provides a highly parallelizable compressor
and decompressor since it can be applied independently to each block of 8x8 pix-
els, achieving 80 percent of the compression obtained with LOCO-I (JPEG-LS), the
current lossless standard in low-complexity applications.

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 254 128 127 128 129 130

255 253 253 128 128 129 130 131

254 253 252 129 129 130 131 132

253 252 251 130 130 130 254 255

Figure 1. An 8x8 pixel block of a grey scale image.

The compressed form of each block employs a header and a fixed length code. Two
different techniques might be applied to compress the block. One is the simple idea of
reducing the alphabet size by looking at the values occurring in the block. The other
one is to encode the difference between the pixel value and the smallest one in the
block. Observe that this second technique can be interpreted in terms of the model
driven method, where the block is the context, the smallest value is the prediction
and the fixed length code encodes the prediction residual. More precisely, since the
code is fixed length the method can be seen as a two-dimensional extension of differ-
ential coding [8]. Differential coding, often applied to multimedia data compression,
transmits the difference between a given signal sample and another sample.

In this paper, we experimented the square BLOCK MATCHING and PALIC
heuristics with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors machine
in Italy (avogadro.cilea.it) on a test set of large topographic bi-level images and
color images in RGB format. We obtained the expected speed-up of the compression
and decompression times, achieving parallel running times about twenty-five times
faster than the sequential ones.

In section 2, we explain the heuristics. In section 3 we provide the experimental
results on the parallel machine. Conclusions are given in section 4.

2 BLOCK MATCHING and PALIC

Among the different ways of reading an image, we assume the square BLOCK
MATCHING heuristic scans an m x m′ image row by row (raster scan). A 64K

38 Proceedings of the Prague Stringology Conference 2008

table with one position for each possible 4x4 subarray is the only data structure
used. All-zero and all-one rectangles are handled differently. The encoding scheme is
to precede each item with a flag field indicating whether there is a monochromatic
square, a match or raw data. When there is a match, the 4x4 subarray in the current
position is hashed to yield a pointer to a copy. This pointer is used for the current
square greedy match and then replaced in the hash table by a pointer to the cur-
rent position. The procedure for computing the largest square match with left upper
corners in positions (i, j) and (k, h) takes O(M) time, where M is the size of the
match. Obviously, this procedure can be used for computing the largest monochro-
matic square in a given position (i, j) as well. If the 4 x 4 subarray in position (i, j)
is monochromatic, then we compute the largest monochromatic square in that po-
sition. Otherwise, we compute the largest square match in the position provided by
the hash table and update the table with the current position. If the subarray is not
hashed to a pointer, then it is left uncompressed and added to the hash table with
its current position. The positions covered by matches are skipped in the linear scan
of the image. Therefore, the sequential time to compress an image of size n by square
matching is O(n). We want to point out that besides the proper matches we use to
call a match every rectangle of the parsing of the image produced by the heuristic. We
also call a pointer the encoding of every match. As mentioned above, the encoding
scheme for the pointers uses a flag field indicating whether there is a monochromatic
rectangle (0 for the white ones and 10 for the black ones), a proper match (110) or
raw data (111).

As mentioned in the introduction, we were able to partition an image into up
to a hundred areas and to apply the BLOCK MATCHING heuristic independently
to each area with no loss of compression effectiveness on both the CCITT bi-level
image test set and the bi-level version of the set of five 4096 x 4096 pixels images in
Figures 2–6.

Moreover, in order to implement decompression on an array of processors, we
want to indicate the end of the encoding of a specific area. Therefore, we change the
encoding scheme by associating the flag field 1110 to the raw match so that we can
indicate with 1111 the end of the sequence of pointers corresponding to a given area.

We explain now how to apply the PALIC heuristic independently to blocks of 8x8
pixels of a grey scale image. We still assume to read the image with a raster scan
on each block. The heuristic applies at most three different ways of compressing the
block and chooses the best one. The first one is the following.

The smallest pixel value is computed on the block. The header consists of three
fields of 1 bit, 3 bits and 8 bits, respectively. The first bit is set to 1 to indicate that
we compress a block of 64 pixels. This is because one of the three ways will partition
the block in four sub-blocks of 16 pixels and compress each of these smaller areas.
The 3-bits field stores the minimum number of bits required to encode in binary the
distance between the smallest pixel value and every other pixel value in the block. The
8-bits field stores the smallest pixel value. If the number of bits required to encode
the distance, say k, is at most 5, then a code of fixed length k is used to encode the
64 pixels, by giving the difference between the pixel value and the smallest one in the
block. To speed up the procedure, if k is less or equal to 2 the other ways are not
tried because we reach a satisfying compression ratio on the block. The second and
third ways are the following.

The second way is to detect all the different pixel values in the 8x8 block and to
create a reduced alphabet. Then, to encode each pixel in the block using a fixed length

L.Cinque et al.: Speeding up Lossless Image Compression: Experimental Results. . . 39

Figure 2. Image 1.

Figure 3. Image 2.

code for this alphabet. The employment of this technique is declared by setting the
1-bit field to 1 and the 3-bits field to 110. Then, an additional three bits field stores
the reduced alphabet size d with an adjusted binary code in the range 2 ≤ d ≤ 9.

40 Proceedings of the Prague Stringology Conference 2008

Figure 4. Image 3.

Figure 5. Image 4.

The last componenent of the header is the alphabet itself, a concatenation of d bytes.
Then, a code of fixed length ⌈log d⌉ bits is used to encode the 64 pixels.

The third way compresses the four 4x4 pixel sub-blocks. The 1-bit field is set to
0. Four fields follow the flag bit, one for each 4x4 block. The two previous techniques

L.Cinque et al.: Speeding up Lossless Image Compression: Experimental Results. . . 41

Figure 6. Image 5.

are applied to the blocks and the best one is chosen. If the first technique is applied
to a block, the corresponding field stores values from 0 to 7 rather than from 0 to 5
as for the 8x8 block. If such value is in between 0 and 6, the field stores three bits.
Otherwise, the three bits (111) are followed by three more. This is because 111 is used
to denote the application of the second way to the block as well, which is less frequent
to happen. In this case, the reduced alphabet size stored in these three additional
bits has range from 2 to 7, it is encoded with an adjusted binary code from 000 to
101 and the alphabet follows. 110 denotes the application of the first technique with
distances expressed in seven bits and 111 denotes that the block is not compressed.
After the four fields, the compressed forms of the blocks follow, which are similar
to the ones described for the 8x8 block. When the 8x8 block is not compressed, 111
follows the flag bit set to 1.

We now show how PALIC works on the example of Figure 1.

Since the difference between 110, the smallest pixel value, and 255 requires a code
with fixed length 8 and the number of different values in the 8x8 block is 12, the way
employed to compress the block is to work separately on the 4x4 sub-blocks. Each
block will be encoded with a raster scan (row by row). The upper left block has 254
as its smallest pixel value and 255 is the only other value. Therefore, after setting the
1-bit field to zero the corresponding field is set to 001. The compressed form after the
header is 1110111011101110. The reduced alphabet technique is more expensive since
the raw pixel values must be given. On the other hand, the upper right block needs the
reduced alphabet technique. In fact, one byte is required to express the difference be-
tween 110 and 254. Therefore, the corresponding field is set to 111000, which indicates
that the reduced alphabet size is 2, and the sequence of two bytes 0110111011111110
follows. The compressed form after the header is 1000100010001000. The lower left
block has 8 different values so we do not use the reduced alphabet technique since

42 Proceedings of the Prague Stringology Conference 2008

the alphabet size should be between 2 and 7. The smallest pixel value in the block is
128 and the largest difference is 127 with the pixel value 255. Since a code of fixed
length 7 is required, the corresponding field is 111110. The compressed form after
the header is (we introduce a space between pixel encodings in the text to make it
more readable): 1111111 1111111 1111110 0000000 1111111 1111101 1111101 0000000
1111110 1111101 1111100 0000001 1111101 1111100 1111011 0000010. Observe that
the compression of the block would have been the same if we had allowed the reduced
alphabet size to grow up to 8. However, experimentally we found more advantageous
to exclude this case in favor of the other technique. Our heuristic does not compress
the lower right block since it has 8 different values and the difference between pixel
values 127 and 255 requires 8 bits. Therefore, the corresponding field is 111111 and
the uncompressed block follows.

We experimented PALIC on the kodak image test set, which is an extension of the
standard jpeg image test set and reached 70 to 85 percent of LOCO-I compression
ratio (78 percent in average). We also experimented it on the set of five 4096 x 4096
pixels grey scale topographic images in Figure 2-6 and the compression effectiveness
was about 80 percent of LOCO-I compression effectiveness as for the kodak image set.
The heuristic can be trivially extended to RGB color images by working sequentially
on each of the three components of the block and the same compression effectiviness
results in comparison with LOCO-I were obtained for the RGB version of the five
images in Figures 2–6.

3 Experimental Results on a Parallel Machine

We show in Figures 7–8 the compression and decompression times of PALIC on the
RGB version of the five images in Figures 2–6 doubling up the number of processors
of the avogadro.cilea.it machine from 1 to 32. We executed the compression and
decompression on each image several times. The variances of both the compression
and decompression times were small and we report the greatest running times, con-
servatively. As it can be seen from the values on the tables, also the variance over the
test set is quite small. The decompression times are faster than the compression ones
and in both cases we obtain the expected speed-up, achieving parallel running times
about twenty-five times faster than the sequential ones.

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 227 117 57 34 17 9
2 243 120 69 33 16 10
3 235 118 72 35 17 9
4 236 131 71 34 16 9
5 232 113 67 30 16 11

Avg. 234.6 119.8 67.2 33.2 16.4 9.6

Figure 7. PALIC compression times (cs.).

The images of Figures 2–4 have the greatest parallel decompression times with 32
processors. On the other hand, the image of Figure 3 has the greatest sequential com-
pression and decompression times. The smallest compression time with 32 processors

L.Cinque et al.: Speeding up Lossless Image Compression: Experimental Results. . . 43

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 128 65 32 18 11 6
2 133 66 35 21 10 6
3 130 66 44 21 13 6
4 129 91 36 20 10 5
5 123 95 46 17 10 5

Avg. 128.6 76.6 38.6 19.4 10.8 5.6

Figure 8. PALIC decompression times (cs.).

is given by the image of Figure 4, together with the images of Figure 2 and Figure 5.
Instead, the smallest decompression time with 32 processors is given by the images
of Figures 5–6. The image of Figure 6 also has the smallest sequential decompression
time and the greatest compression time with 32 processors.

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 76 39 19 11 6 3
2 81 40 23 11 5 3
3 78 39 24 12 6 3
4 79 44 24 11 5 3
5 77 38 22 10 5 4

Avg. 78.2 40 22.4 11 5.4 3.2

Figure 9. BLOCK MATCHING compression times (cs.).

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 43 22 11 6 4 2
2 44 22 12 7 3 2
3 43 22 15 7 4 2
4 43 30 12 7 3 2
5 41 32 15 6 3 2

Avg. 42.8 25.6 13 6.6 3.4 2

Figure 10. BLOCK MATCHING decompression times (cs.).

We obtained similar results for the BLOCK MATCHING heuristic. In Figures 9–
10 we show the compression and decompression times of the square BLOCK MATCH-
ING heuristic on the bi-level version of the five images in Figures 2–6, doubling up the
number of processors of the avogadro.cilea.it machine from 1 to 32. This means
that when 2k processors are involved, for 1 ≤ k ≤ 5, the image is partitioned into 2k

areas and the compression heuristic is applied in parallel to each area, independently.

44 Proceedings of the Prague Stringology Conference 2008

As far as decompression is concerned, each of the 2k processors decodes the pointers
corresponding to a given area.

4 Conclusions

In this paper, we showed experimental results on the coding and decoding times of two
lossless image compression methods on a real parallel machine. By doubling up the
number of processors from 1 to 32, we obtained the expected speed-up on a test set of
large topographic bi-level images and color images in RGB format, achieving parallel
running times about twenty-five times faster than the sequential ones. The feasibility
of a highly parallelizable compression method for grey scale and color images relied on
the fact that most of the times there are minimal variations of color in the neighborood
of one pixel. Therefore, we were able to implement an extremely local procedure which
achieves a satisfying degree of compression by working independently on different very
small blocks. On the other hand, we designed a non-massive approach to bi-level image
compression which could be implemented on an array of processors of reasonable size,
achieving a satisfying degree of compression. Such goal was realized by making each
processor work on a single large block rather than on many very small blocks as when
the non-massive way is applied to grey scale or color images.

References

1. T. C. Bell, J. G. Cleary, and I. H. Witten: Text Compression, Prentice Hall, 1980.
2. L. Cinque and S. DeAgostino: A parallel decoder for lossless image compression by block

matching, in Proceedings IEEE Data Compression Conference, 2007, pp. 183–192.
3. L. Cinque, S. DeAgostino, and F. Liberati: A work-optimal parallel implementation of

lossless image compression by block matching. Nordic Journal of Computing, 2003, pp. 183–192.
4. L. Cinque, S. DeAgostino, and F. Liberati: A simple lossless compression heuristic for

rgb images, in Proceedings IEEE Data Compression Conference, Poster Session, 2004.
5. L. Cinque, S. DeAgostino, F. Liberati, and B. Westgeest: A simple lossless compression

heuristic for grey scale images. International Journal of Foundations of Computer Science, 16
2005, pp. 1111–1119.

6. S. DeAgostino: A work-optimal parallel implementation of lossless image compression by block
matching, in Proceedings Prague Stringology Conference, 2002, pp. 1–8.

7. S. DeAgostino: Lossless image compression by block matching on a mesh of trees, in Proceed-
ings IEEE Data Compression Conference, Poster Session, 2006, p. 443.

8. J. D. Gibson: Adaptive prediction in speech differential encoding system. Proceedings of the
IEEE, 68 1980, pp. 488–525.

9. S. W. Golomb: Run-length encodings. IEEE Transactions on Information Theory, 12 1966,
pp. 399–401.

10. P. G. Howard, F. Kossentini, B. Martinis, S. Forchammer, W. J. Rucklidge, and

F. Ono: The emerging jbig2 standard. IEEE Transactions on Circuits and Systems for Video
Technology, 8 1998, pp. 838–848.

11. P. G. Howard and J. S. Vitter: Fast and efficient lossles image compression, in Proceedings
IEEE Data Compression Conference, 1993, pp. 351–360.

12. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23 1977, pp. 337–343.

13. G. S. G. M. J. Weimberger and G. Sapiro: Loco-i: A low complexity, context based,
lossless image compression algorithm, in Proceedings IEEE Data Compression Conference, 1996,
pp. 140–149.

14. R. F. Rice: Some practical universal noiseless coding technique - part i, Tech. Rep. JPL-79-22,
Jet Propulsion Laboratory, Pasadena, California, USA, 1979.

L.Cinque et al.: Speeding up Lossless Image Compression: Experimental Results. . . 45

15. J. Rissanen: Generalized kraft inequality and arithmetic coding. IBM Journal on Research and
Development, 20 1976, pp. 198–203.

16. J. Rissanen and G. G. Langdon: Universal modeling and coding. IEEE Transactions on
Information Theory, 27 1981, pp. 12–23.

17. J. A. Storer: Data Compression: Methods and Theory, Computer Science Press, 1988.
18. J. A. Storer: Lossless image compression using generalized lz1-type methods, in Proceedings

IEEE Data Compression Conference, 1996, pp. 290–299.
19. J. A. Storer and H. Helfgott: Lossless image compression by block matching. The Com-

puter Journal, 40 1997, pp. 137–145.
20. X. Wu and N. D. Memon: Context-based, adaptive, lossless image coding. IEEE Transactions

on Communications, 45 1997.

Huffman Coding with Non-Sorted Frequencies

Shmuel T. Klein and Dana Shapira

1 Department of Computer Science
Bar Ilan University, Ramat Gan, Israel

tomi@cs.biu.ac.il

2 Department of Computer Science
Ashkelon Academic College, Ashkelon, Israel

shapird@ash-college.ac.il

Abstract. A standard way of implementing Huffman’s optimal code construction al-
gorithm is by using a sorted sequence of frequencies. Several aspects of the algorithm
are investigated as to the consequences of relaxing the requirement of keeping the fre-
quencies in order. Using only partial order may speed up the code construction, which
is important in some applications, at the cost of increasing the size of the encoded file.

1 Introduction

Huffman’s algorithm [6] is one of the major milestones of data compression, and even
though more than half a century has passed since its invention, the algorithm or
its variants find their way into many compression applications to this very day. The
algorithm repeatedly combines the two smallest frequencies, and thus stores the set
of frequencies either in a heap or in sorted form, yielding an Ω(n log n) algorithm
for the construction of the Huffman code, where n is the size of the alphabet to be
encoded.

Working with a sorted set of frequencies is indeed a sufficient condition to get an
optimal code, but the condition is not necessary. In certain cases, one can get optimal
results even if the frequencies are not fully sorted, in other cases the code might not be
optimal, but very closely so. On the other hand, relaxing the requirement of keeping
the frequencies in order may yield time savings, as the generation of the code, if the
frequencies are already given in order, or if their order can be ignored, takes only
O(n) steps.

One might object that since the alphabet size n can often be considered as constant
relative to the size of the text to be encoded, there is no much sense in trying to
improve the code construction process, and any gained savings will only marginally
affect the overall compression time. But there are other scenarios for which the above
mentioned effort may be justifiable: the ratio between the sizes of the text and the
code is not always very large; instead of using a single Huffman code, better results are
obtained when several such codes are used. For example, when the text is considered
as being generated by a first order Markov process, one might use a different code for
the successors of the different characters. When dynamic coding is used, the code is
rebuilt periodically, sometimes even after each character read.

The loss incurred by not using an optimal (Huffman) code is often tolerable,
and other non-optimal variants with desirable features, such as faster processing and
simplicity have been suggested, for example Tagged Huffman codes [4], End-Tagged
Dense codes [2] and (s, c)-Dense codes [1]. Similarly, the loss of optimality caused by
moving to not fully sorted frequencies can also be acceptable in certain applications,

Shmuel T. Klein, Dana Shapira: Huffman Coding with Non-Sorted Frequencies, pp. 46–53.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

Shmuel T. Klein and Dana Shapira: Huffman Coding with Non-Sorted Frequencies 47

for example when based on estimations rather than on actual counts. In a dynamic
encoding of a sequence of text blocks B1, B2, . . ., block Bt is often encoded on the
basis of the character frequencies in B1, . . . , Bt−1. The encoder could use the frequen-
cies from block Bt itself, but deliberately ignores them because they are yet unknown
to the decoder. By using the frequencies gathered up to block Bt−1 only, decoding
is possible without transmitting the code itself. The accuracy, however, of these esti-
mates is based on the assumption that block t is similar to the preceding ones as to
the distribution of its characters. If this assumption does not hold, the code may be
non-optimal anyway, so an additional effort of producing an optimal code for a set of
underlying frequencies that are not reliable, may be an overkill.

In the next section, we investigate some properties of the Huffman process on
non-sorted frequencies. Section 3 then deals with a particular application, designing
an algorithm for the dynamic compression of a sequence of data packets, and report
on some experiments. In Section 4 we investigate whether a similar approach may
have applications to other compression schemes than Huffman’s.

2 Using non-sorted frequencies

The following example shows that working with sorted frequencies is not a necessary
condition for obtaining optimality. Consider the sequence of weights {7, 5, 3, 3, 2, 2},
yielding the Huffman tree in Figure 1a. If we start with a slightly perturbed sequence
{7, 5, 3, 2, 3, 2} and continue according to Huffman’s algorithm, we get the tree in
Figure 1b, which is still optimal since its leaves are on the same levels as before,
but it is not a Huffman tree, in which we would not combine 2 with 3. The tree
of Figure 1c corresponds to starting with the sorted sequence, but not keeping the
order afterwards, working with the sequence {7, 5, 6, 4} instead of {7, 6, 5, 4} after two
merges.

22

7

23 3 2

4

13 9

56

(a)

12

22

10

7 5 5 5

3 2 3 2

(b)

12

22

10

7 5

3 223

6 4

(c)

Figure 1: Optimal trees

Obviously, not paying at all attention to the order of the weights can yield very
bad encodings. Consider a typical sequence of weights yielding a maximally skewed
tree, that is, a tree with one leaf on each level (except the lowest level, on which there
are two leaves). The Fibonacci sequence is known to be the one with the slowest
increasing pace among the sequences giving such a biased tree [7], but for the ease of
description we shall consider the sequence of powers of 2, more precisely, the weights
1, 1, 2, 4, . . . , 2n, for some n.

48 Proceedings of the Prague Stringology Conference 2008

Applying regular Huffman coding to this sorted sequence, we get

SHuf = (n + 1) +
n∑

i=0

(n− i + 1)2i = 2n+2 − 2

as total size of the encoded file. If one uses the same skewed tree, but assigns the
codewords in reverse order, which can happen if the initial sequence is not sorted and
the tree is built without any comparisons between weights, the size of the encoded
file will be

Srev = 1 +
n∑

i=0

(i + 2)2i − 2n = (n + 1)2n+1 − 2n + 1.

The ratio Srev/SHuf may thus increase linearly with n, the size of the alphabet.
We therefore turn to a more realistic scenario, in which some partial ordering

is allowed, but requiring an upper bound of O(n) order operations, as opposed to
θ(n log n) for a full sort. Indeed, the simplest implementation of Huffman coding,
after an initial sort of the weights, is keeping a sorted linked list, and repeatedly
removing the two smallest elements and inserting their sum in its proper position,
overall a θ(n2) process. Using two queues Q1 and Q2, the first for the initial weights
and the other for those created by adding two previous weights, the complexity can
be reduced to O(n) because the elements to be inserted into Q2 appear in order [9]. If
one starts with a sequence which is inversely sorted, the first element to be inserted
into Q2 will be the largest; hence if one continues as in the original algorithm by
extracting either the two smallest elements of Q1, or those of Q2, or the smallest from
Q1 and that of Q2, the first element of Q2 will be used again only after the queue Q1

has been emptied. The resulting tree is thus a full binary tree, with all its leaves on
the same level if n is a power of 2, or on two adjacent levels if not. The depth of this
tree, for the case n = 2k, will be k. Returning to the above sequence of weights, the
total size of the encoded file will thus be

Sfixed = log n

(
1 +

n∑

i=0

2i

)
= 2n+1 log n.

The ratio Sfixed/SHuf still tends to infinity, but increases only as log n as opposed to
n above.

One of the ways to get some useful partial ordering in linear time is the one used
in Yao’s Minimum Spanning tree algorithm [12]: a parameter K is chosen, and the
set of weights W is partitioned into K subsets of equal size W1, . . . ,WK , such that
all the elements of Wi are smaller than any element in Wi+1, for i = 1, . . . , K − 1,
but without imposing any order within each of the sets Wi. The total time for such
a partition is only O(n log K), using repeatedly an O(n) algorithm for finding the
median first of the whole set W , then of its two halves (the n/2 lower and the n/2
upper values), then of the quarters, etc. Starting with such a partition and continuing
with the help of two queues, one gets an overall linear algorithm, since K is fixed.
On the other hand, K can be used as a parameter of how close the initial ordering
should be to a full sort.

To empirically test this partition approach, we chose the following input files of
different sizes and languages: the Bible (King James version) in English, and the

Shmuel T. Klein and Dana Shapira: Huffman Coding with Non-Sorted Frequencies 49

1-grams 2-grams 3-grams 4-grams
English 52 808 6026 21886
French 131 2965 18864 56078

Table 1: Alphabet sizes

French version of the European Union’s JOC corpus, a collection of pairs of questions
and answers on various topics used in the arcade evaluation project [10]. To get also
different alphabet sizes, the Bible text was stripped of all punctuation signs, whereas
the French text has not been altered. We then also considered extended alphabets,
consisting of bigrams, trigrams and 4-grams, that is, the text was split into a sequence
of k-grams, 1 ≤ k ≤ 4, and for fixed k, the set of the different non-overlapping k-
grams was considered as an alphabet. Table 1 shows the sizes of the alphabets so
obtained.

 3

 4

 5

 6

 7

 2 8 32 128 512 2048 8192

single characters
bigrams

triples
4-tuples

English text

 3

 4

 5

 6

 7

 2 8 32 128 512 2048 8192

single characters
bigrams

triples
4-tuples

French text

Figure 2: Average number of bits per char as function of number of blocks in partition

Each sequence of weights was then partitioned as explained above into K equal
parts, with K = 1, 2, 4, 8, . . ., where in each part the original lexicographic order of
the elements has been retained. Figure 2 plots the average number of bits needed to
encode a single character as function of the number of partition parts K. All the plots
exhibit a decreasing trend and obviously converge to the optimum when K reaches
the alphabet size, but it should be noted that the convergence pace is quite fast. For
example, for the 4-tuple alphabets, using K = 1024 corresponding to 10 partition
phases, there is a loss of only 1.1% for the English and 2.2% for the French texts over
the optimal Huffman code.

Another kind of partial ordering relates to a dynamic environment where the
Huffman trees to be used are constantly updated. An application of this idea to a
packet transmission system is discussed in the next section.

3 Dynamic compression of a sequence of data packets

Consider a stream of data packets P1, P2, . . . of varying sizes, which should be trans-
mitted in compressed form over some channel. In practice, the sizes have great
variability, ranging from small packets of several bytes up to large ones, spanning
Megabytes. Compression of packet Pt will be based on Pt−k, Pt−k+1, . . . , Pt−1, where

50 Proceedings of the Prague Stringology Conference 2008

k could be chosen as t− 1 if one wishes to use the full history, or as some constant if
the compression of each packet should only depend on the distribution in some fixed
number of preceding packets.

Normally, after having processed Pt, the distribution of the weights should be
updated and a new Huffman tree should be built accordingly. The weights of ele-
ments which did not appear earlier are treated similarly to the appearance of new
elements in dynamic Huffman coding. We suggest, however, to base the Huffman tree
reconstruction not on a full sort of the updated frequencies, but on a partial one
obtained from a single scan of a bubble-sort procedure. For the formal description,
let si, 1 ≤ i ≤ n, be the elements to be encoded. These elements can typically be
characters, but could also be pairs or triplets of characters as in the example above,
or even words, or more generally, any set of strings or more general elements, as long
as there is some unambiguous way to partition the text into a sequence of such ele-
ments. Let f(si) be the frequency of si and note that we do not require the sequence
f(s1), f(s2), . . . to be non-decreasing. The update algorithm to be applied after each
block is:

Update after having read Pt:

for i ←− 1 to n
add frequency of si within Pt to f(si)
subtract frequency of si within Pt−k from f(si)

for i ←− 1 to n− 1
if f(si) > f(si+1) swap(si, si+1)

Build Huffman tree for sequence (f(s1), f(s2), . . . , f(sn)) using two queues

The gain of using only a single iteration of possible swaps is not only in processing
time. It also allows a more moderate adaptation to changing character distributions
in the case of the appearance of some very untypical data packets. Only if the changed
frequencies persist also in several subsequent packets, will the Huffman tree gradually
change its form to reflect the new distributions. On the other hand, if the packets are
homogeneous, the procedure will zoom in on the optimal order after a small number
of steps.

To simulate the above packet transmission algorithm, we took the English and
French texts mentioned earlier, and partitioned them into sequences of blocks, each
representing a packet. For simplicity, the block size has been kept fixed. The tests
were run with single character and bigram alphabets. The following methods were
compared:

1. Blocked – Block encoding: each block uses the Huffman tree built for the cumula-
tive frequencies of all the preceding blocks to encode its characters.

2. Bubble – Using one bubble-sort iteration: each block uses the cumulative frequen-
cies of all previous blocks as before, but after each block, only a single bubble-sort
iteration is performed on the frequencies instead of sorting them completely. Huff-
man’s algorithm is then applied on the non-sorted sequence of weights.

3. Bubble-For-k – Forgetful variant of Bubble: each block uses the cumulative fre-
quencies not of all, but only the k previous blocks (k ≥ 0). The frequencies of
blocks that appear more than k blocks earlier are thus not counted for building
the Huffman tree of the current block. This allows a better adaptation in case
of heterogeneous blocks, at the price of slower convergence in the case of a more
uniform behavior of the character distributions within the blocks.

Shmuel T. Klein and Dana Shapira: Huffman Coding with Non-Sorted Frequencies 51

For the last case we considered both Bub-For-1 and Bub-For-5, using the frequen-
cies of the preceding block only and of the last five blocks, respectively. The first
block was encoded with a fixed length code using the full single character or bigram
alphabet. After each block read, the statistics were updated and a new code was
generated according to the methods above. The recorded time is that of the average
code construction time per block, not including the actual encoding of the block.

Single characters
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

200 4.112 5.532 5.697 5.607
Compression 2000 4.114 5.532 5.553 5.541

10000 4.123 5.533 5.536 5.533
200 0.13 0.06 0.06 0.06

Time 2000 0.63 0.44 0.27 0.27
10000 2.56 1.32 1.13 1.26

French

200 4.699 6.020 5.901 5.875
Compression 2000 4.700 6.020 5.877 5.825

10000 4.705 6.022 5.834 5.865
200 0.27 0.09 0.09 0.11

Time 2000 0.49 0.30 0.30 0.31
10000 1.47 1.26 1.28 1.28

Table 2: Dynamic compression of data packets using single characters

Single characters
Block

Blocked Bubble
Bubble Bubble

size For-1 For-5

English

2000 3.805 5.061 5.061 5.061
Compression 10000 3.805 5.061 5.061 5.062

20000 3.806 5.062 5.062 5.062
2000 30.1 7.3 9.0 11.6

Time 10000 34.9 9.2 10.8 13.4
20000 37.4 11.1 12.9 15.2

French

2000 4.109 6.343 6.345 6.345
Compression 10000 4.109 6.342 6.344 6.344

20000 4.108 6.342 6.345 6.342
2000 286.2 9.9 11.3 14.0

Time 10000 286.6 11.1 12.9 16.1
20000 290.4 13.4 15.1 17.6

Table 3: Dynamic compression of data packets using bigrams

Table 2 brings the results for the single character alphabets and Table 3 the
corresponding values for the bigram alphabets. The block sizes used were 200, 2000
and 10000 for the single characters and 2000, 10000 and 20000 for the bigrams.
The compression figures are given in bits per character and the time is measured in
milliseconds.

As can be seen, there is a significant loss, on our data, in compression efficiency,
when using non-sorted frequencies. The block size seems not to have an impact on
the compression. For the bigrams, there is also no difference between the forgetful
variants and that using all the preceding data blocks, but for the smaller single

52 Proceedings of the Prague Stringology Conference 2008

character alphabets, the compression using only the information of the few last blocks
is marginally better on the French text, and worse on the English one. This can be
explained by the different nature of the texts: The English Bible is one homogeneous
entity, and its partition into blocks is purely artificial. We may thus expect that using
more global statistics will yield better compression performance. The French text, on
the other hand, consists of many independent queries and their answers, covering
a very large variety of topics. Using the distribution of one block to compress a
subsequent one may thus not always yield good results, so a variant which is able to
“forget” a part of what it has seen, may be advantageous in this case.

The loss in compression is compensated by savings in sorting time. These savings
are more pronounced for the larger bigram alphabets, but also noticeable for the
character alphabets. The time is increasing with the size of the blocks, because a
larger block gives more possibilities for a larger variability of the frequencies. The
exception here is for the bigrams of the French text: the alphabet in this case is so
large, that the block size has only a minor impact on the processing time. On the other
hand, it is in this case that the savings using partial order are the most significant.

4 Relevance of partial sort to other compression schemes

We check in this section whether the idea of not fully sorting the frequencies could
be applicable to other compression methods.

4.1 Arithmetic coding

In fact, for both encoding and decoding using an arithmetic coder [11], the weights
need not be in any specific order, as long as encoder and decoder agree upon the
same. This has the advantage for the dynamic variant, that the same order of the
elements can be used at each step, for example that induced by the lexicographic
order of the elements to be encoded. Partial ordering is thus not relevant here.

4.2 256-ary Huffman codes, (s, c)-dense codes, Fibonacci codes

All these codes can be partitioned into blocks of several codewords having all the
same length. For 256-ary Huffman, the codeword lengths are multiples of bytes, so
that even for very large alphabets, it is very rare to get codewords longer than 3 or
4 bytes; the same is true for (s, c)-dense codes. It follows that, almost always, all the
codewords can be partitioned into 3 or 4 groups, so a full sort is not even necessary.
It suffices to partition the weights into these classes, as suggested above, just that the
sizes of the blocks of the partition are not equal, but rather derived from the specific
code.

For Fibonacci codes [5,8], there are Fn codewords of length n + 2, where Fi are
Fibonacci numbers, and this set is fixed, just as for (s, c)-codes. The number of blocks
here is larger, but even for an alphabet of one million characters, there are no more
than 29 blocks, and the partition can be done in 5 iterations.

4.3 Burrows-Wheeler Transform (BWT)

At first sight, partially sorting seems to be relevant to BWT [3], as the method
works on a string of length n and applies all the n cyclic rotations on it, yielding an

Shmuel T. Klein and Dana Shapira: Huffman Coding with Non-Sorted Frequencies 53

n× n matrix which is then lexicographically sorted by rows. The first column of the
sorted matrix is thus sorted, but BWT stores the last column of the matrix, which
together with a pointer to the index of the original string in the matrix lets the file
to be recovered. The last column is usually not sorted, but it often is very close to
be sorted, which is why it is more compressible than the original string. The BWT
uses a move-to-front strategy to exploit this nearly sorted nature of the string to be
compressed.

One could think that since the last column is anyway only nearly sorted, then if the
initial lexicographic sort of the matrix rows is only partially done, the whole damage
would be that the last row will be even less sorted, so we would trade compression
efficiency for time savings. However, the reversibility of BWT is based on the fact
that the first column is sorted, so a partial sort would invalidate the whole method
and not just reduce its performance.

5 Conclusion

We have dealt with the simple idea of not fully sorting the weights used by Huffman’s
algorithm, expecting some time savings in applications where the sort is a significant
part of the encoding process. This may include large alphabets, or using several
alphabets like in dynamic applications, or when encoding according to a first order
Markov chain. The tests showed that by using partial sorts, the execution time can
be reduced at the cost of some loss in compression efficiency.

References

1. Brisaboa, N. R., Fariña, A., Navarro, G., and Esteller, M. F.: (S,C)-dense coding:
an optimized compression code for natural language text databases. Proc. Symposium on String
Processing and Information Retrieval SPIRE’03, 2857 2003, pp. 122–136.

2. Brisaboa, N. R., Iglesias, E. L, Navarro, G., and Paramá, J. R: An efficient com-
pression code for text databases. Proc. European Conference on Information Retrieval ECIR’03,
2633 2003, pp. 468–481.

3. Burrows, M. and Wheeler, D. J.: A block-sorting lossless data compression algorithm.
Technical Report SRC 124, Digital Systems Research Center, 1994.

4. de Moura, E. S., Navarro, G., Ziviani, N., and Baeza-Yates, R.: Fast and flexible word
searching on compressed text. ACM Trans. on Information Systems, 18 2000, pp. 113–139.

5. Fraenkel, A. S. and Klein, S. T.: Robust universal complete codes for transmission and
compression. Discrete Applied Mathematics, 64 1996, pp. 31–55.

6. Huffman, D.: A method for the construction of minimum redundancy codes. Proc. of the IRE,
40 1952, pp. 1098–1101.

7. Katona, G. H. O. and Nemetz, T. O. H.: Huffman codes and self-information. IEEE Trans.
on Information Theory, IT–11 1965, pp. 284–292.

8. Klein, S. T. and Kopel Ben-Nissan, M.: Using Fibonacci compression codes as alternatives
to dense codes. Proc. Data Compression Conference DCC–2008, 2008, pp. 472–481.

9. Van Leeuwen, J.: On the construction of Huffman trees. Proc. 3rd ICALP Conference, 1976,
pp. 382–410.

10. Véronis, J. and Langlais, P.: Evaluation of parallel text alignment systems: The ARCADE
project. Parallel Text Processing, J. Véronis, ed., 2000, pp. 369–388.

11. Witten, I. H, Neal, R. M., and Cleary, J. G.: Arithmetic coding for data compression.
Comm. of the ACM, 30 1987, pp. 520–540.

12. Yao, A. C. C.: An O(|E| log log |V |) algorithm for finding minimum spanning trees. Inf.
Processing Letters, 4 1975, pp. 21–23.

In-place Update of Suffix Array while Recoding

Words

Matthias Gallé, Pierre Peterlongo, and François Coste

IRISA / INRIA Rennes Bretagne Atlantique
Campus de Beaulieu, 35042 Rennes Cedex, France

{matthias.galle, pierre.peterlongo, francois.coste}@irisa.fr

Abstract. Motivated by grammatical inference and data compression applications, we
propose an algorithm to update a suffix array after the substitution, in the indexed text,
of some occurrences of a given word by a new character. Compared to other published
index update methods, the problem addressed here may require the modification of a
large number of distinct positions over the original text. The proposed algorithm uses
the specific internal order of suffix arrays in order to update simultaneously groups of
entries, and ensures that only entries to be modified are visited. Experiments confirm a
significant execution time speed-up compared to the construction of suffix array from
scratch at each step of the application.

Keywords: suffix array, in-place update, dynamic indexing, word-interval

1 Motivation

In this paper, we propose an algorithm to update efficiently a suffix array, after
substituting a word by a new character in the indexed text. This work is motivated
by grammatical inference or grammar-based compression, along the lines initiated
by SEQUITUR [21] in the framework formalized by Kieffer and Yang [11,12]. The
goal is to infer a grammar G which generates only a given (long) sequence s in
order to discover the structure that underlies the sequence, or simply, to compress
the sequence thanks to a code based on the grammar. Learning and compression are
often subtly intertwined (as for instance in the Occam’s razor principle): in both cases
the grammar is expected to be as small as possible. Kieffer and Yang introduced the
definition of irreducible grammars and proposed several reduction rules allowing to
transform a reducible grammar into an irreducible one, giving rise to efficient universal
compression algorithms [11]. The sketch of these algorithms is to begin with a unique
S → s rule generating the whole given sequence and essentially, to reduce iteratively
the size of the grammar at each step by: 1) choosing a repeated pattern, 2) replacing
the occurrences of the repeat by a new (non-terminal) symbol and 3) adding a new
rewriting rule from this new symbol into the repeated pattern. For instance, the
grammar S → uRvRw, where u, v, w and R are substrings, and the length of R
is strictly bigger than one, can be reduced at the first step into the grammar with
two rules S → uAvAw and A → R, where A is a new non-terminal symbol. At
the following step, another repeated pattern, including eventually the new inserted
symbol A, is selected and factorized by the introduction of a third rule, and so forth
for the next steps. As a result, the algorithm returns a compact grammar which can
be used to get a hierarchical point of view on the structure of the sequence or which
can be encoded in order to get a better compression than by encoding directly the
sequence.

Matthias Gallé, Pierre Peterlongo, François Coste: In-place Update of Suffix Array while Recoding Words, pp. 54–67.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 55

Algorithms of this kind are thus mainly based on the successive detection of re-
peats. They differ mostly in the order in which repeats are factorized. In SEQUITUR
[21] and its variant [12], each repeat is replaced as soon as it is detected by a left
to right scan of the sequence. More elaborate strategies for choosing the repeat to
replace have been proposed. Kieffer and Yang proposed to replace longest match-
ing substring [11]. Apostolico and Lonardi [3] proposed in their algorithm Off-Line

to choose the substring yielding the best compression in a steepest-descent fashion.
Efficient implementation of an elaborate choice of repeat often requires to use data
structures from the suffix tree family. These index structures are well suited for ef-
ficient computations on repeats but they have to be built at initialization, and then
updated at each step of the algorithm with respect to sequence modifications. Yet, as
pointed out by Apostolico and Lonardi, most of the published work on updating a suf-
fix tree, or – more general – on dynamic indexing problem – [20,7,17,8,6,23,5] focuses
on localized modifications of the string and does not seem appropriate for replacing
efficiently more than one occurrence of a given substring. Thus, index structures have
usually to be built from scratch at each step of the algorithm. To our knowledge, only
GTAC [16], an algorithm applied successfully on genomic sequences by Lanctot, Li
and Yang, updates a suffix tree data structure after the deletion of all occurrences of
a word. However, its updating scheme is specific to the longest matching substrings
and seems difficult to adapt to other strategies.

In this paper, we propose a solution to the problem of updating efficiently an
index structure while replacing some non-overlapping occurrences of a word of the
indexed text by a new symbol. The first originality of our approach relies on the use
of enhanced suffix arrays instead of suffix trees. Enhanced suffix arrays are known
to be equivalent to suffix trees while being more space efficient [1]. They can be
built in linear time [10,13,15] but non-linear algorithms [18,19] are usually more ef-
ficient for practical applications. A simple way of updating suffix array (instead of
enhanced suffix array, thus without the same efficiency objective) by lazy bubble
sort has been used in [22]. We propose here, to take advantage of the internal order
offered by enhanced suffix arrays, to handle simultaneously groups of entries. This
enables us to implement efficiently an update procedure for grammatical inference or
grammar-based compression algorithm, choosing at each step a repeated substring,
and replacing some or all of its occurrences by a new symbol.

2 Algorithm

2.1 Definitions and notations

A sequence is a concatenation of zero or more characters from an alphabet Σ. The
number of characters in Σ is denoted by |Σ|. A sequence s of length n on Σ is
represented by s[0]s[1] · · · s[n − 1], where s[i] ∈ Σ ∀ 0 ≤ i < n. We denote by
s[i, j](j ≥ i) the sequence s[i]s[i + 1] · · · s[j] of s (if j < i then s[i, j] = ǫ, the empty
string). In this case, we say that the sequence s[i, j] occurs at position i in s. Its length,
denoted by |s[i, j]|, is equal to j− i+1. Furthermore, the sequence s[0, j] (0 ≤ j < n),
also denoted by s[..j], is called a prefix of s, and symmetrically, s[i, n−1] (0 ≤ i < n),
also denoted by s[i..], is called a suffix of s.

Definition 1 (Suffix Array). Consider a sequence s of length n over an alphabet
Σ with a lexicographic order ≺ extensible to Σ∗. Let s̃ = s$, with a special character
$ not contained in Σ, lexicographically smaller than every element of Σ.

56 Proceedings of the Prague Stringology Conference 2008

The suffix array, denoted by sa, is a permutation of [0..n] such that:

∀ i, 0 < i ≤ n : s̃[sa[i− 1]..] ≺ s̃[sa[i]..]

Usually, the suffix array is used conjointly with an array called lcp, that gives the
longest common prefix length between two suffixes whose starting positions are adja-
cent in sa. Formally,

lcp[0] = 0,

and ∀ i ∈ [1, n] : lcp[i] = k such that

s̃[sa[i− 1]..][0, k − 1] = s̃[sa[i]..][0, k − 1] and s̃[sa[i− 1]..][k] 6= s̃[sa[i]..][k].

Eventually, a third array called isa (for inverse suffix array) may be used conjointly
with sa and lcp. This array gives, for a position p in s, the index i in sa such that
sa[i] = p. Thus sa[isa[p]] = p.

The association of sa, lcp and isa arrays is called an Enhanced Suffix Array (ESA).
An ESA enables O(n) computation of occurrences of different kinds of repeats (re-
peats, maximal repeats [9,14] or super maximal repeats [1,9]).

In this paper, we propose to update an ESA, deleting and moving some of its
indexes and keeping lcp consistent. In order to avoid shifting set of entries, we link
consecutive entries using two additional arrays called next and prev. Thus, next[i]
(resp. prev[i]) gives the index of the next (resp. previous) valid entry in the ESA.
Initially, next[i] = i + 1 and prev[i + 1] = i. We call the set ESA plus next and prev
arrays the ESADL for Double Linked Enhanced Suffix Array.

It is worth noticing that an ESADL has not exactly the same properties as an
ESA. Indeed, going from an entry i to entry i + j may be done in constant time on
an ESA, while this operation in an ESADL requires O(j) time, as the next array has
to be used j times.

Anyway, an ESADL still allows the detection of repeats (general repeats, maximal
repeats or super maximal repeats) in linear time, because the algorithms used advance
one by one over the arrays like most of the algorithm over ESA (a notable exception
is the algorithm searching for a subsequence proposed in [25]).

We propose an in-place solution, where we always work with the same arrays
and only update the values of their fields. Moreover, during the whole process, we
modify only the prev, next and lcp arrays. Arrays sa and isa remain unchanged.
This approach forces to extend the in-place behavior to the sequence: we also add
two arrays to imitate a double linked list over the sequence.

The jth position after position i, is denoted by i⊕ j. We compute i⊕ j using links
between sequence positions, indicating for each position its successor. Similarly i⊖ j
points to the jth position before i. We define that, if i⊕ j (respectively i⊖ j) is out
of range, then i⊕ j = n + 1 (respectively i⊖ j = −1).

The left context tree. One of the most useful characteristic of a suffix array is
that all indexes corresponding to suffixes starting with the same word correspond to
an adjacent block. We define here the corresponding concept of word interval. Based
on this, we will define the left context tree of a word ω where the nodes correspond
to a left context of ω.

An ω-interval is the set {k : ∃ℓ, k = isa[ℓ] ∧ s̃[ℓ..ℓ + |ω| − 1] = ω}. This can also
be denoted as an [i..j]-interval, where i and j are respectively the lowest and highest

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 57

indices of an ω-interval. Let us note that different words can share the same interval.
More precisely, any pair of words ω and ωα share the same interval if each occurrence
of ω is followed by α.

This definition is thus slightly more general than the definition of ω-interval given
by Abouelhoda, Kurtz and Ohlebusch [1], since we also define ω-interval for words
leading to implicit nodes of a compact suffix tree, and not only to internal nodes.

The left context tree of ω (ω ∈ Σ∗) for a sequence s̃ is an implicit tree whose nodes
are v-intervals (v ∈ Σ∗) such that:

– the root is the ω-interval
– for each v-interval node corresponding to a non-empty interval, its children are all

the av-intervals, for all a ∈ Σ
– the leaves are empty intervals

Given the isa array, it is easy to obtain the parent of a node. Let [i..j] be an av-
interval node. Given k ∈ [i..j], isa[sa[k] + 1] is an index belonging to the v-interval.
Inversely, isa[sa[k]− 1] belongs to one of the child interval. The exact child depends
on the character at s̃[sa[k]−1]. We introduce the successor and predecessor notations:

successor(i) =

{
isa[sa[i]⊕ 1] if sa[i]⊕ 1 6= n + 1
n + 1 otherwise,

and

predecessor(i) =

{
isa[sa[i]⊖ 1] if sa[i] 6= 0
−1 otherwise.

One may remark that predecessor(i) is the equivalent of the “suffix link” in a
suffix tree [26].

The problem that an ESA update algorithm must face is that the changes over
the occurrences of a word ω not only affect the ω-interval, but also some of the
vω-intervals (v ∈ Σ∗). The core of our algorithm is based on moving vω-interval in
constant time, using the two following properties implied by the internal order of
suffix arrays:

Proposition 2. Let [i..j] be an v-interval (v ∈ Σ∗), and k1, k2 ∈ [i..j] with k1 > k2

and such that predecessor(k1) and predecessor(k2) belong to the same αv-interval
(α ∈ Σ). Then predecessor(k1) > predecessor(k2).

Proposition 3. With i < j, the longest common prefix between s̃[sa[i]..] and s̃[sa[j]..]
is mink∈[next[i],j](lcp[k]).

In this paper, we consider that the grammatical inference or grammar based com-
pression algorithm proceeds by steps. At each step, the alphabet grows because of
the introduction of a new character: Σk will denote the alphabet in step k. In each,
of this steps, the algorithm i) finds a repeat Rk in a sequence s̃(k) defined on the
alphabet Σk and returns a list Ok of non-overlapping occurrences of Rk ii) updates
the sequence s̃(k) and its associated ESADL replacing the given occurrences of Rk

by a single new character Ck, thus defining a new alphabet Σk+1 = Σk ∪ {Ck}. The
modified sequence is then called s̃(k+1). The whole iterative process stops either if no
more repeat is found in the sequence or after a fixed number of iterations.

Our contribution focuses on updating the ESADL, at each step k of this algorithm
(part ii).

58 Proceedings of the Prague Stringology Conference 2008

In the next sections, we describe how to perform the three tasks needed for up-
dating an ESADL at each step k: 1) delete entries of suffixes starting inside an Rk

occurrence; 2) move entries with respect to the new alphabetic order; and 3) update
lcp array with respect to recoding occurrences of Rk by one single character. Note
that a few values of the lcp array are also modified during part 1 and 2, but only as
a consequence of deletions and moves.

2.2 Delete entries of suffixes occurring inside Rk substituted
occurrences

By replacing the word Rk by a single letter, the se-entry lcp suffix
prev[j] 4 ATAC . . .
j 2 ATGA . . .
next[j] 3 2 ATGT . . .

Figure 1. Deletion of
entry j.

quence is compressed and so is its ESADL: consequently,
any suffix of sequence s̃(k) appearing inside an Rk substi-
tuted occurrence must be deleted. Thus for i in Ok and
for ℓ in [1, |Rk| − 1], suffix s̃(k)[i ⊕ ℓ..] and the associated
index in the suffix array j = isa[i⊕ ℓ] have to be removed.
We simulated this deletion by jumping over it by setting
next and prev arrays to their previous and next index:

next[prev[j]] ← next[j] and prev[next[j]] ← prev[j]. Furthermore, the lcp value of
the index following j (lcp[next[j]]) has to be modified according to the deletion of
index j. As a consequence of proposition 3, after the deletion of index j, the longest
common prefix of entry next[j] is equal to the minimal longest common prefix value
of entries j and next[j].

An example is shown in Figure 1 where the deletion of entry j affects the
lcp[next[j]] that now should contain the length of longest common prefix between
ATGT and ATAC which is 2, equal to the longest common prefix of ATGT, ATGA
and ATAC.

Algorithm 1 presents the procedure for deleting indexes. The notation END refers
to the last index of the suffix array (prev[n + 1]).

Algorithm 1 Delete entries at step k, replacing Rk by Ck
delete entries{ESA

(k)
DL,Rk, Ok}

1: for i ∈ Ok do
2: for ℓ ∈ [1, |Rk| − 1] do
3: j ← isa[i⊕ ℓ]
4: if next[j] 6= END then
5: lcp[next[j]]← min(lcp[j], lcp[next[j]])
6: end if
7: next[prev[j]] = next[j]
8: prev[next[j]] = prev[j]
9: end for

10: end for

2.3 Move entries, with respect to new alphabetic order

After replacing the word Rk by the new character Ck, some ESADL lines may be
misplaced with respect to the chosen order of Ck in Σk+1.

Entries in the Rk-interval are potentially misplaced. Moreover, for v ∈ Σ∗k , index
entries inside an vRk-interval are misplaced if the substitution of Rk into Ck affects

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 59

their lexicographical order with respect to the previous and next index over the suffix
array. Thus, lines belonging to node-intervals of the left-context tree of Rk may have
to be moved.

In our approach, we decided to give to Ck the largest rank in the lexicographic
order of the alphabet Σk, i.e. ∀α ∈ Σk : α ≺ Ck.

With respect to this arbitrary choice, the Rk-interval is moved after the last entry
of the suffix array. Furthermore, for any v ∈ Σ∗k , the vRk-interval is moved after the
last entry of the v-interval.

If an vRk-interval is already at the end of the v-interval (it is naturally well
ordered), for any v′ ∈ Σ∗k , the v′vRk-interval is also at the end of the v′vRk-interval
and has not to be moved.

Algorithm 2 Restore consistency of suffix array order

update order{ESA
(k)
DL,Rk,Ok, istart, depth,move}

1: if Couple (istartl, depth) already treated during another recursion call then
2: End procedure
3: end if
4: i← istart

5: while i 6= END ∧ lcp[next[i]] ≥ depth + |Rk| do
6: i← next[i]
7: end while
8: iend ← i
9: minLCP ← minj∈[istart,iend]lcp[j]

10: if move then
11: while i 6= END ∧ lcp[next[i]] ≥ depth do
12: i← next[i]
13: end while
14: end if
15: idest ← i
16: if iend 6= idest then
17: lcp[next[iend]]← min(lcp[next[iend]],minLCP)
18: lcp[istart]← depth
19: if istart = ifirst ∧ depth 6= 0 then
20: ifirst ← next[iend]
21: end if
22: move group(istart, iend, idest)
23: else
24: lcp[istart]← min(lcp[istart, depth)
25: move← false
26: end if
27: i← istart

28: while i 6= next[iend] do
29: newdepth← depth+ (if predecessor(i) ∈ Ok then len else 1)
30: if move∨ (sa[prev[predecessor(i)]] > newdepth∧ sa[prev[predecessor(i)]]⊕newdepth ∈ Ok)

then
31: update order(ESA

(k)
DL,Rk,Ok, predecessor(i), newdepth, idest 6= iend)

32: end if
33: i← next[i]
34: end while

Based on this property, our algorithm uses a recursive approach in order to move
groups. The recursion starts on the initial Rk-interval. During recursion, if the group
of an vRk-interval is moved, the recursion continues on groups of αvRk − intervals,
with α ∈ Σk.

60 Proceedings of the Prague Stringology Conference 2008

From a theoretical point of view, the algorithm starts on the root of the left-
context tree of Rk and if the group corresponding to the interval of the node is
moved, it recursively treats its children in a breadth first traversal (a FIFO is used).

In practice, the recursion on an vRk-interval works as follow:

1. detects the end position of the vRk-interval,
2. detects the end position of the v-interval,
3. if necessary:

3.a. moves the group to the end position of the v-interval,
3.b. call the recursion on predecessors of entries of the group.

During a call on predecessor of an entry of the group, either this is the first time
the matched group is called and by construction the call is done on its first element,
or the group was already treated, and the recursion stops.

The algorithm for this step is shown in algorithm 2. This recursion function re-
ceives three parameters besides the data structures: the starting position of the group,
the current depth over the left-context and a boolean flag (see below).

At first, the end of the vRk-interval is found (lines 2, 2 and 2).
This is done from the first element of the interval, fol-

Figure 2. Moves induced
by substituting GA by C1.

lowing the next array while the visited entry corresponds
to a suffix starting with vRk (lcp ≥ |v| + |Rk|). After
finding the extremes of the group, the destination index
of this group according to the chosen order for the new
character is found (lines 2, 2 and 2). This is done by find-
ing the end of the v-interval in the same way (lcp ≥ |v|).

Moving now the group to its new position is simple
and is done in constant time. Thanks to the well-ordered
property of the suffix array, the whole interval is moved by
changing only the delimiting positions. Let istart, iend, idest

be respectively the starting and ending positions of the
vRk-interval, and the last position of the v-interval. Move
the group [istart, iend] to the position after idest is simply
done by jumping over the group and inserting it into idest

and next[idest]. See the algorithm 3 for implementation
details.

Two longest common prefix values are modified as a consequence of the deletion
of the group and its insertion:

1. lcp[next[iend]]: contains the value of the length of the longest common prefix be-
tween prev[istart] and next[iend], which according to proposition 3, is the minimum
of the lcp values of the group and itself

2. lcp[istart]: we assign to it the value of depth, that is the correct value over s̃k+1.
This serves also to set a stop-point for future recursions calls (see below).

As ifirst points to the first line over the suffix array that contains a selected
repetition, we also update ifirst (line 2) if this line is moved.

Figure 2 shows the ESADL of sequence GAAGAAGC, where R1 = GA is substi-
tuted by C1. One remarks that the initial interval of suffixes starting with GA (indexes
6 and 7) is moved as well as suffix starting with AGA (index 3). Note also that suffix
starting with GAAGA has to be moved with respect to suffix GAAGC.

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 61

Algorithm 3 Move the group [istart, iend] after the position idest

move group{ESA
(k)
DL,Rk,Ok, istart, iend, idest}

1: next[prev[istart]] = next[iend]
2: prev[next[iend]] = prev[istart]
3: next[iend] = next[idest]
4: prev[next[idest]] = iend

5: next[idest] = start
6: prev[istart] = idest

A special case Once an interval is treated, the recursion continues either if the
current group was moved, or in the special case described in what follows.

Consider for instance the following case, where the substituted repeat is TA.
i CTATTTAC. . .
i+1 CTATTTAG. . .
i+2 CTATTA. . . ,
and suppose that the TTA-interval containing the index isa[sa[i + 2] ⊕ 3] (the

underlined suffix in the figure) was already at its right position and therefore has not
to be moved. So, its children in the left-context tree are not considered for future
moves, and as a consequence, neither is index i + 2. Supposing that we cut the
recursion here, that means that when treating the CTATT -interval, lcp[i + 2] = 5.
This interval ends at the index i + 1, but because we use the lcp array to detect it,
we also consider index i + 2 as part of the CTATT -interval.

To resolve this special case, the recursion continues even when the current interval
was not moved. In this case, it will never be necessary to move an interval, but maybe
update some lcp values to set stop-points for future recursion calls.

This is the reason for introducing the last parameter in algorithm 2 (the boolean
flag move). It differentiates the normal case (when it is necessary to detect the des-
tination index and move the interval) from the case in which the current interval is
considered only to set a stop-point at the first index of the interval. The recursion
continues in both cases.

Filtering non substituted Rk occurrences Among each vRk-interval, suffixes
starting with vRk where Rk is not substituted (whose position does not belong to
Ok) may occur. The associated entries in the ESADL should not be moved with
the vRk-interval. Thus, before to apply the recursive procedure previously exposed,
a straightforward filtering step is applied. During the recursion, each line i of each
group is first checked in order to detect if it corresponds to an entry of a selected
occurrence (sa[i] ⊕ depth ∈ Ok). Once detected a non-selected occurrence, we move
it to the beginning of the group (before istart). As previously mentioned, this also
involves modifications of the lcp array for maintaining its consistency.

2.4 Update lcp values after the substitution of Rk occurrences to a
single character

The substitution of any occurrence of Rk of length |Rk| ≥ 2 by Ck of length 1 involves
the modification of the length of all common prefixes involving such an occurrence.

In the previous step, it was easy to update the lcp values of the limits of the
intervals while they were moved. In this step, we update the lcp values of the internal
position of the intervals.

62 Proceedings of the Prague Stringology Conference 2008

For this, we traverse the left-context tree of Rk. Contrary to the moving step,
where it was possible to move one line several times, in this step we update each lcp
index only once. To do this, we recalculate all the lcp values for the root (Rk-interval)
and use this information to update the lcp of the other intervals.

As a consequence of propositions 2 and 3, the lcp between two indexes of the same
interval-node is simply one plus the lcp between their successor indexes belonging to
the parent interval-node:

Let i, j belong to the same aw-interval and let us assume that i > j.
Then lcp(s̃[sa[i]..], s̃[sa[j]..]) = minℓ∈[next[successor(i)],successor(j)]lcp[ℓ]
With this inductive approach, it is sufficient to re-calculate the lcp of only the first

interval (the root of the left-context tree). This is straightforward (see algorithm 4).

Algorithm 4 Calculate the value of the lcp for index i
recalculate lcp{ESADL, i}
1: lcp[i]← 0
2: if prev[i] ≥ 0 then
3: i← sa[i]
4: j ← sa[prev[i]]
5: while i < n ∧ j < n ∧ s[i] = s[j] do
6: i← i⊕ 1
7: j ← j ⊕ 1
8: lcp[i]← lcp[i] + 1
9: end while

10: end if

During the iterative call, if an index already treated appears, it is skipped. In-
deed, its lcp value is then up-to-date. The pseudo-code for this step is exposed in
algorithm 5.

Algorithm 5 Update lcp of step k

update lcp{ESA
(k)
DL,Rk, Ok}

1: q ← queue()
2: for i ∈ Ok do
3: recalculate lcp(ESA

(k)
DL, isa[i])

4: q.push((predecessor(isa[i]), 1))
5: end for
6: while not q.empty() do
7: (i, depth)← q.top
8: q.pop
9: if i ≥ 0 ∧ lcp[i] not already updated ∧ lcp[i] ≥ depth then

10: lcp[i]← (minj∈[next[successor(prev[i])],successor(i)]lcp[j]) + 1
11: q.push((predecessor(i), depth + 1))
12: end if
13: end while

Because in each step we use the value of all the lines of the previous group, we
traverse once again the left context tree in a breadth-first order.

3 Efficiency

The space complexity is in O(n). The ESADL structure needs to complete the ESA
with two arrays of length n. During the execution, a queue of length O(n), plus an

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 63

array of length n are used to check in constant time whether a couple (i, depth) was
already used.

The worst case time complexity of the update algorithm is bounded by O(n2). This
case is reached while replacing for instance AA occurrences in an ESADL indexing
the text AnT . A better bound on time complexity could be obtained by considering
amortized complexity, but it will still be unlikely to be better than the O(n) complex-
ity required for building the suffix array from scratch. Nevertheless, the algorithms
building suffix arrays that currently perform best in practical cases, are not the lin-
ear ones (see [24] for a complete description of the different suffix array construction
algorithms and their strengths). We propose in this section to evaluate the practical
efficiency of our algorithm.

A prototype implementing the proposed algorithm has been developed using the
C++ language. It is available at http://www.irisa.fr/symbiose/people/galle/update

sarray/. It has been tested on different types of text. For the sake of briefness, in this
paper we only report the results on the following classical corpora from the literature:

– the standard and large Canterbury corpus (http://corpus.canterbury.ac.nz/, [4]),
– the Purdue corpus (http://www.cs.ucr.edu/∼stelo/Offline/, [2])

Similar tests on other corpora can be found on our internet site.
We compared the execution times of our algorithm with the linear time suffix

array construction algorithm proposed by Kärkkäinen and Sanders [10], and non-
linear algorithm of Larsson and Sadakane [18] that is in practice faster. Both source
codes were retrieved from the Internet sites specified in the associated articles. Note
that Kärkkäinen and Sanders’ code “strives for conciseness rather than for speed” [10].
The Manzini and Ferragina’s algorithm [19], doesn’t fulfill our requirement of variable
alphabet size, it was then not used for our experiments. The tests were executed on
1 GHz AMD Opteron processors with 4 GB of memory.

First, to have an idea of the complexity of the algorithm, we studied how the length
of the sequence influences the execution time of the algorithm. From the large Calgary
corpus, we extracted sequences of different length by considering successively bigger
(by steps of 100 characters) prefixes of the sequences. On each extracted sequence, we
performed 250 iterations of selecting a random repeat, replacing it over the sequence
by a new character and updating the associated suffix array. Time (user + system
time) required for updating the suffix array was reported, averaged over 5 different
runs corresponding to 5 different random seeds. The same experiments, replacing
the update algorithm by the “from scratch” construction algorithms of the suffix
array by Kärkkäinen and Sanders (K & S) and Larsson and Sadakane (L & S) have
been performed. The plots, shown in figure 3, confirm that the execution time of
our updating algorithm is not directly correlated to the length of the sequence, and
is significantly smaller than the execution time required by reconstruction “from
scratch” algorithms, especially when the length of the sequence increases.

We present a more exhaustive evaluation and comparison on all the corpora using
different strategies for the selection of the repeated word. In each test we performed
500 iterations of selecting a repeat, replacing it over the sequence and updating (or
building from scratch) the associated suffix array. The different strategies for the
selection of the repeat were:

– take a random one (using the same seed for the random number generator),
– take the longest,

64 Proceedings of the Prague Stringology Conference 2008

Figure 3. Large corpus: bible.txt, world192.txt and E.coli. Times are given in hun-
dredth of seconds

– take the one that covers the maximal number of positions1.

Results are given in figure 4 (page 67). For each selection strategy, we report
time (user + system time) spent in updating ESADL with our algorithm (column
update), and time spent in building ESA from scratch at each iteration with the
linear algorithm from Kärkkäinen and Sanders (column K & S) and the algorithm
from Larsson and Sadakane (column L & S). For easier comparison, the ratios of the
time spent by each of the two “from scratch” algorithms over the update algorithm
are also given.

Some of the files (fields.c, grammar.lsp and xargs.1) are too small to draw signif-
icant conclusions, but results are shown here for the sake of completeness. On the
other files, results show that a significant speedup is usually achieved by using our
algorithm. The main exceptions are the Spor All 2x.fasta files (an artificial file ob-
tained by concatenating Spor All.fasta with itself) from the Purdue corpus, and the
ptt5 file from the Canterbury corpus (a fax image with very long zones of the same
byte). One can also remark that the ratio is less favorable when the repeat to replace
is chosen according to the maximal compression strategy. On the one hand, in each
iteration the resulting sequence is smaller and the suffix array creation from scratch
for this sequence faster. On the other hand, there are more positions affected by the
substitution and this affects the update algorithm.

1 Maximisation of (|Ok| − 1) ∗ (|w| − 1)− 1, corresponding to a maximal compression approach.

M.Gallé, P. Peterlongo, F.Coste: In-place Update of Suffix Array while Recoding Words 65

These cases allow us to illustrate an intrinsic limit of the update approach when
the length of the sequence is highly reduced by recoding: when the number of positions
to update is larger than the number of positions in the resulting sequence, it may be
worth adopting the “from scratch” construction algorithm (let us remark that the best
algorithm to use can vary along the iterations). A solution to handle these extreme
cases, would be to design a criterion on the repeat and its coverage to automatically
choose the best algorithm to use (eventually at each iteration).

4 Conclusion and future work

We introduced in this paper an approach allowing to keep up-to-date an enhanced
suffix array with respect to the substitution of some of the occurrences of a word in
the indexed text We didn’t consider singular insertions or deletions, but simultane-
uos substitution.This is of particular interest for grammatical inference or grammar
based compression methods which are using these data structures and are performing
iteratively a large number of such substitutions.

Our approach uses the specific internal order of suffix arrays to update simulta-
neously groups of adjacent entries and ensures that only entries to be modified are
visited. This specific property of the suffix arrays allows to design an efficient update
procedure which has been implemented and tested on classical corpora. The exper-
imentation confirms that, in regard to the direct method reconstructing the suffix
array, our approach enables significant speed-up of the execution time.

However, in some cases, the update method is less efficient than building the
enhanced suffix array from scratch. Intuitively, when the number of lines to change is
larger than the number of lines in the new suffix array, a reconstruction algorithm is
likely to be more efficient than an update approach. In order to be even more efficient,
a criterion allowing to decide automatically which algorithm to use could be designed.
This would require a finer complexity analysis of the update algorithm, but also of
the chosen building algorithm, in order to identify easy-to-compute key parameters
involved in the execution time complexity.

Of course, the question of the existence of a practical efficient O(n) algorithm
remains open. But the results on the construction of suffix arrays suggest that a
better way of improvement could be the design of other practical update algorithms.
Finally, these results have been obtained by using a suffix array. It would be interesting
to study how easily this approach can be adapted to suffix trees and how much it
depends on the suffix array specific properties.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms, 2(1) 2004, pp. 53–86.

2. A. Apostolico and S. Lonardi: Compression of biological sequences by greedy off-line textual
substitution, in Proc. DCC, 28-30 March 2000, pp. 143–152.

3. A. Apostolico and S. Lonardi: Off-line compression by greedy textual substitution, in Proc.
IEEE, vol. 88, Nov. 2000, pp. 1733–1744.

4. R. Arnold and T. Bell: A corpus for the evaluation of lossless compression algorithms, in
Proc. Conference on Data Compression, Washington, DC, USA, 1997, IEEE Computer Society,
p. 201.

5. H.-L. Chan, W.-K. Hon, T.-W. Lam, and K. Sadakane: Compressed indexes for dynamic
text collections. ACM Transactions on Algorithms, 3(2) May 2007.

66 Proceedings of the Prague Stringology Conference 2008

6. P. Ferragina, R. Grossi, and M. Montangero: On updating suffix tree labels. Theor.
Comp. Science, 201(1-2) 1998, pp. 249–262.

7. E. Fiala and D. H. Greene: Data compression with finite windows. Comm. ACM, 32(4)
1989, pp. 490–505.

8. M. Gu, M. Farach, and R. Beigel: An efficient algorithm for dynamic text indexing, in
Proc. the ACM-SODA, 1994, pp. 697–704.

9. D. Gusfield: Algorithms on Strings, Trees, and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, Jan. 1997.

10. J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, in Proc.
ICALP, Springer, 2003.

11. J. Kieffer and E.-H. Yang: Grammar-based codes: A new class of universal lossless source
codes. IEEE TIT, 46 2000.

12. J. Kieffer and E.-H. Yang: Grammar-based codes: a new class of universal lossless source
codes. IEEE TIT, 46 2000.

13. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, in Proc. CPM,
vol. 2676, 2003, pp. 200–210.

14. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in
Proc. IEEE FOCS, New York, USA, 1999, IEEE Computer Society Press, pp. 596–604.

15. K. D. Kyue, S. J. Seop, P. Heejin, and P. Kunsoo: Linear time construction of suffix
arrays, in Proc. Combinatorial Pattern Matching, vol. 2676, 2003, pp. 186–2003.

16. J. K. Lanctot, M. Li, and E.-H. Yang: Estimating dna sequence entropy, in Proc. ACM-
SODA, 2000, pp. 409–418.

17. N. J. Larsson: Extended application of suffix trees to data compression, in Proc. DCC, 1996,
pp. 190–199.

18. N. J. Larsson and K. Sadakane: Faster suffix sorting, Tech. Rep. LU-CS-TR:99-214,
LUNDFD6/(NFCS-3140)/1–20/(1999), Department of Computer Science, Lund University,
Sweden, May 1999.

19. G. Manzini and P. Ferragina: Engineering a lightweight suffix array construction algorithm.
Algorithmica, 40(1) 2004, pp. 33–50.

20. E. M. McCreight: A space-economical suffix tree construction algorithm. J. ACM, 23(2) 1976,
pp. 262–272.

21. C. Nevill-Manning and I. Witten: Identifying hierarchical structure in sequences: A linear-
time algorithm. J. AI Research, 7 1997, pp. 67–82.

22. C. Nevill-Manning and I. Witten: On-line and off-line heuristics for inferring hierarchies
of repetitions in sequences. Proc. IEEE, 88(11) Nov 2000, pp. 1745–1755.

23. S. C. Sahinalp and U. Vishkin: Efficient approximate and dynamic matching of patterns
using a labeling paradigm, in FOCS, 1996.

24. K.-B. Schürmann and J. Stoye: An incomplex algorithm for fast suffix array construction.
Software - Pract. and Exp., 37(3) 2007, pp. 309–329.

25. J. S. Sim: Time and space efficient search for small alphabets with suffix arrays, in Proc. FSKD,
2005.

26. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14 1995, pp. 249–260.

M
.G

a
llé,

P
.P

eterlo
n
go

,
F
.C

o
ste:

In
-p

la
ce

U
pd

a
te

o
f
S
u
ffi

x
A

rra
y

w
h
ile

R
ecod

in
g

W
o
rd

s
67

sequence length (chars.) random maximal length maximal compression

update K & S L & S
ratio

K & S
ratio

L & S
update K & S L & S

ratio
K & S

ratio
L & S

update K & S L & S
ratio

K & S
ratio

L & S
CANTERBURY CORPUS
alice29.txt 152089 163 2812 1497 17.25 9.18 192 2357 1371 12.28 7.14 269 1091 510 4.06 1.90
asyoulik.txt 125179 131 2111 1109 16.11 8.47 127 1727 1059 13.60 8.34 182 866 405 4.76 2.23
cp.html 24603 15 132 95 8.80 6.33 15 96 64 6.40 4.27 18 55 40 3.06 2.22
fields.c 11150 6 38 31 6.33 5.17 8 19 21 2.38 2.62 3 18 6 6.00 2.00
grammar.lsp 3721 3 5 5 1.67 1.67 0 2 3 div 0 div 0 0 1 0 div 0 div 0
kennedy.xls 1029744 1323 34905 12829 26.38 9.70 1230 35962 13796 29.24 11.22 1541 4871 1671 3.16 1.08
lcet10.txt 426754 516 17151 6871 33.24 13.32 522 16447 6449 31.51 12.35 749 5815 2259 7.76 3.02
plrabn12.txt 481861 588 22657 8853 38.53 15.06 606 19295 9304 31.84 15.35 887 7841 2911 8.84 3.28
ptt5 513216 1248 7389 4617 5.92 3.70 696 5323 3705 7.65 5.32 1900 842 369 0.44 0.19
sum 38240 42 234 151 5.57 3.60 34 187 99 5.50 2.91 28 82 48 2.93 1.71
xargs.1 4227 6 25 9 4.17 1.50 2 6 2 3.00 1.00 2 4 2 2.00 1.00
LARGE CORPUS
bible.txt 4047392 5055 337725 115481 66.81 22.84 5168 332777 116260 64.39 22.50 10285 158048 38038 15.37 3.70
E.coli 4638690 5534 382636 151405 69.14 27.36 6307 337196 151540 53.46 24.03 14808 140788 31189 9.51 2.11
world192.txt 2473400 3084 200643 67079 65.06 21.75 3089 187505 65213 60.70 21.11 5573 90738 25276 16.28 4.54
PURDUE CORPUS
All Up 1M.fasta 1001002 1238 61657 24597 49.80 19.87 1200 55389 23982 46.16 19.98 2350 14109 4167 6.00 1.77
All Up 400k.fasta 399615 501 13959 6777 27.86 13.53 481 13294 6698 27.64 13.93 884 2758 1129 3.12 1.28
Helden All.fasta 112507 119 1511 963 12.70 8.09 122 1363 933 11.17 7.65 165 382 191 2.32 1.16
Helden CGN.fasta 32871 31 244 172 7.87 5.55 34 232 178 6.82 5.24 19 55 50 2.89 2.63
Spor All 2x.fasta 444906 112 82 94 0.73 0.84 57 34 44 0.60 0.77 61 35 71 0.57 1.16
Spor All.fasta 222453 246 3658 2107 14.87 8.57 250 3314 2140 13.26 8.56 413 775 401 1.88 0.97
Spor EarlyI.fasta 31039 34 187 152 5.50 4.47 26 220 190 8.46 7.31 25 56 47 2.24 1.88
Spor EarlyII.fasta 25008 20 145 151 7.25 7.55 15 166 121 11.07 8.07 33 60 39 1.82 1.18
Spor Middle.fasta 54325 S 51 526 351 10.31 6.88 62 506 396 8.16 6.39 73 117 66 1.60 0.90

Figure 4. Comparison between update and reconstruction from scratch of the suffix array. Times are given in hundredth of seconds

The Virtual Suffix Tree: An Efficient Data

Structure for Suffix Trees and Suffix Arrays⋆

Jie Lin, Yue Jiang, and Don Adjeroh

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV 26506

jlin@mix.wvu.edu, yue@csee.wvu.edu, don@csee.wvu.edu

Abstract. We introduce the VST (virtual suffix tree), an efficient data structure for
suffix trees and suffix arrays. Starting from the suffix array, we construct the suffix tree,
from which we derive the virtual suffix tree. The VST provides the same functionality
as the suffix tree, including suffix links, but at a much smaller space requirement. It
has the same linear time construction even for large alphabets, Σ, requires O(n) space
to store (n is the string length), and allows searching for a pattern of length m to be
performed in O(m log |Σ|) time, the same time needed for a suffix tree. Given the VST,
we show an algorithm that computes all the suffix links in linear time, independent of
Σ. The VST requires less space than other recently proposed data structures for suffix
trees and suffix arrays, such as the enhanced suffix array [1], and the linearized suffix
tree [16]. On average, the space requirement (including that for suffix arrays and suffix
links) is 13.8n bytes for the regular VST, and 12.05n bytes in its compact form.

1 Introduction

The suffix tree is an important data structure used to represent the set of all suffixes of
a string. The suffix tree is efficient in both time and space, and has been used in a va-
riety of applications, such as pattern matching, sequence alignment, the identification
of repetitions in genome-scale biological sequences, and in data compression. Various
algorithms have been developed for efficient construction of suffix trees [28,22,27,8].
However, one major problem with the suffix tree is its practical space requirement.
The suffix array is a related data structure, which was originally introduced in [21]
as a space-efficient alternative to the suffix tree. The suffix array simply provides a
listing of all the suffixes of a given string in lexicographic order. The suffix array can
be used in most (though, not all) situations where a suffix tree can be used.

Although the theoretical space complexity is linear for both data structures, typi-
cally, for a given string T of length n, the suffix array requires about three to five times
less space than the suffix tree. The construction time for both algorithms is also O(n)
on average. For suffix arrays, construction algorithms that run in O(n log n) worst
case1 are relatively easy to develop, but O(n) worst case algorithms are much harder
to come by. Recent suffix sorting algorithms with worst-case linear time have been
reported in [13,18,17,3]. Gusfield [11] provides a comprehensive treatment of suffix
trees and its applications. Puglisi et al [26] provide a recent survey on suffix arrays.
Adjeroh et al (2008) provide an extensive discussion on the connection between the
Burrows-Wheeler transform [6] and suffix trees and suffix arrays.

For small alphabet sizes, the suffix tree and the suffix array have about the same
complexity in pattern matching. For pattern matching, the suffix array requires time

⋆ Partly supported by a DOE CAREER award.
1 All logarithms are to base 2, unless otherwise stated.

Jie Lin, Yue Jiang, Don Adjeroh: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees and Suffix Arrays, pp. 68–83.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 69

in O(m log n) to locate one occurrence of a pattern of length m in T . However,
with additional data structures, such as the lcp array, this time can be reduced to
O(m + log n). With the suffix tree, the same search can be performed in O(m) time.
The problem, however, is for sequences with large alphabets. Here, |Σ|, the alphabet
size is no longer negligible. Using the array representation of nodes in the suffix tree
will require O(n|Σ|) space for the suffix tree, and O(m) time for pattern matching.
For linear space, the linked list or binary search tree can be used, but the search time
becomes O(m|Σ|) or O(m log |Σ|) respectively.

The challenge therefore is to develop space-efficient data structures that can sup-
port pattern matching using the same time complexity as suffix trees, but at a practi-
cal space requirement that approaches that of the suffix array. Such a data structure
should also support the complete functionality of the suffix tree, such as support for
suffix links, as may be required in certain applications. Two recent data structures
that have tried to address this problem are the ESA – enhanced suffix array [1], and
the LST – linearized suffix tree [15,16]. Both methods are based on the notion of
lcp-intervals [14], constructed using the suffix array and the lcp array. Other related
data structures that have been proposed include the suffix cactus [12], suffix vectors
[23,25], compact suffix trees [20], the lazy suffix trees [9], level-compressed suffix trees
[4], compressed suffix trees [24], and compressed suffix arrays [10]. See also [2].

1.1 Main results

We introduce another data structure, the virtual suffix tree (VST), an efficient data
structure for suffix trees and suffix arrays. The VST does not use the lcp-intervals,
but rather exploits the inherent nature of the suffix tree topology. We state our main
results in the form of two theorems about the VST.

Theorem 1. Given a string T = T [1..n], with symbols from an alphabet Σ, and
the virtual suffix tree for T , we can count the number of occurrences of a pattern
P = P [1..m] in T in O(m log |Σ|) time, and locate all the ηocc occurrences of P in T
in O(m log |Σ|+ ηocc) time.

Theorem 2. Given a string T = T [1..n], with symbols from an alphabet Σ, the virtual
suffix tree, including the suffix link, can be constructed in O(n) time, and O(n) space,
independent of Σ.

Essentially, the VST provides the same functionality as the suffix tree, but at a
much smaller space requirement. It has the same linear time construction for large
|Σ|, requires O(n) space to store, and allows searching for a pattern of length m to be
performed in O(m log |Σ|) time, the same time needed for a suffix tree. To provide the
complete functionality of the suffix tree, we describe a simple linear time algorithm
that computes the suffix links based on the VST. Although the space needed for the
VST is linear (as in suffix tree implementations using linked lists or binary trees),
the practical space requirement is much smaller than that of a suffix tree. The VST
requires less space than other recently proposed data structures for suffix trees and
suffix arrays, such as the ESA [1], and the LST [16]. On average, the space requirement
(including that for suffix arrays and suffix links) is 13.8n bytes for the regular VST,
and 12.05n bytes in its compact form. This can be compared with the 20n bytes
needed by the LST or the ESA.

70 Proceedings of the Prague Stringology Conference 2008

1.2 Organization

The next section introduces the key notations and definitions used. In Section 3, we
introduce the basic data structure and discuss the properties of the VST. Section 4
presents an improved data structure, along with algorithms for its construction. A
complexity analysis on the construction and use of the VST is also presented in this
section. Section 5 shows how the suffix link can be constructed on the VST. The
paper is concluded in Section 6.

2 Basic notations and definitions

Let T = T [1..n] be the input string of length n, over an alphabet Σ. Let T = αβγ, for
some strings α, β, and γ (α and γ could be empty). The string β is called a substring
of T , α is called a prefix of T , while γ is called a suffix of T . The prefix α is called
a proper prefix of T if α 6= T . Similarly, the suffix γ is called a proper suffix of T if
γ 6= T . We will also use ti = T [i] to denote the i-th symbol in T — both notations
are used interchangeably. We use Ti = T [i..n] = titi+1 · · · tn to denote the i-th suffix
of T . For simplicity in constructing suffix trees, we usually ensure that no suffix of
the string is a proper prefix of another suffix by appending a special symbol, $ to T ,
such that $ /∈ Σ, and $ < σ, ∀σ ∈ Σ.

Given a string T , its suffix tree (ST) is a rooted tree with n leaves, where the
i-th leaf node corresponds to the i-th suffix Ti of T . Except for the root node and
the leaf nodes, every node must have at least two descendant child nodes. Each edge
in the suffix tree represents a substring of T , and no two edges out of a node start
with the same character. For a given edge, the edge label is simply the substring in T
corresponding to the edge. We use li to denote the i-th leaf node. Then, li corresponds
to Ti, the i-th suffix of T . When the edges from each node are sorted alphabetically,
then li will correspond to TSA[i], the i-th suffix of T in lexicographic order.

For edge (u, v) between nodes u and v in ST, the edge label (denoted label(u, v))
is a non-empty substring of T . The edge length is simply the length of the edge label.
The edge label is usually represented compactly using two pointers to the beginning
and end of its corresponding substring in T . For a given node u in the suffix tree,
its path label, L(u) is defined as the label of the path from the root node to u. Since
each edge represents a substring in T , L(u) is essentially the string formed by the
concatenation of the labels of the edges traversed in going from the root node to the
given node, u. The string depth of node u, (also called its length) is simply |L(u)|,
the number of characters in L(u). The node depth (also called node level) of node u is
the number of nodes encountered in following the path from the root to u. The root
is assumed to be at node depth 0.

Certain suffix tree construction algorithms make use of suffix links. The notion of
suffix links is based on a well-known fact about suffix trees [28,20], namely, if there is
an internal node u in ST such that its path label L(u) = aα for some single character
a ∈ Σ, and a (possibly empty) string α ∈ Σ∗, then there is a node v in ST such that
L(v) = α. A pointer from node u to node v is called a suffix link. If α is an empty
string, then the pointer goes from u to the root node. Suffix links are important in
certain applications, such as in computing matching statistics needed in approximate
pattern matching, regular expression matching, or in certain types of traversal of the
suffix tree.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 71

A predominant factor in the space cost for suffix trees is the number of interior
nodes in the tree, which depends on the tree topology. Thus, a major consideration
is how the outgoing edges from a node in the suffix tree are represented. The three
major representations used for outgoing edges are arrays, linked lists, and binary
search trees. While the array is simple to implement, it could require a large memory
for large alphabets. However, independent of the specific method adopted, a simple
implementation of the suffix tree can require as large as 33n bytes of storage with
suffix links, or 25n bytes without suffix links [2].

The suffix array (SA) is another data structure, closely related to the suffix tree.
The suffix array simply provides a lexicographically ordered list of all the suffixes
of a string. If SA[i] = j, it means that the i-th smallest suffix of T is Tj, the suffix
starting at position j in T . A related structure, the lcp array contains the length of the
longest common prefixes between adjacent positions in the suffix array. Combining
the suffix array with the lcp information provides a powerful data structure for
pattern matching. With this combination, decisions on the occurrence (or otherwise)
of a pattern P of length m in the string T of length n can be made in O(m + log n)
time. Given the new worst-case linear-time direct SA construction algorithms, and the
small memory footprint of suffix arrays, it is becoming more attractive to construct
the suffix tree from the suffix array. A linear-time algorithm for constructing ST from
SA is presented in [2].

3 Basic Data Structure

Starting from the suffix array, we construct an efficient data structure to simulate the
suffix tree (ST). We call this structure a Virtual Suffix Tree (VST). The VST stores
information about the basic topology of the suffix tree, the suffix array, and the suffix
links. Thus, the VST is represented as a set of arrays that maintains information on
the internal nodes of the suffix tree. The leaf nodes are not stored directly. However,
whenever needed, information about any leaf node can be obtained via the suffix array.
Unlike the ESA and LST, the VST neither uses the lcp-interval tree nor stores the
lcp array. We call the data structure a virtual suffix tree in the sense that it provides
all the functionalities of the suffix tree using the same space and time complexity
as a suffix tree, but without storing the actual suffix tree. Later, we show that the
VST leads to a more compact representation of suffix trees and suffix arrays. (We
mention that [14] also used the term “virtual suffix tree”, but for a limited form of
the enhanced suffix array).

Below, we present the basic VST. This structure will require 14 bytes for each node
in the VST and supports pattern matching in O(m log |Σ|) time, for an m-length
pattern. In the next section, we present an improved data structure that reduces
the space cost by eliminating the need to store edge lengths, while still maintaining
O(m log |Σ|) time for pattern matching. We also describe a more compact structure
for the VST that uses only 10 bytes for each internal node of the VST, and 5 bytes
for each leaf node. Pattern matching on this compact representation will, however,
be in O(m|Σ|) time.

Each node in the VST corresponds to a distinct internal node in the suffix tree. In
its basic form, each node in the VST is characterized by five attributes. For a given
node in the VST (say node u), with a corresponding internal node in ST (say node
uST), the five attributes are defined as follows.

72 Proceedings of the Prague Stringology Conference 2008

– sa index: index in the suffix array (SA index) of the leftmost leaf node under the
internal node uST of the suffix tree.

– fchild: the node ID of the first child node of uST that is also an internal node.
(Scanning is done left to right; edges at a node are also sorted left to right in
ascending lexicographic order). If node u is a leaf node in the VST, the value
will be negative. The absolute value will point to the first child node of the next
internal node in the VST.

– elength: The edge length of the edge (v, u) in the VST, or equivalently (vST , uST)
in the suffix tree, where v is the parent node of u and vST is the parent node of
uST .

– nfleaf: the number of child leaf nodes before the first child of uST that is also an
internal node.

– nnleaf: the number of sibling leaf nodes after uST , the current internal node of
the suffix tree, but before the next sibling internal node.

In terms of storage, the sa index, fchild and elength each requires one integer
(4 bytes), while nfleaf and nnleaf each requires one byte of storage (assuming
|Σ| ≤ 256).

3.1 Example VST

We use an example sequence to explain the above definitions. The suffix tree and
VST for the string missississippi$ are shown in Figure 1. Note that the string
missississippi$ is made intentionally different from mississippi$, to capture
some of the cases involved in a VST. Only the internal nodes (dark nodes) are ex-
plicitly stored in the VST. The leaf nodes (empty circles) are not stored. The order
of storage is based on the node-depths, from top to bottom. Table 1 shows the cor-
responding values of the VST node attributes for each VST node in the example.

root

N

N

N

i

$

ppi$
ssi

ssi

ssippippi

ppi$

missississippi$

p

N

i$
pi$

N

N

N

N

N

s

si
i

ssi

ssi

ppi$

ppi$
ssippi$

ppi$

ssippippi

1

8

7

5
4

3

2

14
13

12

11

10

9

6

$
0

1

2

3

4

5

6

7

8

9

root

N

N

N

i

ssi

ssi

p

N

N

N

N

N

N

s

si
i

ssi

ssi

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 1. Suffix tree and virtual suffix tree for the string T = missississippi$. (a)
suffix tree; (b) virtual suffix tree. The number at each leaf node indicates the position
in SA. The number at each internal node indicates the node ID in the VST.

3.2 Properties of the Virtual Suffix Tree

We can trace the properties of the VST based on the standard properties of a suffix
tree.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 73

node root N1 N2 N3 N4 N5 N6 N7 N8 N9

sa index 0 1 7 9 3 9 12 4 10 13
fchild N1 N4 −N5 N5 N7 N8 N9

elength 0 1 1 1 3 1 2 3 3 3
nfleaf 1 2 2 0 1 1 1 2 2 2
nnleaf 0 1 0 0 0 0 0 0 0 0

Table 1. VST node attributes for the example sequence T = missississippi$ used
in Figure 1.

1. The VST only stores the internal nodes of the suffix tree. No leaf nodes in the
ST are represented in the VST. Information about the leaf nodes can be obtained
from the SA when needed. Then the space requirement of the VST depends on
the topology of the the suffix tree, or more specifically, on the number of internal
nodes.

2. The number of leaf nodes in a suffix tree is n. The number of internal nodes in
the suffix tree (and hence number of nodes in the VST) is at most n.

3. The VST stores only the SA index of the leftmost leaf nodes and information
about the child nodes.

4. For a given node in the VST, the number of child nodes will be no larger than
|Σ|. Thus, the time needed to match a symbol is at most O(log |Σ|).

5. The nodes in the VST are ordered based on the internal nodes of the suffix tree
using the HSAM (hierarchy sequential access method). The child nodes from any
given node will be stored sequentially. The child nodes of two nearby nodes will
therefore be stored in nearby locations. This is an important property for address-
ing problems involving locality of reference.

We introduce further definitions needed in the description below. For a given node
u in the VST, we use the term prior node to denote the node that appears before the
current node u in the HSAM ordering. Similarly, next node denotes the node that
appears after the current node u in this ordering. We use lsa index (left sa index)
to denote the SA index of the leftmost leaf node that is a descendant of u. Similarly,
rsa index (right sa index) denotes the rightmost leaf node that has u as its ancestor.
Figure 2 shows an example.

It is simple to determine the lsa index and the leftmost child node of any given
node. The properties of the VST and the organization of the VST lead to the following
lemma about the VST (we omit the proof for brevity):

Lemma 3. For a given node in the VST, its rightmost child node, and the right
sa index can each be determined in constant time.

3.3 Pattern matching on VST

Lemma 3 provides an indication of how pattern matching can be performed on the
VST. For pattern matching using the suffix tree, an important issue is how to quickly
locate all the child nodes for a given internal node. In the VST, each node points to its
leftmost leaf node using the sa index. During pattern matching, at any given node in
the VST, we will need to determine four parameters, namely the leftmost child node
(lchild), the rightmost child node (rchild), the left sa index (lsa index) and the
right sa index (rsa index). These parameters define the boundaries of the search
at the given node. To search in a leaf node of the VST, we will need only the left

74 Proceedings of the Prague Stringology Conference 2008

Figure 2. Example VST (solid nodes) showing left SA index (lSA) and right SA
index (rSA) for sample nodes.

sa index and right sa index of the node. When we search in an internal node, we will
need all the four parameters to match a pattern. Lemma 3 shows that for any given
node, we can determine each of these parameters in constant time. The following two
examples further illustrate the two cases involved in computing the rsa index, and
how pattern matching can be performed on the VST.

Example 4. Determining the right boundary from a next sibling node. Consider node
N5 in Figure 2. The left sa index of N5 is 9 and the right sa index is 11, since
N5.sa index=9 and N5+1.sa index=12, and hence the right sa index of N5=12-
1=11. The leftmost child node is the fchild of the current node, thus the leftmost
child of N5 is N8. The next node of the rightmost child node is N5+1.fchild=N9.
Then the rightmost child node is N9−1=N8, since the child node will be stored side
by side between sibling nodes.

Example 5. Determining the right boundary from the right boundary of the parent
node. Consider node N1 in Figure 2. The left sa index of N1 is N1.sa index=1.
The right sa index of N1 is N2.sa index - (N1.nnleaf -1)=7-1-1=5. The leftmost
child node of N1 is N1.fchild=N4. The next node of N1 is N2. Since N2.fchild=-
N5 is negative, N2 must be a leaf node in the VST. The right node of N1 will thus
point to N5. We therefore know that the next node of the rightmost child node
of N1 will be N5. Finally, the rightmost child node of N1 can be determined as
N5−N1.nnleaf = N5−1 = N4.

We summarize the foregoing discussion as the first main result of this paper:

Theorem 6. Given a string T = T [1..n] of length n, with symbols from an alphabet
Σ, and the virtual suffix tree for T , we can count the number of occurrences of a
pattern P = P [1..m] in T in O(m log |Σ|) time, and locate all the ηocc occurrences of
P in T in O(m log |Σ|+ ηocc) time.

Proof. The theorem is a consequence of Lemma 3. First consider the cost of one single
symbol-by-symbol comparison at a node in the VST. The number of child nodes at

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 75

any internal node can be no larger than |Σ|, and we can find the boundaries of the
search in constant time. Since the edges are ordered lexically at each internal node,
and given the HSAM ordering, matching a single symbol can be done in O(log |Σ|)
time steps using binary search. To find the first match, we need to consider the m
symbols in the pattern. We perform the above symbol-by-symbol comparisons at most
m times to decide whether there is a match or not. After a match is found, we can
again use binary search (using lsa index and rsa index as bounds) to determine
all the ηocc occurrences of the pattern. Reporting each occurrence can be done in
constant time, or an additional ηocc time for all the occurrences. ⊓⊔

4 Improved Virtual Suffix Tree

The basic data structure introduced above stores the length of each edge in the
VST. We can improve the structure to reduce the space requirement by avoiding
the need to store information about the edge lengths directly. The improved data
structure has only four attributes rather than five. The attributes sa index and
elength in the basic structure are now combined into one attribute called the adjusted
SA index (asa index). This requires a key modification to the suffix tree, leading to
an important distinction between the suffix tree and the virtual suffix tree.

4.1 Adjusting edge lengths

A well-known property of the suffix tree is that no two edges out of a node in the
tree can start with the same symbol. For efficient representation of the VST, this
characteristic of the ST is modified such that, for a given node, every edge that leads
to an internal node in the VST has an equal length. This modification is done as
follows: Start from the root node and progress towards the leaf nodes in the VST.
For a given internal node, say u, adjust the edge label from u to each of its children
such that all edges that lead to an internal node will have the same edge length. The
major criteria is that, for two sibling internal nodes, their edge labels differ only in
the last symbol. If for some edge, say (u,w), the original edge length (or edge label)
is longer than the new length, prepend the extraneous part of old label(u,w) to each
outgoing edge from w. The edge length for edges that lead to leaf nodes are left
unchanged. Then repeat the adjustment at each child node of u. Figure 3 shows an
example of this procedure. We can observe that this adjustment only affects the edge
lengths, and does not change the general topology of the suffix tree.

The above adjustment procedure leads to an important property of the VST:
Property: In the improved VST, all internal sibling nodes occur at the same

node-depth, and same string-depth, and the edge labels for the edges from the parent to
each sibling differ only in the last symbol. This means that, in the VST, two branches
from the same node can start with the same symbol, but their edge labels will differ.

This property provides an important difference between the suffix tree and the
VST. The suffix tree mandates that no two edges from the same node have the same
starting symbol. Further, the suffix tree only guarantees that the node-depth of two
sibling nodes are the same, but not their string depth. This property of equal-length
sibling edge labels is the key to more efficient representation of the VST, without
explicit edge labels. Figure 4 shows an example of the modified suffix tree with equal-
length edges for sibling nodes that are also internal nodes, and the corresponding
improved virtual suffix tree. Table 2 shows the corresponding values of the attributes

76 Proceedings of the Prague Stringology Conference 2008

for each node in the improved VST. What remains is how we compute asa index, the
adjusted SA index. This is done by combining the original sa index with elength.
We state the following lemma without proof:

Lemma 7. Given a node in the VST say u, and its parent node (say v), we can
compute the adjusted SA index in constant time. Further, when required, the edge
length can be determined in constant time.

While we store only the asa index, our calculations will still use the original
sa index. However, this can be derived from asa index in constant time. In fact, we
can observe that in practice, we need to compute the asa index for only the leftmost
child node at each node-level, while keeping the original sa index for all other nodes.
To determine the new elength for these other nodes, we simply make a constant time
access to their leftmost (sibling) node (at the same node-level), and then use this to
compute the length. For searching with the VST, we will calculate the length of the
common string at each level. If the length is greater than 0, then we know there is a
common string in the child nodes and only the last character is different. Thus, we
do not need to store the edge lengths explicitly, leading to a reduction of one integer
per node over the basic VST.

NodeName root N1 N2 N3 N4 N5 N6 N7 N8 N9

sa index 0 1 7 9 3 9 12 4 10 13
fchild N1 N4 -N5 N5 N7 N8 N9

new elength 0 1 1 1 1 1 1 3 1 2
nfleaf 1 2 2 0 1 1 1 2 2 2
nnleaf 0 1 0 0 0 0 0 0 0 0
asa index 0 1 7 9 3 9 12 4+3=7 10 13+2=15

Table 2. Node attributes in the improved VST for the example sequence,
T = missississippi$. We have included new elength, so one can compare with
elength in Table 1. However, in practice this will not be stored in the VST.

(a) (b)

Figure 3. VST edge-length adjustment procedure. (a) original tree; (b) improved tree
after adjusting the edge lengths.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 77

4.2 Construction algorithm

Construction of the VST makes use of an array Q which records the internal nodes
of the suffix tree. This array maps the internal nodes of the suffix tree to nodes in
the VST. Thus, elements in the array are in the same ordering as the corresponding
nodes in the VST.

Given an input string T , the first step is to construct the suffix array for T . This
can be done in worst case linear time and linear space using any of the existing
algorithms [13,18,17,3]. Using the SA, we construct the suffix tree as described in
[2]. While the suffix tree can be constructed directly in linear time, working from
the SA to the ST will require less space for the construction. The suffix tree is then
preprocessed in linear time to adjust the edges from a given parent node that lead
to internal child nodes to equal-length edges. Using the adjusted suffix tree, the
algorithm will process the internal nodes in the suffix tree in a top-down manner to
determine the attributes (fchild, nfleaf and nnleaf) for the corresponding nodes
in the VST. Next, we process the VST from the VST leaf nodes to the root, using
the Q array to update the asa index at each node. The adjusted asa index field
includes information on the sa index and edge length.

The steps for constructing the VST for a given input string are summarized in
Algorithm 1.

4.3 Further space reduction

We can further reduce the space needed by the VST, at the cost of an increased time
for pattern matching. In the pattern matching phase, if the algorithm is to compare
symbols one-by-one, rather than using binary search on the branches from a given
node in the VST, we will only need to compute the lsa index and rsa index of the
node.

Consider an arbitrary node (say node u) in the VST. The number of children
from u or the number of u’s leaf nodes cannot be larger than |Σ|. Thus, the sa index

of any child node of u will lie between node u’s lsa index and rsa index. Then
comparing one symbol from the pattern against the first symbol on each edge from
u to its children will require at most O(|Σ|) time steps. The left child node and the
right child node will not need to be used again. Thus, the attributes fchild and

root

N

N

N

i

$

ppi$
s

sis

sissippi$sippi$

sippi$

missississippi$

p

N

i$ pi$

N

N

N

N

N

s

s
i

s

is

ppi$

sippi$

sissippi$

ippi$

sissippi$
sippi$

1

8
7

5
4

3

2

14

13

12

11

10

9

6

$
0

1

2

3

4

5

6

7

8

9

root

N

N

N

i

s

sis

p

N

N

N

N

N

N

s

s
i

s

is

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 4. Improved VST for the string T = missississippi$: (a) modified suffix
tree; (b) improved virtual suffix tree

.

78 Proceedings of the Prague Stringology Conference 2008

nfleaf in the leaf nodes of the VST are no longer required. We make the asa index

to be negative for the leaf nodes. Thus, during pattern matching, this serves as a flag
for the VST leaf nodes. This compact structure will reduce the space requirement at
each leaf node of the VST by 5 bytes. Pattern matching time, however, will increase
to O(|Σ|) for each symbol in P , or O(m|Σ|) overall.

4.4 Complexity Analysis

Time and space complexity The time cost for lines 1-3 in the construction algo-
rithm (Algorithm 1) is O(n)+O(n)+O(n)=O(n). Lines 5-17 in the algorithm perform
a one time traversal of the nodes in the suffix tree. The respective values of pTop and
pBottom range from 1 to 2n. Thus the cost for the traversals is O(n). Lines 18-27 in
the algorithm run at most pBottom times. The time for lines 18-27 in the algorithm is
thus O(n), since each iteration of the loop requires constant time. Therefore, for the
regular VST, the overall construction time is O(n). The time for pattern matching is
in O(m log |Σ|). For the compact structure, the construction time is the same as the
regular structure, but the VST is no longer stored linearly. Here we use an array to
store the relation between the Q array and the compact VST. The searching time is
now O(m|Σ|).

The space requirement clearly depends on the number of nodes in the VST, which
is at most n for a sequence of length n. Each node requires a fixed amount of memory
to store, leading to an O(n) space requirement.

Number of nodes and practical space requirement The actual space needed
for the VST depends on the topology of the suffix tree. This topology can be captured
by the number of internal nodes in the suffix tree, or alternatively, by the quantity
RIL, the ratio between the number of internal nodes and the number of leaf nodes.
We call RIL the density or branching factor for the suffix tree. We conducted an
experiment to evaluate the effect of this branching factor on the storage requirement
of the VST. The suffix tree was constructed and the branching factors computed for
a set of files taken from [26]. For each file, we used the first 224 symbols as the text,
and computed the branching factor. Table 3 shows the results. The maximum ratio of
0.76 was observed for the file Jdk13c. On average, however, the maximum ratio was
around 0.63. The worst case occurs for a sequence with |Σ| = 1, (that is, T = an),
leading to a branching factor of 1. The table shows that, for a given sequence, the
branching factor depends on a complex relationship between n, |Σ|, and the mean
LCP.

The space requirement for the VST, for both the compact and regular structures
depends directly on the branching factor. The last two columns in Table 3 show the
maximum space requirement for each file.

The foregoing discussion leads to the following lemma on the construction of the
VST:

Lemma 8. Given a string T = T [1..n], with symbols from an alphabet Σ, the virtual
suffix tree (without the suffix link) can be constructed in O(n) time, and O(n) space,
independent of Σ.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 79

File |Σ| Max Ratio Compact Regular Description
Bible 63 0.61 8.60n 10.13n King James bible
Chr22 5 0.73 9.50n 11.33n Human chromosome 22
E.coli 4 0.65 8.89n 10.52n Escherichia coli genome
Etext 146 0.54 8.02n 9.36n Texts from Gutenberg project
Howto 197 0.55 8.13n 9.51n Linux Howto files
Jdk13c 113 0.76 9.69n 11.59n JDK 1.3 documentation
Rctail 93 0.66 8.95n 10.60n Reuters news in XML format
Rfc 120 0.64 8.77n 10.36n Concatenated IETF RFC files
Sprot 94 0.61 8.54n 10.05n
World 94 0.54 8.06n 9.41n CIA world fact book
Average 0.63 8.71n 10.29n

Table 3. Branching factor and maximum space requirement for various sample files.

5 Computing Suffix Links

Constructing the suffix tree from the suffix array as described in [2] does not include
the suffix link. There are also a number of other suffix tree construction algorithms
that build the suffix tree without the suffix link. See Farach et al [8], and Cole and
Hariharan [7]. The suffix link, however, is a significant component of the suffix tree,
and is important in certain applications, such as approximate pattern matching using
matching statistics, and other forms of traversal on the suffix tree. Thus, a data
structure to support the complete functionality of the suffix tree requires an inclusion
of the suffix link. Recent efficient data structures for suffix trees have thus provided
mechanisms for constructing the suffix link. The ESA [1] provided suffix links using
complicated RMQ preprocessing [5]. The LST [16] also supported suffix links using
the lcp-interval tree and intervals defined on the inverse suffix array. A recent work
by Maaβ [19] focused exclusively on suffix link construction from suffix arrays, or
from suffix trees that do not have such links.

The virtual suffix tree provides a natural mechanism for constructing suffix links.
The key idea is that suffix links in the VST can be computed bottom-up, from the
nodes with the highest node-depth (leaf nodes) in the VST to those with the least
(the root). This is based on the following two observations about suffix links.

1. Consider a leaf node uST in the suffix tree corresponding to suffix Ti in the original
sequence. The suffix link from uST will point to the leaf node corresponding to the
suffix Ti+1 (that is, the suffix that starts at the next position in the sequence).

2. The suffix link from a node u in the VST will point to some node w with a
smaller string-depth in the VST, such that |L(u)| = |L(w)| + 1 (or equivalently
|L(uST)| = |L(wST)|+ 1).

The following lemma establishes how we can build suffix links on the VST.

Lemma 9. Given the VST for a string T = T [1..n] of length n, the suffix links can
be constructed in O(n) time using additional O(n) space.

Proof. Let u and w be two arbitrary nodes in the VST. Let v be the parent node of u.
Let u.slink be the node to which the suffix link from node u points to. We consider
two cases:

Case A: u is a leaf node in the VST. Then, using the above observations, the suffix
link from node u will point to node w in the VST (that is, u.slink = w) such that

80 Proceedings of the Prague Stringology Conference 2008

SA[w.sa index] = SA[u.sa index] + 1. Clearly, |L(w)| = |L(u)| − 1, where L(x) is
the path label of node x. Note that this path label is not explicitly stored in the VST,
but for each node, the length can be computed in constant time. This computation
can be performed in constant time by maintaining two arrays and observing that
n− |L(w)| = n− |L(u)|+ 1. One array is the inverse suffix array (ISA) for the given
string, defined as follows: ISA[i] = j if SA[j] = i, (i, j = 1, 2, ..., n). The second
is an array M that maps the SA values to the corresponding parent nodes in the
VST, defined as follows: M [i] = u, if uST in ST is the parent node of the leaf node
corresponding to the suffix TSA[i]. Clearly, both arrays can be computed in linear time,
and require linear space.

Case B: u is not a leaf node in the VST. This is a simpler case. When u is
an internal node in the VST, the suffix link of u will point to some node w, such
that w is an ancestor of node u.fchild.slink, such that |label(u, u.fchild)| =
|label(w, u.fchild.slink)|. The O(n) time result then follows by using the skip/count
trick [11], by observing that a VST has at most n nodes, a node depth of at most
n, and that each upward traversal on the suffix link decreases the node depth by at
least 1. ⊓⊔

Algorithm 1: VST Construction Algorithm

Construct-VST(T, n)
1 SA← Compute-SuffixArray(T, n)
2 ST ← SuffixTree-From-SuffixArray(SA)
3 ST ← Adjust-EdgeLengths(ST)
4 Initialize VST[],Q[], pTop=0, pBottom=0, curNode=root, Q[pTop]=root
5 while (pBottom >= pTop)
6 for (each childnode in curNode) do
7 if (childnode is internal node in ST) then
8 pBottom ← pBottom + 1; Q[pBottom] ← childNode
9 if childnode is first internal node then
10 VST[pTop].fchild ← pBottom
11 end if
12 else
13 Update VST[pTop].nfleaf and VST[pBottom].nnleaf
14 end if
15 end for
16 pTop ← pTop + 1; curNode ← Q[pTop]
17 end while
18 for (pb ← pBottom down to 0) do
19 if (VST[pb] is leaf node) then
20 VST[pb].asa index ← Q[pb].fchild
21 else if (Q[pb].elength=1) then
22 VST[pb].asa index←VST[pb].fchild.asa index

+ VST[pb].nfleaf - Q[pb].elength
23 else
24 VST[pb].asa index←VST[pb].fchild.asa index

+ VST[pb].nfleaf - Q[pb].elength+ Q[pb].elength
25 end if
26 end if
27 end for

Although the above description is from the viewpoint of a VST already con-
structed, the suffix links can be constructed as the VST is being constructed, by

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 81

some modification of the VST construction algorithm. Algorithm 2 shows a modifi-
cation of Algorithm 1 (the VST construction algorithm) to incorporate sections to
compute the suffix link. The suffix link construction algorithm is based on the Q array
used during the VST construction.

Algorithm 2: VST construction with suffix links

4 Initialize VST[],Q[],ISA[],M[], pTop←0, pBottom←0, curNode←root, Q[pTop]←root
...

18 for (pb ← pBottom down to 0) do
19 if (VST[pb] is leaf node) then
20 Update array M to map SA index and node VST [pb]

...
26 end if
27 end for
28 for (pb ← pBottom down to 0) do
29 if (VST[pb] is leaf node) then
30 VST[pb].slink ← M[ISA[VST[pb].sa index+1]]
31 else
32 Find ancestor w of VST[pb].fchild.slink s.t.

|label(w, VST[pb].fchild.slink)|=|label(VST[pb], VST[pb].fchild)|
33 Set VST[pb].slink ← w
34 end if
35 end for

Figure 5 shows the result of the suffix link algorithm when applied to the VST of
our example string T = missississippi$. Essentially, given the VST, the suffix link
is constructed right to left, node-depth by node-depth, starting with the rightmost
node at the deepest node-depth, and moving up the VST until we reach the root.
Thus, the order of suffix link construction in the example will be SL1, SL2, . . . , SL9.

root

N

N

N

i

$

ppi$

s

sis

sissippi$
sippi$

sippi$

missississippi$

p

N

i$
pi$

N

N

N

N

N

s

s

i

s

is

ppi$

sippi$

sissippi$

ippi$

sissippi$

sippi$

1

8
7

5
4

3

2

14

13

12

11

10

9

6

13

5

8

3

6

9

11

12

0

1

4

7

10

2

SL
_1

 SL_2

SL
_3

SL_4

SL_5

SL_7

SL
_6

S
L
_
9

SL_8

$

0
14

1

2

3

4

5

6

7

8

9

Figure 5. Suffix link on the VST for the sample string T = missississippi$.

Algorithm 2 shows that the additional work required to compute all the suffix
links is linear in the length of the string. After construction, the suffix link on the

82 Proceedings of the Prague Stringology Conference 2008

VST will require one additional integer per internal node in the VST. This can be
compared with the 2 integers per node required to store the suffix link using the
ESA, or LST. In a typical VST, where the maximum leaf node to internal node ratio
is usually less than 0.7, the suffix link will require a maximum total extra space of
0.7n ∗ 4 = 2.8n bytes. Table 4 shows the space required for the VST (including the
suffix array and suffix links) for both the compact structure and the regular VST, at
varying values of the branching factor.

Table 4. Storage requirement for the VST, including suffix links

Ratio Compact Regular
Worst Case 1 15.50n 18.00n
Average Case 0.75 12.63n 14.50n

0.7 12.05n 13.80n
0.65 11.48n 13.10n
0.6 10.90n 12.40n

We summarize the above discussion in the following theorem which captures the
second main result of the paper:

Theorem 10. Given a string T = T [1..n], with symbols from an alphabet Σ, the
virtual suffix tree, including the suffix link, can be constructed in O(n) time and O(n)
space, independent of Σ.

Proof. The theorem follows directly from Lemma 8 and Lemma 9. ⊓⊔

6 Conclusion

In this paper, we have presented the virtual suffix tree (VST), an efficient data struc-
ture for suffix trees and suffix arrays. The searching performance is the same as the
suffix tree, that is, O(m log |Σ|) for a pattern of length m, with symbol alphabet
Σ. We also showed how suffix links can be constructed on the VST in linear time,
independent of the alphabet size. The VST does not store the edge lengths explicitly.
This is achieved by modifying a key property of the suffix tree - the requirement that
no two edges from a given node in the suffix tree can start with the same symbol.
This key modification leads to a major distinction between the VST and the suffix
tree, and results in extra space saving. However, whenever needed, the length for any
arbitrary edge in the VST can be obtained in constant time using a simple computa-
tion. A further space reduction leads to a more compact representation of the VST,
but at the expense of an increased search time, from O(m log |Σ|) to O(m|Σ|).

The space requirement depends on the topology of the suffix tree, in particular
on the branching factor. For the compact structure, the worst case space requirement
(including the suffix array) is 11.5n bytes without suffix links, and 15.5n bytes with
suffix links, where n is the length of the string. However, in practice, the branching
factor is typically less than 0.7. For the compact structure, this gives less than 9.25n
bytes on average without the suffix links, or 12.05n bytes with suffix links.

In this work, we have focused on efficient storage of the suffix tree and suffix array
after they have been constructed. Thus, we constructed the VST from the suffix
tree, which in turn was constructed from the suffix array. An interesting question is
whether the virtual suffix tree can be constructed directly, without the intermediate
suffix tree stage. This could lead to a significant reduction in space requirement at
the time of VST construction.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 83

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. J. Discrete Algorithms, 2(1) 2004, pp. 53–86.

2. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays and Pattern Matching, Springer, to appear, 2008.

3. D. Adjeroh and F. Nan: Suffix sorting via Shannon-Fano-Elias codes, in DCC, IEEE Com-
puter Society, 2008, p. to appear.

4. A. Andersson and S. Nilsson: Efficient implementation of suffix trees. Softw., Pract. Exper.,
25(2) 1995, pp. 129–141.

5. M. A. Bender and M. Farach-Colton: The LCA problem revisited., in LATIN, G. H.
Gonnet, D. Panario, and A. Viola, eds., vol. 1776 of Lecture Notes in Computer Science, Springer,
2000, pp. 88–94.

6. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, Palo Alto, California, May 1994.

7. R. Cole and R. Hariharan: Faster suffix tree construction with missing suffix links, in STOC,
2000, pp. 407–415.

8. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity
of suffix tree construction. Journal of the ACM, 47(6) 2000, pp. 987–1011.

9. R. Giegerich, S. Kurtz, and J. Stoye: Efficient implementation of lazy suffix trees. Software
— Practice and Experience, 33(11) 2003.

10. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.

11. D. Gusfield: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-
tional Biology, Cambridge University Press, 1997.

12. J. Kärkkäinen: Suffix cactus: A cross between suffix tree and suffix array, in CPM: 6th
Symposium on Combinatorial Pattern Matching, 1995.

13. J. Kärkkäinen, P. Sanders, and S. Burkhardt: Linear work suffix array construction.
Journal of the ACM, 53(6) 2006, pp. 918–936.

14. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: An efficient index data structure
with the capabilities of suffix trees and suffix arrays for alphabets of non-negligible size, in 12th
Annual Symposium on Combinatorial Pattern Matching, 2001.

15. D. K. Kim, J. E. Jeon, and H. Park: An efficient index data structure with the capabilities
of suffix trees and suffix arrays for alphabets of non-negligible size, in SPIRE 2004, 2004.

16. D. K. Kim, M. Kim, and H. Park: Linearized suffix tree: an efficient index data structure
with the capabilities of suffix trees and suffix arrays. Algorithmica, 2007.

17. D. K. Kim, J. S. Sim, H. Park, and K. Park: Constructing suffix arrays in linear time. J.
Discrete Algorithms, 3(2-4) 2005, pp. 126–142.

18. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays. J. Discrete
Algorithms, 3(2-4) 2005, pp. 143–156.

19. M. G. Maaβ: Computing suffix links for suffix trees and arrays. Information Processing Letters,
101(6) 2007.

20. V. Mäkinen: Compact suffix array – a space-efficient full-text index. Fundam. Inform., 56(1-2)
2003, pp. 191–210.

21. U. Manber and E. W. Myers: Suffix arrays: A new method for on-line string searches. SIAM
Journal on Computing, 22(5) 1993, pp. 935–948.

22. E. M. McCreight: A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2) 1976, pp. 262–272.

23. K. Monostori, A. Zaslavsky, and H. Schmidt: Suffix vector: Space- and time-
efficient alternative to suffix trees, in Twenty-Fifth Australasian Computer Science Conference
(ACSC2002), M. J. Oudshoorn, ed., Melbourne, Australia, 2002, ACS.

24. J. I. Munro, V. Raman, and S. S. Rao: Space efficient suffix trees. J. Algorithms, 39(2)
2001, pp. 205–222.

25. E. Prieur and T. Lecroq: From suffix trees to suffix vectors, in Prague Stringology Confer-
ence(PCS2005), Prague, 2005.

26. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys, 39(2) 2007.

27. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
28. P. Weiner: Linear pattern matching algorithm. Proceedings, 14th IEEE Symposium on Switch-

ing and Automata Theory, 21 1973, pp. 1–11.

Parameterized Suffix Arrays for Binary Strings

Satoshi Deguchi1, Fumihito Higashijima1,
Hideo Bannai1, Shunsuke Inenaga2, and Masayuki Takeda1

1Department of Informatics, Kyushu University
2Graduate School of Information Science and Electrical Engineering, Kyushu University

744 Motooka, Nishiku, Fukuoka 819-0395, Japan
{satoshi.deguchi,bannai,takeda}@i.kyushu-u.ac.jp

inenaga@c.csce.kyushu-u.ac.jp

Abstract. We consider the suffix array for parameterized binary strings that consist
of only two types of parameter symbols. We show that the parameterized suffix array,
as well as its longest common prefix (LCP) array of such strings can be constructed in
linear time. The construction is direct, in that it does not require the construction of a
parameterized suffix tree. Although parameterized pattern matching of binary strings
can be done by either searching for a pattern and its inverse on a standard suffix array,
or constructing two independent standard suffix arrays for the text and its inverse, our
approach only needs a single p-suffix array and a single search.

1 Introduction

1.1 Parameterized Pattern Matching

Consider strings over Π ∪ Σ, where Π is the set of parameter symbols and Σ is the
set of constant symbols. These strings are called parameterized strings (p-strings).
Baker [7] introduced the notion of parameterized pattern matching, where two p-
strings of the same length are said to parameterized match (p-match) if one string
can be transformed into the other by using a bijection on Σ∪Π. The bijection should
be the identity on the constant symbols of Σ, namely, it maps any a ∈ Σ to a itself,
while symbols of Π can be interchanged. Examples of applications of parameterized
pattern matching are software maintenance [7,8], plagiarism detection [12], and RNA
structural matching [25].

Similar to standard string matching, preprocessing for the text strings is efficient
for p-string matching. In [8], Baker proposed the parameterized suffix tree (p-suffix
tree) structure to locate all positions of the text string where a given pattern string
p-matches. She presented an O(n(π + log(π + σ))) time algorithm to construct the
p-suffix tree for a given text string of length n. The algorithm uses O(n) space,
where π = |Π| and σ = |Σ|. Kosaraju [22] proposed an improved algorithm for
constructing p-suffix trees in O(n(log π + log σ)) time. Both algorithms are based on
McCreight’s algorithm that builds standard suffix trees [24]. Shibuya [25] developed
an on-line construction algorithm working in O(n(log π + log σ)) time, which is based
on Ukkonen’s construction algorithm for standard suffix trees [26]. Given a pattern p
of length m, we can compute the set Pocc of all positions of t where the corresponding
substring of t p-matches pattern p in O(m log(π + σ) + |Pocc|) time, by using the
p-suffix tree of a text string t.

In this paper, we consider parameterized suffix arrays (p-suffix arrays), whose
relation to p-suffix trees is analogous to the relation between standard suffix arrays [23]
and standard suffix trees [27]. As is the case with suffix trees and suffix arrays, the

Satoshi Deguchi, Fumihito Higashijima, Hideo Bannai, Shunsuke Inenaga, Masayuki Takeda : Parameterized Suffix Arrays for Binary Strings, pp. 84–94.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

S.Deguchi et al.: Parameterized Suffix Arrays for Binary Strings 85

array representation is superior in terms of memory usage and memory access locality.
Also, most operations on a p-suffix tree can be efficiently simulated with the p-suffix
array and an array containing the lengths of longest common prefixes of the p-suffixes,
which we shall call the PLCP array. For instance, using p-suffix and PLCP arrays, the
parameterized pattern matching problem can be solved in O(m log n + |Pocc|) time
with a simple binary search, or O(m + log n + |Pocc|)) with a binary search utilizing
PLCP information, or O(m log(π + σ) + |Pocc|) time if we consider an enhanced
p-suffix array [1,18].

P-suffix arrays and PLCP arrays can be obtained from a simple linear time traver-
sal of the corresponding p-suffix trees. However, unlike the case of standard suffix ar-
rays [16,19,21], linear time algorithms for direct construction of parameterized suffix
arrays are not known so far.

In this paper, we take a first step in this problem, and show that for any text
p-string t over binary parameter alphabet Π, p-suffix arrays and PLCP arrays can
be constructed directly in O(n) time. Our construction algorithm does not need the
p-suffix tree of t as an intermediate structure.

There is a näıve solution to the p-matching problem for a binary alphabet using
two standard suffix arrays. Given a text t and pattern p over Π = {a, b}, compute
another text t′ by exchanging a and b in t. Then, compute two suffix arrays for t and
t′, and search the arrays for pattern p. Or alternatively, compute another pattern p′ by
exchanging a and b in p, and search for the array of t for p and p′. On the other hand,
our approach only needs a single p-suffix array and a single search for p-matching,
and thus is both space- and time-efficient. We also performed some experiments to
show the efficiency of our p-suffix arrays.

Parameterized strings on binary parameter alphabet were investigated in liter-
ature. Apostolico and Giancarlo [6] pointed out that parameterized strings over a
binary parameter alphabet behave in a similar way to standard strings with respect
to periodicity and repetitions, but the case with larger parameter alphabet remains
open. Our result on the direct linear-time construction of p-suffix arrays for a bi-
nary alphabet is yet another one showing the similarity of parameterized strings on
a binary alphabet to standard strings.

1.2 Related Work

Another approach for solving the parameterized pattern matching is to preprocess
patterns. Idury and Schäffer [15] proposed a variation of the Aho-Corasick automa-
ton [2], which can be constructed in O(m log(π + σ)) time for a single pattern, and
scanning the text takes O(n log(π + σ)) time. Amir et al. [4] presented a KMP
algorithm [20] based approach with O(m log(min{m,π})) preprocessing time and
O(n log(min{m,π})) scanning time. They also stated that it suffices to consider
strings over Π rather than Π ∪ Σ for the p-matching problem, showing that the
problem with Π ∪Σ can be reduced in linear time to that with Π.

Parameterized pattern matching has been extended to two dimensional parameter-
ized pattern matching [3,14] and approximate parameterized pattern matching [13,5].
Parameterized edit distance was considered in [9].

2 Preliminaries

Let Σ and Π be two disjoint finite sets of constant symbols and parameter symbols,
respectively. An element of (Σ ∪Π)∗ is called a p-string. The length of any p-string

86 Proceedings of the Prague Stringology Conference 2008

s is the total number of constant and parameter symbols in s and is denoted by |s|.
For any p-string s of length n, the i-th symbol is denoted by s[i] for each 1 ≤ i ≤ n,
and the substring starting at position i and ending at position j is denoted by s[i : j]
for 1 ≤ i ≤ j ≤ n. In particular, s[1 : j] and s[i : n] denote the prefix of length j and
the suffix of length n− i + 1 of s, respectively. For any two p-strings s and t, lcp(s, t)
denotes the length of the longest common prefix of s and t.

Definition 1 (Parameterized Matching). Any two p-strings s and t of the same
length m are said to parameterized match (p-match) iff one of the following condi-
tions hold for every 1 ≤ i ≤ m:

1. s[i] = t[i] ∈ Σ,
2. s[i], t[i] ∈ Π, s[i] 6= s[j] and t[i] 6= t[j] for any 1 ≤ j < i,
3. s[i], t[i] ∈ Π, s[i] = s[i− k] for any 1 ≤ k < i iff t[i] = t[i− k].

We write s ≃ t when s and t p-match.
For example, let Π = {a, b, c}, Σ = {X, Y}, s = abaXabY and t = bcbXbcY.

Observe that s ≃ t.
Let N be the set of non-negative integers. For any non-negative integers i ≤ j ∈

N , let [i, j] = {i, i + 1, . . . , j} ⊂ N .

Definition 2. We define pv : (Σ ∪Π)∗ → (Σ ∪N)∗ to be the function such that for
any p-string s of length n, pv(s) = u where, for 1 ≤ i ≤ n,

u[i] =

s[i] if s[i] ∈ Σ,

0 if s[i] ∈ Π and s[i] 6= s[j] for any 1 ≤ j < i,

i− k if s[i] ∈ Π and k = max{j | s[i] = s[j], 1 ≤ j < i}.

In the running example, pv(s) = 002X24Y with s = abaXabY.
The following proposition is clear from Definition 2.

Proposition 3. For any p-string s of length n, it holds for any 1 ≤ i ≤ j ≤ n that

pv(s[i : j]) = v[1 : j − i + 1],

where v = pv(s[i : n]).

The pv function is useful for p-matching, because:

Proposition 4 ([8]). For any two p-strings s and t of the same length, s ≃ t iff
pv(s) = pv(t).

In the running example, we then have s ≃ t and pv(s) = pv(t) = 002X24Y.
We also define the dual of the pv function, as follows:

Definition 5. We define fw : (Σ ∪Π)∗ → (Σ ∪ N ∪ {∞})∗ to be the function such
that for any p-string s of length n, fw(s) = w where, for 1 ≤ i ≤ n,

w[i] =

s[i] if s[i] ∈ Σ,

∞ if s[i] ∈ Π and s[i] 6= s[j] for any i < j ≤ n,

k − i if s[i] ∈ Π and k = min{j | s[i] = s[j], i < j ≤ n}.

Here, ∞ denotes a value for which i <∞ for any i ∈ N . 1

1 In practice, n can be used in place of ∞ as long as we are considering a single p-string of length
n, and its substrings.

S.Deguchi et al.: Parameterized Suffix Arrays for Binary Strings 87

In the running example, fw(s) = 242X∞∞Y with s = abaXabY.
The following proposition is clear from Definition 5.

Proposition 6. For any p-string s of length n, it holds for any 1 ≤ i ≤ n that

fw(s[i : n]) = w[i : n],

where w = fw(s).

For any p-string s of length n, pv(s) and fw(s) can be computed in O(n) time
with extra O(π) space, using a table of size π recording the last position of each
parameter symbol in the left-to-right (resp. right-to-left) scanning of s [8].

3 P-matching Problem and P-suffix Arrays

In this section we introduce a new data structure p-suffix arrays that are useful to
solve the p-matching problem given below.

3.1 Problem

The problem considered in this paper is the following:

Problem 7 (P-matching problem). Given any two p-strings t and p of length n and m
respectively, n ≥ m, compute Pocc(t, p) = {i | t[i : i + m− 1] ≃ p}.

It directly follows from Proposition 4 that

Pocc(t, p) = {i | pv(p) = pv(t[i : i + m− 1])}.
Therefore, from Proposition 3, we are able to compute Pocc(t, p) efficiently, by in-
dexing all elements of the set {pv(t[i : n]) | 1 ≤ i ≤ n}. The corresponding indexing
structure is introduced in the next subsection.

Amir et al. [4] showed that actually we have only to consider p-strings from Π to
solve Problem 7, as follows.

Lemma 8 ([4]). Problem 7 on alphabet Σ∪Π is reducible in linear time to Problem 7
on alphabet Π.

Hence, in the remainder of the paper, we consider only p-strings in Π∗. Then, note
that for any p-string s of length n, pv(s) ∈ {[0, n−1]}n and fw(s) ∈ {[1, n−1]∪{∞}}n.
We also see that if pv(s)[i] > 0 then fw(s)[i − pv(s)[i]] = pv(s)[i]. Similarly, if
fw(s)[i] < n then pv(s)[i + fw(s)[i]] = fw(s)[i].

3.2 P-suffix Arrays

In this section we introduce our data structure p-suffix arrays. Let us begin with
normal suffix arrays [23] that have widely been used for standard pattern matching.

Let �+ and �− denote the total order and its reverse on integers, i.e., for integers
x, y ∈ N ∪ {∞}, x �+ y ⇐ : x ≤ y and x �− y ⇐ : x ≥ y. The lexicographic
ordering on strings of an integer alphabet [i, j] ∪ {∞} with respect to a total order
� on integers can be defined as follows. For x, y ∈ ([i, j] ∪ {∞})∗,

x � y ⇐ :

x is a prefix of y, or

∃α, u, v ∈ ([i, j] ∪ {∞})∗, a, b ∈ [i, j] ∪ {∞},
such that a ≺ b, x = αau, y = αbv.

88 Proceedings of the Prague Stringology Conference 2008

We define a variation of suffix arrays on the integer alphabet [1, n− 1]∪{∞} and
the lexicographical ordering of suffixes w.r.t. �−.

Definition 9 (Suffix Arrays). For any string w ∈ ([1, n− 1] ∪ {∞})n of length n,
its suffix array SAw is an array of length n such that SAw[i] = j, where w[j : n] is
the lexicographically i-th suffix of w w.r.t. �−.

We abbreviate SAw as SA when clear from the context.

Definition 10 (LCP Arrays). For any string w ∈ ([1, n− 1] ∪ {∞})n of length n,
its LCP array LCPw is an array of length n such that

LCPw[i] =

{
−1 if i = 1,

lcp(w[SA[i− 1] : n], w[SA[i] : n]) if 2 ≤ i ≤ n.

We abbreviate LCPw as LCP when clear from the context.

Remark 11. We emphasize that suffix array SAfw(t) of p-string text t ∈ Π∗ does not
solve Problem 7 directly. Let p ∈ Π∗ be a p-string pattern. A careful consideration
reveals that an ordinary binary search on SAfw(t) for fw(p) does not work, in that we
may miss some occurrences of fw(p) in fw(t). The suffix tree for fw(t) is not useful
either, since a node of the tree can have O(n) children and searching the tree for fw(p)
requires O(nm) time, where n = |t| and m = |p|. Thus the combination of SAfw(t) and
LCP fw(t) does not efficiently solve Problem 7, either. Interestingly, however, SAfw(t)

and LCP fw(t) are very helpful to construct the following data structures which provide
us with efficient solutions to the problem, to be shown in Section 4.

In order to solve Problem 7 efficiently, we use the two following data structures
corresponding to pv(s).

Definition 12 (P-suffix Arrays). For any p-string s ∈ Πn of length n, its p-suffix
array PSAs is an array of length n such that PSAs[i] = j, where pv(s[j : n]) is the
lexicographically i-th element of {pv(s[i : n]) | 1 ≤ i ≤ n} w.r.t. �+.

We abbreviate PSAs as PSA when clear from the context. Note that PSAs is not
necessarily equal to SAs, since pv(s[i : n]) may not always be a suffix of pv(s).

The following function is useful for p-matching with PSA.

Definition 13. We define short : N ∗ → N ∗ to be the function such that for any
string x ∈ N n of length n, short(x) = y where, for 1 ≤ i ≤ n,

y[i] =

{
x[i] if x[i] < i,

0 if x[i] ≥ i.

Lemma 14 ([15]). For any p-string s ∈ Πn of length n, let v = pv(s)[i : n] for any
1 ≤ i ≤ n. Then, short(v) = pv(s[i : n]).

Lemma 14 implies that, when using PSAs, we do not have to store pv(s[i : n]) for
all 1 ≤ i ≤ n; only pv(s) is sufficient.

Theorem 15. Problem 7 can be solved in O(m log n + |Pocc(t, p)|) time by using
PSAt and pv(t).

S.Deguchi et al.: Parameterized Suffix Arrays for Binary Strings 89

Proof. By Proposition 3 and Lemma 14, we can compute Pocc(t, p) by a binary search
on PSAt and pv(t), which takes O(m log n + |Pocc(t, p)|) time in total. ⊓⊔

The following auxiliary array enables us to solve Problem 7 more efficiently.

Definition 16 (PLCP Arrays). For any p-string s ∈ Πn of length n, its PLCP
array PLCP s is an array of length n such that

PLCP s[i] =

{
−1 if i = 1,

lcp(pv(s[PSA[i− 1] : n]), pv([s[PSA[i] : n])) if 2 ≤ i ≤ n.

We abbreviate PLCP s as PLCP when clear from the context.
Using PLCP , we can achieve an improved solution, as follows:

Theorem 17. Problem 7 can be solved in O(m + log n + |Pocc(t, p)|) time by using
PSAt, PLCP t and pv(t).

Proof. The time complexity can be improved to O(m+log n+|Pocc(t, p)|) by a similar
manner to [23] for standard suffix and LCP arrays. ⊓⊔

Considering the enhanced [1] p-suffix array, we obtain the following bound:

Theorem 18. Problem 7 can be solved in O(m log π + |Pocc(t, p)|) time.

Proof. For any p-string t ∈ Π∗, the number of children of any internal node of the
p-suffix tree for pv(t) is at most π [8]. Hence the enhanced p-suffix array enables us
to solve Problem 7 in O(m + log π + |Pocc(t, p)|) time (see [18] for more details). ⊓⊔

In the next section, we present our algorithm to construct PSA and PLCP arrays
for binary strings, that is, for the case where π = 2. Our algorithm runs in linear
time, and uses SA and LCP arrays.

4 P-Suffix and PLCP Arrays of Binary P-strings

In this section, we will show that for any binary p-string s, its p-suffix array PSAs

and PLCP array PLCP s can be computed in linear time, directly from s without the
use of p-suffix trees.

We first show that the p-suffix array PSAs of a binary p-string s is equivalent to
the suffix array SAfw(s) of fw(s). Then, we show the relationship between PLCP s and
LCP fw(s), so that PLCP s can be calculated from fw(s) and LCP fw(s).

Figure 1 shows PSAs, PLCP s for s = abaabaaaabba and corresponding suffixes
of fw(s) and LCP fw(s).

Lemma 19. For any p-string s and 1 ≤ i ≤ n, |{j | i = j − pv(s)[j]}| ≤ 1 and
|{j | i = j + fw(s)[j]}| ≤ 1.

Proof. Let i = x − pv(s)[x] = y − pv(s)[y] for some i < x < y. Then, by definition,
s[i] = s[x] = s[y] and y − i = pv(s)[y] = y −max{j | s[y] = s[j], 1 ≤ j ≤ y} ≤ y − x,
which is a contradiction. Similar arguments hold for fw(s).

Lemma 20. For any p-strings s, t ∈ Π∗ with π = 2, pv(s) �+ pv(t) if and only if
fw(s) �− fw(t).

90 Proceedings of the Prague Stringology Conference 2008

i PSA[i] s[PSA[i] : n] pv(s[PSA[i] : n]) PLCPs[i] fw(s[PSA[i] : n]) LCP fw(s)[i]
1 12 a 0 -1∞ -1
2 11 ba 0 0 1∞∞ 1
3 5 baaaabba 0 0 1 1 1 5 1 3 2 5 1 1 1 3 1∞∞ 0
4 9 abba 0 0 1 3 3 3 1∞∞ 0
5 2 baabaaaabba 0 0 1 3 2 1 1 1 5 1 3 4 3 1 2 5 1 1 1 3 1∞∞ 2
6 4 abaaaabba 0 0 2 1 1 1 5 1 3 2 2 5 1 1 1 3 1∞∞ 0
7 1 abaabaaaabba 0 0 2 1 3 2 1 1 1 5 1 3 4 2 3 1 2 5 1 1 1 3 1∞∞ 1
8 10 bba 0 1 0 1 1∞∞ 0
9 8 aabba 0 1 0 1 3 3 1 3 1∞∞ 1

10 3 aabaaaabba 0 1 0 2 1 1 1 5 1 3 3 1 2 5 1 1 1 3 1∞∞ 1
11 7 aaabba 0 1 1 0 1 3 2 1 1 3 1∞∞ 1
12 6 aaaabba 0 1 1 1 0 1 3 3 1 1 1 3 1∞∞ 2

Figure 1. The p-suffix array PSA of s = abaabaaaabba and corresponding suffixes
of fw(s), as well as the PLCP and LCP values. Here, n = 12.

Proof. It is clear that pv(s) = pv(t) iff fw(s) = fw(t). Let us now consider the other
case.
(=:) Assume pv(s) ≺+ pv(t). If pv(s) is a prefix of pv(t), then fw(s) ≺− fw(t) since

fw(s)[i] = fw(t[1 : |s|])[i] =

{
fw(t)[i] i + fw(t)[i] ≤ |s|
∞ otherwise,

for all 1 ≤ i ≤ |s|. Next, assume that pv(s) is not a prefix of pv(t), and let i = min{j |
pv(s)[j] ≺+ pv(t)[j]}, ℓ = pv(t)[i] and r = pv(s)[i]. Then, we have t[i−ℓ] = t[i] 6= t[k]
for any i− ℓ < k < i. Therefore, we get fw(t)[i− ℓ] = ℓ. On the other hand, we have
s[i− ℓ] 6= s[i] = s[k] for any i− ℓ < k < i, since π = 2. Hence fw(s)[i− ℓ] > ℓ, which
implies that fw(s)[i− ℓ] > fw(t)[i− ℓ]. Thus if i− ℓ = 1, then clearly fw(s) ≺− fw(t).
Now we consider the case where i− ℓ > 1. For any 1 ≤ h < i− ℓ, we have

fw(s)[h] ≤
{

i− ℓ− h if fw(s)[h] = fw(s)[i− ℓ] or r = 0,

i− ℓ + 1− h otherwise,

where the second case comes from the fact that π = 2. Note that the same inequality
stands for t. This implies that there exists 1 ≤ p, q ≤ i−1 such that h = p−pv(s)[p] =
q−pv(t)[q]. From the assumption, pv(s)[1 : i−1] = pv(t)[1 : i−1] and Lemma 19, we
have p = q and hence, fw(s)[h] = fw(t)[h]. Therefore, fw(s)[1 : i − ℓ − 1] = fw(t)[1 :
i− ℓ− 1], and consequently fw(s) ≺− fw(t).
(⇐=) Assume fw(s) ≺− fw(t). If fw(s) is a prefix of fw(t), fw(s) = fw(t)[1 : |s|] =
fw(t[1 : |s|). Then pv(s) = pv(t[1 : |s|]) = pv(t)[1 : |s|], and therefore pv(s) ≺+

pv(t). Next, assume fw(s) is not a prefix of fw(t), and let l = lcp(fw(s), fw(t)) <
min{|s|, |t|}. Then, since fw(s)[1 : l] = fw(t)[1 : l], we have fw(s[1 : l]) = fw(t[1 : l]),
and pv(s[1 : l]) = pv(t[1 : l]), and finally pv(s)[1 : l] = pv(t)[1 : l]. Furthermore,
pv(s)[l + 1] = pv(t)[l + 1] holds, since either there exists 1 ≤ j ≤ l such that
j + fw(s)[j] = j + fw(t)[j] = l + 1 in which case pv(s)[l + 1] = pv(t)[l + 1], or there
doesn’t, in which case pv(s)[l + 1] = pv(t)[l + 1] = 0. Therefore, assume |s| ≥ l + 2
since otherwise the proof is finished.

Let p = fw(s)[l + 1] and q = fw(t)[l + 1]. From the assumption, ∞ ≥ p > q ≥ 1.
Since π = 2, t[l+1] = t[l+1+q] 6= t[k] for any l+1 < k < l+1+q, and s[l+1] 6= s[k] for

S.Deguchi et al.: Parameterized Suffix Arrays for Binary Strings 91

any l +1 < k ≤min{|s|, l +1+q}. If q = 1, then pv(s)[l +2] = 0 since by Lemma 19,
there cannot exist 1 ≤ j ≤ l such that j + fw(s)[j] = j + fw(t)[j] = l + 1. If q ≥ 2,
this gives us pv(s)[l + 2] = pv(t)[l + 2], pv(t)[k] = 1 for any l + 2 < k < l + 1 + q,
and pv(s)[k] = 1 for any l + 2 < k ≤ min{|s|, l + 1 + q}, while pv(t)[l + 1 + q] =
fw(t)[l + 1] = q ≥ 2. Either way, we have pv(s) ≺+ pv(t). ⊓⊔

The next lemma is a direct consequence of Lemma 20.

Lemma 21. For any p-string s ∈ Π∗ with π = 2, PSAs = SAfw(s).

It is well known that the suffix array can be constructed directly from the string
in linear time.

Theorem 22 ([16,19,21]). For any string w ∈ ([1, n])n of length n, SAw can be di-
rectly constructed in O(n) time.

The next theorem follows from Lemma 21 and Theorem 22:

Theorem 23. For any p-string s ∈ Πn of length n with π = 2, PSAs can be con-
structed directly in O(n) time by constructing SAfw(s).

From now on let us consider construction of PLCP s.

Lemma 24. For any p-strings s, t ∈ Π∗ with π = 2,

lcp(pv(s), pv(t)) =

{
l l = k,

min{k, l + min{fw(s)[l + 1], fw(t)[l + 1]}} otherwise,

where l = lcp(fw(s), fw(t)), and k = min{|s|, |t|}.

Proof. By similar arguments as in (⇐=) of Lemma 20. ⊓⊔

It is well known that the LCP array for strings can be constructed efficiently from
its corresponding suffix array.

Theorem 25 ([17]). For any string s of length n, LCP s can be constructed in O(n)
time, given s and its suffix array SAs.

Due to Lemma 24 and Theorem 25, we have:

Theorem 26. For any p-string s ∈ Πn of length n with π = 2, PLCP s can be
constructed in O(n) time from PSAs = SAfw(s) and fw(s).

5 Computational Experiments

Here, we consider parameterized pattern matching on binary strings. We compare
the method using parameterized suffix arrays and two näıve methods that either uses
two patterns or two suffix arrays. We run our algorithm for various pattern and text
lengths for random binary strings.

Figure 2 shows the time for p-matching not including the p-suffix array construc-
tion for random texts of length 100 and 1000. The average of 1000 p-matchings for
the same text and pattern strings is further averaged by 100 runs for different random
strings. We can see that our approach is the fastest for short patterns. However, the
overhead for creating pv(p) for pattern p seems to take over, when p becomes longer.

92 Proceedings of the Prague Stringology Conference 2008

 0

 5e-008

 1e-007

 1.5e-007

 2e-007

 2.5e-007

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

s
e
c
o
n
d
s
)

pattern length

PSA
2*SA

2*pattern

 0

 2e-007

 4e-007

 6e-007

 8e-007

 1e-006

 5 10 15 20 25 30 35 40 45 50

ti
m

e
 (

s
e
c
o
n
d
s
)

pattern length

PSA
2*SA

2*pattern

Figure 2. Comparison of running times for p-matching on random binary strings.
The length of the text is 100 (upper) and 1000 (lower). The increase in time for short
patterns is due to the increase of |Pocc|.

S.Deguchi et al.: Parameterized Suffix Arrays for Binary Strings 93

6 Conclusion and Future Work

We showed that p-suffix arrays and PLCP arrays for binary strings can be constructed
in linear time. It is an open problem whether or not the parameterized suffix array
and PLCP array for larger alphabets can be constructed directly in linear time. It
is difficult to apply standard suffix array algorithms or LCP calculation algorithms,
since an important property does not hold for p-strings. Namely, a suffix pv(s)[i : n] of
pv(s) is not necessarily equal to the pv(s[i : n]) of the suffix s[i : n]. As an important
consequence, for any p-strings s, t with lcp(pv(s), pv(t)) > 0, pv(s) �+ pv(t) does
not necessarily imply pv(s[2 : |s|]) �+ pv(t[2 : |t|]) which is essential in the standard
case.

For similar reasons, the reverse problem of finding a p-string whose p-suffix array
is equal to a given array of integers also does not seem to be as simple as in the case
for standard suffix arrays [11,10], and is another open problem.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms, 2(1) 2004, pp. 53–86.

2. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

3. A. Amir, Y. Aumann, R. Cole, M. Lewenstein, and E. Porat: Function matching: Algo-
rithms, applications, and a lower bound, in Proc. 30th International Colloquium on Automata,
Languages and Programming (ICALP’03), vol. 2719 of Lecture Notes in Computer Science,
2003, pp. 929–942.

4. A. Amir, M. Farach, and S. Muthukrishnan: Alphabet dependence in parameterized match-
ing. Information Processing Letters, 49(3) 1994, pp. 111–115.

5. A. Apostolico, P. L. Erdös, and M. Lewenstein: Parameterized matching with mis-
matches. Journal of Discrete Algorithms, 5(1) 2007, pp. 135–140.

6. A. Apostolico and R. Giancarlo: Periodicity and repetitions in parameterized strings.
Discrete Applied Mathematics, 156(9) 2008, pp. 1389–1398.

7. B. S. Baker: A program for identifying duplicated code. Computing Science and Statistics, 24
1992, pp. 49–57.

8. B. S. Baker: Parameterized pattern matching: Algorithms and applications. Journal of Com-
puter and System Sciences, 52(1) 1996, pp. 28–42.

9. B. S. Baker: Parameterized diff, in Proc. 10th Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA’99), 1999, pp. 854–855.

10. H. Bannai, S. Inenaga, A. Shinohara, and M. Takeda: Inferring strings from graphs
and arrays, in Proc. 28th International Symposium on Mathematical Foundations of Computer
Science (MFCS 2003), vol. 2747 of Lecture Notes in Computer Science, 2003, pp. 208–217.

11. J.-P. Duval and A. Lefebvre: Words over an ordered alphabet and suffix permutations.
Theoretical Informatics and Applications, 36 2002, pp. 249–259.

12. K. Fredriksson and M. Mozgovoy: Efficient parameterized string matching. Information
Processing Letters, 100(3) 2006, pp. 91–96.

13. C. Hazay, M. Lewenstein, and D. Sokol: Approximate parameterized matching. ACM
Transactions on Algorithms, 3(3) 2007, Article No. 29.

14. C. Hazay, M. Lewenstein, and D. Tsur: Two dimensional parameterized matching, in Proc.
16th Annual Symposium on Combinatorial Pattern Matching (CPM’05), vol. 3537 of Lecture
Notes in Computer Science, 2005, pp. 266–279.

15. R. M. Idury and A. A. Schäffer: Multiple matching of parameterized patterns. Theoretical
Computer Science, 154(2) 1996, pp. 203–224.

16. J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, in Proc. 30th
International Colloquium on Automata, Languages and Programming (ICALP’03), vol. 2719 of
Lecture Notes in Computer Science, 2003, pp. 943–955.

94 Proceedings of the Prague Stringology Conference 2008

17. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time Longest-Common-
Prefix Computation in Suffix Arrays and Its Applications, in Proc. 12th Annual Symposium on
Combinatorial Pattern Matching (CPM’01), vol. 2089 of Lecture Notes in Computer Science,
2001, pp. 181–192.

18. D. K. Kim, J. E. Jeon, and H. Park: An efficient index data structure with the capabilities
of suffix trees and suffix arrays for alphabets of non-negligible size, in Proc. 11th International
Symposium on String Processing and Information Retrieval (SPIRE’04), vol. 3246 of Lecture
Notes in Computer Science, 2004, pp. 138–149.

19. D. K. Kim, J. S. Sim, H. Park, and K. Park: Linear-time construction of suffix arrays,
in Proc. 14th Annual Symposium on Combinatorial Pattern Matching (CPM’03), vol. 2676 of
Lecture Notes in Computer Science, 2003, pp. 186–199.

20. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM J.
Comput., 6(2) 1977, pp. 323–350.

21. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, in Proc. 14th
Annual Symposium on Combinatorial Pattern Matching (CPM’03), vol. 2676 of Lecture Notes
in Computer Science, 2003, pp. 200–210.

22. S. Kosaraju: Faster algorithms for the construction of parameterized suffix trees, in Proc. 36th
Annual Symposium on Foundations of Computer Science (FOCS’95), 1995, pp. 631–637.

23. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches. SIAM J.
Computing, 22(5) 1993, pp. 935–948.

24. E. M. McCreight: A space-economical suffix tree construction algorithm. Journal of the ACM,
23(2) 1976, pp. 262–272.

25. T. Shibuya: Generalization of a suffix tree for RNA structural pattern matching. Algorithmica,
39(1) 2004, pp. 1–19.

26. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
27. P. Weiner: Linear pattern-matching algorithms, in Proc. of 14th IEEE Ann. Symp. on Switch-

ing and Automata Theory, 1973, pp. 1–11.

An Adaptive Hybrid Pattern-Matching Algorithm

on Indeterminate Strings⋆

William F. Smyth, Shu Wang, and Mao Yu

Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton ON L8S 4K1, Canada

{smyth,shuw,yum5}@mcmaster.ca

Abstract. We describe a hybrid pattern-matching algorithm that works on both reg-
ular and indeterminate strings. This algorithm is inspired by the recently proposed hy-
brid algorithm FJS [11] and its indeterminate successor [15]. However, as discussed in
this paper, because of the special properties of indeterminate strings, it is not straight-
forward to directly migrate FJS to an indeterminate version. Our new algorithm com-
bines two fast pattern-matching algorithms, ShiftAnd and BMS (the Sunday variant
of the Boyer-Moore algorithm), and is highly adaptive to the nature of the text being
processed. It avoids using the border array, therefore avoids some of the cases that
are awkward for indeterminate strings. Although not always the fastest in individual
test cases, our new algorithm is superior in overall performance to its two component
algorithms — perhaps a general advantage of hybrid algorithms.

1 Introduction

String pattern-matching has been studied extensively for many years because of the
fundamental role it plays in many areas: the operation of a text editor or compiler,
bioinformatics, data compression, firewall interception, and so on. Two main ap-
proaches have been proposed for computing all the occurrences of a given nonempty
pattern p = p[1..m] in a given nonempty text x = x[1..n]. One is the use of window-
shifting techniques to skip over sections of text [17,8], the other the use of the bit-
parallel processing capability of computers to achieve fast processing [10,23,7,18]. For
more complete descriptions of various string matching algorithms, see [19,9,20].

Driven by applications in DNA sequence analysis and search engine techniques,
indeterminate pattern-matching (IPM) is becoming more and more widely used. But
for this modifications have to be made. An intuitive approach to IPM is to make use
of exact pattern-matching algorithms and make necessary changes. Some pattern-
matching algorithms that use bit-array methods such as ShiftAnd[23] and BNDM
[18] can be adapted to IPM. On the other hand, efforts have also been made to
develop indeterminate pattern-matching algorithms that are based on fast window-
shifting algorithms such as BMS (the Sunday variant of the Boyer-Moore algorithm)
[14] and FJS [15]. In this paper, we present a new fast algorithm that not only works
on regular strings but also on indeterminate strings — it inherits from the BMS and
ShiftAnd algorithms, while exceeding both of them in overall performance.

We believe that this paradigm will lead to the design of other very efficient IPM
algorithms with the ability to flip-flop seamlessly between two or more methods, in
response to the changing nature of local segments of the text.

⋆ Supported in part by grants from the Natural Sciences & Engineering Research Council of Canada.
The authors express their gratitude to three anonymous referees, whose comments have materially
improved the quality of this paper.

William F. Smyth, Shu Wang, Mao Yu: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings , pp. 95–107.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

96 Proceedings of the Prague Stringology Conference 2008

2 Preliminaries

A string x is a finite sequence of letters drawn from a set Σ called an alphabet.
Let λi, |λi| ≥ 2, 1 ≤ i ≤ m, be pairwise distinct subsets of the alphabet Σ. We form
a new alphabet Σ ′ = Σ ∪ {λ1, λ2, .., λm} and define a new relation match (≈) on Σ ′

as follows:

– for every µ1, µ2 ∈ Σ, µ1 ≈ µ2 if and only if µ1 = µ2;
– for every µ ∈ Σ and every λ ∈ Σ ′−Σ, µ ≈ λ and λ ≈ µ if and only if µ ∈ λ;
– for every λi, λj ∈ Σ ′−Σ, λi ≈ λj if and only if λi ∩ λj 6= ∅.

In a string x on an alphabet Σ ′, a position i is said to be indeterminate iff x[i] ∈
Σ ′−Σ, and x[i] itself is said to be an indeterminate letter. A string that may
contain indeterminate letters is said to be indeterminate (or generalized [5]).
Two indeterminate strings x and y are said to match iff they are of the same length
and the letters in corresponding positions match.

Indeterminate strings can arise in DNA and amino acid sequences as well as in
cryptoanalysis applications and the analysis of musical texts. A simple example of an
indeterminate letter is the don’t-care letter ∗ which matches any other letter in the
alphabet.

We identify three models of IPM in increasing order of sophistication:

(M1) The only indeterminate letter is the don’t-care ∗, whose occurrences may be in
either patterns or strings, or both.

(M2) Arbitrary indeterminate letters can occur, but only in patterns (or only in texts).
(M3) Indeterminate letters can occur in both patterns and strings.

In addition, two different constraints can be imposed on IPM:

– Quantum (q). Allow an indeterminate letter to match two or more distinct letters
during a single matching process.

– Determinate (d). Restrict each indeterminate letter to be assigned to only one
regular letter during a single matching process.

For example, given two strings u = 551, v = 121 including one indeterminate
letter 5 = {1, 2}, does u ≈ v? The answer is yes in quantum pattern-matching and no
in determinate pattern-matching, because we require that 5 first match 1 and then
match 2 in a single match between 551 and 121.

Combining the three models and the two constraints q and d, we identify six
interesting versions of IPM:

M1q, M1d, M2q, M2d, M3q, M3d. (1)

3 Nontransitivity of Indeterminate Matching

In this section we briefly discuss a central problem that arises in IPM due to the
possible nontransitivity of the match relation: in the example considered above, 1 ≈ 5
and 5 ≈ 2 does not imply 1 ≈ 2.

To describe the consequences of nontransitivity, recall that a border of x is any
proper prefix of x that equals a suffix of x. For a string x[1..n], an array β[1..n] is called
the border array of x iff for i = 1, 2, ..., n, β[i] gives the length of the longest border of

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 97

x[1..i]. The classic border array algorithm is given in [6], variants for indeterminate
strings can be found in [13].

A great many of the exact pattern-matching algorithms (for example, Knuth-
Morris-Pratt [20], Boyer-Moore [8], and their numerous variants) make use of the
border array of the pattern or some version of it. The trouble is that for indeterminate
strings, the nontransitivity of matching causes essential properties of the border array
to fail [22], as we now demonstrate by example.

Index 1 2 3 4 5 6 7
x · · · a a b b a b b · · ·
p a ∗ ∗ b a ∗ a

1st Shift a ∗ ∗ b a · · ·
2nd Shift a ∗ ∗ · · ·
3rd Shift a ∗ · · ·

Table 1. First example of the nontransitivity effect

Table 1 shows KMP pattern-matching of p against x. The first six positions of p
match x, but there is a mismatch in position 7. According to the traditional definition
of border, the longest border of p[1..6] is a∗∗b, the second-longest border is a∗ and the
third is a. KMP performs shifts according to the borders of p in decreasing order of
length, as shown by the shifts in the table. Observe however that if we perform a shift
according to the longest border, aligning p[1..4] with x[3..6], we will then have letter
a aligned with b in position 3. So indeterminate strings have the following property
as opposed to traditional strings:

Proposition 1. Shifting the indeterminate pattern p to the right in x according to
the longest border does not guarantee a prefix match.

Moreover, we see that between the first and second shifts lies a border a∗∗ = ∗∗b
of length 3 that is the longest border of substring a∗∗b. This reveals another property
of indeterminate strings:

Proposition 2. A border of a border of indeterminate string x is not necessarily a
border of x.

Index 1 2 3 4 5 6 7
x · · · a b a ∗ a ∗ a · · ·
p a b a a a b b

Wrong Shift a b a · · ·
Correct Shift a b a a a · · ·

Table 2. Second example of the nontransitivity effect

In Table 2 we see that the length of the longest border of substring p[1..6] is 2.
But if we shift the pattern p to the right according to its longest border by 6− 2 = 4,
we miss a prefix match in position 3, again due to nontransitivity. Thus:

Proposition 3. Shifting the indeterminate pattern p to the right in x according to
the longest border can miss occurrences of p.

98 Proceedings of the Prague Stringology Conference 2008

4 The New Hybrid Algorithm

The results of Section 3 warn us that a variant of any exact pattern-matching al-
gorithm adapted for IPM is problematic if it depends on any form of border array
calculation. In fact, one such variant has been proposed: Algorithm iFJS [15] describes
an IPM adaptation of the FJS exact pattern-matching algorithm [11], that combines
the border-independent Sunday version BMS [21] of the Boyer-Moore algorithm with
the border-dependent KMP algorithm. This variant uses the border array only up to
the longest prefix of p that does not contain any indeterminate letters. The problem is
that if an indeterminate letter appears close to the left end of the pattern, then only
a very small shift can occur each time, slowing the algorithm’s speed significantly.

As a result, we propose replacing the KMP algorithm in iFJS by the ShiftAnd al-
gorithm [10,7,23] that not only makes no use of the border array, but that furthermore
has already been suggested [23] as a paradignm for IPM. We note that this strategy
could be extended in a straightforward manner to use more sophisticated versions of
ShiftAnd, such as the BNDM algorithm described in [18]. Our experiments suggest
that the judicious combination of algorithms flipflopping from one to another based
on the nature of local segments of text is more efficient than a single algorithm on its
own.

Our algorithm adopts the following simple strategy:

(1) Perform a Sunday shift along the text.
(2) When a match is found at the end of the pattern, switch to ShiftAnd matching.
(3) Continue ShiftAnd matching until no match is found at the current position, then

skip to the next possible position and switch back to Sunday shift.

Figure 1 shows the pseudocode for finding all the matches of pattern p = p[1..m] in
text x = x[1..n]:

i′ ← m; m′ ← m− 1;
while i′ ≤ n do
Sunday-Shift;
— After Sunday-Shift exits, perform ShiftAnd-Match

i← i′ −m′;
ShiftAnd-Match;
— After ShiftAnd-Match exits, shift pattern right
i′ ← i + m′;

Figure 1. Algorithm ShiftAnd-Sunday

For completeness we provide sketches of the Sunday and ShiftAnd algorithms:

The Sunday (BMS) Algorithm [21]

BMS has a O(mn) worst-case running time but in practice is one of the fastest
exact pattern-matching algorithms. To control shifts, it computes a ∆ array in a
preprocessing phase as follows:

For every λ ∈ Σ, ∆[λ] = m− l+1, where l is the rightmost position in p where
λ occurs; if λ does not occur in p, then ∆[λ] = m + 1.

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 99

x

p

1

. . .

1 m

. . .

ni

. . . a

. . .

i+1i-m+1

a

a

Figure 2. Sunday Shift of BMS

Figure 2 demonstrates the basic shift strategy of BMS: positions in pattern and
text are compared until a mismatch occurs, say at position i in x, at which point the
pattern is shifted to the next position at which an occurrence is possible, using ∆
to align x[i + 1] = a with the rightmost occurrence of a in p. Since there can be no
occurrence in between (otherwise ∆ does not record the rightmost occurrence of a, a
contradiction), we are safe to do so.

The ShiftAnd Algorithm [10,7,23]

ShiftAnd makes use of the bit-parallel capability inherent in a computer word. It
has time complexity O(mn/w), where w is the computer word length in bits, and is
widely used in pattern-matching programs such as Unix agrep [1]. In a preprocessing
phase, for each λ ∈ Σ and every i ∈ 1..m, the algorithm computes a bit-array
S = S[1..m, 1..α] such that S[i, λ] = 1 iff p[i] = λ, otherwise 0. This table controls
the state of the calculation at each of w preceding positions in x as the pattern is
shifted from position i to i+1. For example, for a DNA alphabet Σ = {A,C,G, T}
and a pattern p = AATCG, ShiftAnd preprocesses S as shown in Table 3.

m\Σ A C G T
A 1 0 0 0
A 1 0 0 0
T 0 0 0 1
C 0 1 0 0
G 0 0 1 0

Table 3. Bit-array S after Preprocessing

The New Algorithm: ShiftAnd-Sunday

Pseudocode for the Sunday and ShiftAnd preprocessing is shown in Figures 3–4.

for i = 1 to |∆|
∆[i] = m + 1

for i = 1 to m
for j = 1 to |Σ|

if MATCH(p[i], Σ[j]) then ∆[p[i]] = i

Figure 3. Sunday-Preprocessing

It is formally identical to the pseudocode used for exact pattern matching when
indeterminate letters are not involved — the difference resides in the implementation

100 Proceedings of the Prague Stringology Conference 2008

for i = 1 to m
for j = 1 to |Σ|

if MATCH(p[i], Σ[j]) then S[i, j] = 1
else S[i, j] = 0

Figure 4. ShiftAnd-Preprocessing

of the MATCH function that determines whether or not two letters of the possibly
extended alphabet Σ ′ match. The various implementations of MATCH corresponding
to each of the six indeterminate processing models (1) are discussed in detail in [15].

The procedures Sunday-Shift and ShiftAnd-Match are also formally identical
to their exact matching equivalents, again depending only on an implementation of
MATCH. They are shown in Figures 5–6. Note that in practice the ShiftAnd algorithm
needs to be implemented in a more sophisticated way in order to allow pattern length
longer than the system word size. An example of pattern matching using this new
algorithm is shown in Figures 11–17 in the Appendix.

while not MATCH(p[m], x[i′]) do
i′ ← i′+∆

[
x[i′+1]

]

if i′ > n then return

Figure 5. Sunday-Shift

D ← 0
repeat

— Here and throughout this paper operator ≪ means shifting D one posi-

tion

— towards the most significant bit and bring a 1 to the least significant bit

D ← (D ≪ 1)&Sx[i]

if D&10m 6= 0 then output i
i← i + 1

— If D = 0, exit: no position in p has a current match.

until D = 0 or i > n

Figure 6. ShiftAnd-Match

Since the subroutine Sunday-Shift increases the variable i′ monotonically and
subroutine ShiftAnd-Match increases the variable i monotonically, these two subrou-
tines can be executed at most n times altogether. Each loop in Sunday-Shift runs in
constant time and each loop in ShiftAnd-Match runs in O(m/w) time. Therefore the
worst case running time is O(mn

w
), where w is the system word size. This asymptotic

time complexity is the same as ShiftAnd and better than BMS. Moreover, the new
algorithm adapts well to the input, as shown in the test results.

5 Experiments

5.1 Experimental Details

Since the new algorithm is a hybrid of Sunday and ShiftAnd, we compare its running
time with its components.

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 101

Factors that affect the performance of string pattern-matching are text length,
pattern occurrence frequency, pattern length, alphabet size and frequency of indeter-
minate letters. We try to show the behaviour of the algorithms by changing only one
factor at a time. However, there could be interactions between them. For example,
changing the alphabet size might cause the pattern occurrence frequency to change.
We have tried to design our test cases to be both meaningful and realistic.

The main platform for our tests is a SUN X4600 server with four 2.6 GHz dual core
Opteron CPUs (total 8), 16 GB RAM, four SAS disks, running GNU Linux 2.6.18-
53.1.4.e15. We also ran tests, with consistent results, on other platforms such as a
PC running Windows XP SP2.

To time the CPU time consumed by different algorithms, we use the standard C
library function clock() [2]. Since the running time can be affected by factors such
as CPU and memory usage of the system, temperature etc, each test was repeated
20 times. From our past experience we take the minimum time as the most accurate
result. All preprocessing time is included. Functions are declared inline to eliminate
the effect of function call overhead. The results are very stable across different runs.

The main test file corpus was taken from [3], itself collected from sources such as
[12] for English text, [4] for DNA and protein files.

5.2 Experimental Results

Since all three algorithms are capable of handling both regular and indeterminate
strings, we first test their performance on regular pattern-matching without specifying
any indeterminate letters.

Execution Time against Text Length in English Files Here we run the algo-
rithms on ten English files from [12] of sizes ranging from 240KB to 5158KB (Table 4).
We use a pattern set from [16] consisting of several words that occur with moderate
frequency in regular English text:

better enough govern public someth system though

File Name Length(bytes) Description
English0.txt 237599 HAMLET, PRINCE OF DENMARK
English1.txt 389204 The Mysterious Affair at Styles
English2.txt 491905 Secret Adversary
English3.txt 699594 Pride and Prejudice (partial)
English4.txt 754019 Pride and Prejudice
English5.txt 1186876 The Adventures of Harry Richmond(partial)
English6.txt 2672650 The Adventures of Harry Richmond(partial)
English7.txt 3251887 War and Peace(partial)
English8.txt 4387156 War and Peace
English9.txt 5872902 The Adventures of Harry Richmond

Table 4. English text files

From Figure 7 we see that the new algorithm has performance close to BMS. This
is because it adapts to the nature of the text and chooses to use the BMS engine most
of the time. Table 5 gives the average speed of the three algorithms in microseconds
per million letters (Minimum execution time divided by the length of text then take
the average result of 10 files, the same for all following tables).

102 Proceedings of the Prague Stringology Conference 2008

Figure 7. Execution time against text length in English files

BMS ShiftAnd Hybrid
990 4550 1060

Table 5. Average microseconds/million letters in Figure 7

Figure 8. Execution time against pattern length in English files

Execution Time against Pattern Length in English Files Next we test the
performance of the algorithms on varying pattern lengths. We use the file English8.txt,
gradually increasing pattern length from 3 to 100 (see Table 6). Since longer patterns
will as a rule occur less frequently, we insert the patterns randomly into the text with
a frequency that decreases as pattern length increases.

From Figure 8 we see that the running times of both BMS and Hybrid decrease as
pattern length increases. This is expected since the longer the pattern, the longer the
skip that can be achieved by both BMS and Hybrid. As indicated by the increasing
slope of the line from pattern lengths 9 to 50, when the pattern length passes the

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 103

File Name Pattern length Example Total occurrences
p3.txt 3 air, age, ago 5563
p4.txt 4 body, half, held 4160
p5.txt 5 death,field, money 2665
p6.txt 6 became, behind, cannot 2426
p7.txt 7 already,brought, college 1038
p8.txt 8 anything, evidence 1685
p9.txt 9 available, community 612
p50.txt 50 Welcome To The World of ... 286
p100.txt 100 “If you have nothing better to do, ...” 275

Table 6. Details of the pattern sets used

BMS ShiftAnd Hybrid
1600 14390 1430

Table 7. Average microseconds/million letters in Figure 8

system word size (32), the running time of ShiftAnd begins to increase. By mainly
using its BMS engine, Hybrid avoids this kind of performance slowdown.

Table 7 gives the average speed of the three algorithms over all the pattern sizes.
Note that in this case the hybrid algorithm is slightly faster overall.

Execution Time against Number of Indeterminate Letters in the Alphabet
Next we test the ability of our algorithm to handle indeterminate strings. In this test
we again use English8.txt and the same pattern set as in our first test, but gradually
increase the number of indeterminate letters in the alphabet, thus increasing their
number in both text and pattern. We use the MATCH function corresponding to the
M3q version of the hybrid algorithm, the most general (and therefore slowest) of the
three quantum versions identified in Section 2. Run times are shown in Figure 9.
We can see that BMS 3q runs fastest when indeterminate letters are few, but is
overtaken by both ShiftAnd and the new algorithm as the number of indeterminate
letters grows. Table 8 gives the average speed of the three algorithms.

BMS ShiftAnd Hybrid
5220 4651 4841

Table 8. Average microseconds/million letters in Figure 9

Execution Time against Text Length in DNA Files with Indeterminate
Letters Finally we test the execution time against text length in DNA files with a
4-letter alphabet. We use FASTA files of increasing length as described in Table 9,
with the following patterns:

CTGTAA, CAGACC, TATCCA, GGAGCC, TCCAGG, GCGGAT, AGAGAC

Letters A and C are defined as indeterminate letters. From Figure 10 we see that
the three algorithms have very similar performance.

104 Proceedings of the Prague Stringology Conference 2008

Figure 9. Execution time against number of indeterminate letters in the alphabet

Figure 10. Execution time against text length in DNA files with indeterminate letters

File Name Length(bytes)
DNA0.fasta 40302
DNA1.fasta 129145
DNA2.fasta 282348
DNA3.fasta 411493
DNA4.fasta 798564
DNA5.fasta 927709
DNA6.fasta 1430159
DNA7.fasta 2228723
DNA8.fasta 3518496
DNA9.fasta 7618319

Table 9. Lengths of DNA text files

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 105

BMS ShiftAnd Hybrid
4531 4297 4531

Table 10. Average microseconds/million letters in Figure 10

Tests\ Algorithms BMS ShiftAnd Hybrid
Text Length 990 4550 1060

Pattern Length 1600 14390 1430
Number of Indeterminate Letters 5220 4651 4841

DNA file 4531 4297 4531
TOTAL 12341 27888 11862

Table 11. Summary of all test results in microseconds/million letters

Table 10 gives the average speed of the three algorithms.
We see from Table 11 that in all of these tests, the hybrid algorithm’s behaviour

is very close to that of the better of BMS and ShiftAnd. Moreover, due to its adap-
tiveness, its overall running time is actually the least over all of these rather diverse
test cases. This dynamic adaptivity is useful when we do not know in advance the
nature of the text or pattern: we don’t need to make a decision ahead of time which
algorithm to use.

6 Conclusion

We designed a new algorithm that performs fast pattern-matching on both regular
and indeterminate strings. We showed in the experiments that although this new
algorithm is not always the fastest, it has a strong ability to adapt to the nature of
text/pattern and to achieve very good performance in all cases. In future we would like
to see more competitive IPM algorithms, perhaps adapted from other exact pattern-
matching algorithms such as BNDM or the convolution method.

References

1. AGREP V3.37, Homepage V1.12, T. Gries, http://www.tgries.de/agrep/:
2. GNU C Library, http://www.gnu.org/software/libc/manual:
3. Simon’s Collection of Test Strings, http://www.cas.mcmaster.ca/∼bill/strings:
4. National Center for Biotechnology Information, http://www.ncbi.nlm.nih.gov/:
5. K. Abrahamson: Generalized string matching. SIAM Journal on Computing, 16(6) 1987,

pp. 1039–1051.
6. A. V. Aho, J. E. Hopcroft, and J. D. Ullman: The Design & Analysis of computer

Algorithms, Addison-Wesley, 1974.
7. R. Baeza-Yates and G. Gonnet: A new approach to text searching. Communications of the

ACM, 35(10) 1992, pp. 74–82.
8. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Communications of the

ACM, 20(10) 1977, pp. 762–772.
9. C. Charras and T. Lecroq: Handbook of Exact String Matching Algorithms, King’s College

Publications, 2004.
10. B. Dömölki: A universal computer system based on production rules. BIT, 8 1968, pp. 262–275.
11. F. Franek, C. G. Jennings, and W. F. Smyth: A simple fast hybrid pattern-matching

algorithm (preliminary version), in Proc. 16th Annual Symposium on Combinatorial Pattern
Matching, LNCS 3537, Springer-Verlag, 2005, pp. 288–297.

106 Proceedings of the Prague Stringology Conference 2008

12. M. Hart: Project gutenberg, project gutenberg literary archive foundation (2004):.
13. J. Holub and W. F. Smyth: Algorithms on indeterminate strings, in Proc. 14th Australasian

Workshop on Combinatorial Algorithms, 2003, pp. 36–45.
14. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings.

Journal of Discrete Algorithms, 6 2006, pp. 37–50.
15. J. Holub, W. F. Smyth, and S. Wang: Hybrid pattern-matching algorithms on indeterminate

strings. London Algorithmics and Stringology 2006, J. Daykin, M. Mohamed and K. Steinhoefel
(eds.), King’s College London Series Texts in Algorithmics, 2006, pp. 115–133.

16. C. G. Jennings: A linear-time algorithm for fast exact pattern matching in strings, Master’s
thesis, McMaster University, 2002.

17. D. E. Knuth, J. H. Morris, and V. Pratt: Fast pattern matching in strings. SIAM Journal
on Computing, 6(2) 1977, pp. 323–350.

18. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended
string matching, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Match-
ing, M. Farach-Colton, ed., no. 1448, Piscataway, NJ, 1998, Springer-Verlag, Berlin, pp. 14–33.

19. G. Navarro and M. Raffinot: Flexible Pattern Matching In Strings : Practical on-line
search algorithms for texts and biological sequences, Cambridge University Press, 2002.

20. B. Smyth: Computing Patterns in Strings, Addison Wesley, 2003.
21. D. M. Sunday: A very fast substring search algorithm. Communications of the ACM, 8 1990,

pp. 132–142.
22. S. Wang: Pattern-matching algorithms on indeterminate strings, Master’s thesis, McMaster

University, Hamilton, Canada, 2006.
23. S. Wu and U. Manber: Fast text searching with errors. Communications of the ACM, 35(10)

1992, pp. 83–91.

A An Example of ShiftAnd-Sunday Algorithm

a aa b ccx ...c

p a b*

i'

c

Figure 11. Starting position

a aa b ccx ...c

p a b*

i'

c

i

Figure 12. After one step in Sunday-Shift

a aa b ccx ...c

D 0 00

c

i

1>>D 1 00

Sx[i] 1 01

Sx[i] & (1>>D) 1 00

Figure 13. Switch to ShiftAnd-Matching

W.F. Smyth et al.: An Adaptive Hybrid Pattern-Matching Algorithm on Indeterminate Strings 107

a aa b ccx ...c

D 1 00

c

i

1>>D 1 01

Sx[i] 1 01

1 01Sx[i] & (1>>D)

Figure 14. ShiftAnd-Matching Continues

a aa b ccx ...c

D 1 01

c

i

1>>D 1 11

Sx[i] 0 11

0 11 Match foundSx[i] & (1>>D)

Figure 15. A match is found

a aa b ccx ...c

D 0 11

c

i

1>>D 1 10

Sx[i] 0 01

0 00 All 0sSx[i] & (1>>D)

Figure 16. D′ contains all zeros

a aa b ccx ...c

p a b*

i'

c

Figure 17. Switch back to Sunday-Shift

Conservative String Covering of Indeterminate

Strings

Pavlos Antoniou1, Maxime Crochemore1, Costas S. Iliopoulos1, Inuka Jayasekera1,
and Gad M. Landau2

1 Dept. of Computer Science, King’s College London, London WC2R 2LS, England, UK
2 Department of Computer Science, University of Haifa,

Mount Carmel, Haifa 31905, Israel

Abstract. We study the problem of finding local and global covers as well as seeds
in conservative indeterminate strings. An indeterminate string is a sequence T =
T [1]T [2] . . . T [n], where T [i] ⊆ Σ for each i, and Σ is a given alphabet of fixed size. A
conservative indeterminate string, is an indeterminate string where the number of inde-
terminate symbols in the positions of the string, i.e the non-solid symbols, is bounded
by a constant κ. We present an algorithm for finding a conservative indeterminate pat-
tern p in an indeterminate string t. Furthermore, we present algorithms for computing
conservative covers and seeds of the string t.

1 Introduction

Covers are considered as common regularities in a string along with repetitions and
periods. They are periodically repetitive. A substring w of a string x is called a cover
of x if and only if x can be constructed by concatenations and superpositions of w.
A seed is an extended cover in the sense of a cover of a superstring of x.

Finding the regularities present in strings is not only interesting in string algo-
rithms but it is also useful in many applications. These applications include molecular
biology, data compression and computational music analysis. Regularities in strings
have been studied widely the last 20 years. There are several O(n log n)- time al-
gorithms for finding repetitions ([4],[7]), in a string x, where n is the length of x.
Apostolico and Breslauer [2] gave an optimal O(log log n)-time parallel algorithm for
finding all the repetitions. The preprocessing of the Knuth-Morris-Pratt algorithm
[11] finds all periods of every prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance,
if we allow overlapping and concatenations of periods in a string we get the notion
of covers. The notion of covers was introduced by Apostolico, Farach and Iliopoulos
in [3], where a linear-time algorithm to test superprimitivity, was given. Moore and
Smyth in [12] gave linear-time algorithms for finding all covers of a string x.

An extension of the notion of covers, is that of seeds; that is, covers of a superstring
of x. The notion of seeds was introduced by Iliopoulos, Moore and Park [10] and an
O(nlogn)-time algorithm was given for computing all seeds of x. A parallel algorithm
for finding all seeds was presented by Berkman, liopoulos and Park [6], that requires
O(log n) time and O(n log n) work.

In this work, we study and design algorithms for these string regularities in inde-
terminate strings. An indeterminate string is a sequence T = T [1]T [2] . . . T [n], where
T [i] ⊆ Σ for each i, and Σ is a given alphabet of potentially large size. The simplest
form of indeterminate string is one in which indeterminate positions can contain only

Pavlos Antoniou, Maxime Crochemore, Costas S. Iliopoulos, Inuka Jayasekera, Gad M. Landau: Conservative String Covering of Indeterminate Strings,

pp. 108–115.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 109

a don’t care letter, that is, a letter ∗ that matches any letter of the alphabet Σ on
which X is defined.

In biology, usually, the number of indeterminate positions in a sequence is nat-
urally bounded by a constant value. Otherwise, we would have a cover of length 1
with just a don’t care symbol that corresponds to all the letters of the alphabet Σ.
Therefore, we impose a constraint on the strings, which requires that the number of
indeterminate positions in a cover c is less than the constant, that is a “conservative”
cover. An example of a sequence containing indeterminate positions is shown in Fig-
ure 1 which depicts a sequence logo of an indeterminate sequence.The bottom logo
is the consensus sequence derived by the 12 sequences on top of it. If we look at the
logo we can see that position 1 is indeterminate as we can have [TCAG] occurring,
position 2 is indeterminate also having possible occurrence of [TCA],position 3 is
solid, non indeterminate, as in that position only A occurs.

An algorithm was described [8] for computing all occurrences of a pattern p in a
text string x, but although efficient in theory, the algorithm was not useful in practice.
Indeterminate string pattern matching has mainly been handled by bit mapping tech-
niques (ShiftOr method) [5],[15]. These techniques have been used to find matches
for an indeterminate pattern p in a string x [9] and the agrep utility [14] has been
one of the few practical algorithms available for indeterminate pattern-matching.

In [9], the authors extended the notion of indeterminate strings by distinguishing
two distinct forms of indeterminate match: “quantum” and “deterministic”. Roughly
speaking, a “quantum” match allows an indeterminate letter to match two or more
distinct letters during a single matching process; a “determinate” match restricts each
indeterminate letter to a single match[9].

In this paper, we describe algorithms for finding string regularities in constrained
indeterminate strings. The next section introduces the basic definition, Section 3
describes the algorithm for conservative pattern matching. Additionally, Section 4
and Section 5 describe the algorithms for computing the covers and seeds of a string
respectively.

2 Basic definitions

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗ . The length of a string x is denoted by |x|. The
empty string, the string of length zero, is denoted by ǫ. The i-th symbol of a string x
is denoted by x[i].

A string w is a substring of x if x = uwv, where u, v ǫ Σ∗. We denote by x[i . . . j]
the substring of x that starts at position i and ends at position j. Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy, for y ǫ Σ∗. Similarly,
w is a suffix of x if x = yw, for y ǫ Σ∗.

We call a string w a subsequence of x (or x is a supersequence of w) if w is
obtained by deleting zero or more symbols at any positions from x. For example,
ace is a subsequence of aabcdef . For a given set S of strings, a string w is called a
common supersequence of S if s is a supersequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by xk. For two strings x = x[1 . . . n] and y = y[1 . . . m] such
that x[n− i+ 1 . . . n] = y[1 . . . i] for some i ≥ 1 (that is, such that x has a suffix equal
to a prefix of y), the string x[1 . . . n]y[i + 1 . . . m] is said to be a superposition of x

110 Proceedings of the Prague Stringology Conference 2008

0

1

b
it
s

5′

-9

G
A
C
T

-8

A
C
T

-7

A

-6

C
A
T

-5

C

-4

C
T
A

-3

T
C

-2

G
T
C

-1

C
T
G

0

TAG
C

1

G
A
C

2

C
A
G

3

A
G

4

G
A
T

5

G
6

T
G
A

7

T
8

T
G
A

9

T
C
G
A

1 gt at caccgccagt ggt at
2 at accact ggcggt gat ac
3 t caacaccgccagagat aa
4 t t at ct ct ggcggt gt t ga
5 t t at caccgcagat ggt t a
6 t aaccat ct gcggt gat aa
7 ct at caccgcaagggat aa
8 t t at ccct t gcggt gat ag
9 ct aacaccgt gcgt gt t ga

10 t caacacgcacggt gt t ag
11 t t acct ct ggcggt gat aa
12 t t at caccgccagaggt aa

Figure 1. A sequence logo of a biological indeterminate sequence. Picture taken from
[13]

and y. We also say that x overlaps with y. A substring y of x is called a repetition in
x, if x = uykv, where u, y, v are substrings of x and k ≥ 2, |y| 6= 0. For example, if
x = aababab, then a (appearing in positions 1 and 2) and ab (appearing in positions
2, 4 and 6) are repetitions in x; in particular a2 = aa is called a square and (ab)3 =
ababab is called a cube.

A non-empty substring w is called a period of a string x, if x can be written as
x = wkwr where k ≤ 1 and w′ is a prefix of w. The shortest period of x is called the
period of x. For example, if x = abcabcab, then abc, abcabc and the string x itself are
periods of x, while abc is the period of x.

P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 111

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w 6= x, x is said to be quasiperiodic;
otherwise, x is superprimitive.

A substring w of x is called a seed of x, if w covers one superstring of x (this
can be any superstring of x, including x itself). For example, aba and ababa are some
seeds of x = ababaab.

An indeterminate string is a sequence T = T [1]T [2] . . . T [n], where T [i] ⊆ Σ for
each i, and Σ is a given alphabet of potentially large size. When a position of the
string is indeterminate, and it can match more than one element from the alphabet
Σ, we say that this position has non-solid symbol. If in a position we have only one
element of the alphabet Σ present, then we refer to this symbol as solid. A conservative
indeterminate string, is an indeterminate string where its number of indeterminate
symbols is bounded by a constant k.

Building the Aho-Corasick Automaton [1]. The Aho-Corasick Automaton for
a given finite set P of patterns is a Deterministic Finite Automaton G accepting the
sets of all words containing a word of P as a suffix.

G = (Q,Σ, g, f, q0, F), where function Q is the set of states, Σ is the alphabet, g
is the forward transition, f is the failure link i.e. f(qi) = qj, if and only if Sj is the
longest suffix of Si that is also a prefix of any pattern, q0 is the initial state and F is
the set of final (terminal) states [1]. The construction of the AC automaton can be
done in O(d)-time and space complexity, where d is the size of the dictionary, i.e. the
sum of the lengths of the patterns which the AC automata will match.

3 Finding constrained pattern p in indeterminate string T

As a building step, here, we study the constrained pattern matching problem on
indeterminate strings. The problem of constrained indeterminate pattern matching
is defined as follows:
Input: We are given a pattern p of length m with at most κ non solid symbols, where
κ is a constant. We are given an indeterminate string T , the text, of length n.
Query: Find all the occurrences of the pattern p in the text T , i.e find the positions
in T where the intersection of the pattern and the text is non-empty.

Example 1. We consider a pattern, p = A[CG]TA[AG] and text, T = GA[CG][CT]A
G[AT]A[AG][CT][AT]AG. Figure 2 shows the result of searching for p in t. It can be
seen from the figure that p occurs in t starting at positions 2, 5, 8 and 9.

i 0 1 2 3 4 5 6 7 8 9 10 11 12
t G A [CG] [CT] A G [AT] A [AG] [CT] [AT] A G

Matches A [CG] T A [AG]
A [CG] T A [AG]

A [CG] T A [AG]
A [CG] T A [AG]

Figure 2. Pattern matching with p and t

112 Proceedings of the Prague Stringology Conference 2008

The algorithm works in two steps:

Step 1

Let the pattern p be p = P1P2 . . . Pm. We built the Aho-Corasick automaton for the
dictionary of the prefixes of the pattern D = {π1π2 . . . πm,∀πi ∈ Pi, 1 ≤ i ≤ m}. Note

that |D| =
m∏

i=1

|Pi| < 2κ as there are at most κ non-solid symbols.

11

10

7

6

983

2 4 510
A C T A G

A

G

A

ATG

i 0 1 2 3 4 5 6 7 8 9 10 11
f(i) 0 0 0 0 0 1 3 1 0 1 3 1

Figure 3. Aho-Corasick automata and its failure function for p

Step 2

Assume that we have processed T [1, i]. At this point we have a set, P , of prefixes of
the strings in the dictionary in the Aho-Corasick automaton. We will now perform
iteration i + 1. For each symbol τ occurring at T [i + 1], we try to extend each prefix
in P by that symbol τ , or we follow its failure link provided by the Aho-Corasick
automaton. Figures 3 and 4 present a part of the matching process for the previous
example.

Note that |P | is bounded by the maximum number of possible prefixes, which in
turn is bounded by the size of the automaton, therefore this is constant. Thus, this
method is linear.

i 0 1 2 3 4 5 6
t G A [CG] [CT] A G [AT] . . .
P 0 {1} {2,3} {4,8} {5,9} {6, 10} {8} . . .

Figure 4. Matches of prefixes of P in text t

4 Computing λ-conservative covers of indeterminate strings

Here, we study another string regularity, conservative covering of an indeterminate
string with a fixed length cover. The λ-conservative cover problem is defined as follows:

Input: We are given a conservative indeterminate string t, of length n, a constant κ,
which is the maximum number of non-solid symbols allowed in a cover and an integer
λ, which is the length of the cover.
Query: Is there a conservative cover, c, of t of length λ?

P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 113

Step 1

We consider the prefix, T̂ , of t of length λ,

T̂ = T1 . . . Tλ

and the suffix, T̃ of t of length λ,

T̃ = Tn−λ+1, . . . Tn

We build the Aho-Corasick automaton for the dictionary

D = {t1 . . . tλ | ∀ ti ∈ Ti ∩ Ti+n−λ, 1 ≤ i ≤ λ}

t

T̂ T̃

Figure 5. The cover, c, covers the beginning and the end of T . Thus T̂ and T̃ provide
the set of potential candidates.

Step 2

For each d ∈ D we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 1. If a word d occurs at position i then we
set a flag L(i) = true. If the distance |i− j| of any two consecutive flags is less than
λ, then we have a cover

C1C2 . . . Cλ, where

Ci = {di, is the i− th letter of every word in D, 1 ≤ i ≤ λ}
The overall complexity of the above two steps is linear.

5 Computing λ-conservative seeds of indeterminate strings

Here we study yet another regularity, covering an indeterminate string with seed of
a given length. The λ-constrained seed problem is defined as follows:

Input: We are given an indeterminate string t, of length n, a constant κ, which is
the maximum number of non-solid symbols allowed in a seed and an integer λ, which
is the length of the seed.
Query: Is there a conservative seed, s, of t of length λ?
Step 1

The first occurrence of the seed can be in any of the positions {1 . . . λ}. Thus we
consider the following strings of length λ :

L1 = {T [1..λ], T [2..λ + 1], . . . T [λ..2λ− 1]}

and all the suffixes of string t of length λ :

L2 = {T [n− λ..n], T [n− λ− 1..n− 1] . . . T [n− 2λ− 1]}

114 Proceedings of the Prague Stringology Conference 2008

t

ŝpref

ŝ
ŝ

ŝ
ŝ

ŝ
ŝ

ŝsuff

Figure 6. Above, ŝ is a seed of the string t, where each ŝ contains at most κ non-
solid symbols and is of length λ. Also, ŝpref and ŝsuff are a prefix and suffix of ŝ
respectively.

t

L1 L2

Figure 7. The positions of candidate seeds from lists L1 and L2 are shown above.

We build the Aho-Corasick automaton for the dictionary

D = {ti1 . . . tiλ | ∀tij , where tij is the j− th symbol of T ∈ L1 ∪ L2}.

Step 2

For each d ∈ D we find all of its occurrences in T , parsing the text T through the
Aho-Corasick Automaton built in Step 1. If a word d occurs at position i then we
set a flag Ld(i) = true. If the distance |i − j| of any two consecutive flags in Ld is
less than λ, then we d is a candidate for a seed. Let i1 and i2 be the first and last
occurrences of d in T . We check if T [1, i1] is a suffix of d and if T [i2, n] is a prefix of
d, if that is the case then d is a suffix. The overall complexity is O(λn).

6 Conclusion

In conclusion, we have shown O(n) algorithms for finding the smallest conservative
cover, λ-conservative local covers. We have also presented a O(λn) algorithm for
finding the λ-conservative seeds of a string. All the algorithms which we have used
are easily adaptable to allow the bit-matching technique to be used, in order to allow
efficient implementations.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Commun. ACM, 18(6) 1975, pp. 333–340.

2. A. Apostolico and D. Breslauer: An optimal o(loglog n)-time parallel algorithm for de-
tecting all squares in a string. SIAM J. Comput., 25(6) 1996, pp. 1318–1331.

3. A. Apostolico, M. Farach, and C. S. Iliopoulos: Optimal superprimitivity testing for
strings. Information Processing Letters, 39 1991, pp. 17–20.

4. A. Apostolico and F. P. Preparata: Optimal off-line detection of repetitions in a string.
Theor. Comput. Sci., 22 1983, pp. 297–315.

5. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

P.Antoniou et al.: Conservative String Covering of Indeterminate Strings 115

6. O. Berkman, C. S. Iliopoulos, and K. Park: The subtree max gap problem with application
to parallel string covering. Information and Computation, 123(1) 1995, pp. 127–137.

7. M. Crochemore: An optimal algorithm for computing the repetitions in a word. Inf. Process.
Lett., 12(5) 1981, pp. 244–250.

8. M. J. Fischer and M. S. Paterson: String-matching and other products, tech. rep., Mas-
sachusetts Institute of Technology, Cambridge, MA, USA, 1974.

9. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings. J.
of Discrete Algorithms, 6(1) 2008, pp. 37–50.

10. C. S. Iliopoulos, D. W. G. Moore, and K. Park: Covering a string, in Proceedings of the
4-th Symposium on Combinatorial Pattern Matching, vol. 684 of Lecture Notes in Computer
Science, Berlin, 1993, Springer-Verlag, pp. 54–62.

11. D. E. Knuth, J. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM Journal
of Computing, 6(2) 1977, pp. 323–350.

12. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.
Inf. Process. Lett., 50(5) 1994, pp. 239–246.

13. M. C. Shaner, I. M. Blair, and T. D. Schneider: Sequence logos: A powerful, yet simple,
tool, in Proceedings of the Twenty-Sixth Annual Hawaii International Conference on System
Sciences, Volume 1: Architecture and Biotechnology Computing, T. N. Mudge, V. Milutinovic,
and L. Hunter, eds., IEEE Computer Society Press, 1993, pp. 813–821.

14. S. Wu and U. Manber: Agrep – a fast approximate pattern-matching tool, in Proceedings
USENIX Winter 1992 Technical Conference, San Francisco, CA, 1992, pp. 153–162.

15. S. Wu and U. Manber: Fast text searching: allowing errors. Commun. ACM, 35(10) 1992,
pp. 83–91.

On the Uniform Distribution of Strings

Sébastien Rebecchi⋆ and Jean-Michel Jolion

Universit de Lyon, F-69361 Lyon
INSA Lyon, F-69621 Villeurbanne

CNRS, LIRIS, UMR 5205
{sebastien.rebecchi, jean-michel.jolion}@liris.cnrs.fr

Abstract. In this paper, we propose the definition of a measure for sets of strings of
length not greater than a given number. This measure leads to an instanciation of the
uniform distribution definition in sets of such limited-size strings, for which we provide
a linear time complexity generative algorithm.
Some ideas could rather easily be extended to other ordered structure types.

Keywords: string, uniform distribution, measure

1 Introduction

For many years, several research teams have tried to blend the two main approaches
of pattern recognition, namely the statistical and structural ones [3,2]. This choice is
justified by the desire for being able at the same time to benefit from the undeniable
advantages of the two approaches, while being detached of their respective drawbacks.

The statistical pattern recognition is based on a coding of the data in the form of
numerical vectors, often unable to accurately reproduce the complexity of the data.
However this choice is justified by the broad pallet of statistical algorithms published
in the literature and recognized as powerful for the classification of numerical data[1].

In the structural pattern recognition paradigm, the coding part is rich because
of being based on data structures of great expressivity (graphs, strings, trees. . .),
allowing in particular to represent in an adequate way any kind of intra/inter patterns
relations (reflexivity, sequentiality, hierarchy. . .). However, the tools related to the
classification of structures are too restrictive (isomorphism, edit distance[4,6]...) and
not robust enough for some applications specific to pattern recognition. Another
limitation comes from the lack of a structural formalism for the processing of sets of
data, in the sense that the tools classically used are generally based on only unary or
binary operators. Finally, association between, on the one hand, the size of the data
structures used, and, on the other hand, the complexity of the relative algorithms,
tends to reject this approach for the processing of large volumes of data.

To be able to reconcile these two approaches, a necessary condition is to define
a statistical characterization of spaces of structures. We propose to contribute to
this vision, by translating the concept of distribution. We especially concentrate our
attention to strings for which we propose the definition of a uniform distribution.

The uniform process is specified in a set S, with respect to a measure function
µ, by the distribution for which the probability of a subset E of S, measurable by
µ, is proportional to its measure: P(E) = α × µ(E). More precisely, α is just the

⋆ A part of this work was done when the author visited the Gruppo di Ricerca sulle Macchine
Intelligenti per il riconoscimento di Video, Immagini e Audio, Università degli Studi di Salerno,
Italy. The visit was supported by a grant from the Région Rhône-Alpes, France.

Sébastien Rebecchi, Jean-Michel Jolion: On the Uniform Distribution of Strings, pp. 116–125.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

Sébastien Rebecchi and Jean-Michel Jolion: On the Uniform Distribution of Strings 117

inverse of total measure µ(S) of S, that makes the uniform process be considered as
a mere normalization one, passing from a measure to a distribution while respecting
the relative measure of E in S.

Two well-known examples of such a specification are given in the discrete and
continous one-dimension numerical cases, where the measure functions are, respec-
tively, the cardinality (µ(E) = |E|), and the Lebesgue measure (roughly speaking,
µ(E) =

∑
I∈MaxLen(E) l(I), with MaxLen(E) the set of maximal-length intervals that

are subset of E, and l(I) the length of the interval I). With respect to these measures,
the uniform property demands, in the discrete case, that all elements have the same
probability, and, in the continous one, that all intervals of the same length have the
same probability.

As for the string case, we have to define a consistent measure for sets of such
structures, i.e. a one that would take care of the inherent structural and combinatorial
nature of this type of elements. Before going into details in section 3, we introduce
some necessary notations and definitions.

2 Preliminary notations and definitions

Definition 1 (Alphabet). An alphabet is a non-empty finite set whose elements are
called letters.

In the rest of this paper, A denotes an alphabet, and λ a special object, called
empty letter, that does not belong to A . Moreover, we denote by |A| the size of A,
i.e. its cardinal.

Definition 2 (String). A string over A is a finite-length sequence of letters of A.

Let X be a string over A, and n ∈ N. We use the following notation:

– |X| the size of X, i.e. its length
– Xi the letter at position i in X, i ∈ {1, . . . , |X|}
– Λ the empty string over A, i.e. of length 0
– An the set of strings over A of length n
– A6n the set of strings over A of length not greater than n
– A∗ the set of strings over A

Notice that:

– A0 = {Λ}
– A6n =

⋃n
i=0 Ai

– A∗ =
⋃

i∈N
Ai

Definition 3 (Concatenation). The concatenation over A is the binary operation
. : A∗ × (A∗ ∪ A ∪ {λ}) −→ A∗, such that: ∀(X,Y ∈ A∗, a ∈ A):

– X.λ = X
– [|X.a| = |X|+ 1] ∧ [∀i ∈ {1, . . . , |X|}, (X.a)i = Xi] ∧ [(X.a)|X|+1 = a]
– [|X.Y | = |X| + |Y |] ∧ [∀i ∈ {1, . . . , |X|}, (X.Y)i = Xi] ∧ [∀i ∈ {1, . . . , |Y |},

(X.Y)|X|+i = Yi]

Remark. Λ.X = X.Λ = X follows from the last point of this definition.

118 Proceedings of the Prague Stringology Conference 2008

Thanks to definition 3, we can “promote” a letter of A ∪ {λ} as a string of A61,
simply by concatenating it to Λ.

Definition 4 (Promotion). The promotion over A is the bijection:

A ∪ {λ} → A61

a→ Λ.a

Moreover, we say that a is the promoted of Λ.a. Notice that the empty letter λ
is promoted to the empty string Λ, and that a non-empty letter is promoted to a
non-empty string of length 1.

Definition 5 (σ-algebra). Let S be a set. A σ-algebra σ over S is a set of subsets
of S, such that:

– σ contains the empty set: ∅ ∈ σ
– σ is closed under complementation: E ∈ σ =:(S \ E) ∈ σ
– σ is closed under countably infinite union:

[∀n ∈ N, En ∈ σ] =:

(
⋃

n∈N

En

)
∈ σ

Remark. If S is countable, then the power set (set of all subsets) of S is the only
σ-algebra over S containing all singletons {x}, x ∈ S.

Definition 6 (Measure). Let S be a set, and σ a σ-algebra over S. A measure µ
over σ is a function σ → R+ ∪ {∞}, such that:

– The empty set has a null measure: µ(∅) = 0
– µ is additive under disjoint countably infinite union:

[∀(i, j ∈ N|i < j), Ei, Ej ∈ σ,Ei ∩ Ej = ∅]

=:

µ

(
⋃

n∈N

En

)
=
∑

n∈N

µ(En)

In the rest of this paper, we simplify the notation µ({x}) by µ(x), for all singletons
{x}, x ∈ S.

Definition 7 (Uniform distribution). Let S be a set, σ a σ-algebra over S, and
µ a measure over σ. A distribution is uniform w.r.t. µ iff: ∀E ∈ σ:

P(E) = µ(E)× µ(S)−1

In the rest of this paper, we simplify the notation P({x}) by P(x), for all singletons
{x}, x ∈ S.

Sébastien Rebecchi and Jean-Michel Jolion: On the Uniform Distribution of Strings 119

3 String uniform distribution

3.1 The measure

Let µA be a measure over the power set of A ∪ {λ}, n ∈ N, and σn the power set of
A6n. Our wish is to define a measure µn over σn.

We wish µn to respect two necessary properties relatives to the connection be-
tween, on the one hand, the combinatorial and structural nature of the string type,
and, on the other hand, the set A6n for which is defined this measure:

1. µn has an additive effect under combination
2. µn has an multiplicative effect under concatenation

The first property would be related with the combinatorial nature of a string,
considering it within the set A6n: one can attempt to describe a string X of A6n with
a n-tuple of letters of A∪{λ}, simply by preserving the respective order of the letters
of X, and padding with the appropriate number of λ. But in this case, one must
face the problem that the number of possible λ-paddings is equal to the number of
combinations of size |X| from a set of cardinal n. This caracteristic must hold in the
definition of µn: if we see a string X of A6n as being the canonical representation of
a set of n-tuples, then, according to the additive property of a measure (cf. definition
6), the measure µn(X) should be obtained by the sum of the measures of all tuples
associated to X, with respect to a measure defined over the power set of the set of
n-tuples of letters of A ∪ {λ}. If we denote by µn

t this intermediate n-tuple measure,
then we have:

µn(X) =
∑

T∈tuplesn(X)

µn
t (T)

where tuplesn(X) stands for the set of n-tuples of A ∪ {λ} associated to X.
As for the second property, it would be related with the structural sequential

nature of a string. Keeping in mind the viewpoint introduced above, according to
which a string is the canonical representation of a set of tuples, we wish to consider
a letter of X as its expression in a certain dimension of each of these tuples. We
wish not to regard the particular position of this letter in a tuple, because it could
introduce a specific relative importance of any particular position in a string, which
is not our purpose in this general study, as we wish to preserve the one and only this
one induced by µA. Then, each tuple composed of the same letters should have the
same measure, and, according to this dimensional point of view, we have:

µn
t (T) =

|T |∏

i=1

µA(Ti)

The reasonning above drives us to the following definition:

Definition 8 (String measure). ∀X ∈ A6n:

µn(X) = C|X|n ×

|X|∏

i=1

µA(Xi)

× µA(λ)n−|X|

120 Proceedings of the Prague Stringology Conference 2008

where C|X|n stands for the number of combinations of size |X| from a set of cardinal
n.

The measure of non-singleton sets simply follows from the property of a measure
(cf. definition 6): sum of the measures of all the singletons that are subset of it (hence
0 for the empty set). Therefore, it would be straightforward to prove that µn is a
measure over the power set of A6n.

Finally, notice that the above formula follows the recursive rule below, that is
going to be useful in 3.2:

Proposition 9 (String measure recursion). n > 0 =:∀(X ∈ A6n−1, a ∈ A):

µn(X.a) = µn(X)× C|X|+1
n / C|X|n ×µA(a)/µA(λ)

Proof.

µn(X.a) = C|X.a|
n ×

(∏|X.a|
i=1 µA((X.a)i)

)
× µA(λ)n−|X.a|

=∗ C|X|+1
n ×

(∏|X|
i=1 µA(Xi)

)
× µA(a)× µA(λ)n−|X|−1

=
[
C|X|n ×

(∏|X|
i=1 µA(Xi)

)
× µA(λ)n−|X|

]
× C|X|+1

n / C|X|n ×µA(a)× µA(λ)−1

= µn(X)× C|X|+1
n / C|X|n ×µA(a)/µA(λ)

∗ Definition 3 ⊓⊔

We impose n > 0 because the set A−1 is undefined (−1 /∈ N).

3.2 The distribution

Following the general requirement of the uniform specification (cf. definition 7) with
respect to the measure µn, the probability of a string is given by the following formula:

Definition 10 (Uniform string distribution). ∀X ∈ A6n:

Pn(X) = µn(X)× µn(A6n)−1

It would be much complex to compute the total measure µn(A6n) of A6n by
a naive recursive exponential time demanding enumeration of all strings of this set
(remind that µn(A6n) =

∑
Y ∈A6n µn(Y)). Fortunately, we can simplify it analytically:

Proposition 11 (Total string measure).

µn(A6n) = µA(A ∪ {λ})n

The following formula is going to be helpful to prove the proposition:

Lemma 12. ∀i ∈ {0, . . . , n− 1}:

µn(Ai+1) = µn(Ai)× Ci+1
n / Ci

n×µA(A)/µA(λ)

Then, the proof of the proposition follows in a simple way:

Sébastien Rebecchi and Jean-Michel Jolion: On the Uniform Distribution of Strings 121

Proof (Proposition 11).

Lemma 12 ∧
[
µn(A0) = µn(Λ) =∗ µA(λ)n

]
=:∀i ∈ {0, . . . , n}:

µn(Ai) = µA(λ)n ×∏i
j=1

(
Cj

n / Cj−1
n ×µA(A)/µA(λ)

)

= µA(λ)n × µA(A)i/µA(λ)i ×∏i
j=1 Cj

n / Cj−1
n

= µA(λ)n−i × µA(A)i × Ci
n / C0

n

= µA(λ)n−i × µA(A)i × Ci
n

Then, we have:

µn(A6n) =
∑n

i=0 µn(Ai)
=

∑n
i=0

(
µA(λ)n−i × µA(A)i × Ci

n

)

=∗∗ (µA(λ) + µA(A))n

= µA(A ∪ {λ})n

∗ Definition 8
∗∗ Binomial theorem ⊓⊔

It now remains to prove the lemma:

Proof (Lemma 12). If n = 0, then {0, . . . , n− 1} = ∅, and thereby the lemma is true
by vacuity. Else (n > 0), we have:

µn(Ai+1) =
∑

Y ∈Ai+1 µn(Y)
=∗

∑
X∈Ai

∑
a∈A µn(X.a)

=∗∗
∑

X∈Ai

∑
a∈A

(
µn(X)× C|X|+1

n / C|X|n ×µA(a)/µA(λ)
)

=
∑

X∈Ai

∑
a∈A

(
µn(X)× Ci+1

n / Ci
n×µA(a)/µA(λ)

)

=
∑

X∈Ai

(
µn(X)× Ci+1

n / Ci
n×

∑
a∈A µA(a)/µA(λ)

)

=
∑

X∈Ai

(
µn(X)× Ci+1

n / Ci
n×µA(A)/µA(λ)

)

=
(∑

X∈Ai µn(X)
)
× Ci+1

n / Ci
n×µA(A)/µA(λ)

= µn(Ai)× Ci+1
n / Ci

n×µA(A)/µA(λ)

∗ Definition 3
∗∗ Proposition 9 ⊓⊔

According to definition 8 and proposition 11, we can compute the probability of
a string in O(n):

Definition 13 (Uniform string distribution). ∀X ∈ A6n:

Pn(X) = C|X|n ×

|X|∏

i=1

µA(Xi)

× µA(λ)n−|X| × µA(A ∪ {λ})−n

3.3 Preservation

An interesting property of our string uniform distribution is the preservation under
concatenation: the concatenation of two uniform strings remains a uniform string:

Proposition 14 (Uniform string preservation). ∀(i ∈ {0, . . . , n}, Y ∈ A6i, Z ∈
A6n−i), if Y is uniformly distributed w.r.t. µi, and Z uniformly distributed w.r.t. µn−i,
then X = Y.Z is uniformly distributed w.r.t. µn.

122 Proceedings of the Prague Stringology Conference 2008

Proof. First, remind that we have: ∀i, k ∈ {0, . . . , n}:

Ck
n =

k∑

j=0

(
Cj

i ×Ck−j
n−i

)

Then, we have: ∀X ∈ A6n:

C|X|n =
∑|X|

j=0

(
Cj

i ×C
|X|−j
n−i

)

=∗
∑

Y ∈A6i,Z∈A6n−i|Y.Z=X

(
C
|Y |
i ×C

|Z|
n−i

)

Moreover, we have: ∀(Y ∈ A6i, Z ∈ A6n−i|Y.Z = X):

Pi(Y)× Pn−i(Z) =∗∗
[
C
|Y |
i ×

(∏|Y |
j=1 µA(Yj)

)
× µA(λ)i−|Y | × µA(A ∪ {λ})−i

]
×[

C
|Z|
n−i×

(∏|Z|
j=1 µA(Zj)

)
× µA(λ)(n−i)−|Z| × µA(A ∪ {λ})−(n−i)

]

=∗ C
|Y |
i ×C

|Z|
n−i×

(∏|Y.Z|
j=1 µA((Y.Z)j)

)
× µA(λ)n−|Y.Z|×

µA(A ∪ {λ})−n

= C
|Y |
i ×C

|Z|
n−i×

(∏|X|
j=1 µA(Xj)

)
× µA(λ)n−|X|×

µA(A ∪ {λ})−n

Finally, we have:

Pn(X) =∗∗ C|X|n ×
(∏|X|

j=1 µA(Xj)
)
× µA(λ)n−|X| × µA(A ∪ {λ})−n

=
∑

Y ∈A6i,Z∈A6n−i|Y.Z=X

(
C
|Y |
i ×C

|Z|
n−i

)
×
(∏|X|

j=1 µA(Xj)
)
× µA(λ)n−|X|×

µA(A ∪ {λ})−n

=
∑

Y ∈A6i,Z∈A6n−i|Y.Z=X

[
C
|Y |
i ×C

|Z|
n−i×

(∏|X|
j=1 µA(Xj)

)
× µA(λ)n−|X|×

µA(A ∪ {λ})−n]
=

∑
Y ∈A6i,Z∈A6n−i|Y.Z=X

[
Pi(Y)× Pn−i(Z)

]

We deduce that, for all i ∈ {0, . . . , n}, the probability of a uniform string X w.r.t. µn

is equal to the sum of the probabilities of all the possible concatenations of a uniform
string Y w.r.t. µi, with a uniform string Z w.r.t. µn−i, such that X = Y.Z. This is
exactly the meaning of the proposition.

∗ Definition 3
∗∗ Definition 13 ⊓⊔

This general reasoning leads to the following specific corollary, that is going to be
useful in 3.4:

Corollary 15 (Uniform string preservation). ∀(X ∈ A6n, a ∈ A ∪ {λ}), if X
is uniformly distributed w.r.t. µn, and a uniformly distributed w.r.t. µA, then X.a is
uniformly distributed w.r.t. µn+1.

The proof of this corollary follows from the following lemma:

Lemma 16. ∀a ∈ A ∪ {λ}, a is uniformly distributed w.r.t. µA iff Λ.a is uniformly
distributed w.r.t. µ1.

Sébastien Rebecchi and Jean-Michel Jolion: On the Uniform Distribution of Strings 123

Proof (Corollary 15). According to lemma 16, Λ.a is uniformly distributed w.r.t. µ1.
Then, according to proposition 14, X.(Λ.a) =∗ X.a is uniformly distributed w.r.t. µn+1.

∗ Definition 3 ⊓⊔

Proof (Lemma 16). Let us denote by PA(a) the probability of a acording to a uniform
distribution w.r.t. µA. Then, we have:

PA(a) =∗ µA(a)× µA(A ∪ {λ})−1

If a = λ, then we have: PA(a) = C0
1×1× µA(λ)1−0 × µA(A ∪ {λ})−1.

Else (a ∈ A), we have: PA(a) = C1
1×µA(a)× µA(λ)1−1 × µA(A ∪ {λ})−1.

So in all cases, we have:

PA(a) =∗∗ C
|Λ.a|
1 ×

(∏|Λ.a|
i=1 µA((Λ.a)i)

)
× µA(λ)1−|Λ.a| × µA(A ∪ {λ})−1

=∗∗∗ P1(Λ.a)

This proves the lemma, as the promotion is a bijection (cf. definition 4).

∗ Definition 7
∗∗ Definition 3
∗ ∗ ∗ Definition 13 ⊓⊔

3.4 Generation

We wish to generate strings according to our uniform distribution. First, notice that,
according to definition 13, we have: ∀X ∈ A6n:

Pn(X) = C|X|n ×
(∏|X|

i=1 µA(Xi)
)
× µA(λ)n−|X| × µA(A ∪ {λ})−n

= C|X|n ×
∏|X|

i=1 (µA(Xi)× µA(A ∪ {λ})−1)×∏n−|X|
i=1 (µA(λ)× µA(A ∪ {λ})−1)

This equation tells us that it is sufficient to, first, generate a n-tuple by the con-
catenation of n elements of A ∪ {λ} generated according to a uniform distribution
w.r.t. µA, and, then, remove all the λ in T , to finaly obtain a string X generated ac-
cording to a uniform distribution w.r.t. µn: according to this procedure, T would have

a probability
∏|X|

i=1 (µA(Xi)× µA(A ∪ {λ})−1)×∏n−|X|
i=1 (µA(λ)× µA(A ∪ {λ})−1), and

therefore X a probability Pn(X), as we have seen in 3.1 that X is the canonical rep-

resentation of C|X|n such tuples T .

But this sufficiency can obviously also be retrieved in a slightly different form
from a recursive use of the uniformity conversation of a string when concatenated
with a uniform string w.r.t. µ1, or its promoted uniform letter w.r.t. µA, as exhibit
by corollary 15.

A simple O(n)-complex pseudo-code implementation of such a procedure is given
by algorithm 1. Instead of passing by an intermediate tuple initialisation, filling, to a
final canonization to string, the algorithm works directly under the string representa-
tion, thanks to a sequence of concatenations of a uniform letter to a string initialised
to the empty one, for the same result, as mentioned above.

124 Proceedings of the Prague Stringology Conference 2008

Input: A positive integer n
Output: A string X generated according to a uniform distribution w.r.t. µn

begin
D ←− uniform distribution w.r.t. µA: ∀a ∈ A ∪ {λ}, P(a) = µA(a)/µA(A ∪ {λ});
X ←− Λ;
for i←− 1 to n do

l←− random choice according to D;
X ←− X.l;

end

return X;

end

Algorithm 1: Uniform string generation

4 Relation with a previous work

The present work subsumes and generalizes the part concerning the uniform distri-
bution of the one exposed in [5] (in french): one can retrieve the special definition
proposed in the later paper by setting µA(λ) = 0, and µA(a) = µA(b),∀a, b ∈ A (this
last equality can reasonably be supposed in numerous applications). One can also
consider the restriction of µn over the restriction of σn over An, by ignoring the null
λ influence, that leads to Pn(A6n−1) = 0 if n > 0. This would also define a uniform
distribution w.r.t. the considered restriction of µn.

5 Discussion and further work

In fact, this work can be summarized as an analytical justification of this proposition:
one can generate a uniform string over the alphabet A by concatenating uniform
letters of A ∪ {λ}. The simplicity of this property is obsiously due to the particular
measure defined for sets of strings, but we have seen that this definition does not only
please our wish for simplicity, but also fulfill some relevant arguments concerning the
nature of the type of elements taken into consideration.

This simplicity could be rather easily extended to more complex structure types,
for which we can define an order of the primitives. Let us consider, for instance,
the (ordered) bounded arity and depth tree over A: if a is the maximum number of
children that can have a node (arity), and d the maximum depth that can a tree, we
could recursively define such a tree by a couple composed of the root and a string of
children of length not greater than a, the children alphabet being the set of non-empty
trees of arity a and maximum depth (d−1), with the empty tree as associated empty
letter. Then, we could take some ideas to the work above to instanciate a uniform
distribution of such trees. A part of the associated tree measure would be defined
thanks to the definition of the string one, with a necessary supplementary condition
(and potential difficulty) induced by the hierarchical structural nature of trees.

To conclude, we can say that this work is a prelude and it would be interesting
to study the possible properties that could arise when combining, in a manner to be
specified yet, independent executions of the same uniform string distribution. This
would tend to a string distributed according to a gaussian string distribution, as told
by the central limit theorem. A necessary condition is to define the concept of random
variable in a measurable vector space for strings. It could be sufficient to order the
strings to keep the real line as the state set of such random variables, and thus take
advantage of the classical (numerical) probabilistic statistical theory, but we could
also develop a specific different point of view.

Sébastien Rebecchi and Jean-Michel Jolion: On the Uniform Distribution of Strings 125

References

1. A. K. Jain, R. P. W. Duin, and J. Mao: Statistical pattern recognition: a review. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 22(1) 2000, pp. 4–37.

2. J.-M. Jolion: The deviation of a set of strings. Pattern Analysis and Applications, 6(3) 2003,
pp. 224–231.

3. T. Kohonen: Median strings. Pattern Recognition Letters, 3(5) 1985, pp. 309–313.
4. V. I. Levenshtein: Binary codes capable of correcting deletions, insertions, and reversals. Soviet

Physics Doklady, 10(8) 1966, pp. 707–710.
5. S. Rebecchi and J.-M. Jolion: Lois uniformes et normales de chanes discrtes, in RFIA,

Amiens, France, January 2008, pp. 471–480.
6. R. A. Wagner and M. J. Fischer: The string-to-string correction problem. Journal of the

ACM, 21(1) 1974, pp. 168–173.

Infinite Smooth Lyndon Words

Geneviève Paquin

Laboratoire de Combinatoire et d’Informatique Mathématique,
Université du Québec à Montréal,

Montréal (QC) CANADA H3C 3P8,
genevieve.paquin@gmail.com

Abstract. In a recent paper, Brlek et al. showed that some extremal infinite smooth
words are also infinite Lyndon words. This result raises a natural question: what are
the infinite smooth words that are also infinite Lyndon words? In this paper, we give
the answer: the only infinite smooth Lyndon words are m{a<b}, with a, b even, and
m{1<b}, with b odd, where mA is the minimal infinite smooth word with respect to
lexicographic order over the numerical alphabet A.

Keywords: Lyndon words, smooth words, Kolakoski sequence

1 Introduction

Lyndon words were introduced by Lyndon in [9] for constructing bases of the lower
central series for free groups. The authors proved that any finite word can be expressed
as a unique non-increasing product of Lyndon words. Later, Lyndon words were
studied by Duval [11,12]. He gave an algorithm that generates Lyndon words of
bounded length for a finite alphabet and another one that computes the Lyndon
factorization in linear time. Siromoney et al [26] defined infinite Lyndon words in
order to introduce Lyndon factorization of infinite words. Lyndon words also appeared
in [18,20,22]. This factorization gives nice properties about the structure of words.
Since a few years, a wide literature is devoted to Lyndon words: [2,13,23,24,25]. For
instance, Melançon [19] studied Lyndon factorization of Sturmian infinite words.

Smooth infinite words over A = {1, 2} form an infinite class K of infinite words
containing the well-known Kolakoski word K [17] defined as one of the two fixed
points of the run-length encoding function ∆, that is

∆(K) = K = 2211212212211211221211212211211212212211212212 · · · .

They are characterized by the property that the orbit obtained by iterating ∆ is
contained in {1, 2}∗. In the early work of Dekking [10], there are some challenging
conjectures on the structure of K that still remain unsolved despite the efforts devoted
to the study of patterns in K. For instance, we know from Carpi [8] that K and
more generally, any word in the infinite class K of smooth words over A = {1, 2},
contain only a finite number of squares, implying by direct inspection that K and
any w ∈ K are cube-free. Weakley [17] showed that the number of factors of length
n of K is polynomially bounded. In [6], a connection was established between the
palindromic complexity and the recurrence of K. Then, Berthé et al. [3] studied
smooth words over arbitrary alphabets and obtained a new characterization of the
infinite Fibonacci word F . Relevant work may also be found in [1] and in [3,16],
where generalized Kolakoski words are studied for arbitrary alphabets. The authors
investigated in [7] the extremal infinite smooth words, that is the minimal and the

Geneviève Paquin: Infinite Smooth Lyndon Words, pp. 126–139.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

Geneviève Paquin: Infinite Smooth Lyndon Words 127

maximal ones w.r.t. the lexicographic order, over {1, 2} and {1, 3}: a surprising link
is established between F and the minimal infinite smooth word over {1, 3}.

More recently, Brlek et al. [5] studied the extremal smooth words for any 2-letter
alphabet and they showed the existence of infinite smooth words that are also Lyndon
words: the minimal smooth word over an even alphabet and the one over the alphabet
{1, b}, with b odd, are Lyndon words. Then a natural question arises: are there other
infinite smooth words that are infinite Lyndon words?

In this paper, we show that the minimal smooth words that are also Lyndon words
given in [5] are the only smooth Lyndon words. In order to prove it, we study the
words over a 2-letter alphabet depending on the parity of the letters. The paper is
organized as follow. In Section 2, we recall the basic definitions in combinatorics on
words, we state the notation we will use next and we recall useful known results.
Section 3 is devoted to the characterization of infinite smooth Lyndon words. It is
divided in 4 subsections. In Section 3.1, we study the case of an alphabetA = {a < b},
with a even and b odd. We show that there is no infinite Lyndon words that is also
smooth. In Section 3.2, we are interested in even alphabets. We show that only the
minimal smooth word is a Lyndon word. Section 3.3 is devoted to odd alphabet. We
prove that only m{1,b} is a Lyndon word. Finally, Section 3.4 studies the words over
an alphabet {a < b} with a odd and b even. In this last case, we show that there is
no infinite Lyndon words that are also smooth.

Notice that some proofs are omitted for lack of space and will appear in a full
paper.

2 Preliminaries

Throughout this paper, A is a finite alphabet of letters equipped with a total order
<. A finite word w is a finite sequence of letters w = w[0]w[1] · · ·w[n − 1], where
w[i] ∈ A denotes its (i + 1)-th letter. Its length is n and we write |w| = n. The set of
n-length words over A is denoted by An. By convention the empty word is denoted
by ε and its length is 0. The free monoid generated by A is defined by A∗ =

⋃
n≥0An

and A∗ \ε is denoted A+. The set of right infinite words, also called infinite words for
short, is denoted by Aω and A∞ = A∗∪Aω. Adopting a consistent notation for finite
words over the infinite alphabet N, N∗ =

⋃
n≥0 Nn is the set of finite sequences and

Nω is that of infinite ones. Given a word w ∈ A∗, a factor f of w is a word f ∈ A∗
satisfying

∃x, y ∈ A∗, w = xfy.

If x = ε (resp. y = ε) then f is called a prefix (resp. suffix). Note that by convention,
the empty word is suffix and prefix of any word. A block of length k is a maximal factor
of the particular form f = αk, with α ∈ A. The set of all factors of w, also called the
language of w, is denoted by F (w), and those of length n is Fn(w) = F (w)∩An. We
denote by Pref(w) (resp. Suff(w)) the set of all prefixes (resp. suffixes) of w.

Over an arbitrary 2-letter alphabet A = {a, b}, there is a usual length preserv-
ing morphism, the complementation, defined by a = b , b = a, which extends to
words as follows. The complement of u = u[0]u[1] · · · u[n − 1] ∈ An is the word

u = u[0] u[1] · · ·u[n− 1]. The reversal of u is the word ũ = u[n− 1] · · · u[1]u[0].
For u, v ∈ A∗, we write u < v if and only if u is a proper prefix of v or if there

exists an integer k such that u[i] = v[i] for 0 ≤ i ≤ k−1 and u[k] < v[k]. The relation
≤ defined by u ≤ v if and only if u = v or u < v, is called the lexicographic order.

128 Proceedings of the Prague Stringology Conference 2008

That definition holds for A∞. Note that in general the complementation does not
preserve the lexicographic order. Indeed, when u is not a proper prefix of v then

u > v ⇐ : u < v. (1)

A word u ∈ A∗ is a Lyndon word if u < v for all proper non-empty suffixes v of u.
For instance, the word 11212 is a Lyndon word while 12112 is not since 112 < 12112.
A word of length 1 is clearly a Lyndon word. The set of Lyndon words is denoted by
L.

From Lothaire [18], we have the following theorem.

Theorem 1. [9] Any non empty finite word w is uniquely expressed as a non increas-
ing product of Lyndon words

w = ℓ0ℓ1 · · · ℓn =
n⊙

i=0

ℓi, with ℓi ∈ L, and ℓ0 ≥ ℓ1 ≥ · · · ≥ ℓn. (2)

Siromoney et al. [26] extended Theorem 1 to infinite words. The set L∞ of infinite
Lyndon words consists of infinite words smaller than any of their suffixes.

Theorem 2. [26] Any infinite word w is uniquely expressed as a non increasing prod-
uct of Lyndon words, finite or infinite, in one of the two following forms:

i) either there exists an infinite sequence (ℓk)k≥0 of elements in L such that

w = ℓ0ℓ1ℓ2 · · · and for all k, ℓk ≥ ℓk+1.
ii) there exist a finite sequence ℓ0, . . . , ℓm (m ≥ 0) of elements in L and ℓm+1 ∈
L∞ such that

w = ℓ0ℓ1 · · · ℓmℓm+1 and ℓ0 ≥ · · · ≥ ℓm > ℓm+1.

Let us recall from ([18] Chapter 5.1) a useful property concerning Lyndon words.

Lemma 3. Let u, v ∈ L. We have uv ∈ L if and only if u < v.

A direct corollary of this lemma is:

Corollary 4. Let u, v ∈ L, with u < v. Then uvn, unv ∈ L, for all n ≥ 0.

The widely known run-length encoding is used in many applications as a method
for compressing data. For instance, the first step in the algorithm used for compressing
the data transmitted by Fax machines consists of a run-length encoding of each line
of pixels. Let A = {a < b} be an ordered alphabet. Then every word w ∈ A∗ can be
uniquely written as a product of factors as follows:

w = ai0bi1ai2 · · · or w = bi0ai1bi2 · · ·

with ik ≥ 1 for k ≥ 0. The operator giving the size of the blocks appearing in the
coding is a function ∆ : A∗ −→ N∗, defined by ∆(w) = i0, i1, i2, · · · which is easily
extended to infinite words as ∆ : Aω −→ Nω.

For instance, let A = {1, 3} and w = 13333133111. Then

w = 1134113213 and ∆(w) = [1, 4, 1, 2, 3] .

When ∆(w) ⊆ {1, 2, · · · , 9}∗, the punctuation and the parentheses are often omitted
in order to manipulate the more compact notation ∆(w) = 14123. This example is a

Geneviève Paquin: Infinite Smooth Lyndon Words 129

special case where the coding integers do not coincide with the alphabet on which is
encoded w, so that ∆ can be viewed as a partial function ∆ : {1, 3}∗ −→ {1, 2, 3, 4}∗ .

From now on, we only consider 2-letter alphabets A = {a < b}, with a, b ∈ N\{0}.
Recall from [6] that ∆ is not bijective since ∆(w) = ∆(w), but commutes with

the reversal (˜), is stable under complementation () and preserves palindromicity.
Since ∆ is not bijective, pseudo-inverse functions

∆−1
a , ∆−1

b : A∗ −→ A∗

are defined for 2-letter alphabets by

∆−1
α (u) = αu[1]αu[2]αu[3]αu[4] · · · , for α ∈ {a, b}.

Note that the pseudo-inverse function ∆−1 also commutes with the mirror image,
that is,

∆̃−1
α (w) = ∆−1

β (w̃), (3)

where β = α if |w| odd and β = α if |w| is even.
The operator ∆ may be iterated, provided the process is stopped when the coding

alphabet changes or when the resulting word has length 1.

Example 5. Let w = 1333111333133311133313133311133313331113331. The succes-
sive application of ∆ gives :

∆0(w) = 1333111333133311133313133311133313331113331;
∆1(w) = 1333133311133313331;
∆2(w) = 131333131;
∆3(w) = 1113111;
∆4(w) = 313;
∆5(w) = 111;
∆6(w) = 3.

The set of finite smooth words over the alphabet A is defined by

∆+
A = {w ∈ A∗ | ∃n ∈ N, ∆n(w) = αi, α ∈ A, i ≤ β and ∀k ≤ n,∆k(w) ∈ A∗},

with β the greatest letter of the alphabet.
The operator ∆ extends to infinite words (see [6]). Define the set of infinite smooth

words over A = {a, b} by

KA = {w ∈ Aω | ∀k ∈ N, ∆k(w) ∈ Aω}.

The well-known [17] Kolakoski word denoted K is defined as the fix-point starting
with the letter 2 of the operator ∆ over the alphabet {1, 2}:

K = 2211212212211211221211212211211212212211 · · ·

More generally, the operator ∆ has two fix-points in KA, namely

∆(K(a,b)) = K(a,b) and ∆(K(b,a)) = K(b,a),

where K(a,b) is the generalized Kolakoski word [16] over the alphabet {a, b} starting
with the letter a.

130 Proceedings of the Prague Stringology Conference 2008

Example 6. The Kolakoski word overA={1, 2} starting with the letter 2 is K= K(2,1).
We also have K(2,3) = 22332223332233223332 · · · and K(3,1) = 33311133313133311133 · · · .

A bijection Φ : KA −→ Aω is defined by

Φ(w) = ∆0(w)[0]∆1(w)[0]∆2(w)[0] · · · =
∏

i≥0

∆i(w)[0]

and its inverse is defined as follows. Let u ∈ Ak, then Φ−1(u) = wk, where

wn =

{
u[k − 1], if n = 1;
∆−1

u[k−n](wn−1), if 2 ≤ n ≤ k.

Then for k =∞, Φ−1(u) = limk→∞wk = limk→∞ Φ−1(u[0..k − 1]).

Remark 7. With respect to the usual topology defined by

d((un)n≥0, (vn)n≥0) := 2−min{j∈N,uj 6=vj},

the limit exists because each iteration is a prefix of the next one.

Example 8. For the word w = 1333111333133311133313133311133313331113331 of
Example 5, Φ(w) = 1111313.

Note that since Φ is a bijection, the set of infinite smooth words is infinite. More-
over, given a prefix of Φ(w), for w a smooth word, we can construct a prefix of w as
in the following example.

Example 9. Let p = 1221 be a prefix of Φ(w), with w ∈ {1, 2}ω an infinite smooth
word. Then we compute from bottom to top, using the operator ∆−1:

∆0(w) = 11221221 · · ·
∆1(w) = 2212 · · ·
∆2(w) = 21 · · ·
∆3(w) = 1 · · ·

Note that in ∆2(w), the letter 1 is obtained by deduction, since ∆3(w) indicates that
the first block of letters of ∆2(w) has length 1. The last written letter of every line is
deduced by the same argument.

We recall from [7] the useful right derivative Dr : A∗ → N∗ defined by

Dr(w) =

ε if ∆(w) = α, α < b or w = ε,
∆(w) if ∆(w) = xb,
x if ∆(w) = xα, α < b,

where α ∈ N and x ∈ A∗. A word w is r-smooth (also said smooth prefix) if ∀k ≥
0, Dk

r (w) ∈ A∗. In other words, if a word w is r-smooth, then it is a prefix of at least
one infinite smooth word (see [4] for more details).

Example 10. Let w = 112112212. Then ∆(w) = 212211, ∆2(w) = 1122, ∆3(w) = 22
and Dr(w) = 21221, D2

r(w) = 112, D3
r(w) = 2.

Geneviève Paquin: Infinite Smooth Lyndon Words 131

Similarly, the operator D is defined over the alphabet {a < b} by

D(w) =

ε if ∆(w) < b or w = ε,
∆(w) if ∆(w) = bxb or ∆(w) = b,
bx if ∆(w) = bxu,
xb if ∆(w) = uxb,
x if ∆(w) = uxv,

where u and v are blocks of length < b. A finite word is called a smooth factor (also
called a C∞-word in [8,14,15,27]) if there exists k ∈ N such that Dk(w) = ε and
∀j < k, Dj(w) ∈ A∗.

The minimal (resp. the maximal) infinite smooth word over the alphabet A is the
smallest (resp. biggest) infinite smooth word, with respect to the lexicographic order.
It is denoted by mA (resp. MA).

An alphabet A = {a < b} is called an odd alphabet (resp. even alphabet) if both a
and b are odd (resp. even). The extremal smooth words satisfy the following properties
established in a previous paper.

Proposition 11. [5] Let A = {a, b} be a 2-letter alphabet with a < b. Then the
following properties hold:

i) If a and b are both even we have :
Φ(M{a,b}) = bω; Φ(m{a,b}) = abω; and m{a,b} ∈ L∞.

ii) If a and b are both odd we have :
Φ(M{a,b}) = (ba)ω; Φ(m{a,b}) = (ab)ω; and m{a,b} ∈ L∞ ⇐ : a = 1.

Let us recall some known results about smooth words.

Lemma 12. [3] Let u, v be finite smooth words. If there exists an index m such that,
for all i, 0 ≤ i ≤ m, the last letter of ∆i(u) differs from the first letter of ∆i(v), and
∆i(u) 6= 1, ∆i(v) 6= 1, then

i) Φ(uv) = Φ(u)[0..m] · Φ ◦∆m+1(uv);
ii) ∆i(uv) = ∆i(u)∆i(v).

The following properties follow immediately from the definitions. For more details,
the reader is referred to [21].

Recall from [4] that in the case of the alphabet A = {1, 2}, every finite word
w ∈ ∆+

A can be easily extended to the right in a smooth word by means of the
function Φ as follows:

∀u ∈ A∞, w ∈ Pref(Φ−1(Φ(w) · u)).

Its generalization to arbitrary alphabets is immediate (see [21]).

Proposition 13. Let A = {a < b}. Then the following properties hold.

i) Any smooth prefix can be arbitrarily right extended to an infinite smooth word.
ii) Let u = Φ(w), with w ∈ Aω an infinite smooth word. If u = u′u′′, then Φ−1(u′) is

prefix of w.

132 Proceedings of the Prague Stringology Conference 2008

3 Characterization of infinite smooth Lyndon words

In this section, we prove our main result: the only infinite smooth words that are also
infinite Lyndon words are m{2a<2b} and m{1<2b+1}, for a, b ∈ N. In order to prove it,
we study the four possible combinations of the parity of the letters.

Let us consider all the possible words p of a fixed length ≤ n such that Φ−1(p) is
prefix of an infinite smooth word w. We suppose that w is also an infinite Lyndon
word. In the following, for each word p, either we show that Φ−1(p) can not be a
prefix of a Lyndon word by showing the existence of a smaller suffix, or we describe
an infinite smooth Lyndon word having Φ−1(p) as prefix.

Lemma 14. p[0] = a.

Proof. Follows from the equality p[0] = w[0] and since a Lyndon word w must start
by the smallest letter. ⊓⊔

Lemma 14 will be used in this section to exclude the cases numbered (0) in the proofs.

3.1 Over A with a even and b odd

In this section, we prove the following result.

Theorem 15. Over the alphabet {a < b}, with a even and b odd, there is no infinite
smooth word that is also a Lyndon word.

Proof. Figure 1 illustrates the 5 possible cases to consider, using a tree. The leaves
correspond to the first letter of Φ(w) that leads to a contradiction: the prefix Φ−1(p)
obtained can not be the prefix of an infinite Lyndon word. We will prove it by showing
that there exists a factor f of w not prefix of Φ−1(p) such that f < w. For clarity
issues, the first letter of f is underlined.

(0)b

ba

a

a

a b

ba(1) (2)

(3) (4)

(5)

b

Figure 1. Possible cases for an even-odd alphabet

Case (1) If p = aaa, then
∆0(w) = (aaba)

a
2 (abbb)

a
2 · · ·

∆1(w) = aaba · · ·
∆2(w) = aa · · ·
Since w has the prefix aaba and the factor f = ab, it can not be a Lyndon word.

Geneviève Paquin: Infinite Smooth Lyndon Words 133

Remark 16. Since the smallest letter a of the alphabet is even, p[3] ≥ a ≥ 2. That
allows us to assume that ∆2(w) starts with a block of length at least 2. This
argument holds for ∆i(w), i ≥ 0, and will be used for almost all cases considered
in this paper.

Remark 17. In the previous case, we construct ∆0(w) from ∆2(w), applying ∆−1

twice. We will always proceed this way.

Case (2) If p = aab, then

∆0(w) = (aaba)
b−1
2 aa(bbab)

b−1
2 bb · · ·

∆1(w) = abbb · · ·
∆2(w) = bb · · ·
w has the factor f = ab smaller than its prefix aaba.

Case (3) If p = abaa, then

∆0(w) = ((abbb)
a
2 (aaba)

a
2)

a
2 ((abbb)

b−1
2 ab(baaa)

b−1
2 ba)

a
2 · · ·

∆1(w) = (baaa)
a
2 (bbab)

a
2 · · ·

∆2(w) = aaba · · ·
∆3(w) = aa · · ·
w has the factor f = (abbb)

b−1
2 ab.

Case (4) If p = abab, then

∆0(w) = ((abbb)
a
2)(aaba)

a
2)

b−1
2 (abbb)

a
2 ((aaba)

b−1
2 aa(bbab)

b−1
2 bb)

b−1
2 (aaba)

b−1
2 aa · · ·

∆1(w) = (baaa)
b−1
2 ba(abbb)

b−1
2 ab · · ·

∆2(w) = abbb · · ·
∆3(w) = bb · · ·
w has the prefix (abbb)

a
2 aaba and the smaller factor f = (abbb)

b−1
2 contained in

(bbab)
b−1
2 bb.

Remark 18. Since b > a and a is even, b > a ≥ 2. Thus, b ≥ 3 and b−1
2
≥ 1. This

insures that the factor (bbab)
b−1
2 bb occurs at least once.

Case (5) If p = abb, then

∆0(w) = (abbb)
b−1
2 ab(baaa)

b−1
2 ba · · ·

∆1(w) = bbab · · ·
∆2(w) = bb · · ·
w has the factor f = abbaaa.

Using Proposition 13, we conclude. ⊓⊔

3.2 Over an even alphabet

Let us now consider the case of an alphabet A with even letters.

Theorem 19. Over the alphabet {a < b}, with a and b even, the only smooth word
that is also an infinite Lyndon word is m{a<b}.

Proof. We proceed similarly as in the previous section. The 4 possibilities are illus-
trated in Figure 2.

Case (1) If p = aax, with x ∈ A, then
∆0(w) = (aaba)

x
2 (abbb)

x
2 · · ·

∆1(w) = axbx · · ·
∆2(w) = xx · · ·
w has the factor f = ab.

134 Proceedings of the Prague Stringology Conference 2008

(0)a b

a

a b(1)

(2) (3)

b

Figure 2. Possible cases for an even alphabet

Case (2) If p = abax, with x ∈ A, then

∆0(w) = ((abbb)
a
2 (aaba)

a
2)

x
2 ((abbb)

b
2 (aaba)

b
2)

x
2 · · ·

∆1(w) = (baaa)
x
2 (bbab)

x
2 · · ·

∆2(w) = axbx · · ·
∆3(w) = xx · · ·
w has the factor f = (abbb)

b
2 .

Case (3) Recall that the minimal smooth word Φ−1(abω) is a Lyndon word. Let us show
that this is the only smooth word that is also a Lyndon word. In order to prove
it, let us suppose that we can write p = abkay, with k ≥ 2 maximal (since Case
(2) has already excluded the possibility k = 1) and y ∈ A∗. Let us compute
u = Φ−1(bbax), with x ∈ A. We get

∆0(u) = ((bbab)
a
2 (baaa)

a
2)

x
2 ((bbab)

b
2 (baaa)

b
2)

x
2

∆1(u) = (baaa)
x
2 (bbab)

x
2

∆2(u) = axbx

∆3(u) = xx

Since a and b are even and using Lemma 12, Φ−1(bkay) can be written as

(w
a
2
1 w

a
2
2)

y
2 (w

b
2
1 w

b
2
2)

y
2 s,

with w1 = ∆
−(k−2)
b (bbab), w2 = ∆

−(k−2)
b (baaa) and s ∈ A∗.

Moreover, since Φ−1(bω) is the maximal smooth word, Φ−1(bk) (resp. Φ−1(bk−1a))
is prefix of w1 (resp. w2), we have that w1 > w2 and w1 is not prefix of w2.
Furthermore for k ≥ 2, using Equation (1) we get

∆−1
b (w1) > ∆−1

b (w2) ⇐ : ∆−1
a (w1) < ∆−1

a (w2),

that implies

∆−1
a (w

b
2
1) < ∆−1

a (w
a
2
1 w

a
2
2).

Thus Φ−1(abkay) is not a Lyndon word.

The only Lyndon smooth word over an even 2-letter alphabet is the minimal smooth
word mA with Φ(mA) = abω. ⊓⊔

3.3 Over an odd alphabet

In this section, we prove the following result.

Theorem 20. Over the alphabet {a < b}, with a and b odd, there exists an infinite
smooth Lyndon word if and only if a = 1. More precisely, the smooth Lyndon word is
the minimal smooth word m{1<b}, with b ∈ 2N+1.

Geneviève Paquin: Infinite Smooth Lyndon Words 135

Before proving Theorem 20, some results are required.

Lemma 21. Let A = {a < b} be an odd alphabet. Let w,w′ be two factors of a
smooth word such that w < w′ and w = xay, w′ = xby′, with x, y, y′ ∈ A∗. Then, if
|x| is even,

∆−1
α (w) < ∆−1

α (w′) ⇐ : α < α,

with α ∈ A and α its complement. If |x| is odd, then

∆−1
α (w) < ∆−1

α (w′) ⇐ : α < α.

Proof. Assume |x| even. By direct computation, we have the following equations:

∆−1
α (w) = ∆−1

α (xay) = ∆−1
α (x)∆−1

α (a)∆−1
α (y) = ∆−1

α (x)αa∆−1
α (y)

and

∆−1
α (w′) = ∆−1

α (xby′) = ∆−1
α (x)∆−1

α (b)∆−1
α (y′) = ∆−1

α (x)αb∆−1
α (y′).

Then ∆−1
α (w) < ∆−1

α (w′) if and only if ∆−1
α (y)[0] < α. We conclude using

∆−1
α (y)[0] = α. A similar argument holds for |x| odd. ⊓⊔

Let us now prove 2 sub-cases of Theorem 20: a 6= 1 (Theorem 22) and a = 1
(Theorem 25).

Theorem 22. Over the alphabet {a < b}, with a, b odd and a 6= 1, there is no infinite
smooth word that is also a Lyndon word.

Proof. As in Sections 3.1 and 3.2, we proceed by inspection of the different possible
prefixes of Φ(w) (see Figure 3) for an infinite smooth word w.

(0)

(1) (2)

a

a b

b

Figure 3. Possible cases for an odd alphabet, with a 6= 1

Case (1) If p = aax, then

∆0(w) = (aaba)
x−1
2 aa(bbab)

x−1
2 bb(aaba)

x−1
2 aa · · ·

∆1(w) = axbxax · · ·
∆2(w) = xxx · · ·
Since x ≥ a > 1 and x is odd, x−1

2
≥ 1. Thus, w has the factor f = ab.

Remark 23. In the same way as in Remark 16, we can suppose that ∆i(w) starts
by a block of length at least 3.

Case (2) If p = abx, then

∆0(w) = (abbb)
x−1
2 ab(baaa)

x−1
2 ba(abbb)

x−1
2 ab · · ·

∆1(w) = bxaxbx · · ·
∆2(w) = xxx · · ·
w has the factor f = abbaaa.

136 Proceedings of the Prague Stringology Conference 2008

Since in the 3 cases, it is possible to find a factor smaller than the prefix, we
conclude that there is no smooth Lyndon word over an odd alphabet A, with a 6= 1.

⊓⊔

Proposition 24. Let w ∈ {1 < b}ω be an infinite smooth word that is also a Lyndon
word. Then 1b ∈ Pref(Φ(w)).

We know from [5] that the minimal smooth word over an odd 2-letter alphabet
{1 < b} is a Lyndon word. The next theorem shows that this is the only infinite
Lyndon word over the alphabet {1 < b}.

Theorem 25. Over the alphabet {1 < b}, with b odd, the only infinite smooth word
that is also a Lyndon word is m{1<b}.

Proof. Recall that Φ(m{1,b}) = (1b)ω. Let us show that for an infinite smooth word
w, any prefix p of Φ(w) that is not prefix of (1b)ω can not be such that Φ−1(p) is
prefix of an infinite Lyndon word. By Proposition 24, p starts by 1b. We proceed by
inspection of the different possibilities (see Figure 4).

(2)

b

b1

1 (6)

(5)

(1)

1 b

b

(4)

1

1 b

(3)

(1b)k

Figure 4. Possible prefixes of p starting by (1b)k, k ≥ 1

Case (1): p = (1b)k111. Let us consider the prefix Φ−1(1b111) of u:

∆0(u) = 1b((b1)
b−1
2 b(1bbb)

b−1
2 1b)

b−1
2 (b1)

b−1
2 b1bb1 · · ·

∆1(u) = b(1bbb)
b−1
2 1bb1 · · ·

∆2(u) = 1bb1 · · ·
∆3(u) = 1b · · ·
∆4(u) = 1 · · ·

u has the factor f = 1b(b1)
b−1
2 b1bb1. Using Lemma 21 2(k − 1) times, we conclude

that the prefix p does not describe a smooth Lyndon word. In Cases (2), (3), (4) and
(6), we get the same conclusion with a similar argument. Thus the only prefix leading
to a smooth Lyndon word is the one considered in Case (5): (1b)ω. ⊓⊔

Proof. (of Theorem 20) Follows from Theorems 22 and 25. ⊓⊔

Geneviève Paquin: Infinite Smooth Lyndon Words 137

3.4 Over A with a odd and b even

In this section, we consider infinite smooth words over an alphabet {a < b}, with a
odd and b even. We prove that over this alphabet, there is no infinite smooth word
that is also a Lyndon word. In order to prove it, we consider 2 cases, a 6= 1 and a = 1,
that have to be analysed separately.

Theorem 26. Over the alphabet {a < b}, with a 6= 1 odd and b even, there is no
smooth infinite word that is a Lyndon word.

Proof. There are 5 possibilities to consider, illustrated in Figure 5 (a).

(0)b

ba

a

a

a b

(1) (3)(2)

(4) (5)

a b

b

(a) for an odd-even alpha-
bet {a < b}, with a 6= 1.

(0)

1

b

b1

1 b

1 b 1

b1

1 b

1 b

1 b

1

b

b

b1

1 b

b1

1 b

1 b

b1(1) (2)

(3) (4)

(5)

(6) (7)

(8)

(9) (10)

(11)

(12)

(13) (14)

(15)

(16)

b

(b) for the alphabet {a < b}, with
a = 1 and b = 4n.

Figure 5. Possible cases...

In each case, it is possible to find a factor f smaller than the smooth word. Thus,
there is no smooth Lyndon word. ⊓⊔

Theorem 27. Over the alphabet {a < b}, with a = 1 and b = 4n, there is no infinite
smooth word that is a Lyndon word.

Proof. Figure 5 (b) shows the different cases to consider. For each of the 16 cases, it
is again possible to find a factor of Φ−1(p) in order to prove that it is not a prefix of
an infinite Lyndon word. ⊓⊔

Theorem 28. Over the alphabet {a < b}, with a = 1 and b = 2(2n + 1), there is no
infinite smooth word that is a Lyndon word.

Proposition 24 can be generalized to an alphabet {1, b}, with b even. This result
will be used in the following proof.

Proof. Figure 6 shows the different cases to consider. Cases numbered less or equal to
16 are the same as in Theorem 27. For the other cases, it is possible to find a factor
in Φ−1(p) smaller than its prefix, following that the word is not a Lyndon word. ⊓⊔

138 Proceedings of the Prague Stringology Conference 2008

(0)

1

1 b

b1

b1

b1

b

1

b

1

b1

b1

b1

1 b

b1

1 b

1

1

1

1

1

b

b b

b

b

b

(1)

(17) (18)

(3)

(19) (20)

(21) (22) (23)

(24)

(25) (26)

(8)

(27) (13) (28)

(29)

(16)

b

Figure 6. Different cases for the alphabet {a < b}, with a = 1 and b = 2(2n + 1)

4 Summary and concluding remarks

The next theorem summarizes the results of Section 3.

Theorem 29. Over any 2-letter alphabet, the only infinite smooth words that are also
infinite Lyndon words are m{2a<2b} and m{1<2b+1}, for a, b ∈ N \ {0}.

Recall that for the alphabet {1, 2}, it is conjectured [4] that in any infinite smooth
word, any smooth factor appears. From this conjecture follows that no infinite smooth
word is a Lyndon word. This is exactly what we have proved for the alphabet {1, 2}.
Moreover, the existence of infinite smooth Lyndon words over the alphabets {2a < 2b}
and {1 < 2b + 1} leads to the following corollary.

Corollary 30. Let A be a 2-letter alphabet such that A = {2a < 2b} or A = {1 <
2b + 1}. Then, any infinite smooth words w ∈ Aω does not contain every smooth
factors.

Otherwise, no infinite Lyndon word would exist: a factor smaller than the prefix
necessarily occurs. It is also interesting to notice that our main result completely
characterized the trivial finite Lyndon factorization of infinite smooth words: the
only infinite smooth words that have a finite Lyndon factorization composed of only
one factor are m{2a<2b} and m{1<2b+1}. It is still an open problem to characterized
infinite smooth words that have a non trivial finite Lyndon factorization. Giving
an explicit computation of the Lyndon factorization, finite or infinite, of any infinite
smooth words, as Melançon did for standard Sturmian words [19] is still a challenging
problem.

Acknowledgements. The author would like to thank Pierre Lalonde for his inter-
esting question during the LaCIM seminar that leads to this paper and Srecko Brlek
for his comments.

References

1. A. Bergeron-Brlek, S. Brlek, A. Lacasse, and X. Provençal: Patterns in smooth
tilings, in Proceedings of WORDS’03, vol. 27 of TUCS Gen. Publ., Turku Cent. Comput. Sci.,
Turku, 2003, pp. 370–381.

Geneviève Paquin: Infinite Smooth Lyndon Words 139

2. J. Berstel and A. de Luca: Sturmian words, Lyndon words and trees. Theoret. Comput.
Sci., 178(1-2) 1997, pp. 171–203.

3. V. Berthé, S. Brlek, and P. Choquette: Smooth words over arbitrary alphabets. Theoret.
Comput. Sci., 341 2005, pp. 293–310.

4. S. Brlek, S. Dulucq, A. Ladouceur, and L. Vuillon: Combinatorial properties of smooth
infinite words. Theoret. Comput. Sci., 352 2006, pp. 306–317.

5. S. Brlek, D. Jamet, and G. Paquin: Smooth words on 2-letter alphabets having same parity.
Theoret. Comput. Sci., 393 2008, pp. 166–181.

6. S. Brlek and A. Ladouceur: A note on differentiable palindromes. Theoret. Comput. Sci.,
302 2003, pp. 167–178.

7. S. Brlek, G. Melançon, and G. Paquin: Properties of the extremal infinite smooth words.
Discrete Math. Theoret. Comput. Sci., 9(2) 2007, pp. 33–49 (electronic).

8. A. Carpi: On repeated factors in C∞-words. Information Processing Letters, 52 1994, pp. 289–
294.

9. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus, IV. The quotient
groups of the lower central series. Ann. of Math., 68 1958, pp. 81–95.

10. F. M. Dekking: On the structure of self generating sequences. Séminaire de théorie des nombres
de Bordeaux, exposé 31, 1980–1981.

11. J.-P. Duval: Factorizing words over an ordered aphabet. Journal of Algorithms, 4 1983,
pp. 363–381.

12. J.-P. Duval: Génération d’une section des classes de conjugaison et arbre de mots de Lyndon
de longueur bornée. Theoret. Comput. Sci., 60 1988, pp. 255–283.

13. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theoret. Comput.
Sci., 307 2003, pp. 173–178.

14. Y. B. Huang: On the condition of powers of C∞-word to be a C∞-word. Applied Mathematics
- A Journal of Chinese Universities (Ser. A), 2 1997, pp. 243–246.

15. Y. B. Huang: On the number of C∞-words of form w̃xw. Theoret. Comput. Sci., 393 2008,
pp. 280–286.

16. D. Jamet and G. Paquin: Discrete surfaces and infinite smooth words, in FPSAC’05 - 17th an-
nual International conference on Formal Power Series and Algebraic Combinatorics (Taormina,
Italie) June 20–25, 2005.

17. W. Kolakoski: Self generating runs, Problem 5304. Amer. Math. Monthly, 72 1965, p. 674.
18. M. Lothaire: Combinatorics on words, Addison Wesley, Reading MA, 1983.
19. G. Melançon: Lyndon factorization of Sturmian words. Discrete Appl. Math., 210 2000,

pp. 137–149.
20. G. Melançon and C. Reutenauer: Lyndon words, free algebras and shuffles. Canad. J.

Math., 4 1989, pp. 577–591.
21. G. Paquin: Mots équilibrés et mots lisses, PhD thesis, Université du Québec à Montréal, 2008.
22. C. Reutenauer: Free Lie algebras, vol. 7, London Math. Soc. Monographs New Ser., 1993.
23. C. Reutenauer: Mots de Lyndon généralisés. Sém. Lothar. Combin., 54 2005/07, pp. Art.

B54h, 16 pp. (electronic).
24. G. Richomme: Conjugacy of morphisms and Lyndon decomposition of standard Sturmian

words. Theoret. Comput. Sci., 380(3) 2007, pp. 393–400.
25. P. Séébold: Lyndon factorization of the Prouhet words. Theoret. Comput. Sci., 307 2003,

pp. 179–197.
26. R. Siromoney, L. Matthew, V. R. Dare, and K. G. Subramanian: Infinite lyndon words.

Information Processing Letters, 50 1994, pp. 101–104.
27. W. D. Weakley: On the number of C∞-words of each length. J. Combin. Theory Ser. A,

51(1) 1989, pp. 55–62.

New Lower Bounds for the Maximum Number of

Runs in a String

Wataru Matsubara1, Kazuhiko Kusano1, Akira Ishino1, Hideo Bannai2, and
Ayumi Shinohara1

1 Graduate School of Information Science, Tohoku University,
Aramaki aza Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan

{matsubara@shino., kusano@shino., ishino@, ayumi@ }ecei.tohoku.ac.jp
2 Department of Informatics, Kyushu University,
744 Motooka, Nishiku, Fukuoka 819-0395 Japan.

bannai@i.kyushu-u.ac.jp

Abstract. We show a new lower bound for the maximum number of runs in a string.
We prove that for any ε > 0, (α − ε)n is an asymptotic lower bound, where α =
174719/184973 ≈ 0.944565. It is superior to the previous bound 3/(1 +

√
5) ≈ 0.927

given by Franěk et al. [6,7]. Moreover, our construction of the strings and the proof is
much simpler than theirs.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of
strings. It was shown in [9] that when considering maximal repetitions, or runs, the
maximum number of runs ρ(n) in any string of length n is O(n), leading to a lin-
ear time algorithm for computing all the runs in a string. Although they were not
able to give bounds for the constant factor, there have been several works to this
end [12,13,11,2,1,8]. The currently known best upper bound3 is ρ(n) ≤ 1.048n [3],
obtained by calculations based on the proof technique of [2]. The technique bounds
the number of runs for each string by considering runs in two parts: runs with long
periods, and runs with short periods. The former is more sparse and easier to bound
while the latter is bounded by an exhaustive calculation concerning how runs of
different periods can overlap in an interval of some length. On the other hand, an
asymptotic lower bound on ρ(n) is presented in [7], where it is shown that for any
ε > 0, there exists an integer N > 0 such that for any n > N , ρ(n) ≥ (α− ε)n, where
α = 3

1+
√

5
≈ 0.927. It was conjectured in [6] that this bound is optimal.

In this paper, we prove that the conjecture was false, by showing a new lower
bound α = 174719/184973 ≈ 0.944565. First we show a concrete string τ of length
184973, which contains 174697 runs in it. It immediately disproves the conjecture,
since 174697/184973 ≈ 0.944445 is already higher than the previous bound 0.927.
Then we prove that the string τ k, which is the string obtained by concatenating k
copies of τ , contains 174719k− 21 runs for any k ≥ 2. Since |τ k| = 184973k, it yields
the new lower bound 174719/184973 as k →∞.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said to
be a prefix, substring, and suffix of the string w = xyz, respectively. The length of

3 Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html

Wataru Matsubara, Kazuhiko Kusano, Akira Ishino, Hideo Bannai, Ayumi Shinohara : New Lower Bounds for the Maximum Number of Runs in a String,

pp. 140–145.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

W.Matsubara et al.: New Lower Bounds for the Maximum Number of Runs in a String 141

a string w is denoted by |w|. The i-th symbol of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the substring of w that begins at position i and ends at position j
is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has period p if w[i] = w[i + p]
for 1 ≤ i ≤ |w| − p. A string w is called primitive if w cannot be written as uk, where
k is a positive integer, k ≥ 2.

A string u is a run if it is periodic with (minimum) period p ≤ |u|/2. A substring
u = w[i : j] of w is a run in w if it is a run of period p and neither w[i − 1 : j] nor
w[i : j + 1] is a run of period p, that means the run is maximal. We denote the run
u = w[i : j] in w by the triple 〈i, j−i+1, p〉 consisting of the begin position i, the
length |u|, and the minimum period p of u. A run of w which is a prefix (resp. suffix)
of w is called a prefix (resp. suffix) run of w, For a string w, we denote by run(w) the
number of runs in w.

For example, the string aabaabaaaacaacac contains the following 7 runs:
〈1, 2, 1〉 = a2, 〈4, 2, 1〉 = a2, 〈7, 4, 1〉 = a4, 〈12, 2, 1〉 = a2, 〈13, 4, 2〉 = (ac)2,

〈1, 8, 3〉 = (aab)
8
3 , and 〈9, 7, 3〉 = (aac)

7
3 . Thus run(aabaabaaaacaacac) = 7.

We are interested in the behavior of the maxrun function defined by

ρ(n) = max{run(w) | w is a string of length n}.
Franěk, Simpson and Smyth [6] showed a beautiful construction of a series of

strings which contains many runs, and later Franěk and Qian Yang [7] formally proved
a family of true asymptotic lower bounds arbitrarily close to 3

1+
√

5
n as follows.

Theorem 1 ([7]). For any ε > 0 there exists a positive integer N so that ρ(n) ≥(
3

1+
√

5
− ε
)

n for any n ≥ N .

3 Basic Properties

In this section, we summarize some basic properties concerning periods and repeti-
tions in strings, which will be utilized in the sequel.

The next Lemma given by Fine and Wilf [5] provides an important property on
periods of a string.

Lemma 2 (Periodicity Lemma (see [10,4])). Let p and q be two periods of a string
w. If p + q − gcd(p, q) ≤ |w|, then gcd(p, q) is also a period of w.

For a string w, let us consider a series of strings w, w2, w3, w4 . . ., and observe
all runs contained in these strings. There are many cases, which confuse the task of
counting the number of runs in these strings.

1. A run in wk which is neither a suffix nor prefix run of wk is also a run in wk+1.
2. A suffix run in wk and a prefix run in w may be merged into one run in wk+1.
3. A suffix run in wk may be extended to a run in wk+1.
4. A new run may be newly created at the border between wk+1 and w.

Concerning case 4, note that a new run that did not appear in w or w2 may be
created in w3. For example, consider strings w = abcacabc, and r = (cabca)2. We
can verify that r is a run 〈8, 10, 5〉 of w3 = abcacabcabcacabcabcacabc, while r does
not appear in w2 = abcacabcabcacabc. Moreover, the same argument holds also
for binary alphabet 0, 1; Replace a, b, c into 01, 10, 00, respectively in the above
example.

However, the following lemma shows that the length of such new runs can be
bounded.

142 Proceedings of the Prague Stringology Conference 2008

Lemma 3. Let w be a string of length n. For any k ≥ 3, let r = 〈i, l, p〉 be a run in
wk. If l ≥ 2n, then i = 1 and l = kn, that is, r = wk.

Proof. We assume that n > 1, since it is trivial for the case n = 1. Since p is the
minimum period of the run r, we know |r| = l ≥ 2p and l ≥ 2n . Let u be a primitive
string of length m where w = ut for some integer t ≥ 1. Then, |u| = m ≤ n is also a
period of run r. Since p + m ≤ l , Lemma 2 claims that gcd(p,m) is also a period of
run r. If p > m, then gcd(p,m) < p, which contradicts the assumption that p is the
minimum period of r. If p < m, then it contradicts the assumption that u is primitive.
Therefore we have p = m. Since m is a period of wk, we have r = 〈1, kn,m〉 = wk.

This lets us prove the following lemma which gives a formula for run(wk).

Lemma 4. Let w be a string of length n. For any k ≥ 2, run(wk) = Ak − B, where
A = run(w3)− run(w2) and B = 2run(w3)− 3run(w2).

Proof. We think about the increase in the number of runs, when concatenating wk and
w. Let r = 〈i, l, p〉 be a run of wk+1 such that i+ l > nk+1, that is, r ends somewhere
in the last w of wk+1. By Lemma 3, if i ≤ (k − 2)n then r = wk+1. In such a case, r
does not increase the number of runs since the run will have already been considered
in w2. Therefore, the increase in runs can be considered by restricting our attention
to runs with i > (k − 2)n, that is, the increase in runs for the last 3 w’s of wk+1

when concatenating w to the last 2 w’s of wk. This gives us run(wk+1)− run(wk) =
run(w3)− run(w2).

run(wk) = run(wk−1) + run(w3)− run(w2)

= run(wk−2) + 2(run(w3)− run(w2))

= run(w2) + (k − 2)(run(w3)− run(w2))

= k(run(w3)− run(w2))− (2run(w3)− 3run(w2))

for k ≥ 3. It is easy to see that the equation also holds for k = 2.

Theorem 5. For any string w and any ε > 0, there exists a positive integer N such
that for any n ≥ N ,

ρ(n)

n
>

run(w3)− run(w2)

|w| − ε.

Proof. By Lemma 4, run(wk) = Ak − B, where A = run(w3) − run(w2) and B =
2run(w3)− 3run(w2).

For any given ε > 0, we choose N > A−B
ε

. For any n ≥ N , let k be the integer

satisfying |w|(k−1) ≤ n < |w|k. Notice that k > n
|w| ≥ N

|w| ≥ A−B
|w|ε . Since ρ(i+1) ≥ ρ(i)

for any i, and |wk−1| = |w|(k − 1),

ρ(n)

n
≥ ρ(|w|(k − 1))

|w|k ≥ run(wk−1)

|w|k =
A(k − 1)−B

|w|k =
Ak − A−B

|w|k

=
A

|w| −
A−B

|w|k >
A

|w| − ε.

⊓⊔

W.Matsubara et al.: New Lower Bounds for the Maximum Number of Runs in a String 143

4 New Lower Bounds

We found some strings which contain many runs, by running a computer program
which utilizes a simple heuristic search for run-rich binary strings. Given a buffer size,
the search first starts with the single string 0 in the buffer. At each round, two new
strings are created from each string in the buffer by appending 0 or 1 to the string.
The new strings are then sorted in order of run(w3) − run(w2), and only those that
fit in the buffer are retained for the next round. Strings that give a high ratio of runs
are recorded.

We tried several variations of the algorithm, and found many run-rich strings.
Among these strings found so far, the string τ , lets us prove the currently best lower
bound on the maximum number of runs in a string. Since τ is too long to include
in the paper, we will make τ available on our web site 4. Once we have τ , it is
straightforward to confirm that the following lemma holds. Any näıve program to
count runs in a string would be sufficient.

Lemma 6. There exists a string τ such that |τ | = 184973, run(τ) = 174697,
run(τ 2) = 349417, and run(τ 3) = 524136.

It immediately disproves the conjecture, since 174697/184973 ≈ 0.944445 is al-
ready higher than the previous bound 3

1+
√

5
≈ 0.927. We now show the main result

of this paper.

Theorem 7. For any ε > 0 there exists a positive integer N so that
ρ(n) > (α− ε) n for any n ≥ N , where α = 174719

184973
≈ 0.944565.

Proof. From Theorem 5 and Lemma 6, we have

ρ(n)

n
>

524136− 349417

184973
− ε =

174719

184973
− ε.

⊓⊔

For proof of concept, we present in the Appendix, a shorter string τ1558 with
|τ1558| = 1558, run(τ1558) = 1455, run(τ 2

1558) = 2915, run(τ 3
1558) = 4374 that gives a

smaller bound (4374− 2915)/1558 ≈ 0.93645 compared to τ , but is still better than
previously known.

5 Conclusion and Further Research

We presented a new lower bound 174719/184973 ≈ 0.944565 for the maximum num-
ber of runs in a string. The proof was very simple, once after we verified that the runs
in the string τ is 174697, and noticed some trivial properties of the string. We do not
think that the bound is optimal. We believe that our work would revive the interests
to push the lower bound higher up, since the previous bound 3/(1 +

√
5) ≈ 0.927 was

conjectured to be the optimal since 2003.
Further research will include trying to find properties of run-rich strings by an-

alyzing strings obtaining from heuristic search. We believe that compression gives
a clue to understanding the property of run-rich strings, since while τ has length
184973, it can be represent by mere 24 terms of LZ factors (see Appendix).

4 http://www.shino.ecei.tohoku.ac.jp/runs/

144 Proceedings of the Prague Stringology Conference 2008

Acknowledgements: We thank Professor Rytter for useful comments about the
compressibility of run-rich strings.

References

1. P. Baturo, M. Pia֒tkowski, and W. Rytter: The number of runs in Sturmian words, in
Proc. CIAA 2008, 2008, To appear.

2. M. Crochemore and L. Ilie: Maximal repetitions in strings. J. Comput. Syst. Sci., 74 2008,
pp. 796–807.

3. M. Crochemore, L. Ilie, and L. Tinta: Towards a solution to the “runs” conjecture, in
Proc. CPM 2008, vol. 5029 of LNCS, 2008, pp. 290–302.

4. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, 2002.
5. N. Fine and H. Wilf: Uniqueness Theorems for Periodic Functions. Proceedings of the

American Mathematical Society, 16(1) 1965, pp. 109–114.
6. F. Franěk, R. Simpson, and W. Smyth: The maximum number of runs in a string, in Proc.

14th Australasian Workshop on Combinatorial Algorithms (AWOCA2003), 2003, pp. 26–35.
7. F. Franěk and Q. Yang: An asymptotic lower bound for the maximal-number-of-runs func-

tion, in Proc. Prague Stringology Conference (PSC’06), 2006, pp. 3–8.
8. M. Giraud: Not so many runs in strings, in Proc. LATA 2008, 2008, pp. 245–252.
9. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in

Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS’99), 1999, pp. 596–
604.

10. M. Lothaire: Algebraic combinatorics on words, Cambridge University Press New York, 2002.
11. S. J. Puglisi, J. simpson, and W. F. Smyth: How many runs can a string contain? Theo-

retical Computer Science, 401(1–3) 2008, pp. 165–171.
12. W. Rytter: The number of runs in a string: Improved analysis of the linear upper bound,

in Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006),
vol. 3884 of LNCS, 2006, pp. 184–195.

13. W. Rytter: The number of runs in a string. Inf. Comput., 205(9) 2007, pp. 1459–1469.

W.Matsubara et al.: New Lower Bounds for the Maximum Number of Runs in a String 145

Appendix

The binary string τ1558 with |τ1558| = 1558, run(τ1558) = 1455, run(τ 2
1558) = 2915,

run(τ 3
1558) = 4374, giving lower bound (4374− 2915)/1558 ≈ 0.93645 > 0.927.

110101101001011010110100101101011001101011010010110101101001011010

110010110101101001011010110100101101011001101011010010110101101001

011010110010110101101001011010110010110100101101011010010110101100

101101011010010110101101001011010110010110100101101011010010110101

100101101011010010110101100101101001011010110100101101011001011010

110100101101011010010110101100101101011010010110101100101101001011

010110100101101011001011010110100101101011010010110101100101101001

011010110100101101011001011010110100101101011001011010010110101101

001011010110010110101101001011010110100101101011001011010110100101

101011001011010010110101101001011010110010110101101001011010110010

110100101101011010010110101100101101011010010110101101001011010110

010110100101101011010010110101100101101011010010110101100101101001

011010110100101101011001011010110100101101011010010110101100101101

011010010110101100101101001011010110100101101011001011010110100101

101011010010110101100101101001011010110100101101011001011010110100

101101011001011010010110101101001011010110010110101101001011010110

100101101011001011010110100101101011001011010010110101101001011010

110010110101101001011010110010110100101101011010010110101100101101

011010010110101101001011010110010110100101101011010010110101100101

101011010010110101100101101001011010110100101101011001011010110100

101101011010010110101100101101011010010110101100101101001011010110

100101101011001011010110100101101011010010110101100101101001011010

110100101101011001011010110100101101011001011010010110101101001011

0101100101101011010010110101101001011010

By interpreting τ1558 as a binary representation of an integer, it can be expressed
in hexadecimal representation by:

0x35A5AD2D66B4B5A5ACB5A5AD2D66B4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD

2D65AD2D65A5AD2D65AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B5969

6B4B596B4B5A5ACB5A5ACB4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD2D65AD2D6

5A5AD2D65AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B59696B4B596B4

B5A5ACB5A5ACB4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD2D65AD2D65A5AD2D65

AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B59696B4B596B4B5A5A

The string τ of Lemma 6 can be represented by 24 terms of LZ factors.
τ = a / (0,1) / b / (1,3) / (1,4) / (2,8) / (5,13) / (12,19) /

(26,31) / (49,38) / (50,63) / (89,93) / (113,162) / (57,317) /

(249,693) / (275,984) / (879,2120) / (942,3041) / (2811,6521) /

(2999,9374) / (8764,20072) / (9332,28878) / (27096,45341) /

(38210,67195)

Efficient Variants of the

Backward-Oracle-Matching Algorithm

Simone Faro1 and Thierry Lecroq2

1Dipartimento di Matematica e Informatica, Università di Catania, Viale A.Doria n.6, 95125
Catania, Italy

2Université de Rouen, LITIS EA 4108, 76821 Mont-Saint-Aignan Cedex, France
faro@dmi.unict.it, thierry.lecroq@univ-rouen.fr

Abstract. In this article we present two efficient variants of the BOM string matching
algorithm which are more efficient and flexible than the original algorithm. We also
present bit-parallel versions of them obtaining an efficient variant of the BNDM algo-
rithm. Then we compare the newly presented algorithms with some of the most recent
and effective string matching algorithms. It turns out that the new proposed variants
are very flexible and achieve very good results, especially in the case of large alphabets.

Keywords: string matching, experimental algorithms, text processing, automaton

1 Introduction

Given a text t of length n and a pattern p of length m over some alphabet Σ of size
σ, the string matching problem consists in finding all occurrences of the pattern p in
the text t. It is an extensively studied problem in computer science, mainly due to its
direct applications to such diverse areas as text, image and signal processing, speech
analysis and recognition, information retrieval, computational biology and chemistry,
etc.

Many string matching algorithms have been proposed over the years (see [8]). The
Boyer-Moore algorithm [5] deserves a special mention, since it has been particularly
successful and has inspired much work.

Automata play a very important role in the design of efficient pattern matching
algorithms. For instance the well known Knuth-Morris-Pratt algorithm [14] uses a
deterministic automaton that searches a pattern in a text by performing its transitions
on the text characters. The main result relative to the Knuth-Morris-Pratt algorithm
is that its automaton can be constructed in O(m)-time and -space, whereas pattern
search takes O(n)-time.

Automata based solutions have been also developed to design algorithms which
have optimal sublinear performance on average. This is done by using factor auto-
mata [4,9,3,1], data structures which identify all factors of a word. Among the algo-
rithms which make use of a factor automaton the BOM (Backward Oracle Matching)
algorithm [1] is the most efficient, especially for long patterns. Another algorithm
based on the bit-parallel simulation [2] of the nondeterministic factor automaton,
and called BNDM (Backward Nondeterministic Dawg Match) algorithm [16], is very
efficient for short patterns.

In this article we present two efficient variations of the BOM string matching
algorithm which turn out to be more efficient and flexible than the original BOM
algorithm. We also present a bit-parallel version of the previous solution which effi-
ciently extends the BNDM algorithm.

Simone Faro, Thierry Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm, pp. 146–160.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 147

The article is organized as follows. In Section 2 we introduce basic definitions and
the terminology used along the paper. In Section 3 we survey some of the most effec-
tive string matching algorithms. Next, in Section 4, we introduce two new variations
of the BOM algorithm. Experimental data obtained by running under various condi-
tions all the algorithms reviewed are presented and compared in Section 5. Finally,
we draw our conclusions in Section 6.

2 Basic Definitions and Terminology

A string p of length m is represented as a finite array p[0 ..m − 1], with m ≥ 0.
In particular, for m = 0 we obtain the empty string, also denoted by ε. By p[i] we
denote the (i + 1)-st character of p, for 0 ≤ i < m. Likewise, by p[i .. j] we denote
the substring of p contained between the (i + 1)-st and the (j + 1)-st characters of
p, for 0 ≤ i ≤ j < m. Moreover, for any i, j ∈ Z, we put p[i .. j] = ε if i > j
and p[i .. j] = p[max(i, 0),min(j,m − 1)] if i ≤ j. A substring of the form p[0 .. i] is
called a prefix of p and a substring of the form p[i ..m− 1] is called a suffix of p for
0 ≤ i ≤ m− 1. For any two strings u and w, we write w ⊐ u to indicate that w is a
suffix of u. Similarly, we write w ⊏ u to indicate that w is a prefix of u. The reverse
of a string p[0 ..m− 1] is the string built by the concatenation of its letters from the
last to the first: p[m− 1]p[m− 2] · · · p[1]p[0].

A Finite State Automaton is a tuple A = {Q, q0, F,Σ, δ}, where Q is the set of
states of the automaton, q0 ∈ Q is the initial state, F ⊆ Q is the set of accepting
states, Σ is the alphabet of characters labeling transitions and δ() : (Q × Σ) → Q
is the transition function. If δ(q, c) is not defined for a state q ∈ Q and a character
c ∈ Σ we say that δ(q, c) is an undefined transition and write δ(q, c) =⊥.

Let t be a text of length n and let p be a pattern of length m. When the character
p[0] is aligned with the character t[s] of the text, so that the character p[i] is aligned
with the character t[s + i], for i = 0, . . . ,m − 1, we say that the pattern p has shift
s in t. In this case the substring t[s .. s + m − 1] is called the current window of the
text. If t[s .. s + m− 1] = p, we say that the shift s is valid.

Most string matching algorithms have the following general structure. First, dur-
ing a preprocessing phase, they calculate useful mappings, in the form of tables, which
later are accessed to determine nontrivial shift advancements. Next, starting with shift
s = 0, they look for all valid shifts, by executing a matching phase, which determines
whether the shift s is valid and computes a positive shift increment.

For instance, in the case of the naive string matching algorithm, there is no pre-
processing phase and the matching phase always returns a unitary shift increment,
i.e. all possible shifts are actually processed.

In contrast the Boyer-Moore algorithm [5] checks whether s is a valid shift, by
scanning the pattern p from right to left and, at the end of the matching phase, it
computes the shift increment as the maximum value suggested by two heuristics: the
good-suffix heuristic and the bad-character heuristic, provided that both of them are
applicable (see [8]).

3 Very Fast String Matching Algorithms

In this section we briefly review the BOM algorithm and other efficient algorithms
for exact string matching that have been recently proposed. In particular, we present

148 Proceedings of the Prague Stringology Conference 2008

algorithms in the Fast-Search family [7], algorithms in the q-Hash family [15] and
some among the most efficient algorithms based on factor automata.

3.1 Fast-Search and Forward-Fast-Search Algorithms

The Fast-Search algorithm [6] is a very simple, yet efficient, variant of the Boyer-
Moore algorithm. Let p be a pattern of length m and let t be a text of length n
over a finite alphabet Σ. The Fast-Search algorithm computes its shift increments
by applying the bad-character rule if and only if a mismatch occurs during the first
character comparison, namely, while comparing characters p[m− 1] and t[s + m− 1],
where s is the current shift. Otherwise it uses the good-suffix rule.

The Forward-Fast-Search algorithm [7] maintains the same structure of the Fast-
Search algorithm, but it is based upon a modified version of the good-suffix rule,
called forward good-suffix rule, which uses a look-ahead character to determine larger
shift advancements. Thus, if the first mismatch occurs at position i < m − 1 of the
pattern p, the forward good-suffix rule suggests to align the substring t[s+i+1 .. s+m]
with its rightmost occurrence in p preceded by a character different from p[i]. If such
an occurrence does not exist, the forward good-suffix rule proposes a shift increment
which allows to match the longest suffix of t[s + i + 1 .. s + m] with a prefix of p. This

corresponds to advance the shift s by
−→
gsP (i + 1, t[s + m]) positions, where

−→
gsP (j, c) =Def min({0 < k ≤ m | p[j − k ..m− k − 1] ⊐ p

and (k ≤ j − 1→ p[j − 1] 6= p[j − 1− k])

and p[m− k] = c} ∪ {m + 1}) ,

for j = 0, 1, . . . ,m and c ∈ Σ.
The good-suffix rule and the forward good-suffix rule require tables of size m and

m ·|Σ|, respectively. These can be constructed in time O(m) and O(m ·max(m, |Σ|)),
respectively.

More effective implementations of the Fast-Search and Forward-Fast-Search algo-
rithm are obtained along the same lines of the Tuned-Boyer-Moore algorithm [13] by
making use of a fast-loop, using a technique described in Section 4.1 and shown in
Figure 3(A). Then subsequent matching phase can start with the (m−2)-nd character
of the pattern. At the end of the matching phase the algorithms uses the good-suffix
rule for shifting.

3.2 The q-Hash Algorithms

Algorithms in the q-Hash family have been introduced in [15] where the author pre-
sented an adaptation of the Wu and Manber multiple string matching algorithm [18]
to single string matching problem.

The idea of the q-Hash algorithm is to consider factors of the pattern of length q.
Each substring w of such a length q is hashed using a function h into integer values
within 0 and 255. Then the algorithm computes in a preprocessing phase a function
shift() : {0, 1, . . . , 255} → {0, 1, . . . ,m− q}. Formally for each 0 ≤ c ≤ 255 the value
shift(c) is defined by

shift(c) = min
(
{0 ≤ k < m− q | h(p[m− k − q ..m− k − 1]) = c} ∪ {m− q}

)
.

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 149

7 6 5 4 3 2 1 0

8 9

a b b b a a b

a

b b a

b

a

A)

7 6 5 4 3 2 1 0
a b b b a a b

b

a

a

a

B)

Figure 1. The factor automaton (A) and the factor oracle (B) of the reverse of pattern
p = baabbba. The factor automaton recognizes all, and only, the factors of the reverse
pattern. On the other hand note that the word aba is recognized by the factor oracle
whereas it is not a factor.

The searching phase of the algorithm consists of reading, for each shift s of the
pattern in the text, the substring w = t[s+m−q .. s+m−1] of length q. If shift [h(w)] >
0 then a shift of length shift [h(w)] is applied. Otherwise, when shift [h(w)] = 0 the
pattern x is naively checked in the text. In this case a shift of length sh is applied
where sh = m− 1− i with

i = max{0 ≤ j ≤ m− q|h(x[j .. j + q − 1]) = h(x[m− q + 1 ..m− 1]}.

3.3 The Backward-Automaton-Matching Algorithms

Algorithms based on the Boyer-Moore strategy generally try to match suffixes of the
pattern but it is possible to match some prefixes or some factors of the pattern by
scanning the current window of the text from right to left in order to improve the
length of the shifts. This can be done by the use of factor automata and factor oracles.

The factor automaton [4,9,3] of a pattern p, Aut(p), is also called the factor DAWG
of p (for Directed Acyclic Word Graph). Such an automaton recognizes all the factors
of p. Formally the language recognized by Aut(p) is defined as follows

L(Aut(p)) = {u ∈ Σ∗ : exists v, w ∈ Σ∗ such that p = vuw}.

The factor oracle of a pattern p, Oracle(p), is a very compact automaton which rec-
ognizes at least all the factors of p and slightly more other words. Formally Oracle(p)
is an automaton {Q,m,Q,Σ, δ} such that

1. Q contains exactly m + 1 states, say Q = {0, 1, 2, 3, . . . ,m}
2. m is the initial state
3. all states are final
4. the language accepted by Oracle(p) is such that L(Aut(p)) ⊆ L(Oracle(p)).

Despite the fact that the factor oracle is able to recognize words that are not
factors of the pattern, it can be used to search for a pattern in a text since the only
factor of p of length greater or equal to m which is recognized by the oracle is the
pattern itself. The computation of the oracle is linear in time and space in the length
of the pattern.

In Figure 1 are shown the factor automaton and the factor oracle of the reverse
of pattern p = baabbba.

The data structures factor automaton and factor oracle are used respectively
in [10,11] and in [1] to get optimal pattern matching algorithms on the average. The
algorithm which makes use of the factor automaton of the reverse pattern is called

150 Proceedings of the Prague Stringology Conference 2008

7 6 5 4 3 2 1 0
a b b b a a b

b

b

b

a

a

b

Figure 2. The nondeterministic factor automaton of the string abbbaab.

BDM (for Backward Dawg Matching) while the algorithm using the factor oracle is
called BOM (for Backward Oracle Matching). Such algorithms move a window of size
m on the text. For each new position of the window, the automaton of the reverse
of p is used to search for a factor of p from the right to the left of the window. The
basic idea of the BDM and BOM algorithms is that if its backward search failed on
a letter c after the reading of a word u then cu is not a factor of p and moving the
beginning of the window just after c is secure. If a factor of length m is recognized
then we have found an occurrence of the pattern.

The BDM and BOM algorithms have a quadratic worst case time complexity
but are optimal in average since they perform O(n(logσm)/m) inspections of text
characters reaching the best bound shown by Yao [19] in 1979.

3.4 The BNDM Algorithm

The BNDM algorithm [16] (for Backward Nondeterministic Dawg Match) is a bit-
parallel simulation [2] of the BDM algorithm. It uses a nondeterministic automaton
instead of the deterministic one in the BDM algorithm.

Figure 2 shows the nondeterministic version of the factor automaton for the reverse
of pattern p = baabbba. For each character c ∈ Σ, a bit vector B[c] is initialized in the
preprocessing phase. The i-th bit is 1 in this vector if c appears in the reversed pattern
in position i. Otherwise the i-th bit is set to 0. The state vector D is initialized to 1m.
The same kind of right to left scan in a window of size m is performed as in the BOM
algorithm while the state vector is updated in a similar fashion as in the Shift-And
algorithm [2]. If the m-th bit is 1 after this update operation, we have found a prefix
starting at position j where j is the number of updates done in this window. Thus if
j is the first position in the window, a match has been found.

A simplified version of the BNDM, called SBNDM, as been presented in [12]. This
algorithm differs from the original one in the main loop which starts each iteration
with a test of two consecutive text characters. Moreover it implements a fast-loop
to obtain better results on average. Experimental results show that this simplified
variant is always more efficient than the original one.

4 New Variations of the BOM Algorithm

In this section we present two variations of the BOM algorithm which perform better
in most cases. The first idea consists in extending the BOM algorithm with a fast-loop
over oracle transitions, along the same lines of the Tuned-Boyer-Moore algorithm [13].
Thus we are able to perform factor searching if and only if a portion of the pattern

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 151

has already matched against a portion of the current window of the text. We present
this idea in Section 4.1.

An other efficient variation of the BOM algorithm can be obtained by applying
the idea suggested by Sunday in the Quick-Search algorithm and then implemented
in the Forward-Fast-Search algorithm. This consists in taking into account, while
shifting, the character which follows the current window of the text, since it is always
involved in the next alignment. Such a variation is presented in Section 4.2.

4.1 Extending the BOM Algorithm with a Fast-Loop

In this section we present an extension of the BOM algorithm by introducing a fast-
loop with the aim of obtaining better results on the average. We discuss the applica-
tion of different variations of the fast-loop, listed in Figure 3, and present experimental
results in order to identify the best choice.

The idea of a fast loop has been proposed in [5]. The fast-loop we are using
here has first introduced in the Tuned-Boyer-Moore algorithm [13] and later largely
used in almost all variations of the Boyer-Moore algorithm. Generally a fast-loop is
implemented by iterating the bad character heuristic in a checkless cycle, in order
to quickly locate an occurrence of the rightmost character of the pattern. Suppose
bc() : Σ → {0, 1, . . . ,m} is the function which implements the bad-character heuristic
defined, for all c ∈ Σ, by

bc(c) = min({0 ≤ k < m | p[m− 1− k] = c} ∪ {m}) .

If we suppose that t[j] is the rightmost character of the current window of the
text for a shift s, i.e. j = s + m− 1, then the original fast-loop can be implemented
in a form similar to that presented in Figure 3(A).

In order to avoid testing the end of the text we could append the pattern at the
end of the text, i.e. set t[n .. n+m−1] to p. Thus we exit the algorithm only when an
occurrence of p is found. If this is not possible (because memory space is occupied)
it is always possible to store t[n−m .. n− 1] in z then set t[n−m .. n− 1] to p and
check z at the end of the algorithm without slowing it.

However algorithms based on the bad character heuristic obtain good results only
in the case of large alphabets and short patterns. It turns out moreover from ex-
perimental results [15] that the strategy of using an automaton to match prefixes or
factors is much better when the length of the pattern increases.

This behavior is due to the fact that for large patterns an occurrence of the
rightmost character of the window, i.e. t[j], can be found in the pattern and the
probability that the rightmost occurrence is near the rightmost position increases for
longer patterns and smaller alphabets. In this latter case an iteration of the fast loop
leads to a short shift. In contrast, when using an oracle for matching, it is common
that after a small number of characters we are not able to perform other transitions.
So generally this strategy looks for a number of characters greater than 1, for each
iteration, but leads to shift of length m.

As a first step we can translate the idea of the fast-loop over to automaton transi-
tions. This consists in shifting the pattern along the text with no more check until a
non-undefined transition is found with the rightmost character of the current window
of the text. This can be translated in the fast-loop presented in Figure 3(B).

It turns out from experimental results presented in Figure 4 that the variation of
the BOM algorithm which uses the fast-loop on transitions (col.B) performs better

152 Proceedings of the Prague Stringology Conference 2008

(A)

k = bc(tj)
while (k 6= 0) do

j = j + k
k = bc(tj)

(B)

q = δ(m, tj)
while (q ==⊥) do

j = j + m
q = δ(m, tj)

(C)

q = δ(m, tj)
if q 6= ⊥ then

p = δ(q, tj−1)
while (p ==⊥) do

j = j + m− 1
q = δ(m, tj)
if q 6= ⊥ then

p = δ(q, tj−1)

(D)

q = λ(tj , tj−1)
while (q ==⊥) do

j = j + m− 1
q = λ(tj , tj−1)

Figure 3. Different variations of the fast-loop where tj = ts+m−1 is the rightmost
character of the current window of the text. (A) The original fast-loop based on
the bad character rule. (B) A modified version of the fast-loop based on automaton
transitions. (C) A fast-loop based on two subsequent automaton transitions. (D) An
efficient implementation of the previous fast loop which encapsulate two subsequent
transitions in a single λ table.

Experimental results with σ = 8
m BOM (A) (B) (C) (D)
4 157.62 95.95 135.95 109.03 55.35
8 85.48 58.66 78.70 58.63 34.16
16 43.04 43.36 43.00 37.15 26.82
32 26.63 35.00 28.29 25.93 21.25
64 17.39 28.05 17.13 17.00 14.42
128 15.28 23.68 15.75 15.87 12.87
256 10.79 19.86 9.60 9.76 8.53
512 6.18 14.29 6.11 5.76 4.76
1024 3.29 8.20 3.45 3.35 2.64

Experimental results with σ = 32
m BOM (A) (B) (C) (D)
4 78.76 55.23 57.75 88.57 37.44
8 51.68 30.37 42.03 39.84 18.59
16 35.40 19.92 30.18 20.34 12.29
32 20.62 16.12 19.34 12.20 11.58
64 12.11 14.84 11.55 10.63 11.10
128 12.60 15.63 11.26 10.01 7.46
256 7.58 16.73 6.32 5.90 3.79
512 4.29 17.90 3.73 3.83 3.20
1024 2.87 14.19 2.67 2.79 2.01

Experimental results with σ = 16
m BOM (A) (B) (C) (D)
4 103.28 66.81 86.28 93.53 40.63
8 71.59 38.72 60.27 44.02 21.73
16 39.61 26.57 35.70 23.68 14.91
32 18.68 21.80 18.82 15.71 12.73
64 12.67 20.09 12.55 12.73 12.49
128 14.22 19.38 14.14 12.35 10.38
256 8.81 19.05 8.12 7.83 6.88
512 4.62 17.73 4.62 4.53 3.60
1024 2.35 11.49 2.66 2.89 2.67

Experimental results with σ = 64
m BOM (A) (B) (C) (D)
4 64.84 50.93 42.34 88.52 37.04
8 39.35 27.44 29.29 38.84 17.99
16 26.09 17.12 22.03 20.07 11.57
32 19.45 14.09 17.11 11.81 10.76
64 13.15 13.58 12.28 10.37 10.70
128 13.11 17.67 10.86 9.76 6.35
256 6.25 18.04 5.79 5.55 3.60
512 2.91 18.00 3.12 5.32 1.98
1024 2.71 16.89 2.58 2.42 1.57

Figure 4. Experimental results obtained by comparing the original BOM algorithm
(in the first column) against variations implemented using the four fast-loop presented
in Figure 3. The results have been obtained by searching 200 random patterns in
a 40Mb text buffer with a uniform distribution over an alphabet of dimension σ.
Running times are expressed in hundredths of seconds.

than the original algorithm (first column), especially for large alphabets. However it
is not flexible since its performances decrease when the length of the pattern increases
or when the dimension of the alphabet is small. This is the fast-loop finds only a small
number of undefined transitions for small alphabets or long patterns.

The variation of the algorithm we propose tries two subsequent transitions for each
iteration of the fast-loop with the aim to find with higher probability an undefined
transition. This can be translated in the fast-loop presented in Figure 3(C). From

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 153

experimental results it turns out that such a variation (Figure 4, col.C) obtains better
results than the previous one only for long pattern and large alphabets. This is for
each iteration of the fast-loop the algorithm performs two subsequent transitions
affecting the overall performance.

To avoid this problem we could encapsulate the two first transitions of the oracle
in a function λ() : (Σ ×Σ)→ Q defined, for each a, b ∈ Σ, by

λ(a, b) =

{
⊥ if δ(m, a) = ⊥
δ(δ(m, a), b) otherwise.

Thus the fast loop can be implemented as presented in Figure 3(D). At the end
of the fast-loop the algorithm could start standard transitions with the Oracle from
state q = λ(t[j], t[j − 1]) and character t[j − 2]. The function λ can be implemented
with a two dimensional table in O(σ2) time and space.

The resulting algorithm, here named Extended-BOM algorithm, is very fast and
flexible. Its pseudocode is presented in Figure 6(A). From experimental results in
Figure 4 it turns out that the Extended-BOM algorithm (col.D) is the best choice in
most cases and, differently from the original algorithm, it has very good performance
also for short patterns.

4.2 Looking for the Forward Character

The idea of looking for the forward character for shifting has been originally intro-
duced by Sunday in the Quick-Search algorithm [17] and then efficiently implemented
in the Forward-Fast-Search algorithm [7]. Specifically, it is based on the following ob-
servation: when a mismatch character is encountered while comparing the pattern
with the current window of the text t[s .. s + m− 1], the pattern is always shifted to
the right by at least one character, but never by more than m characters. Thus, the
character t[s + m] is always involved in testing for the next alignment.

In order to take into account the forward character of the current window of the
text without skip safe alignment we construct the forward factor oracle of the reverse
pattern. The forward factor oracle of a word p, FOracle(p), is an automaton which
recognizes at least all the factors of p, eventually preceded by a word x ∈ Σ ∪ {ε}.
More formally the language recognized by FOracle(p) is defined by

L(FOracle(p)) = {xw | x ∈ Σ ∪ {ε} and w ∈ L(Oracle(p))}

Observe that in the previous definition the prefix x could be the empty string. Thus
if w is a word recognized by the factor oracle of p then the word cw is recognized by
the forward factor oracle, for all c ∈ Σ ∪ {ε}.

The forward factor oracle of a word p can be constructed, in time O(m + Σ), by
simply extending the factor oracle of p with a new initial state which allows to perform
transitions starting at the text character of position s + m of the text, avoiding to
skip valid shift alignments.

Suppose Oracle(p) = {Q,m,Q,Σ, δ}, for a pattern p of length m. We construct
FOracle(p) by adding a new initial state (m + 1) and introducing transitions from
state (m + 1). More formally, given a pattern p of length m, FOracle(p) is an au-
tomaton {Q′, (m + 1), Q,Σ, δ′}, where

1. Q′ = Q ∪ {(m + 1)}

154 Proceedings of the Prague Stringology Conference 2008

7 6 5 4 3 2 1 0
a b b b a a b

b

a

a

a

8
Σ

b

a

A)

7 6 5 4 3 2 1 0
a b b b a a b

8
Σ

a

b

b

b

a

a

b

B)

Figure 5. (A) The forward factor oracle of the reverse pattern p = baabbba (B)
The nondeterministic version of the forward factor automaton of the reverse pattern
p = baabbba

2. (m + 1) is the initial state
3. all states are final
4. δ′(q, c) = δ(q, c) for all c ∈ Σ, if q 6= (m + 1)
5. δ′(m + 1, c) = {m, δ(m, c)} for all c ∈ Σ

Figure 5(A) shows the forward factor oracle of the reverse pattern p = baabbba.
The dashed transitions are those outgoing from the new initial state. A transition
labeled with all characters of the alphabet has been introduced from state (m + 1)
to state m. Note that, according to rule n.5, the forward factor oracle of the reverse
pattern p is a non-deterministic automaton. For example, starting from the initial
state 8 in Figure 5(A), after reading the couple of characters aa, both states 6 and 1
are active.

Observe moreover that we have to read at least two consecutive characters to find
an undefined transition. This is state m is always active after reading any character
of the alphabet.

Suppose we start transitions from the initial state of FOracle(p). Then after
reading a word w = au, with a ∈ Σ and u ∈ Σ+, at most two different states could
be active, i.e., state x = δ∗(w) and state y = δ∗(u). Where we recall that δ is the
transition function of Oracle(p) and where δ∗() : Σ∗ ← Q is the final state function
induced by δ and defined recursively by

δ∗(w) = δ(δ∗(w′), c), for each w = w′c, with w′ ∈ Σ∗, c ∈ Σ.

The idea consists in simulating the behavior of the nondeterministic forward factor
oracle by following transition for only one of the two active states. More precisely we
are interested only in transitions from state q where

q =

{
y = δ∗(u) if u[0] = p[m− 1]
x = δ∗(w) otherwise

To prove the correctness of our strategy, suppose first we have read a word w = au,
as defined above, and u[0] 6= p[m−1]. If Oracle(p) recognizes a word u (i.e. δ∗(u) 6= ⊥)
then by definition FOracle(p) recognize the word au, since a ∈ Σ ∪ {ε}.

Suppose now that u[0] = p[m − 1]. If Oracle(p) recognizes a word w then it
recognizes also word u which is a suffix of w. Thus by definition FOracle(p) recognizes
the word xu, with x = ε.

The simulation of the forward factor oracle can be done by simply changing the
computation of the λ table in the following way

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 155

(A)

Extended-BOM(p, m, t, n)

1. δ ← precompute-factor-oracle(p)
2. for a ∈ Σ do

3. q ← δ(m, a)
4. for b ∈ Σ do

5. if q = ⊥ then λ(a, b)← ⊥
6. else λ(a, b)← δ(q, b)
7. t[n .. n + m− 1]← p
8. j ← m− 1
9. while j < n do

10. q ← λ(t[j], t[j − 1])
11. while q = ⊥ do

12. j ← j + m− 1
13. q ← λ(t[j], t[j − 1])
14. i← j − 2
15. while q 6= ⊥ do

16. q ← δ(q, t[i])
17. i← i− 1
18. if i < j −m + 1 then

19. output(j)
20. i← i + 1
21. j ← j + i + m

(B)

Forward-Bom(p, m, t, n)

1. δ ← precompute-factor-oracle(p)
2. for a ∈ Σ do

3. q ← δ(m, a)
4. for b ∈ Σ do

5. if q = ⊥ then λ(a, b)← ⊥
6. else λ(a, b)← δ(q, b)
7. q ← δ(m, p[m− 1])
8. for a ∈ Σ do λ(a, p[m− 1])← q
9. t[n .. n + m− 1]← p

10. j ← m− 1
11. while j < n do

12. q ← λ(t[j + 1], t[j])
13. while q = ⊥ do

14. j ← j + m
15. q ← λ(t[j + 1], t[j])
16. i← j − 1
17. while q 6= ⊥ do

18. q ← δ(q, t[i])
19. i← i− 1
20. if i < j −m + 1 then

21. output(j)
22. i← i + 1
23. j ← j + i + m

Figure 6. (A) The Extended-BOM algorithm which extend the original BOM algo-
rithm by using an efficient fast-loop. (B) The Forward-BOM algorithm which per-
forms a look ahead for character of position t[j + 1] in text to obtain larger shift
advancements.

Forward-SBNDM(p, m, t, n)

1. for all c ∈ Σ do B[i]← 1
2. for i = 0 to m− 1 do B[p[i]]← B[p[i]] | (1 << (m− i))
3. j ← m− 1
4. while j < n do

5. D ← (B[t[j + 1]] << 1) & B[t[j]]
6. if D 6= 0 then pos← j
7. while D ← (D + D) & B[t[j − 1]] do j ← j − 1
8. j ← j + m− 1
9. if j = pos then

10. output(j)
11. j ← j + 1
12. else j ← j + m

Figure 7. The Forward SBNDM algorithm which simulates using bit-parallelism the
non deterministic forward automaton of the reverse pattern.

λ(a, b) =

{
δ(m, b) if δ(m, a) = ⊥ ∨ b = p[m− 1]
δ(δ(m, a), b) otherwise

Figure 6(B) shows the code of the Forward-Bom algorithm. Here the fast loop has
been modified to take into account also the forward character of position t[s + m].
However if there is no transition for the first two characters, t[s+m] and t[s+m−1], the
algorithm can shift the pattern of m position to the right. Line 1 of the preprocessing
phase can be performed in O(m)-time, lines 2 to 6 in O(σ2) and line 8 in O(σ). Thus
the preprocessing phase can be performed in O(m + σ2) time and space.

This idea can be applied also to the SBNDM algorithm based on bit-parallelism.
In this latter case we have to add a new first state and change the preprocessing in

156 Proceedings of the Prague Stringology Conference 2008

order to perform correct transitions from the first state. Moreover we need m + 1
bits for representing the NFA, thus we are able to search only for patterns with
1 ≤ m < w, if w is the dimension of a machine word. Figure 7 shows the code of the
Forward-SBNDM algorithm.

5 Experimental Results

We present next experimental data which allow to compare in terms of running time
the following string matching algorithms under various conditions: Fast-Search (FS),
Forward-Fast-Search (FFS), BOM (BOM), SBNDM (SBNDM), q-Hash (q-HASH with
q = 3, 5, 8), Extended-BOM (EBOM), Forward-BOM (FBOM) and Forward-SBNDM
(FSBNDM).

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with Intel Core2
processor of 1.66 GHz. In particular, the algorithms have been tested on seven Randσ
problems, for σ = 2, 4, 8, 16, 32, 64, 128, on a genome, on a protein sequence and on
a natural language text buffer. Searching have been performed for patterns of length
m = 2, 4, 8, 16, 32, 64, 128, 256, 512, and 1024. In the following tables, running times
are expressed in hundredths of seconds.

5.1 Running Times for Random Problems

For the case of random texts the algorithms have been tested on seven Randσ prob-
lems. Each Randσ problem consists of searching a set of 400 random patterns of a
given length in a 20Mb random text over a common alphabet of size σ, whit a uniform
distribution of characters.

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Running times for a Rand2 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH

 8-HASH

 0

 20

 40

 60

 80

 100

 120

 140

 5 10 15 20 25 30

Running times for a Rand2 problem and short patterns

 FFS
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH
 SBNDM

 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 153.52 129.07 209.07 169.22 177.31 162.98 - - 155.38 145.47
8 115.44 94.42 133.73 105.08 114.17 77.03 67.91 - 87.42 80.72
16 83.60 63.05 71.75 58.91 63.23 51.65 25.27 34.33 44.87 41.31
32 61.96 43.40 38.55 30.58 33.24 45.38 14.85 13.50 23.88 20.77
64 48.16 32.69 21.24 17.43 17.91 44.65 11.53 7.42 - -
128 39.55 24.90 11.91 11.73 15.63 44.02 10.09 8.34 - -
256 32.80 21.14 8.45 8.43 10.00 44.92 11.02 6.86 - -
512 28.07 17.27 6.36 4.87 5.87 45.65 10.04 6.21 - -
1024 23.39 15.47 4.00 2.79 3.95 44.72 10.59 5.14 - -

Running times for a Rand2 problem

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 157

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Running times for a Rand4 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH

 0

 10

 20

 30

 40

 50

 60

 70

 80

 5 10 15 20 25 30

Running times for a Rand4 problem and short patterns

 FFS
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH
 SBNDM

 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 82.12 78.03 111.55 58.93 84.93 117.82 - - 60.57 74.73
8 60.00 54.02 61.31 43.57 51.38 43.77 56.23 - 40.46 40.79
16 49.05 39.49 35.58 29.11 31.66 22.40 20.54 33.98 23.49 23.15
32 41.72 30.56 19.98 16.88 18.13 16.27 10.60 12.70 12.97 12.48
64 37.11 23.71 11.63 9.79 11.11 13.53 7.05 7.11 - -
128 32.02 18.43 8.30 7.56 10.20 12.17 7.05 8.12 - -
256 28.54 15.72 6.27 5.72 6.16 12.25 6.97 6.99 - -
512 26.07 14.13 3.52 3.31 3.67 12.10 7.46 5.71 - -
1024 22.14 12.97 1.83 2.25 2.78 11.46 8.02 4.76 - -

Running times for a Rand4 problem

 0

 5

 10

 15

 20

 0 200 400 600 800 1000

Running times for a Rand8 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

Running times for a Rand8 problem and short patterns

 FFS
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH
 SBNDM

 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 46.34 44.32 78.94 26.81 49.87 105.12 - - 33.82 40.05
8 29.61 27.46 43.23 16.85 30.11 37.30 54.47 - 18.70 23.09
16 22.46 20.67 21.72 13.34 19.01 18.07 18.90 33.90 12.81 14.71
32 19.97 16.91 13.70 10.15 12.29 10.89 9.92 13.14 9.92 9.73

64 18.93 14.14 8.70 7.07 7.95 8.71 7.87 7.09 - -
128 17.85 12.10 6.99 6.66 7.85 7.11 7.81 7.98 - -
256 17.15 11.13 5.26 3.56 4.70 7.68 6.48 7.43 - -
512 16.02 11.29 3.25 2.61 2.38 7.75 6.53 6.03 - -
1024 15.35 9.63 1.88 1.55 1.61 6.91 6.56 5.57 - -

Running times for a Rand8 problem

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Running times for a Rand16 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH
 8-HASH

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

Running times for a Rand16 problem and short patterns

 FS
 FFS

EBOM
 FBOM

 3-HASH
5-HASH

 SBNDM
 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 33.17 32.13 52.02 20.09 39.26 102.31 - - 28.16 27.98
8 18.52 18.91 35.48 10.73 21.87 34.74 54.09 - 14.04 15.22
16 13.48 13.01 19.61 6.98 13.76 16.33 18.71 33.78 7.66 9.18
32 11.41 10.83 9.33 6.36 8.29 9.46 8.64 13.35 6.80 6.43
64 10.54 9.57 6.74 5.58 7.12 6.79 6.21 7.29 - -
128 10.39 9.14 7.58 5.05 9.99 6.25 8.52 7.93 - -
256 9.88 9.08 5.00 3.16 4.45 6.84 6.98 7.07 - -
512 10.23 9.10 2.55 2.18 2.61 6.22 5.90 6.44 - -
1024 10.14 8.55 1.57 1.18 1.45 6.33 5.40 5.62 - -

Running times for a Rand16 problem

158 Proceedings of the Prague Stringology Conference 2008

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Running times for a Rand32 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH

 8-HASH

 0

 10

 20

 30

 40

 50

 5 10 15 20 25 30

Running times for a Rand32 problem and short patterns

 FS
 FFS

EBOM
 FBOM

 3-HASH
5-HASH

 SBNDM
 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 28.04 26.91 35.98 19.03 35.98 100.51 - - 26.88 23.75
8 15.51 15.23 24.54 8.98 20.74 34.34 53.71 - 12.28 12.54
16 9.78 9.44 17.46 6.18 11.56 15.44 18.36 34.14 6.95 7.46
32 8.29 7.98 10.26 5.46 7.11 8.36 9.02 13.16 5.59 5.75
64 7.50 7.35 5.78 5.58 6.37 6.37 6.22 7.07 - -
128 7.38 7.70 6.21 3.36 10.62 7.58 8.21 8.32 - -
256 7.59 8.33 3.62 2.38 5.94 6.73 6.95 6.75 - -
512 7.89 8.91 1.96 1.41 3.28 6.28 5.78 6.40 - -
1024 7.84 7.73 1.57 1.45 1.39 5.91 5.31 5.83 - -

Running times for a Rand32 problem

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Running times for a Rand64 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH

 8-HASH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

Running times for a Rand64 problem and short patterns

 FS
 FFS

EBOM
 FBOM

 3-HASH
5-HASH

 SBNDM
 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 23.55 27.38 29.10 18.79 35.38 97.23 - - 25.05 23.67
8 13.48 13.82 18.51 8.76 19.41 33.79 53.80 - 12.15 11.37
16 8.06 8.44 12.64 5.69 11.35 15.07 18.56 33.32 6.72 6.72
32 7.04 6.47 9.33 5.14 7.20 8.09 9.00 13.15 5.55 5.25
64 6.44 6.68 6.34 5.16 6.52 6.13 6.09 7.23 - -
128 8.41 8.24 6.05 3.84 9.85 8.51 7.72 8.45 - -
256 8.82 8.49 3.19 1.96 5.59 7.08 6.52 7.21 - -
512 8.52 9.14 1.99 1.28 3.21 6.05 5.79 6.07 - -
1024 8.60 8.36 2.41 1.33 1.64 6.25 4.10 5.67 - -

Running times for a Rand64 problem

 0

 2

 4

 6

 8

 10

 12

 14

 0 200 400 600 800 1000

Running times for a Rand128 problem and long patterns

FS
 FFS

BOM
EBOM
 FBOM

 3-HASH
5-HASH

 8-HASH

 0

 5

 10

 15

 20

 25

 30

 35

 40

 5 10 15 20 25 30

Running times for a Rand128 problem and short patterns

 FS
 FFS

EBOM
 FBOM

 3-HASH
5-HASH

 SBNDM
 FSBNDM

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 24.42 23.79 26.16 23.45 50.15 99.57 - 27.21 20.60

8 12.77 13.24 15.06 11.21 28.77 33.54 53.99 - 11.83 11.65
16 7.58 7.69 9.81 6.64 15.92 15.10 18.59 33.84 6.72 6.55

32 6.40 6.79 7.43 5.36 9.56 8.24 8.79 13.01 5.25 5.24

64 6.52 6.25 6.09 5.42 6.92 5.90 6.32 6.96 - -
128 9.96 10.31 6.02 3.40 10.67 8.08 8.24 7.96 - -
256 9.29 9.64 3.52 2.03 5.78 6.83 6.79 7.04 - -
512 9.11 9.14 1.87 1.37 3.67 5.86 5.78 6.33 - -
1024 8.80 9.62 1.88 1.13 2.62 5.49 5.00 5.67 - -

Running times for a Rand128 problem

Experimental results show that the Extended-BOM and the Forward-BOM algo-
rithms obtain the best run-time performance in most cases. In particular for small

S. Faro, T. Lecroq: Efficient Variants of the Backward-Oracle-Matching Algorithm 159

alphabets and short patterns the presented variations are second to algorithms in the
q-Hash family. Moreover for large alphabets and short patterns algorithms based on
bit-parallelism are the best choice. Note however that for alphabets of medium di-
mension, when the pattern is short, the performance of the Extended-BOM algorithm
outperform those of bit-parallel algorithms that until now have been considered the
best choice for short patterns.

5.2 Running Times for Real World Problems

The tests on real world problems have been performed on a genome sequence and
on a natural language text buffer. A genome is a DNA sequence composed of the
four nucleotides, also called base pairs or bases: Adenine, Cytosine, Guanine and
Thymine. The genome we used for these tests is a sequence of 4, 638, 690 base pairs
of Escherichia coli. We used the file E.coli file of the Large Canterbury Corpus
(http://www.data-compression.info/Corpora/CanterburyCorpus/).

The tests on the protein sequence has been performed using a 2.4Mb file containing
a protein sequence from the human genome with 22 different characters.

For the experiments on the natural language text buffer we used the file
world192.txt (The CIA World Fact Book) of the Large Canterbury Corpus. The
alphabet is composed of 94 different characters. The text is composed of 2, 473, 400
characters.

From experimental results it turns out that the Extended-BOM algorithm obtains
in most cases the best results and sporadically is second to algorithms of the q-Hash
family. Again better results are obtained for medium dimensions of the alphabet.

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 18.64 16.91 23.25 12.65 19.09 25.48 - - 12.96 17.30
8 13.85 11.63 13.04 10.27 11.40 9.90 12.34 - 8.73 9.01
16 11.48 8.47 7.73 6.77 6.47 4.76 4.39 7.74 5.28 5.50
32 9.58 6.44 4.53 3.52 4.07 3.20 2.77 2.85 3.04 2.62

64 8.56 4.92 2.50 1.95 2.42 2.65 1.60 1.84 - -
128 7.05 4.01 1.74 1.73 1.91 2.42 1.84 2.08 - -
256 6.41 3.35 1.33 1.32 1.33 2.90 1.60 1.41 - -
512 5.66 3.20 0.94 0.82 0.78 2.39 1.60 1.61 - -
1024 5.97 2.19 0.98 0.66 0.51 2.50 1.21 1.21 - -

Running times for a genome sequence (σ = 4)

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 4.33 2.93 8.30 2.14 5.51 14.49 - - 5.19 3.59
8 1.68 2.64 4.21 2.27 3.58 4.38 8.09 - 2.31 1.85
16 1.71 1.57 2.66 1.05 1.92 2.50 2.58 4.54 1.25 1.05
32 1.41 1.47 1.62 0.87 1.27 1.30 1.37 1.64 0.89 0.89
64 1.21 1.02 1.10 0.63 1.18 0.85 0.82 1.25 - -
128 1.09 1.33 1.13 0.67 1.51 0.98 1.14 1.22 - -
256 1.37 1.44 0.59 0.51 0.47 0.90 0.90 0.82 - -
512 1.20 1.56 0.50 0.27 0.30 0.77 0.90 0.88 - -
1024 1.25 1.64 0.39 0.35 0.27 0.87 0.70 0.74 - -

Running times for a protein sequence (σ = 22)

m FS FFS BOM EBOM FBOM 3-HASH 5-HASH 8-HASH SBNDM FSBNDM

4 3.66 3.73 5.70 2.70 4.79 11.70 - - 3.65 3.25
8 2.12 2.01 3.95 1.52 2.44 3.83 6.50 - 1.96 1.82
16 1.54 1.29 2.73 0.82 1.80 2.10 1.96 3.66 1.14 1.05
32 1.14 1.09 1.35 1.06 1.29 0.95 1.60 1.05 0.55 0.86
64 0.91 0.82 1.14 0.82 1.45 0.70 0.66 0.63 - -
128 1.10 1.17 0.86 0.79 1.32 0.86 0.90 0.94 - -
256 0.93 1.28 0.48 0.59 0.67 0.83 0.75 0.70 - -
512 0.78 1.21 0.59 0.27 0.71 0.66 0.66 0.40 - -
1024 0.65 1.55 0.69 0.52 0.80 0.63 0.28 0.47 - -

Running times for a natural language text buffer (σ = 93)

160 Proceedings of the Prague Stringology Conference 2008

6 Conclusion

We presented two efficient variants of the Backward Oracle Matching algorithm which
is considered one of the most effective algorithm for exact string matching. The first
variation, called Extended-BOM, introduces an efficient fast-loop over transitions of
the oracle by reading two consecutive characters for each iteration. The second varia-
tion, called Forward-BOM, extends the previous one by using a look-ahead character
at the beginning of transitions in order to obtain larger shift advancements.

It turns out from experimental results that the new proposed variations are very
fast in practice and obtain the best results in most cases, especially for long patterns
and alphabets of medium dimension.

References

1. C. Allauzen, M. Crochemore, and M. Raffinot: Factor oracle: a new structure for
pattern matching, in SOFSEM’99, J. Pavelka, G. Tel, and M. Bartosek, eds., LNCS 1725, Milovy,
Czech Republic, 1999, Springer-Verlag, Berlin, pp. 291–306.

2. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

3. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, M. T. Chen, and J. Seiferas:
The smallest automaton recognizing the subwords of a text. Theor. Comput. Sci., 40(1) 1985,
pp. 31–55.

4. A. Blumer, J. Blumer, A. Ehrenfeucht, D. Haussler, and R. McConnel: Linear size
finite automata for the set of all subwords of a word: an outline of results. Bull. Eur. Assoc.
Theor. Comput. Sci., 21 1983, pp. 12–20.

5. R. S. Boyer and J. S. Moore: A fast string searching algorithm. Commun. ACM, 20(10)
1977, pp. 762–772.

6. D. Cantone and S. Faro: Fast-Search: a new efficient variant of the Boyer-Moore string
matching algorithm. WEA 2003, LNCS 2647(4/5) 2003, pp. 247–267.

7. D. Cantone and S. Faro: Fast-Search Algorithms: New Efficient Variants of the Boyer-Moore
Pattern-Matching Algorithm. J. Autom. Lang. Comb., 10(5/6) 2005, pp. 589–608.

8. C. Charras and T. Lecroq: Handbook of exact string matching algorithms, King’s College
Publications, 2004.

9. M. Crochemore: Optimal factor tranducers, in Combinatorial Algorithms on Words, A. Apos-
tolico and Z. Galil, eds., vol. 12 of NATO Advanced Science Institutes, Series F, Springer-Verlag,
Berlin, 1985, pp. 31–44.

10. M. Crochemore, A. Czumaj, L. Ga̧sieniec, S. Jarominek, T. Lecroq, W. Plandowski,

and W. Rytter: Speeding up two string matching algorithms. Algorithmica, 12(4/5) 1994,
pp. 247–267.

11. M. Crochemore and W. Rytter: Text algorithms, Oxford University Press, 1994.
12. J. Holub and B. Durian: Fast variants of bit parallel approach to suffix automata. Talk given

in: The Second Haifa Annual International Stringology Research Workshop of the Israeli Science
Foundation, http://www.cri.haifa.ac.il/events/2005/string/presentations/Holub.pdf, 2005.

13. A. Hume and D. M. Sunday: Fast string searching. Softw. Pract. Exp., 21(11) 1991, pp. 1221–
1248.

14. D. E. Knuth, J. H. Morris, Jr, and V. R. Pratt: Fast pattern matching in strings. SIAM
J. Comput., 6(1) 1977, pp. 323–350.

15. T. Lecroq: Fast exact string matching algorithms. Inf. Process. Lett., 102(6) 2007, pp. 229–235.
16. G. Navarro and M. Raffinot: A bit-parallel approach to suffix automata: Fast extended

string matching, in Proceedings of the 9th Annual Symposium on Combinatorial Pattern Match-
ing, M. Farach-Colton, ed., LNCS 1448, Piscataway, NJ, 1998, Springer-Verlag, Berlin, pp. 14–33.

17. D. M. Sunday: A very fast substring search algorithm. Commun. ACM, 33(8) 1990, pp. 132–
142.

18. S. Wu and U. Manber: A fast algorithm for multi-pattern searching, Report TR-94-17,
Department of Computer Science, University of Arizona, Tucson, AZ, 1994.

19. A. C. Yao: The complexity of pattern matching for a random string. SIAM J. Comput., 8(3)
1979, pp. 368–387.

Fast Optimal Algorithms for Computing All the

Repeats in a String⋆

Simon J. Puglisi1, William F. Smyth2,3, and Munina Yusufu2

1 School of Computer Science & Information Technology,
RMIT University, GPO Box 2476V, Melbourne, Victoria 3001, Australia

sjp@cs.rmit.edu.au

2 Algorithms Research Group, Department of Computing & Software
McMaster University, Hamilton, Ontario, Canada L8S 4K1

{smyth,yusufum}@mcmaster.ca
http://www.cas.mcmaster.ca/cas/research/algorithms.htm

3 Digital Ecosystems & Business Intelligence Institute
Curtin University, GPO Box U1987, Perth WA 6845, Australia

W.Smyth@curtin.edu.au

Abstract. Given a string x = x[1..n] on an alphabet of size α, and a threshold pmin ≥
1, we first describe a new algorithm PSY1 that, based on suffix array construction,
computes all the complete nonextendible repeats in x of length p ≥ pmin. PSY1
executes in Θ(n) time independent of alphabet size and is an order of magnitude faster
than the two other algorithms previously proposed for this problem. Second, we describe
a new fast algorithm PSY2 for computing all complete supernonextendible repeats
in x that also executes in Θ(n) time independent of alphabet size, thus asymptotically
faster than methods previously proposed. Both algorithms require 9n bytes of storage,
including preprocessing (with a minor caveat for PSY1). We conclude with a brief
discussion of applications to bioinformatics and data compression.

1 Introduction

A repeating substring u in a string x is a substring of x that occurs more than
once. A repeat in x is a set of repeating substrings u of x; it can be specified by
the length p ≥ 1 of u (what we call its period) and the locations at which u occurs.
Thus in x = abaababa, the tuple (3; 1, 4, 6) describes the repeat of u = aba (p = 3)
at positions 1, 4, 6.

Following [20] we say that a repeat (p; i1, i2, . . . , ik), k ≥ 2, is complete iff it
includes all occurrences of u in x; left-extendible (LE) iff

x[i1−1] = x[i2−1] = · · · = x[ik−1];

and right-extendible (RE) iff

x[i1+p] = x[i2+p] = · · · = x[ik+p].

A repeat is NLE iff it is not LE; NRE iff it is not RE; nonextendible (NE) iff it
is both NLE and NRE. A repeat is supernonextendible (SNE) iff it is NE and its
repeating substring u is not a proper substring of any other repeating substring of x.

⋆ The work of the first author was supported by the Australian Research Council, that of the second
and third authors by the Natural Sciences & Engineering Research Council of Canada.

Simon J. Puglisi, William F. Smyth, Munina Yusufu : Fast Optimal Algorithms for Computing All the Repeats in a String, pp. 161–169.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

162 Proceedings of the Prague Stringology Conference 2008

In [8, p. 147] an algorithm is described that, given the suffix tree STx of x,
computes all the NE (called “maximal”) pairs of repeats in x in time O(αn+ q),
where q is the number of pairs output. [4] uses similar methods to compute all NE
pairs (p; i1, i2) such that i2−i1 ≥ gmin (or ≤ gmax) for user-defined gaps gmin, gmax.
[1] shows how to use the suffix array SAx of x to compute the NE pairs in time
O(αn+q). Since it may be that α ∈ O(n), all of these algorithms require O(n2) time
in the worst case, though in applications usually α = 4 (DNA alphabet). [7] uses the
suffix arrays of both x and its reversed string x = x[n]x[n−1] · · ·x[1] to compute
all the complete NE repeats in x in Θ(n) time. More recently, [17] describes suffix
array-based Θ(n)-time algorithms to compute all substring equivalence classes

— essentially the complete NE repeats — in x.
In this paper we first describe an algorithm PSY1 that computes all the complete

NE repeats in a given string x whose length (period) p ≥ pmin, where pmin ≥ 1 is
a user-specified minimum. PSY1 executes in Θ(n) time independent of alphabet size
and requires 5n bytes of storage, plus a stack, but its preprocessing includes suffix
array construction that raises the storage requirement to 9n bytes. PSY1 is an order
of magnitude faster than the complete repeats algorithms described in [7,17].

We also describe a new fast algorithm PSY2 that computes all the complete SNE
repeats in x in time Θ(n+α). This improves on the algorithm described in [8, p. 146]
that does the same calculation (of “supermaximal” repeats) in time O(n log α) using
a suffix tree, as well as on the algorithm described in [1, p. 59] that uses a suffix array
and requires O(n+α2) time. For α ∈ O(n) these times become O(n log n) and O(n2),
respectively, whereas PSY2 remains Θ(n).

In Section 2 we describe our algorithms. Section 3 summarizes the results of ex-
periments that compare the algorithms with each other and with existing algorithms.
Section 4 discusses these results, including the strategy of computing complete (NE
and SNE) repeats in the context of applications to bioinformatics and data compres-
sion.

2 Description of the Algorithms

We suppose that a string x = x[1..n] is given, defined on an ordered alphabet A of
size α (where if there is no explicit bound on alphabet size, we suppose α ≤ n). We
refer to the suffix x[i..n], i ∈ 1..n, simply as suffix i. Then the suffix array SAx is

an array [1..n] in which SAx[j] = i iff suffix i is the jth in lexicographical order among
all the suffixes of x. Let lcpx(i1, i2) denote the longest common prefix of suffixes
i1 and i2 of x. Then LCPx is an array [1..n+1] in which LCPx[1] = LCPx[n+1] = −1,
while for j ∈ 2..n,

LCPx[j] =
∣∣∣lcpx

(
SAx[j−1], SAx[j]

)∣∣∣.

SAx can be computed in Θ(n) worst-case time [9,12], though various supralinear
methods [16,14] are certainly much faster, as well as more space-efficient, in practice
[18], in some cases requiring space only for x and SAx itself. Given x and SAx,
LCPx can also be computed in Θ(n) time [11,15]: the first algorithm described in
[15] requires 9n bytes of storage and is almost as fast in practice as that of [11], which
requires 13n bytes. (For space calculations, we make throughout the usual assumption
that an integer occupies four bytes, a letter one.) When the context is clear, we write
SA for SAx, LCP for LCPx.

S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 163

We also define the Burrows-Wheeler Transform BWTx or BWT [5]: for SA[j] > 1,
BWT[j] = x

[
SA[j]−1

]
, while for j such that SA[j] = 1, BWT[j] = $, a sentinel letter

not equal to any other in x. We set BWT[n+1] = $. BWT can clearly be computed
in linear time from SA; since it occupies only n rather than 4n bytes, we use BWT
rather than SA if there is a choice. Examples of these standard data structures follow:

1 2 3 4 5 6 7 8 9

x = a b a a b a b a $
SAx = 8 3 6 1 4 7 2 5

LCPx = -1 1 1 3 3 0 2 2 -1
BWTx = b b b $ a a a a $

Here as in the Introduction the repeating substring u = aba of length 3 occurs in
positions 6, 1, 4 of x; our algorithms report this fact as a complete repeat (it is both
NE and SNE) in the form (3; 3, 5) with period p = 3, where 3, 5 is a range identifying
SA[3] = 6, SA[4] = 1, SA[5] = 4. Note that p = LCP[4] = LCP[5].

All of the algorithms described in this paper make direct use of LCP and BWT
(or equivalent), but not of SA, and therefore require only 5n bytes of storage (plus
relatively small stack space in the case of PSY1). However, the calculation [15] of LCP
requires SA, a further 4n bytes, and so, as noted above, the total space requirement
is 9n. The output of both algorithms is a range i..j of positions in SA that specifies
a complete repeat (NE for PSY1, SNE for PSY2).

PSY1

Given a threshold pmin ≥ 1, PSY1 outputs all the complete NE repeats in a given
string x, each one a triple (p; i, j) specifying a period p ≥ pmin and a range i..j in
SA such that the suffixes SA[i], SA[i+1], . . . , SA[j] form a maximal set with the same
longest common prefix of length

p (lcp) = LCP[i+1] = LCP[i+2] = · · · = LCP[j].

As shown in Figure 1, PSY1 performs a single left-to-right scan of LCP, inspecting
each position j from 1 to n. During the scan, whenever a position lb (initially lb = j)
is found for which the LCP value increases, an entry is pushed onto a stack LB.
LB specifies the Left Boundary lb and period p of a repeat that must be NRE,
but that may or may not be NLE: lb marks the leftmost occurrence in SA of a
repeating substring of length p = LCP[lb+1] > LCP[lb], thus the left boundary of a
repeat. In fact, a triple (p, lb, bwt) is pushed onto the stack, where bwt is a letter that
determines the left-extendibility of the repeat: initially bwt equals the sentinel letter
$ if BWT[lb] 6= BWT[lb+1], and otherwise equals BWT[lb]. This is the calculation
performed repeatedly by the function LEletter. Thus bwt = $ if the repeat is NLE
(and so eventually should be printed), but assumes a regular letter value if the repeat
(so far at least) is LE.

Since the pushes to LB occur in increasing order of position lb, the pops occur
in decreasing order of lb: the most recently pushed triple is popped when a position
j is reached for which LCP[j+1] < top(LB).lcp. Then j is the right boundary for
the popped triple (p, i, prevbwt) and a repeat (p; i, j) is identified. Observe that this
repeat is NRE: if the same letter followed each occurrence of the repeating substring
of length p, then p could not be maximum, contradicting the definition of LCP.

164 Proceedings of the Prague Stringology Conference 2008

— Preprocessing: compute SA, BWT & LCP
— in Θ(n) time and 9n bytes of space.

lcp← LCP[1]; lb← 1; bwt1← BWT[1]
push(LB; lcp, lb, bwt1)
for j ← 1 to n do

lb← j; lcp← LCP[j+1]
— Compute LEletter of BWT[j] and BWT[j+1].

bwt2← BWT[j+1]; bwt← LEletter(bwt1, bwt2); bwt1← bwt2
while top(LB).lcp > lcp do

pop(LB; p, i, prevbwt)
if prevbwt = $ and p ≥ pmin then

output(p; i, j)
lb← i
top(LB).bwt← LEletter(prevbwt, top(LB).bwt)
bwt← LEletter(prevbwt, bwt)

if top(LB).lcp = lcp then
top(LB).bwt← LEletter(top(LB).bwt, bwt)

else
push(LB; lcp, lb, bwt)

function LEletter(ℓ1, ℓ2)
if ℓ1 = $ or ℓ1 6= ℓ2 then return $
else return ℓ1

Figure 1. Algorithm PSY1: compute all NE repeats of period p ≥ pmin as ranges in
SA

It remains to determine whether or not the popped triple is NLE. For this the
popped value prevbwt needs to be inspected to determine whether it is $ — that is,
whether the repeat is NLE, whether it should be output. To ensure that top(LB).bwt
is maintained correctly, we use a simple property of ranges of repeats: two ranges are
either disjoint (empty common prefix) or else one range contains the other (common
prefix over the longer range). It follows that if top(LB).bwt = $ for a contained range,
then for every range that encloses it, we must also have top(LB).bwt = $. Moreover,
if for some letter λ ∈ A, a contained range is LE with bwt = λ, then the enclosing
range will be LE only if every other contained range also has bwt = λ. In PSY1
the correct bwt value for the enclosing range is maintained by invoking LEletter to
update top(LB).bwt whenever LCP[j+1] ≤ top(LB).lcp. For LCP[j+1] < top(LB).lcp,
LEletter is used again to update the current bwt based on the prevbwt just popped.

In view of this discussion, we claim the correctness of PSY1. Execution time is
Θ(n), since the number of executions of the while loop is at most the number of
triples pushed onto LB, thus O(n). Space required is 5n bytes plus maximum stack
size at 9 bytes per entry (four bytes each for lb and lcp, plus a byte for bwt). The
largest number of entries in LB is exactly the maximum depth of the suffix tree —
in fact n for x = an — but expected depth on an alphabet of size α > 1 is 2 logα n
[10]. Thus even for α = 2, expected space for LB is 18 logα n bytes — if n = 220, 360
bytes. On strings arising in practice, LB requires negligible space (Section 4).

PSY2

The SNE (“supermaximal”) repeats algorithm described in [1] does not deal explicitly
with the problem of determining whether or not a complete super NRE (SNRE) repeat
is also SNLE. This determination requires that the left extensions (BWT values) of

S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 165

— Preprocessing: compute SA, LAST & LCP.

j ← 0; p← −1; q ← 0
while j < n do

high← 0
repeat

j ← j+1; p← q; q ← LCP[j+1]
if q > p then high← q; i← j

until p > q
if high > 0 and SNLE(i, j, LAST) then

output(p; i, j)

function SNLE(start, end, LAST)
k ← end−start+1
if k > α then return FALSE

else
for h← start+1 to end do

if h−LAST[h] > start then return FALSE

return TRUE

Figure 2. Algorithm PSY2 with a simplified SNLE function using LAST

the k positions in the repeat be pairwise distinct. The approach apparently proposed
by the authors requires at most

(
k
2

)
letter comparisons, where k can be order n, thus

leading to O(n2) time in the worst case. A perhaps more efficient approach would
be to use a bit map B[1..α] to determine if any letter in the alphabet has occurred
more than once as a left extension over the range of the repeat. However, this would
require initializing the α positions in B for each of O(n) candidate repeats, and since
possibly α ∈ O(n), the time required could again be O(n2). Our proposed algorithm
PSY2 (Figure 2) incorporates two improvements, one to decrease execution time in
practice, the other to reduce asymptotic complexity to O(n+α).

We observe first that the cardinality k of an SNE repeat cannot exceed the al-
phabet size α. Thus as shown in function SNLE of Figure 2, a single test suffices to
eliminate candidate SNRE repeats of cardinality greater than α, thus substantially
reducing processing time in many cases. We now describe a more sophisticated ap-
proach that reduces worst-case complexity to Θ(n+α) with a negligible effect on
actual processing time.

Instead of BWTx, we compute an array LAST = LAST[1..n] in which for every
j ∈ 1..n, LAST[j] is the offset between the BWT letter corresponding to the current
position j in SA and the position jprev of the rightmost previous occurrence in SA of
the same BWT letter — if jprev does not exist or if j−jprev ≥ α, then LAST[j]←
α−1. However, if jprev exists and satisfies j−jprev < α, we set LAST[j]← j−jprev−1,
so that LAST[j] takes values in the range 0..α−2. See Figure 3. Then when function
SNLE processes a possibly supernonextendible repeat consisting of end−start+1
substrings of x, for every position h ∈ start+1..end, the value of BWT[h] will be
unique within the range if and only if h−LAST[h] > start. See Figure 2.

In general it is possible that the offsets stored in LAST could be integers of
size O(n). But offsets of magnitude greater than α−1 need not be stored, since if
the interval start..end actually is an SNE repeat, it can contain no more than α
positions. Thus LAST requires the same amount of storage as BWT, which stores
letters that are also restricted to be at most α−1 in magnitude. The method can be
implemented for any finite α, but with the usual convention that each letter in the

166 Proceedings of the Prague Stringology Conference 2008

— Initialize an array storing rightmost positions of each letter.

for ℓ← 1 to α do
lastpos[ℓ]← 0

— Compute LAST in a single left-to-right scan of SA.

α′ ← α−1
for j ← 1 to n do

i← SA[j]−1
if i← 0 then

LAST[j]← α′

else
letter ← x[i]; jprev ← lastpos[letter]
if jprev = 0 or j−jprev ≥ α then

LAST[j]← α′

else
LAST[j]← j−jprev−1

lastpos[letter]← j

Figure 3. Preprocessing for Algorithm PSY2 — computing LAST

alphabet is confined to a single byte (α ≤ 256), the array LAST becomes an array
of bytes, just like BWT. (In fact, in order to take advantage of the CPU cache, our
implementation of this algorithm actually computes BWT first, then makes a pass
over BWT to convert it into LAST — an approach that turns out to be 2–3 times
faster than a straightforward implementation of the preprocessing algorithm.)

3 Experimental Results

Experiments were conducted on a diverse selection of files (see Table 1) chosen
from http://www.cas.mcmaster.ca/∼bill/strings/ . Tests were conducted using
a 2.6 GHz Opteron 885 processor with 2 GB main memory available, under Red Hat
Linux 4.1.2–14. The compiler was gcc with the -O3 option. The run times used were
the minima over four runs, not including input/output.

File Type Name No. Bytes Description
highly periodic fibo35 9,227,465 Fibonacci

fibo36 14,930,352 Fibonacci
fss9 2,851,443 run-rich [6]
fss10 12,078,908 run-rich [6]

random rand2 8,388,608 α = 2
rand21 8,388,608 α = 21

DNA ecoli 4,638,690 escherichia coli genome
chr22 34,553,758 human chromosome 22
chr19 63,811,651 human chromosome 19

Genbank protein database prot-a 16,777,216 sample
prot-b 33,554,432 sample

English bible 4,047,392 King James bible
howto 39,422,105 Linux howto files
mozilla 51,220,480 Mozilla source code

Table 1. Files used for testing.

Test results are shown in Table 2, where the vertical line separates preprocessing
from processing. For SA construction the KS algorithm was used [9] — the fastest

S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 167

such algorithm is perhaps MP2 [14] that, based on experiments documented in [14,18],
would perform 5–10 times faster on average, using about 5.2n bytes of storage. For
LCP construction the algorithm of Kasai et al. [11] was used, the fastest one known
— according to experiments documented in [15], the first Manzini variant runs almost
as fast. Table 2 compares PSY1 with the algorithm of [17]. The algorithm of [7] was
not tested because it computes SA twice, and so could not be competitive. Not shown
in the table are tests against three variants of PSY1, two of them using heuristics
designed to speed up processing, another using a different approach that also achieves
Θ(n) worst case time: on each of the test files listed in Table 1, PSY1 is at least as fast
as any of the three. Note that for each program tested, the number of microseconds
per letter is generally stable within each file type and not highly variable overall.
Averages are not weighted by file size. Tests shown for PSY1 used pmin = 1; as
expected, for larger pmin run time was unchanged.

File SA LCP BWT LAST PSY1 [17] PSY2
fibo35 0.898 0.169 0.025 0.031 0.012 0.448 0.009
fibo36 0.886 0.170 0.027 0.033 0.012 0.475 0.007
fss9 0.826 0.154 0.026 0.031 0.014 0.330 0.007
fss10 0.958 0.177 0.025 0.032 0.013 0.469 0.008
periodic AVG 0.892 0.168 0.026 0.032 0.013 0.430 0.008
rand2 0.947 0.188 0.026 0.031 0.017 0.215 0.012
rand21 1.135 0.199 0.025 0.031 0.012 0.122 0.012
random AVG 1.041 0.193 0.025 0.031 0.015 0.169 0.012
ecoli 1.413 0.175 0.025 0.031 0.015 0.155 0.011
chr22 1.635 0.285 0.035 0.040 0.016 0.278 0.012
chr19 1.873 0.333 0.044 0.053 0.016 0.242 0.012
DNA AVG 1.754 0.309 0.035 0.041 0.016 0.225 0.012
prot-a 1.778 0.222 0.027 0.032 0.013 0.211 0.012
prot-b 1.971 0.277 0.034 0.039 0.013 0.247 0.012
protein AVG 1.874 0.249 0.030 0.036 0.013 0.229 0.012
bible 1.417 0.151 0.024 0.030 0.015 0.168 0.012
howto 1.912 0.214 0.035 0.039 0.016 0.219 0.012
mozilla 1.815 0.187 0.032 0.036 0.013 0.139 0.011
English AVG 1.417 0.151 0.024 0.035 0.014 0.175 0.012
AVERAGE 1.390 0.207 0.029 0.035 0.014 0.266 0.011

Table 2. Microseconds per letter used by each run.

4 Discussion

We make the following observations:

∗ Both new algorithms are very fast, especially on strings that arise in practice: even
if SA were to execute 10 times faster, still each algorithm would require less than
5 % of total SA/LCP time.
∗ Computing LAST for PSY2 requires about 20 % more time than computing BWT

for PSY1. Both requirements are small compared to SA/LCP computation time.
∗ For PSY1 we have computed maximum stack size for each of the test files: for
prot-a (the worst case) the maximum storage for LB was less than 0.1 % of the
5n bytes required for LCP and BWT.

168 Proceedings of the Prague Stringology Conference 2008

∗ The algorithm of [17] appears to execute 10–15 times slower than PSY1 on real-
world files, while requiring 12n bytes of storage (SA, inverse of SA, and LCP).
(The timing facilities for this algorithm were included in the code kindly provided
by the authors.)
∗ Assuming the use of a fast space-efficient SA construction algorithm, LCP con-

struction turns out to be the main obstacle to further improvement, due to both
its time and its space requirements.

The output of PSY1 and PSY2 can be used in various ways and for various
purposes. For offline data compression the output can be used for phrase selection
[2,13,21]. It is also useful for duplicate text/document detection [3]. If the user requires
positions in x to be output, this can trivially be achieved, since SA is available, by
postprocessing that replaces i..j by SA[i], SA[i+1], . . . , SA[j]. In applications to protein
sequences, such as the detection of low-complexity regions, the use of either PSY1 or
PSY2 will provide significant algorithmic speed-up over currently-proposed methods
[19] that are effective but slow. In the context of genome analysis the postprocessing of
interest may be to compute NE pairs as in [8,4,1]. Assuming an integer alphabet 1..α,
this can be accomplished as follows for each range i..j. Introduce a new array BWT′ =
BWT′[1..n], where for SA[h] < n, BWT′[h] = x[SA[h]+1], otherwise BWT′[h] = $.

(1) Perform a radix sort on the pairs

(BWT[i], BWT′[i]), (BWT[i+1], BWT′[i+1]), . . . , (BWT[j], BWT′[j])

into bins that are accessed from an array B = B[1..α, 1..α]. As a byproduct of the
sort, positions in a Boolean array E = E[1..α] are set: E[b] = TRUE if and only if
row b of B is empty.

(2) For every nonempty row b1 of B, and for every b2 ∈ 1..α, perform the following
simple processing:

for h1 ← b1+1 to α do

if not E[h1] then

for h2 ← (1 to b2−1) and (b2+1 to α) do

output all pairs B(b1, b2) with B(h1, h2)

This approach requires checking at most α2(α−1)2/2 positions in B for each range
processed; in the DNA case with α = 4, this amounts to at most 72 (that is, α3+2α)
positions, but will for most ranges be much less. Otherwise the time required is
proportional to the number of pairs output. Due to cache effects, we believe this will
be an efficient algorithm for computing NE pairs: it depends only on i, j, BWT, BWT′.

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced
suffix arrays. Journal of Discrete Algorithms, 2(1) 2004, pp. 53–86.

2. A. Apostolico and S. Lonardi: Off-line compression by greedy textual substitution. Pro-
ceedings of the IEEE, 88(11) 2000, pp. 1733–1744.

3. Y. Berstein and J. Zobel: Accurate discovery of co-derivative documents via duplicate text
detection. Information Systems, 31 2006, pp. 595–609.

4. G. S. Brodal, R. B. Lyngso, C. N. S. Pederesen, and J. Stoye: Finding maximal pairs
with bounded gap. Journal of Discrete Algorithms, 1 2000, pp. 77–103.

S. J. Puglisi et al.: Fast Optimal Algorithms for Computing All the Repeats in a String 169

5. M. Burrows and D. J. Wheeler: A block sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, Palo Alto, California, 1994.

6. F. Franek, J. Simpson, and W. F. Smyth: The maximum number of runs in a string, in
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms, M. Miller and
K. Park, eds., Seoul, Korea, 2003, pp. 36–45.

7. F. Franek, W. F. Smyth, and Y. Tang: Computing all repeats using suffix arrays. Journal
of Automata, Languages and Combinatorics, 8(4) 2003, pp. 579–591.

8. D. Gusfield: Algorithms on Strings, Trees, and Sequences : Computer Science and Computa-
tional Biology, Cambridge University Press, Cambridge, United Kingdom, 1997.

9. J. Kärkkäinen and P. Sanders: Simple linear work suffix array construction, in Proceedings
of the 30th International Colloquium Automata, Languages and Programming, vol. 2971 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2003, pp. 943–955.

10. S. Karlin, G. Ghandour, F. Ost, S. Tavare, and L. J. Korn: New approaches for
computer analysis of nucleic acid sequences. Proceedings of the National Academy of Science,
80(18) September 1983, pp. 5660–5664.

11. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: Linear-time longest-common-
prefix computation in suffix arrays and its applications, in Proceedings of the 12th Annual
Symposium on Combinatorial Pattern Matching, A. Amir and G. M. Landau, eds., vol. 2089 of
Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2001, pp. 181–192.

12. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays, in Proceedings of
the 14th Annual Symposium on Combinatorial Pattern Matching, R. Baeza-Yates, E. Chávez,
and M. Crochemore, eds., vol. 2676 of Lecture Notes in Computer Science, Springer-Verlag,
Berlin, 2003, pp. 200–210.

13. J. Larsson and A. Moffat: Off-line dictionary-based compression. Proceedings of the IEEE,
88(11) 2000, pp. 1722–1732.

14. M. A. Maniscalco and S. J. Puglisi: Faster lightweight suffix array construction, in Pro-
ceedings of 17th Australasian Workshop on Combinatorial Algorithms, J. Ryan and Dafik, eds.,
2006, pp. 16–29.

15. G. Manzini: Two space saving tricks for linear time LCP computation, in Proceedings of 9th
Scandinavian Workshop on Algorithm Theory (SWAT ’04), T. Hagerup and J. Katajainen, eds.,
vol. 3111 of Lecture Notes in Computer Science, Springer-Verlag, Berlin, 2004, pp. 372–383.

16. G. Manzini and P. Ferragina: Engineering a lightweight suffix array construction algorithm.
Algorithmica, 40 2004, pp. 33–50.

17. K. Narisawa, S. Inenaga, H. Bannai, and M. Takeda: Efficient computation of substring
equivalence classes with suffix arrays, in Proceedings of the 18th Annual Symposium on Combi-
natorial Pattern Matching, B. Ma and K. Zhang, eds., vol. 4580 of Lecture Notes in Computer
Science, Springer-Verlag, Berlin, 2007, pp. 340–351.

18. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction
algorithms. ACM Computing Surveys, 39(2) 2007, pp. 1–31.

19. S. W. Shin and S. M. Kim: A new algorithm for detecting low-complexity regions in protein
sequences. Bioinformatics, 21(2) 2005, pp. 160–170.

20. B. Smyth: Computing Patterns in Strings, Pearson Addison-Wesley, Essex, England, 2003.
21. A. Turpin and W. F. Smyth: An approach to phrase selection for offline data compression, in

Proceedings of the 25th Australasian Computer Science Conference, M. Oudshoorn, ed., 2000,
pp. 267–273.

New Efficient Bit-Parallel Algorithms for the

δ-Matching Problem with α-Bounded Gaps in

Musical Sequences

Domenico Cantone, Salvatore Cristofaro, and Simone Faro

Università degli Studi di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125, Catania, Italy
{cantone, cristofaro, faro}@dmi.unict.it

Abstract. We present new efficient variants of the (δ, α)-Sequential-Sampling algo-
rithm, recently introduced by the authors, for the δ-approximate string matching
problem with α-bounded gaps. These algorithms, which have practical applications
in music information retrieval and analysis, make use of the well-known technique of
bit-parallelism. An extensive comparison with the most efficient algorithms present in
the literature for the same search problem shows that our newly proposed solutions
achieve very good results in practice, in terms of both space and time complexity, and,
in most cases, they outperform existing algorithms.

Keywords: approximate string matching with gaps, bit-parallel algorithms, music
information retrieval

1 Introduction

The δ-approximate string matching problem with α-bounded gaps [5,4,2] is a general-
ization of the δ-approximate string matching problem [1] and arise in many questions
in music information retrieval and music analysis. This is particularly true in the con-
text of monophonic music, where one wants to retrieve occurrences of a given melody
from a complex musical score.

We recall that two (monophonic) musical sequences have a δ-approximate match-
ing if they have the same length (i.e., they contain the same number of notes) and
notes at the same positions differ by at most δ semitones. Then, we say that a melody
(or pattern) P has a δ-approximate occurrence with α-bounded gaps within a mu-
sical score (or text) T (or, more shortly, a (δ, α)-occurrence), if the melody has a
δ-approximate matching with a subsequence of the musical score in which it is al-
lowed to skip up to a fixed number α of notes (the gap) between any two consecutive
positions. Thus, δ-approximate matching with α-bounded gaps turns out to be very ef-
fective for finding closely related but not necessarily identical occurrences of melodies
(δ-approximation), when small values of δ are allowed. In addition, the gaps allow
to skip over various kinds of musical ornamentations (e.g., arpeggios) which are of
common use, especially in classical music. See Figure 1 for a pictorial illustration.

We mention also that many variants and generalizations of the δ-approximate
string matching problem with α-bounded gaps have been considered for applications
in other fields other than music, such as, for instance, molecular biology [9,10].

The paper is organized as follows. In the next section we introduce some basic
notations and give a formal definition of the δ-approximate string matching problem
with α-bounded gaps. In Section 3 we review some of the most efficient algorithms
for this problem. Then, in Section 4, we describe our newly proposed algorithms.

Domenico Cantone, Salvatore Cristofaro, Simone Faro: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem with α-Bounded Gaps in Musical

Sequences, pp. 170–184.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 171

G2222 4
4

T ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ

–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ˇ

ˇ
–flflflflfl–

gap

ˇ

ˇ

ˇ

ˇ

ä̇z

ˇ

G2222 4
4

P ˇ ˇ ˇ ˇ

Figure 1. An excerpt from study Op. 25 Nr. 1 for Piano Solo by F. Chopin (first
score). Melody P has a δ-approximate occurrence with α-bounded gaps in T , for
δ ≥ 2 and α ≥ 5, indicated by the circled notes. Tiny notes represent arpeggios and
form the gaps. Notice that in this case the gaps are all of the same size 5. Observe
also that the first and the third note of P differ from the corresponding matchings in
T (circled notes) by 2 semitones; the second note differ by 1 semitone, while the last
note equals its matching. In any case, the difference between a note and its matching
does not exceed 2 semitones, so that we have a (δ, α)-occurrence of P in T , for any
δ ≥ 2 and α ≥ 5.

In Section 5, we report the experimental results of an extensive comparison of our
algorithms with some of the most efficient ones present in the literature. Finally, in
Section 6 we draw our conclusions.

2 Basic Definitions and Properties

Before entering into details, we review a bit of notations and terminology. We repre-
sent a string P as a finite array P [0 ..m− 1], with m ≥ 0. In such a case we say that
P has length m and write |P | = m. In particular, for m = 0 we obtain the empty

string. By P [i] we denote the (i + 1)-st symbol of P , with 0 ≤ i < |P |, provided
that |P | > 0. Likewise, by P [i .. j] we denote the substring of P contained between
the (i+ 1)-st and the (j + 1)-st symbols of P (both inclusive), where 0 ≤ i ≤ j < |P |.
The substrings of the form P [0 .. j], also denoted by Pj, with 0 ≤ j < |P |, are the
nonempty prefixes of P .

Let Σ be a finite alphabet of integer numbers and let δ and α be nonnegative
integers. Two symbols a and b of Σ are said to be δ-approximate, in which case
we write a =δ b, if |a − b| ≤ δ. Given a pattern P of length m and a text T of
length n over the alphabet Σ, by a δ-approximate occurrence with α bounded

gaps of P in T , or simply a (δ, α)-occurrence of P in T , we mean a sequence
(i0, i1, . . . , im−1) of indices such that

(1) 0 ≤ i0 < i1 < · · · < im−1 < n,
(2) T [ij] =δ P [j], for 0 ≤ j < m, and
(3) ih − ih−1 ≤ α + 1, for 0 < h < m, provided that m > 1.

Given an index i, with 0 ≤ i < n, a (δ, α)-occurrence of P at position i in T is
a (δ, α)-occurrence (i0, i1, . . . , im−1) of P in T such that im−1 = i. We write P ✂i

δ,α T
to mean that there is a (δ, α)-occurrence of P at position i in T (in fact, when the
bounds δ and α are well understood from the context, one can simply write P ✂i T).

172 Proceedings of the Prague Stringology Conference 2008

The δ-approximate string matching problem with α-bounded gaps, or
(δ, α)-matching problem, is the problem of finding the (δ, α)-occurrences of a given
pattern P in a given text T . More precisely, the following variants may be considered
[2]: (a) find all (δ, α)-occurrences of P in T ; (b) find all positions i in T such that
P ✂i

δ,α T ; (c) for each position i in T , find the number of all distinct (δ, α)-occurrences
of P at position i in T . In this paper we will concentrate only on variant (b).

The following property is an immediate consequence of the above definitions:

Lemma 1. Let P and T be respectively a pattern of length m and a text of length n
over an alphabet Σ of integer numbers. Moreover, let δ and α be nonnegative integers.
Then,

(a) P0 ✂i
δ,α T ⇔ T [i] =δ P [0];

(b) Pj ✂i
δ,α T ⇔ T [i] =δ P [j] and (∃k ∈ {1, . . . , α + 1} : i− k ≥ 0 and Pj−1 ✂

i−k
δ,α T),

for 0 ≤ i < n and 0 < j < m.

The following notations and terminology will be used in connection with the bit-
parallelism technique. A bit mask (or binary string) is a string whose symbols
are the two bits 0 and 1. In writing bit masks, we will use exponentiation to denote
the concatenation of multiple copies of single bits or of bit masks as well. Thus, for
instance, 10130 denotes the bit mask 101110 and 1(01)30 denotes 10101010.

We will employ the following standard operations on bit masks: the bit-wise and
and bit-wise or operations, denoted respectively by & and |, and the right-shift and left-
shift operations, denoted respectively by ≫ and ≪. We will also use the arithmetic
operations of addition “+” and subtraction “−” between bit masks to calculate,
respectively, the binary representations of the sum and of the difference between the
nonnegative integers represented by the bit masks. It turns out that in all expressions
of the form X − Y which we will encounter in the rest of the paper, the nonnegative
integer represented by the bit mask X is always no less than the integer represented
by Y . Likewise, in all expressions of the form X & Y , X |Y , X + Y , and X − Y , the
two bit masks X and Y will have the same length, so that we will not need to deal
with special cases. Notice that if X and Y are bit masks of the same length ℓ, then
the length of the bit masks X & Y , X |Y , and X−Y is ℓ, whereas the length of X +Y
might be ℓ + 1, due to the carry bit.

Concerning the unitary left-shift operation, we will assume that the string X ≪ 1
has the same length as X, if the leading bit of X is 0 (which corresponds to dropping
from X its leading bit 0), otherwise its length is one more than that of X. The k-ary
left-shift operation is then defined as k iterations of the unitary left-shift. Instead,
the right-shift is defined in such a way that X ≫ k has always the same length of
X. Thus, for instance, if X = 00110 we have: X ≪ 1 = 01100, X ≪ 2 = 11000,
X ≪ 3 = 110000, X ≫ 1 = 00011, X ≫ 2 = 00001, X ≫ 3 = X ≫ 4 = · · · = 00000.

As far as concerns complexity issues, we will assume the computational model in
which each of the above operations can be executed in O(⌈L/w⌉)-space and time,
where L is the length of the result and w is the computer word length. In fact, a bit
mask B whose length exceeds the computer word length w can be readily represented
by ⌈|B|/w⌉ computer words.

The following additional notations will also be used. Given a matrixM of dimen-
sions h× k, we denote by (M)i,j the element ofM located in the intersection of the
(i + 1)-st row and (j + 1)-st column ofM, for 0 ≤ i < h and 0 ≤ j < k. A bit-matrix
is a matrix whose entries belong to {0, 1}. Given two integers h and k, with h ≤ k,
we denote by [h .. k] the set (interval) of all integers x such that h ≤ x ≤ k.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 173

In the sequel, we will assume that all patterns and texts in the paper are strings
over an alphabet Σ of size σ > 0, having the form {0, 1, . . . , σ − 1}.

3 Efficient algorithms for (δ, α)-matching

The δ-approximate string matching problem with α-bounded gaps has been first for-
mally defined in [5], where the δ-Bounded-Gaps algorithm has been proposed (see also
[4,2]). The δ-Bounded-Gaps algorithm, whose time and space complexity is O(nm),
with n and m the lengths of the text T and of the pattern P respectively, is presented
as an incremental procedure, based on the dynamic programming approach. Scanning
the pattern P from left to right, the δ-Bounded-Gaps algorithm looks for the (δ, α)-
occurrences of each prefix Pj of the pattern P in the whole text T , for 0 ≤ j < m.
Specifically, the δ-Bounded-Gaps algorithm proceeds by filling in a table D of dimen-
sions m×n such that D[j, i] = max({k ≥ 0 : i−α ≤ k ≤ i and Pj ✂k T}∪{−1}), for
0 ≤ j < m and 0 ≤ i < n. Notice that Pj ✂i T if and only if D[j, i] = i, for 0 ≤ j < m
and 0 ≤ i < n.

An algorithm, slightly more efficient than the δ-Bounded-Gaps, has been presented
by the authors in [2], under the name (δ, α)-Sequential-Sampling. As in the case of the
δ-Bounded-Gaps algorithm, also the (δ, α)-Sequential-Sampling is based on dynamic
programming, but it follows a different computation ordering than the δ-Bounded-
Gaps algorithm does; more precisely, it scans the text T from left to right and for
each position i of T it looks for the (δ, α)-occurrences at position i of all prefixes of
the pattern P . The (δ, α)-Sequential-Sampling algorithm has an O(nm) running time
and requires O(mα)-space. A much more efficient variant of it is the (δ, α)-Tuned-
Sequential-Sampling algorithm, which has an average case running time of O(n), in
the case in which α is assumed constant (cf. [3]).

Another algorithm, named (δ, α)-Shift-And, has also been described in [3]. The
(δ, α)-Shift-And algorithm is a very simple variant of a forward search algorithm pre-
sented in [9] for a pattern matching problem with gaps and character classes, partic-
ularly suited for applications to protein searching. It uses bit-parallelism to simulate
the behavior of a nondeterministic finite automaton with ε-transitions. The automa-
ton has ℓ = (α+1)(m−1)+2 states, and the simulation is carried out by representing
it as a bit mask B of length ℓ − 1 (the initial state of the automaton need not be
represented in the bit mask since it is always active during the computation). When
ℓ < w (the computer word length), the entire bit mask B fits in a single computer
word. In this case the (δ, α)-Shift-And algorithm becomes extremely fast in practice.

Other efficient algorithms for the (δ, α)-matching problem have been presented
more recently in [6] and [7]. In particular, [6] presents two algorithms, called DA-bpdb
and DA-mloga-bits. The first one inherits the basic idea from the dynamic program-
ming algorithm δ-Bounded-Gaps presented in [4]. It uses bit-parallelism to compute
an m×n bit-matrix D such that (D)j, i = 1 if and only if Pj ✂i T , for 0 ≤ j < m and
0 ≤ i < n. Basically, the algorithm DA-bpdb partitions each row of the matrix D as a
sequence of ⌈n/w⌉ consecutive bit masks, each of which represents a group of w bits
on that row. Then, the computation of the j-th bit mask in row i is performed bit-
parallely by using the (j − 1)-st and the j-th bit masks of the (i− 1)-st row. It turns
out that DA-bpdb has an O(nδ + ⌈n/w⌉m) worst-case execution time, which becomes
O(⌈n/w⌉⌈αδ/σ⌉ + n) on the average. The second algorithm, namely DA-mloga-bits,
is based on a compact representation, in the form of a systolic array, of the nonde-
terministic automaton used in the algorithm (δ, α)-Shift-And. The systolic array is

174 Proceedings of the Prague Stringology Conference 2008

composed of m building blocks, called counters in [6], one for each symbol of the pat-
tern, and is represented as a bit mask of length (m− 1)(⌈log2(α + 1)⌉+ 1) + 1. Notice
that this improves the representations used in [9,3] in which (α + 1)(m− 1) + 1 bits
are needed to represent the automaton. It turns out that the DA-mloga-bits algorithm
has an O(n⌈(m log2 α)/w⌉) worst-case searching time.

The algorithms presented in [7], called SDP-rows, SDP-columns, SDP-simple, and
SDP-simple-compute-L0, use different computation orderings, in combination with
sparse dynamic programming techniques, to implement the calculation of the table
D above. Specifically, in the case of the SDP-rows algorithm, the computation is
performed row-wise, whereas a column-wise computation is used by SDP-columns.
The algorithm SDP-simple, which can be considered as a brute force variant of SDP-
rows, performs very well in practice, especially for small values of δ and α; SDP-
simple-compute-L0 improves the average case running time of SDP-simple by using a
Boyer-Moore-Horspool-like shifting strategy [8], suitably adapted to handle gaps. In
particular, the latter two algorithms turn out to be among the most efficient ones,
in terms of running time, in many practical cases, especially for small values of α,
as shown in [7]. However, although these algorithms are very fast in practice, they
require additional O(n)-space, plus O(σ)-space in the case of SDP-simple-compute-L0.

4 New efficient variants of the (δ, α)-Sequential-Sampling

algorithm

In this section we present four efficient variants of the algorithm (δ, α)-Sequential-
Sampling, all based on bit-parallelism. In particular, one of these variants, the (δ, α)-
Tuned-Sequential-Sampling-HBP algorithm, is extremely efficient in most practical
cases and outperforms both algorithms SDP-simple and SDP-simple-compute-L0. Also,
the variant (δ, α)-Sequential-Sampling-BP+ turns out to be faster than existing algo-
rithms (e.g., (δ, α)-Shift-And) in the case of short patterns and very small values of
the gap α.

We begin by describing the general approach.
Given a text T of length n and a pattern P of length m, letMi be the bit-matrix

of dimensions (α + 1)×m such that

(Mi)k,j =

{
1, if i− α + k ≥ 0 and Pj ✂i−α+k T
0, otherwise ,

for −1 ≤ i < n, 0 ≤ j < m and 0 ≤ k ≤ α. Notice that, for 0 ≤ i < n and 0 ≤ j < m,
we have Pj ✂i T if and only if (Mi)α,j = 1. Thus, the problem of determining the
positions i of T at which P ✂i T holds, translates into the problem of determining all
values i such that (Mi)α,m−1 = 1, which in turn reduces to the problem of effectively
computing the matrices M−1,M0, . . . ,Mn−1. This can be done as follows. To begin
with, notice that, by the very definition of the matricesM−1,M0, . . . ,Mn−1, we have

(Mi)k,j = (Mi−1)k+1,j , (1)

for 0 ≤ i < n, 0 ≤ j < m and 0 ≤ k < α; i.e., the first α rows of Mi coincide with
the last α rows of Mi−1. In addition, by Lemma 1, we have also that

(Mi)α,j =

1, if T [i] =δ P [j] and

(j = 0 or (∃k ∈ {0, . . . , α} : (Mi−1)k,j−1 = 1))
0, otherwise ,

(2)

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 175

for 0 ≤ i < n and 0 ≤ j < m, which expresses the (j + 1)-st item in the last row of
matrix Mi in terms of the j-th column of matrix Mi−1. These recursive relations,
coupled with the initial conditionM−1 = 0(α+1)×m, allow one to compute the matrices
M0,M1, . . . ,Mn−1 in an iterative fashion, starting from the initial matrix M−1.

For instance, in the case of the (δ, α)-Sequential-Sampling algorithm, the compu-
tation is carried out by calculating in sequence the matrices M−1,M0, . . . ,Mn−1,
which are maintained in a circular fashion in a bit table M of dimensions (α+1)×m.
More specifically, initially the table M is filled in with all 0’s (which corresponds to
the initial matrix M−1). Then, n iterations are performed, for i = 0, 1, . . . , n − 1.
At iteration i, the last row of Mi is computed, by calculating in turn the ele-
ments (Mi)α,m−1, (Mi)α,m−2, . . . , (Mi)α,0 according to recurrence (2), and stored at
the row of index i mod (α + 1) of table M; thus, just after step i, we have that
M[(i + k + 1) mod (α + 1), j] = (Mi)k,j, for 0 ≤ k ≤ α and 0 ≤ j < m. In performing
such step, the (δ, α)-Sequential-Sampling algorithm makes use of an additional array
C, of length m, whose (j + 1)-st entry C[j] is used to count the number of 1’s in
the (j + 1)-st column of M, for 0 ≤ j < m. This allows to perform each step of the
computation in O(m)-time, yielding an overall running time of O(nm).1

The computation of the matricesM0,M1, . . . ,Mn−1 can be carried out in various
ways using the bit-parallelism technique, as we show next.

The basic idea is to represent each column of the matrices Mi as a bit mask of
length α + 1 (which is very natural, since the columns ofMi are nothing but vectors
of bits). Consequently, the whole matrix Mi can be represented as an array of m
bit masks, each of which corresponds to a column of Mi, and each of which fits in a
single computer word in the case that α < w, where w is the computer word length
(see below for a brief discussion on the condition α < w).2

To be more precise, let us denote with C(j)
i the bit mask of length α + 1 such that

C(j)
i [k] = (Mi)k,j, for −1 ≤ i < n, 0 ≤ j < m, and 0 ≤ k ≤ α.3 Then, by (1), we have

that C(j)
i [0 .. α − 1] = C(j)

i−1[1 .. α], i.e., the first α bits of C(j)
i coincide with the last α

bits of C(j)
i−1. Moreover, by (2), we have that the last bit of C(j)

i is 1, if T [i] =δ P [j]

and C(j−1)
i−1 6= 0α+1; otherwise it is 0, provided that j > 0. If j = 0, the last bit of C(0)

i

is 1 if and only if T [i] =δ P [0] holds. Therefore, if we put I = 01α, we obtain

C(j)
i =

{
((C(j)

i−1 & I)≪ 1) | 0α1, if T [i] =δ P [j] and (j = 0 or C(j−1)
i−1 6= 0α+1)

(C(j)
i−1 & I)≪ 1, otherwise ,

(3)

for 0 ≤ i < n and 0 ≤ j < m. Such relations suggest the simple algorithm reported in
Figure 2, named (δ, α)-Sequential-Sampling-HBP, which uses an array C of length m to

maintain the bit masks C(0)
i , C(1)

i , . . . , C(m−1)
i .4 This algorithm is very close in spirit to

1 We mention here that the (δ, α)-Sequential-Sampling algorithm in its original form presented in [2]
allows one to count the number of all distinct (δ, α)-approximate occurrences of each prefix Pj of
the pattern P at any position i of the text T , and not only to check whether Pj ✂i T .

2 Notice that a similar idea of packing the columns of a bit-matrix into computer words has been
already introduced by the authors in [3], in connection with the algorithm (δ, α)-Tuned-Sequential-

Sampling. Here, we have further refined it.
3 Notice that P ✂i T holds if and only if the the last bit of C(m−1)

i (i.e., C(m−1)
i [α]) is a 1, which

corresponds to the condition that C(m−1)
i & 0α1 6= 0α+1.

4 In the pseudo-code of Figure 2 it is plainly assumed that the bit masks 0α+1 and 0α1 are supplied
as constants. Concerning, instead, the bit mask I, notice that it can be computed, e.g., as I =

176 Proceedings of the Prague Stringology Conference 2008

(δ, α)-Sequential-Sampling-HBP(P , m, T , n, δ, α)

1. for i := 0 to m− 1 do

2. C[i] := 0α+1

3. I := 01α

4. for i := 0 to n− 1 do

5. for j := m− 1 downto 1 do

6. C[j] := (C[j] & I)≪ 1
7. if T [i] =δ P [j] and C[j − 1] 6= 0α+1

8. then C[j] := C[j] | 0α1

9. C[0] := (C[0]& I)≪ 1
10. if T [i] =δ P [0] then

11. C[0] := C[0] | 0α1

12. if (C[m− 1] & 0α1) 6= 0α+1 then

13. print(i)

(δ, α)-Tuned-Sequential-Sampling-HBP(P , m, T , n, δ, α)

1. for i := 0 to m− 1 do C[i] := 0α+1

2. next[0] := next[m] := m
3. I := 01α

4. for i := 0 to n− 1 do

5. p := m
6. j := next[p]
7. while j < m do

8. if j < m− 1 and T [i] =δ P [j + 1] then

9. C[j + 1] := C[j + 1] | 0α1
10. if p > j + 1 then

11. next[p] := j + 1
12. next[j + 1] := j
13. p := j + 1
14. C[j] := (C[j] & I)≪ 1
15. if C[j] = 0α+1 then next[p] := next[j]
16. else p := j
17. j := next[p]
18. if T [i] =δ P [0] then

19. C[0] := C[0] | 0α1

20. if p > 0 then next[p] := 0
21. if (C[m− 1] & 0α1) 6= 0α+1 then print(i)

Figure 2. The (δ, α)-Sequential-Sampling-HBP algorithm (on the left) and the (δ, α)-
Tuned-Sequential-Sampling-HBP algorithm (on the right) for the δ-approximate string
matching problem with α-bounded gaps.

the (δ, α)-Sequential-Sampling, improving the space complexity of the latter algorithm
to O(m⌈α/w⌉), though its running time, which is O(nm⌈α/w⌉), is worse than that
of the (δ, α)-Sequential-Sampling algorithm. The reason is that, in general, we need
⌈(α + 1)/w⌉ computer words to represent a bit mask of length α + 1. Consequently,
any update of the entry C[j] costs O(⌈α/w⌉)-time, for j = 0, 1, . . . ,m− 1. However,
we notice that in almost all practical applications in music information retrieval the
value of the gap bound α is at most 10 (or less), therefore smaller than the size w of a
computer word (which is 32 or 64). Thus, in practice, a bit mask of length α + 1 can
be maintained in a single computer word and in this case it turns out that the (δ, α)-
Sequential-Sampling-HBP algorithm is faster than the (δ, α)-Sequential-Sampling.

Now, by using a trick similar to the one employed in the (δ, α)-Tuned-Sequential-
Sampling algorithm, we obtain a variant of the (δ, α)-Sequential-Sampling-HBP which
performs extremely well in practice, as will be shown by extensive experimentation
in the next section.

As in the case of the (δ, α)-Tuned-Sequential-Sampling algorithm, we observe that,
during each step of the computation of the (δ, α)-Sequential-Sampling-HBP algorithm,
an iteration of the for-loop at line 5 relative to a value of j > 0 has no effect if the
items C[j] and C[j− 1] are both null, i.e., if C[j] = C[j− 1] = 0α+1. In fact, the only
items of the array C which need to be updated are the C[j]’s such that C[j] 6= 0α+1

or (if j > 0) C[j − 1] 6= 0α+1. Therefore, it is enough to scan only those positions j
of the array C such that C[j] 6= 0α+1. Thus, for each such j, we first check whether
T [i] =δ P [j +1], provided that j < m−1, and, if this is the case, we update the entry
C[j + 1] by assigning to it the bit mask C[j + 1] | 0α1. After that, C[j] is updated as
in line 6 of the (δ, α)-Sequential-Sampling-HBP algorithm. To perform such process,
the positions j of the nonnull items of C (i.e., the j’s such that C[j] 6= 0α+1) are

(0α1≪ α)− 0α1. Similar considerations will hold for the remaining algorithms to be presented in
this section.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 177

maintained into an ordered, linked list L, which is scanned from the highest value
of j up to the lowest one. The resulting algorithm, named (δ, α)-Tuned-Sequential-
Sampling-HBP, is reported in Figure 2. Notice that the list L is implemented as a
circular array, next, of length m + 1, whose last entry, next[m], is used as a pointer
to the location which contains the first (i.e., highest) element of L (or next[m] = m,
in the case the list L is empty).

By a simple inspection, it is immediate to verify that the (δ, α)-Tuned-Sequential-
Sampling-HBP algorithm has an O(nm⌈α/w⌉) worst-case running time and requires
O(m⌈α/w⌉)-space. Moreover, by arguing as in [3], it can be shown that the running
time of the (δ, α)-Tuned-Sequential-Sampling-HBP algorithm is O(n) on the average
(for a fixed α).

Notice that a slightly simpler variant of the (δ, α)-Tuned-Sequential-Sampling-HBP
algorithm could be obtained if we maintained into the array C the reverses of the

bit masks C(0)
i , C(1)

i , . . . , C(m−1)
i , rather than the bit masks themselves. In essence, this

would involve replacing each left-shift by a right-shift. More precisely, we would have
to replace the instruction of line 14 by the assignment C[j] := C[j]≫ 1 (thus avoiding
to perform any operation prior to the shift) and the instructions of lines 9 and 19 by
the assignments C[j+1] := C[j+1] | 10α and C[0] := C[0] | 10α, respectively. Also, the
condition in the if -statement of line 21 would need to be replaced by the condition
“(C[m− 1] & 10α) 6= 0α+1”. The above modifications would have the effect to slightly
reduce the number of operations performed during each step of the computation.

Observe also that the last entry C[m−1] of the array C is used by the (δ, α)-Tuned-
Sequential-Sampling-HBP algorithm only in the conditional test of line 21. Therefore
we do not need to maintain it, since such a test could be implicitly performed during
the execution of the while-loop of lines 7-17 as follows. If during the execution of the
while-loop the variable j assumes the value m−2 (which means that position m−2
is in the list L, i.e., C[m − 2] is nonnull), then we check whether T [i] =δ P [m − 1]
and, if this is the case, the value i can be directly reported as the position of a (δ, α)-
occurrence of the pattern P in the text T . Otherwise, if the variable j does not ever
take the value m−2 during the execution of the while-loop, then the pattern P can
have no (δ, α)-occurrence at position i in the text, and therefore, even in this case,
the test at line 21 does not need to be checked. It turns out that the variation just
outlined slightly improves the overall running time of the algorithm.

In the last variant of the (δ, α)-Sequential-Sampling algorithm, which we are going
to describe (actually a variant of the (δ, α)-Sequential-Sampling-HBP algorithm), each
matrix Mi is represented as a single bit mask of length L = (α + 1)m, obtained by
concatenating the bit masks corresponding to the columns ofMi (i.e., the bit masks

C(j)
i). More precisely, the following bit mask is used as a representation of the matrix
Mi, for −1 ≤ i < n:5

Bi = C(m−1)
i C(m−2)

i · · · C(0)
i .

Assuming such representation for the matrices Mi as single bit masks, the task
is to find an efficient way to compute bit-parallely the bit mask Bi from the bit mask
Bi−1. (Notice that the initial bit mask B−1 is the null bit mask, i.e., B−1 = 0L.)

5 Notice plainly that, once the bit mask Bi has been computed, we can check in constant time
whether P ✂i T holds by simply checking whether the (α + 1)-st bit of Bi is 1, i.e., if Bi[α] = 1,
which corresponds to the condition that Bi & U 6= 0L where U = 0α10L−α−1.

178 Proceedings of the Prague Stringology Conference 2008

To begin with, let X (j)
i be the bit mask of length α + 1 defined by

X (j)
i =

{
0α1, if T [i] =δ P [j] and (j = 0 or C(j−1)

i−1 6= 0α+1)
0α+1, otherwise ,

for 0 ≤ j < m, and let Xi = X (m−1)
i X (m−2)

i · · · X (0)
i . Then, by (3) we have that

C(j)
i = ((C(j)

i−1 & 01α)≪ 1) | X (j)
i , for 0 ≤ i < n and 0 ≤ j < m, and therefore

Bi = ((Bi−1 & I)≪ 1) | Xi , (4)

for 0 ≤ i < n, where I = (01α)m. Thus, we need only to be able to compute effectively
the bit mask Xi from the bit mask Bi−1, which we do as follows.

For each symbol s of the alphabet Σ and each 0 ≤ j < m, let b
(j)
s be the bit value

1, if s =δ P [j] holds, otherwise let b
(j)
s be the bit value 0. Also, let

H(s) = 0α(b(m−1)
s 0α)(b(m−2)

s 0α) · · · (b(1)
s 0α)b(0)

s .

Furthermore, let x
(j)
i be the last bit of the bit mask X (j)

i (i.e., x
(j)
i = X (j)

i [α]), for
0 ≤ j < m, so that we have

Xi = 0α(x
(m−1)
i 0α)(x

(m−2)
i 0α) · · · (x(1)

i 0α)x
(0)
i . (5)

Then, we claim that

x
(0)
i = b

(0)
i , (6)

and
x
(j)
i 0α = (b

(j)
i 0α) &(((C(j−1)

i−1 & 01α) + 01α) | C(j−1)
i−1) , (7)

for 0 < j < m, where we have written b
(j)
i in place of b

(j)
T [i] (just to simplify the nota-

tion). We need only to verify (7), since (6) is an immediate consequence of the defini-

tions of b
(0)
i and X (0

i . To do this, we begin by noting that the operation C(j−1)
i−1 & 01α

sets the first bit of C(j−1)
i−1 to 0, leaving unchanged the remaining bits. Thus, by per-

forming the arithmetic addition of C(j−1)
i−1 & 01α with 01α we obtain a bit mask whose

first bit is 0 if and only if the last α bits of C(j−1)
i−1 are all 0’s. Therefore, the bit mask

(((C(j−1)
i−1 & 01α) + 01α) | C(j−1)

i−1) has its first bit equal to 0 if and only if C(j−1)
i−1 is null

(i.e., if and only if C(j−1)
i−1 = 0α+1). At this point (7) is an immediate consequence of

the definitions of b
(j)
i and X (j)

i , and thus our claim is correct.
By (5), (6), (7), and the definition of the function H, we get

Xi = (((Wi−1 & F)≪ 1) | 0L−11) &H(T [i]) , (8)

where we have put F = 01L−1 and Wi−1 = ((Bi−1 & I) + I) | Bi−1. Relations (8) and
(4) provide the required recursive formulae for computing the bit mask Bi from the bit
mask Bi−1. The resulting algorithm, named (δ, α)-Sequential-Sampling-BP, is reported
in Figure 3. It uses an array H, indexed by the symbols of the alphabet Σ, which is
computed in such a way that H[s] = H(s), for each s ∈ Σ. Notice also that at the end
of the execution of the for-loop of line 5, we have I = (01α)m and U = 0α10L−α−1,
as required (cf. footnote 5).

It can easily be verified that time and space complexities of the (δ, α)-Sequential-
Sampling-BP algorithm are O((σ + n + mδ)⌈(mα)/w⌉) and O(σ⌈(mα)/w⌉), respec-
tively.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 179

(δ, α)-Sequential-Sampling-BP(P , m, T , n, δ, α)

1. L := (α + 1)m
2. for s ∈ Σ do H[s] := 0L

3. I := 0L−α1α

4. U := 0L−11

5. for j := 0 to m− 1 do

6. for s ∈ Σ ∩ [P [j]− δ .. P [j] + δ] do

7. H[s] := H[s] |U
8. if j < m− 1 then

9. I := (I ≪ (α + 1)) | 0L−α1α

10. U := U ≪ (α + 1)
11. F := 01L−1

12. B := 0L

13. for i := 0 to n− 1 do

14. W := ((B & I) + I) |B
15. X := (((W & F)≪ 1) | 0L−11) & H[T [i]]
16. B := ((B & I)≪ 1) |X
17. if (B & U) 6= 0Lthen print(i)

(δ, α)-Sequential-Sampling-BP+(P , m, T , n, δ, α)

1. ℓ := (α + 1)(m− 1) + 1
2. for s ∈ Σ do H[s] := 0ℓ

3. A := 0ℓ

4. U := 0ℓ−11

5. for j := 0 to m− 1 do

6. for s ∈ Σ ∩ [P [j]− δ .. P [j] + δ] do

7. H[s] := H[s] |U
8. if j < m− 1 then

9. A := A |U
10. U := U ≪ (α + 1)
11. J := U −A
12. F := 01ℓ−1

13. B := 0ℓ

14. for i := 0 to n− 1 do

15. B := (B & F)≪ 1
16. C := B & J
17. B := (((C + J) |B)& H[T [i]]) |C
18. if (B & U) 6= 0ℓthen print(i)

Figure 3. The (δ, α)-Sequential-Sampling-BP algorithm (on the left) and the (δ, α)-
Sequential-Sampling-BP+ algorithm (on the right) for the δ-approximate string match-
ing problem with α-bounded gaps.

Let us make some remarks on the latter algorithm. To begin with, notice that
if we replace the instructions of lines 3 and 11 of the (δ, α)-Sequential-Sampling-BP
algorithm by the assignments I := 0L and F := 0α10L−α−1, respectively, then the
resulting algorithm still does the same work of the original one, except that the first
α bits of the bit mask B (and of all the other bit masks) are always left unset (i.e.,
they remain 0’s) during the course of the computation;6 but, since the conditional
test of line 17 (i.e., the test whether P ✂i T) involves only the (α + 1)-st bit of B, the
modified algorithm solves the (δ, α)-matching problem as well. Thus, the first α bits
of the bit masks used by the (δ, α)-Sequential-Sampling-BP algorithm can be dropped,
and therefore the number of bits of these bit masks which need to be actually stored
during the computation is ℓ = L− α = (α + 1)(m− 1) + 1 (and hence, in particular,
if ℓ ≤ w all of these bit masks fit each in a single computer word). Observe also that
for F = 0α10L−α−1 (as above) and I = 0α+1(01α)m−1 (cf. footnote 6), the part of code
of the (δ, α)-Sequential-Sampling-BP algorithm from line 12 up to line 17 turns out to
be equivalent to the following one:

B := 0L

for i := 0 to n− 1 do
B := (B & F)≪ 1
C := B & J
B := (((C + J) |B) & H[T [i]]) |C
if (B & U) 6= 0Lthen print(i)

where J = 0α(01α)m−11, as can be easily verified by very simple algebraic manipula-
tions, thus reducing the overall number of operations which need to be performed.

Such considerations translate into the variant of the (δ, α)-Sequential-Sampling-
BP algorithm reported in Figure 3, named (δ, α)-Sequential-Sampling-BP+, which

6 In fact, with such modifications, at the end of the for-loop of line 5, we have that I =
0α+1(01α)m−1, as can be easily verified.

180 Proceedings of the Prague Stringology Conference 2008

although characterized by the same asymptotic space and time complexity of the
original algorithm, turns out to be slightly more efficient in practice.7

Notice that at the end of the execution of the for-loop of line 5 of the (δ, α)-
Sequential-Sampling-BP+ algorithm, we have that A = 0(0α1)m−1 and U = 10ℓ−1, so
that U − A = (01α)m−11 (as the J above, except that the first α 0’s are dropped).8

Finally, we observe that it is easy to adapt our algorithms to handle also classes
of characters and patterns with variable sized gaps, which arise in several search
problems in molecular biology, but due to lack of space we will not give any details.

5 Experimental Results

In this section we report experimental data relative to an extensive comparison
of our newly presented algorithms (δ, α)-Tuned-Sequential-Sampling-HBP and (δ, α)-
Sequential-Sampling-BP+, described in Section 4, and the algorithms SDP-simple, DA-
mloga-bits, and (δ, α)-Shift-And, reviewed in Section 3, which are among the most
efficient algorithms for the (δ, α)-matching problem.9

In particular, we have performed two main sets of experimental tests: the first
one, the experimental set Es1, concerns the comparison of the algorithms (δ, α)-
Tuned-Sequential-Sampling-HBP and SDP-simple, whereas the second one, the experi-
mental set Es2, involves the algorithms (δ, α)-Tuned-Sequential-Sampling-HBP, (δ, α)-
Sequential-Sampling-BP+, DA-mloga-bits, and (δ, α)-Shift-And.

All algorithms have been implemented in the C programming language using the
Borland C++ compiler, version 5.5, and were used to search for the same patterns
in large fixed text sequences on a PC with a Pentium IV processor at 2.66 GHz,
with 512 MB of RAM, running Windows XP. In particular, they have been tested
on three Randσ problems, for σ = 50, 90, 130, and on a real music text buffer. Each
Randσ problem consisted in searching for a set of 150 random patterns of length
m = 6, 8, 10, 20, 30, 40, 50, 60, 70, 85, 100 in a random text sequence of length n =
5,242,880, over a common alphabet of size σ. For each Randσ problem, the values
of the approximation bound δ and of the gap bound α have been set to 1, 3, 5
and to 2, 5, 8, respectively. The running times of the algorithms have been averaged
over all patterns. Concerning the tests on the real music text buffer, these have been
performed on a fixed text sequence T of length n = 2, 982, 507 obtained by combining
a set of various classical pieces in MIDI format, with an overall alphabet of 76 distinct
symbols, i.e., the MIDI values of the notes of the pieces. For each m as above, we
have randomly selected a set of 150 substrings of T of length m which subsequently
have been searched for in T .

7 Observe, however, that for 0 ≤ j < m, when iteration j of the for-loop of line 5 starts, we have
U = 0ℓ1 ≪ (j(α + 1)). Therefore, the assignments of lines 7 and 9 could be implemented so as
to take constant time, assuming the model in which a bit mask X is represented as a sequence
of ⌈|X|/w⌉ computer words, thus yielding an overall running time of O((n + σ)⌈(mα)/w⌉+ mδ)
rather than O((σ + n + mδ)⌈(mα)/w⌉).

8 Notice that, in practice, the bit mask (01α)m−11 could also be computed as (∼(A |U)) | 0ℓ−11,
where ∼ denotes the operation of bit complementation, which replaces each 0 in the bit mask by
1 and each 1 by 0.

9 We have also considered in our experimental tests the algorithm SDP-simple-compute-L0, but, due
to lack of space, we omitted to report its timings, since it turned out to be always slower than the
SDP-simple algorithm.

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 181

In the case of the experimental set Es2, the tests have been performed just as
described above except that, this time, the algorithms involved in the compari-
son, i.e., (δ, α)-Tuned-Sequential-Sampling-HBP, (δ, α)-Sequential-Sampling-BP+, DA-
mloga-bits, and (δ, α)-Shift-And, have been tested using only short patterns and very
small values of α. More precisely, the following pairs (α,m) have been used, where
(α,m) ∈ {1} × {6, 8, 10, 12, 14, 16} ∪ {2} × {6, 8, 10}. The main reason behind this
choice is that, for such pairs, each of the bit masks used by the last three algorithms
fit in a single computer word, a condition which allows these algorithms to reach their
best performances in practice.10 The algorithm (δ, α)-Tuned-Sequential-Sampling-HBP
has been included in this set of experimental tests mainly for comparing it with the
algorithm DA-mloga-bits.

All running times in the tables are expressed in hundredths of second and, for
each length of the pattern, the best result has been boldfaced. Moreover, the fol-
lowing abbreviations have been used to denote the algorithms: TSS-HBP for (δ, α)-
Tuned-Sequential-Sampling-HBP; SS-BP for (δ, α)-Sequential-Sampling-BP+; DA-NFA
for (δ, α)-Shift-And; DA-CNFA for DA-mloga-bits; SDP-S for SDP-simple.

Experimental results on a Real Music Problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.36 2.40 2.44 2.50 2.54 2.30 2.27 2.39 2.42 2.44 2.48

SDP-S (1, 2) 3.50 3.38 3.79 3.75 3.87 3.42 3.76 3.70 3.66 3.81 3.73
TSS-HBP (1, 5) 4.14 4.33 4.95 4.93 5.17 4.35 4.53 4.85 4.72 4.85 4.63

SDP-S (1, 5) 4.93 5.15 5.95 6.03 6.16 5.39 5.55 5.58 5.75 5.83 5.71
TSS-HBP (1, 8) 5.65 6.36 7.69 7.93 8.13 6.67 7.05 7.45 7.31 7.61 7.33

SDP-S (1, 8) 6.15 6.79 8.06 8.76 8.65 7.58 7.83 8.17 8.05 8.52 8.07
TSS-HBP (3, 2) 5.11 4.78 5.27 5.16 5.90 4.87 5.05 5.53 5.41 4.97 5.57

SDP-S (3, 2) 6.60 6.27 7.00 6.81 7.38 6.40 6.77 7.01 7.08 6.77 7.06
TSS-HBP (3, 5) 9.57 10.00 12.40 12.96 14.61 12.68 12.50 13.42 13.17 12.59 13.49

SDP-S (3, 5) 10.59 10.73 12.92 14.52 16.32 14.35 14.11 15.27 14.75 14.12 15.23
TSS-HBP (3, 8) 11.13 12.63 16.59 20.43 24.57 22.56 21.45 24.19 23.53 21.83 23.60

SDP-S (3, 8) 12.73 14.20 18.11 23.41 28.91 27.10 25.09 28.86 28.97 26.04 28.49
TSS-HBP (5, 2) 9.03 9.05 10.54 10.58 15.46 18.78 19.95 18.98 19.32 18.88 21.63

SDP-S (5, 2) 10.39 10.49 11.68 12.44 18.66 22.22 23.59 22.60 22.92 22.83 25.07
TSS-HBP (5, 5) 13.14 15.02 19.46 23.73 24.83 25.06 27.69 51.78 33.51 28.93 37.44

SDP-S (5, 5) 15.85 17.91 22.64 28.41 30.73 31.15 35.34 65.30 41.79 36.76 47.81
TSS-HBP (5, 8) 12.94 15.92 21.29 30.10 36.26 36.67 47.64 48.03 52.02 55.14 52.40

SDP-S (5, 8) 17.59 20.36 26.91 38.40 46.99 48.06 63.97 64.66 70.58 76.90 75.33

10 Notice however, as already remarked, that by allowing only small values of the gap bound α
(e.g., α ≤ 2) is not a real limitation in many practical applications in music. In fact, searching
with small gaps is enough to take into account various kinds of musical ornamentations, such as
mordent, acciaccatura and appoggiatura, as well as many other common musical technicalities
such as pedal notes.

182 Proceedings of the Prague Stringology Conference 2008

Experimental results on a Rand50 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 3.02 2.92 2.98 2.84 2.94 2.94 3.03 2.90 2.92 2.98 2.96

SDP-S (1, 2) 4.60 4.78 4.58 4.69 4.75 4.73 4.80 4.77 4.63 4.65 4.77
TSS-HBP (1, 5) 4.33 4.17 4.35 4.29 4.35 4.27 4.39 4.32 4.23 4.25 4.35

SDP-S (1, 5) 6.19 6.11 6.25 6.21 6.17 6.19 6.15 6.01 6.19 6.09 6.11
TSS-HBP (1, 8) 5.65 5.59 5.79 5.89 5.89 5.69 5.73 5.73 5.77 5.68 5.79

SDP-S (1, 8) 7.43 7.65 7.79 7.61 7.71 7.67 7.81 7.59 7.63 7.67 7.67
TSS-HBP (3, 2) 5.89 5.81 5.79 5.95 5.94 5.91 5.77 5.84 6.03 5.84 5.71

SDP-S (3, 2) 8.85 8.73 8.85 8.83 8.83 8.62 8.87 8.79 8.88 8.85 8.79
TSS-HBP (3, 5) 12.24 12.96 13.31 13.84 13.75 13.47 13.73 13.71 14.09 13.95 13.58

SDP-S (3, 5) 13.10 14.63 15.56 16.27 16.09 15.80 16.13 16.28 16.57 16.28 16.11
TSS-HBP (3, 8) 17.38 20.48 22.83 26.10 26.29 25.95 26.79 26.46 26.99 51.53 50.98

SDP-S (3, 8) 17.22 19.63 22.61 29.15 29.75 29.28 30.56 30.32 30.64 59.02 58.44
TSS-HBP (5, 2) 11.49 11.79 11.68 11.79 11.99 11.94 17.55 22.87 21.73 22.27 22.07

SDP-S (5, 2) 14.11 14.82 15.28 15.12 15.28 15.51 22.95 29.34 28.47 29.10 28.77
TSS-HBP (5, 5) 22.91 27.01 29.66 35.88 37.35 37.61 68.71 39.97 36.32 64.85 36.72

SDP-S (5, 5) 24.04 27.65 30.35 40.83 44.26 45.15 82.58 47.06 43.83 77.20 43.95
TSS-HBP (5, 8) 26.53 34.68 43.38 121.11 175.83 212.14 231.21 257.04 285.96 329.08 320.51

SDP-S (5, 8) 29.82 37.62 46.58 135.99 205.92 254.88 281.20 318.26 357.93 429.03 422.84

Experimental results on a Rand90 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.27 2.27 2.40 2.42 2.40 2.38 2.38 2.26 2.32 2.30 2.36

SDP-S (1, 2) 3.70 3.78 3.64 3.71 3.71 3.71 3.63 3.77 3.69 3.69 3.67
TSS-HBP (1, 5) 2.94 3.03 3.11 3.00 3.05 2.93 2.96 2.96 2.86 2.94 2.97

SDP-S (1, 5) 4.42 4.31 4.27 4.43 4.25 4.37 4.32 4.39 4.49 4.43 4.36
TSS-HBP (1, 8) 3.57 3.21 3.61 3.36 3.35 3.43 3.36 3.41 3.27 3.57 3.45

SDP-S (1, 8) 4.97 4.81 4.87 5.00 4.97 4.87 4.91 4.93 4.95 4.97 4.87
TSS-HBP (3, 2) 3.41 3.51 3.55 3.39 3.47 3.49 3.50 4.93 6.59 6.53 6.66

SDP-S (3, 2) 5.40 5.37 5.40 5.39 5.42 5.40 5.36 7.47 10.37 10.15 10.17
TSS-HBP (3, 5) 5.59 5.55 5.71 5.57 5.81 5.71 5.59 5.63 5.65 5.61 5.61

SDP-S (3, 5) 7.66 7.63 7.92 7.62 7.74 7.64 7.76 7.68 7.60 7.56 7.66
TSS-HBP (3, 8) 8.06 8.25 8.33 8.32 8.51 8.45 8.24 8.28 8.39 8.29 8.15

SDP-S (3, 8) 9.59 10.17 10.56 10.28 10.30 10.19 10.38 10.24 10.51 10.24 10.31
TSS-HBP (5, 2) 7.11 7.01 9.86 9.66 9.28 9.68 9.76 9.63 9.63 9.72 9.75

SDP-S (5, 2) 9.55 9.57 14.81 14.63 14.36 14.65 14.46 14.60 14.53 14.77 14.68
TSS-HBP (5, 5) 10.04 10.54 10.81 10.79 10.45 10.85 10.75 10.77 10.79 10.93 10.82

SDP-S (5, 5) 11.43 12.43 13.28 13.17 12.77 13.15 13.09 12.99 12.93 13.29 13.39
TSS-HBP (5, 8) 14.48 16.77 17.86 19.45 19.39 19.80 19.46 19.57 19.59 19.85 19.86

SDP-S (5, 8) 14.53 16.72 18.82 21.70 21.55 21.81 21.69 21.71 21.62 21.99 22.06

Experimental results on a Rand130 problem (Es1)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 20 m = 30 m = 40 m = 50 m = 60 m = 70 m = 85 m = 100

TSS-HBP (1, 2) 2.16 2.12 2.14 2.12 2.14 2.10 2.12 2.14 2.24 2.14 2.15

SDP-S (1, 2) 3.37 3.30 3.44 3.53 3.41 3.38 3.34 3.47 3.32 3.33 3.34
TSS-HBP (1, 5) 2.61 2.56 2.52 2.60 2.62 2.44 2.50 2.52 2.53 2.50 2.54

SDP-S (1, 5) 3.72 3.83 3.74 3.66 3.70 3.78 3.70 3.81 3.80 3.83 3.75
TSS-HBP (1, 8) 2.92 2.78 2.96 2.78 2.88 2.80 2.76 2.89 2.85 2.82 2.80

SDP-S (1, 8) 4.15 4.33 4.09 4.12 4.06 4.08 4.15 4.07 4.06 4.11 4.09
TSS-HBP (3, 2) 2.83 2.95 2.83 2.84 2.83 2.84 2.74 2.81 2.89 2.88 2.80

SDP-S (3, 2) 4.42 4.57 4.59 4.52 4.62 4.59 4.59 4.52 4.60 4.39 4.58
TSS-HBP (3, 5) 4.07 4.04 4.15 4.04 3.94 4.05 4.03 4.01 4.10 4.07 7.65

SDP-S (3, 5) 5.66 5.66 5.66 5.68 5.79 5.77 5.68 5.72 5.70 5.78 10.76
TSS-HBP (3, 8) 5.08 4.96 5.23 5.17 5.13 5.11 5.18 5.22 5.20 5.04 5.19

SDP-S (3, 8) 6.87 6.95 7.04 7.01 6.99 6.94 6.99 6.96 6.97 6.89 6.99
TSS-HBP (5, 2) 3.78 3.78 3.84 3.68 3.72 6.14 7.14 7.06 7.09 7.05 6.91

SDP-S (5, 2) 5.79 5.74 5.93 5.71 5.66 9.69 10.89 10.91 10.95 10.96 10.77
TSS-HBP (5, 5) 9.14 9.39 9.78 9.53 9.77 9.56 9.62 9.82 9.86 9.71 9.46

SDP-S (5, 5) 10.39 11.27 11.52 11.48 11.52 11.39 11.53 11.40 11.67 11.50 11.31
TSS-HBP (5, 8) 10.23 10.15 12.34 11.96 11.82 12.00 11.92 11.97 12.14 11.94 11.69

SDP-S (5, 8) 12.20 12.29 16.42 15.68 15.88 15.78 15.88 15.96 15.89 15.94 15.72

D.Cantone et al.: New Efficient Bit-Parallel Algorithms for the δ-Matching Problem. . . 183

Experimental results on a Real Music Problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.00 1.88 2.04 2.06 2.00 1.98 TSS-HBP (1, 2) 2.36 2.27 2.42
SS-BP (1, 1) 1.00 0.84 0.96 0.94 0.94 0.88 SS-BP (1, 2) 0.92 0.90 0.82

DA-NFA (1, 1) 1.02 1.00 1.00 1.00 1.04 1.00 DA-NFA (1, 2) 1.02 1.00 1.05
DA-CNFA (1, 1) 9.15 9.14 9.03 9.12 9.13 9.17 DA-CNFA (1, 2) 9.22 9.19 9.09
TSS-HBP (3, 1) 3.26 3.28 3.29 3.41 3.39 3.48 TSS-HBP (3, 2) 5.14 4.58 4.99

SS-BP (3, 1) 0.94 0.94 0.96 0.88 0.94 0.98 SS-BP (3, 2) 0.92 0.94 0.94

DA-NFA (3, 1) 1.06 1.04 1.05 1.02 1.04 1.02 DA-NFA (3, 2) 1.16 1.14 1.06
DA-CNFA (3, 1) 9.34 9.35 9.23 9.49 9.24 9.20 DA-CNFA (3, 2) 9.40 9.25 9.30
TSS-HBP (5, 1) 5.13 5.35 4.93 5.69 6.02 5.28 TSS-HBP (5, 2) 8.70 8.87 9.91

SS-BP (5, 1) 1.08 0.92 0.90 0.88 0.96 0.84 SS-BP (5, 2) 1.18 1.06 1.02

DA-NFA (5, 1) 1.07 1.06 1.04 1.06 1.04 1.06 DA-NFA (5, 2) 1.20 1.08 1.06
DA-CNFA (5, 1) 9.38 9.25 9.26 9.25 9.33 9.29 DA-CNFA (5, 2) 9.54 9.44 9.28

Experimental results on a Rand50 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.68 2.76 2.66 2.82 2.68 2.78 TSS-HBP (1, 2) 3.05 2.98 2.92
SS-BP (1, 1) 1.68 1.68 1.58 1.52 1.64 1.58 SS-BP (1, 2) 1.72 1.68 1.78

DA-NFA (1, 1) 1.94 1.70 1.84 1.92 1.86 1.76 DA-NFA (1, 2) 1.90 1.81 1.70

DA-CNFA (1, 1) 16.07 15.88 15.96 15.95 16.04 15.92 DA-CNFA (1, 2) 16.07 16.06 15.95
TSS-HBP (3, 1) 4.52 4.46 4.46 4.60 4.58 4.56 TSS-HBP (3, 2) 5.95 5.81 5.73

SS-BP (3, 1) 1.74 1.64 1.74 1.67 1.55 1.73 SS-BP (3, 2) 1.79 1.78 1.78

DA-NFA (3, 1) 1.92 1.89 1.84 1.74 1.92 1.72 DA-NFA (3, 2) 1.84 1.80 1.92
DA-CNFA (3, 1) 16.68 16.28 16.30 16.36 16.34 16.34 DA-CNFA (3, 2) 16.53 16.33 16.24
TSS-HBP (5, 1) 10.37 13.13 13.49 13.55 13.49 13.91 TSS-HBP (5, 2) 11.35 11.57 11.57

SS-BP (5, 1) 2.46 3.44 3.30 3.36 3.43 3.22 SS-BP (5, 2) 1.82 1.74 1.68

DA-NFA (5, 1) 2.70 3.56 3.51 3.46 3.54 3.50 DA-NFA (5, 2) 1.94 1.86 1.84
DA-CNFA (5, 1) 23.32 31.23 31.16 31.28 31.05 31.15 DA-CNFA (5, 2) 16.58 16.35 16.31

Experimental results on a Rand90 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.24 2.24 2.21 2.28 2.25 2.30 TSS-HBP (1, 2) 2.38 2.30 2.36
SS-BP (1, 1) 1.68 1.71 1.64 1.68 1.70 1.68 SS-BP (1, 2) 1.68 1.70 1.68

DA-NFA (1, 1) 1.84 1.78 1.86 1.76 1.82 1.80 DA-NFA (1, 2) 2.02 1.78 1.84
DA-CNFA (1, 1) 16.12 15.92 15.98 16.02 15.94 15.96 DA-CNFA (1, 2) 16.14 15.94 15.88
TSS-HBP (3, 1) 3.16 3.03 3.09 3.03 3.05 2.97 TSS-HBP (3, 2) 3.59 3.29 3.48

SS-BP (3, 1) 1.79 1.78 1.70 1.74 1.74 1.84 SS-BP (3, 2) 1.76 1.83 1.72

DA-NFA (3, 1) 1.76 1.84 1.80 1.82 1.82 1.74 DA-NFA (3, 2) 1.89 1.88 1.84
DA-CNFA (3, 1) 16.57 16.22 16.34 16.39 16.28 16.30 DA-CNFA (3, 2) 16.56 16.33 16.38
TSS-HBP (5, 1) 3.99 4.09 4.07 4.00 4.05 3.97 TSS-HBP (5, 2) 5.26 4.97 4.96

SS-BP (5, 1) 1.86 1.68 1.74 1.77 1.60 1.68 SS-BP (5, 2) 1.72 1.76 1.76

DA-NFA (5, 1) 1.86 1.88 1.78 1.76 1.94 1.88 DA-NFA (5, 2) 1.84 1.78 1.92
DA-CNFA (5, 1) 16.51 16.31 16.39 16.30 16.35 16.34 DA-CNFA (5, 2) 16.47 16.27 16.31

Experimental results on a Rand130 problem (Es2)
ALGS (δ, α) m = 6 m = 8 m = 10 m = 12 m = 14 m = 16 ALGS (δ, α) m = 6 m = 8 m = 10

TSS-HBP (1, 1) 2.30 2.07 2.00 2.20 2.10 2.02 TSS-HBP (1, 2) 2.26 2.16 2.14
SS-BP (1, 1) 1.58 1.72 1.72 1.62 1.68 1.62 SS-BP (1, 2) 1.52 1.70 1.66

DA-NFA (1, 1) 1.82 1.72 1.82 1.88 1.84 1.88 DA-NFA (1, 2) 1.98 1.70 1.82
DA-CNFA (1, 1) 16.12 15.98 15.95 16.00 15.92 15.96 DA-CNFA (1, 2) 16.12 16.02 16.00
TSS-HBP (3, 1) 2.73 2.85 2.62 2.61 2.60 2.62 TSS-HBP (3, 2) 2.97 2.89 2.85

SS-BP (3, 1) 1.71 1.42 1.86 1.57 1.76 1.74 SS-BP (3, 2) 1.65 1.73 1.70

DA-NFA (3, 1) 1.88 1.92 1.80 1.98 1.80 1.94 DA-NFA (3, 2) 1.98 1.84 1.84
DA-CNFA (3, 1) 16.44 16.32 16.16 16.32 16.32 16.49 DA-CNFA (3, 2) 16.45 16.30 16.34
TSS-HBP (5, 1) 3.15 3.20 3.11 5.51 6.20 6.14 TSS-HBP (5, 2) 3.76 3.72 3.80

SS-BP (5, 1) 1.75 1.75 1.78 2.97 3.38 3.30 SS-BP (5, 2) 1.79 1.69 1.49

DA-NFA (5, 1) 1.86 1.82 1.86 3.09 3.48 3.62 DA-NFA (5, 2) 1.84 1.78 1.82
DA-CNFA (5, 1) 16.48 16.29 16.37 27.50 31.51 31.15 DA-CNFA (5, 2) 16.52 16.30 16.34

From the experimental results it turns out that our algorithms (δ, α)-Tuned-
Sequential-Sampling-HBP and (δ, α)-Sequential-Sampling-BP+ are very efficient in
practice. In the case of very short patterns and very small values of α (cf. the
experimental set Es2), the algorithm (δ, α)-Sequential-Sampling-BP+ is in general the
fastest one, and beats also the automaton based algorithm (δ, α)-Shift-And. More-
over, it is about 8-9 times faster than DA-mloga-bits. Notice also that the algorithm
(δ, α)-Tuned-Sequential-Sampling-HBP is always faster than DA-mloga-bits.

184 Proceedings of the Prague Stringology Conference 2008

In the more general case of patterns of very varied lengths (cf. the experimen-
tal set Es1), the algorithm (δ, α)-Tuned-Sequential-Sampling-HBP outperforms almost
always the very efficient SDP-simple; very rarely SDP-simple wins against (δ, α)-
Tuned-Sequential-Sampling-HBP (just in the 0.9 per cent of the cases, with very short
patterns). However, we recall that, in the worst case, the (δ, α)-Tuned-Sequential-
Sampling-HBP algorithm requires only O(m⌈α/w⌉) extra space, whereas the SDP-
simple algorithm uses O(n) extra space.

6 Conclusions

We have presented some efficient practical algorithms for the δ-approximate string
matching problem with α-bounded gaps, which have important applications in music
information retrieval. Despite their non-optimal asymptotic behavior, our algorithms
perform very well in practice and, in particular, one of them wins against the fastest
existing algorithms in most practical cases.

Acknowledgments

We thank K. Fredriksson and S. Grabowski for having provided us with the C
source code of their algorithms SDP-simple, DA-mloga-bits, and SDP-simple-compute-
L0, which we have used in our tests.

We also thank the anonymous referees for helpful comments.

References

1. E. Cambouropoulos, M. Crochemore, C. S. Iliopoulos, L. Mouchard, and Y. J.

Pinzon: Algorithms for computing approximate repetitions in musical sequences. International
Journal of Computer Mathematics, 79(11) 2002, pp. 1135–1148.

2. D. Cantone, S. Cristofaro, and S. Faro: An efficient algorithm for δ-approximate match-
ing with α-bounded gaps in musical sequences, in Proceedings of 4-th International Workshop on
Experimental and Efficient Algorithms (WEA’05), S. E. Nikoletseas, ed., vol. 3503 of Lecture
Notes in Computer Science, Springer-Verlag, 2005, pp. 428–439.

3. D. Cantone, S. Cristofaro, and S. Faro: On tuning the (δ, α)-sequential-sampling algo-
rithm for δ-approximate matching with α-bounded gaps in musical sequences, in Proceedings of
6-th International Conference on Music Information Retrieval (ISMIR’05), S. D. Reiss and G. A.
Wiggins, eds., 2005, pp. 454–459.

4. M. Crochemore, C. Iliopoulos, C. Makris, W. Rytter, A. Tsakalidis, and K. Tsich-

las: Approximate string matching with gaps. Nordic J. of Computing, 9(1) 2002, pp. 54–65.
5. M. Crochemore, C. S. Iliopoulos, Y. J. Pinzon, and W. Rytter: Finding motifs

with gaps, in Proceedings of the International Symposium on Music Information Retrieval (IS-
MIR’00), Plymouth, USA, 2000, pp. 306–317, poster paper.

6. K. Fredriksson and S. Grabowski: Efficient bit-parallel algorithms for (δ, α)-matching,
in Proceedings of 5-th Workshop on Efficient and Experimental Algorithms (WEA’06), LNCS
4007, Springer–Verlag, 2006, pp. 170–181.

7. K. Fredriksson and S. Grabowski: Efficient algorithms for pattern matching with general
gaps, character classes, and transposition invariance. Information Retrieval, March 2008, to
appear (currently available only online).

8. R. N. Horspool: Practical fast searching in strings. Software, Practice & Experience, 10(6)
1980, pp. 501–506.

9. G.NavarroandM.Raffinot: Fast and simple character classes and bounded gaps pattern
matching, with application to protein searching, in RECOMB’01: Proceedings of the fifth annual
international conference on Computational biology, New York, NY, USA, 2001, ACM, pp. 231–
240.

10. Y. J. Pinzon and S. Wang: Simple algorithm for pattern-matching with bounded gaps in
genomic sequences, in Proceedings of the International Conference on Numerical Analysis and
Applied Mathematics (ICNAAM’05), 2005, pp. 827–831.

Average Value of Sum of Exponents of Runs in

Strings

Kazuhiko Kusano, Wataru Matsubara, Akira Ishino, and Ayumi Shinohara

Graduate School of Information Science, Tohoku University,
Aramaki aza Aoba 6-6-05, Aoba-ku, Sendai 980-8579, Japan

{kusano@shino., matsubara@shino., ishino@, ayumi@}ecei.tohoku.ac.jp

Abstract. A substring w[i..j] in w is called a repetition of period p if s[k] = s[k + p]
for any i ≤ k ≤ j − p. Especially, a maximal repetition, which cannot be extended
neither to left nor to right, is called a run. The ratio of the length of the run to its
period, i.e. j−i+1

p
, is called an exponent. The sum of exponents of runs in a string is of

interest. The maximal value of the sum is still unknown, and the current upper bound
is 2.9n given by Crochemore and Ilie, where n is the length of a string. In this paper
we show a closed formula which exactly expresses the average value of it for any n and
any alphabet size, and the limit of this value per unit length as n approaches infinity.
For binary strings, the limit value is approximately 1.13103.

1 Introduction

Repetitions in strings are an important element in the analysis and processing of
strings. We especially focus on the runs, which are non-extendable repetitions. Kol-
pakov and Kucherov showed that the maximal number of runs ρ(n) in any strings of
length n is at most cn for some constant c [4]. Although they gave no value for c,
recently there have been several results lowering the value [1,3,9,11]. The currently
known best upper bound is c = 1.048 [2,3]. It is conjectured that c < 1.

A repetition count of run is called an exponent, and the maximal sum of exponents
is also well studied [1,5,10]. It is proved that the maximal sum of exponents is linear
and the current best upper bound is 2.9n [1]. It is conjectured that the sum of
exponents is less than 2n.

Although the exact estimation of the maximal number ρ(n) of runs is still un-
known, Puglisi and Simpson [8] presented a formula that gives the number of runs in
a string of length n on average as follows:

r(n) =

n
2∑

p=1

σn−2p−1 ((n− 2p + 1)σ − (n− 2p))
∑

d|p
µ(d)σ

p
d ,

where σ is the alphabet size and µ(n) is the Möbius function.
In this paper, we consider the average value e(n) of sum of exponents of runs in

strings of length n and prove that

e(n) =

n
2∑

p=1

L(p)
(
2p(n− 2p + 1)σ−2p − (2p− 1)(n− 2p)σ−2p−1

)
.

Moreover, we show that

lim
n→∞

e(n)

n
=
∞∑

d=1

µ(d)

(
2(σ − 1)

σ2d − σ
+

1

dσ
ln

(
σ2d

σ2d − σ

))
,

where L(n) is the number of Lyndon words of length n.

Kazuhiko Kusano, Wataru Matsubara, Akira Ishino, Ayumi Shinohara : Average Value of Sum of Exponents of Runs in Strings, pp. 185–192.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

186 Proceedings of the Prague Stringology Conference 2008

2 Definitions

Let Σ = {0, 1, 2, . . . , σ − 1} be an alphabet of size σ, that is, |Σ| = σ. The set of all
the strings on Σ is denoted by Σ∗, and the set of all the strings of length n by Σn.
For a string w, we denote its length by |w|. We index w from 0 to |w| − 1 and denote
its ith letter by w, i.e. w = w[0]w[1] . . . w[|w| − 1]. We denote by w[i..j] the substring
w[i]w[i + 1] . . . w[j] of w. Let ε be the empty string. We say that p is a period of w
if w[i] = w[i + p] holds for any i ≥ 0. For a string w = xyz, x, y and z are called a
prefix, substring and suffix of w, respectively.

A substring w[i..j] of w is called a run if it is periodic, i.e., it has the shortest
period p satisfying p ≤ j−i+1

2
and it is non-extendable, i.e., it satisfies the following

two conditions:
i = 0 or w[i− 1] 6= w[i + p− 1],
j = n− 1 or w[j + 1] 6= w[j − p + 1].

We denote the run w[i..j] by a triple (i, j, p). The exponent is the ratio j−i+1
p

, and the

root is the prefix w[i..i + p − 1] of length p. We denote by Runs(w) the number of
runs contained in string w, and by Exp(w) the sum of exponents of all runs in string
w.

We say that a string w is primitive if w cannot be written as w = uk by any
string u and any integer k ≥ 2. A string w is called a Lyndon word if w is minimal in
the lexicographical ordering of all its non-empty suffixes [6]. We denote by L(n) the
number of Lyndon words of length n over the given alphabet. By these definitions,
Lyndon words must be primitive and the number of primitive strings of length n is
equal to nL(n). The Möbius function µ(n) is defined by

µ(n) =

0 if n has one or more repeated prime factors,

1 if n has an even number of distinct prime factors,

−1 if n has an odd number of distinct prime factors.

It is known that L(n) can be expressed as follows [7]:

L(n) =
1

n

∑

d|n
µ
(n

d

)
σd.

The notation d|p means that d is a divisor of p.

3 Main Result

We are interested in the average number r(n) of runs and the average value e(n) of
sum of exponents of runs in strings of length n, defined as follows:

r(n) = average{Runs(w) : w ∈ Σn},
e(n) = average{Exp(w) : w ∈ Σn}.

Puglisi and Simpson showed that the following equation holds.

K.Kusano et al.: Average Value of Sum of Exponents of Runs in Strings 187

Theorem 1 (Puglisi and Simpson [8]).

r(n) =

n
2∑

p=1

σn−2p−1 ((n− 2p + 1)σ − (n− 2p))
∑

d|p
µ(d)σ

p
d .

We prove the following equation in the sequel.

Theorem 2.

e(n) =

n
2∑

p=1

L(p)
(
2p(n− 2p + 1)σ−2p − (2p− 1)(n− 2p)σ−2p−1

)
.

For a string w of length n and a positive integer p, we define a string d(w, p) of
length n− p as follows:

d(w, p)[i] = w[i + p]− w[i] (mod σ) for 0 ≤ i < n− p,

where the operators − and mod are applied to symbols as if these symbols are
numbers. For example, for a string w = 21010 on Σ = {0, 1, 2}, we have d(w, 1) =
2212 and d(w, 2) = 100.

A substring w[i..j] of w ∈ Σn is called a 0-segment if w[i..j] is a maximal block
of 0’s, that is, w[t] = 0 for every t (i ≤ t ≤ j) and it satisfies the following two
conditions:

i = 0 or w[i− 1] 6= 0,
j = n− 1 or w[j + 1] 6= 0.

We denote the 0-segment by a pair (i, j).

Example 3. For string 0012000102, 0-segments are (0, 1), (4, 6), (8, 8).

Lemma 4. For any string w, a substring w[i..j +p] is a run with period p if and only
if d(w, p)[i..j] is a 0-segment of length ≥ p.

Proof. When there exists 0-segment (i, j) in d(w, p), it holds that w[t] = w[t+p] (i ≤
t ≤ j), i.e., w[i..j + p] has the period p. |w[i..j + p]| = j + p− i + 1 ≥ 2p if and only
if |d(w, p)[i..j]| = j − i + 1 ≥ p. Moreover, w[i..j + p] satisfies the non-extendable
condition. Therefore, w[i..j + p] is a run. The “only if” part is clear. ⊓⊔

We denote by c(n, p) the number of 0-segments of length p in all strings from Σn,
and by C(n, p) the number of 0-segments of length ≥ p in all strings from Σn. By
definition, C(n, p) =

∑n
i=p c(n, i). For 0-segments of length ≥ p in Σn, we denote

the sum of l
p

by Ce(n, p), where l is the length of each 0-segments, i.e., Ce(n, p) =∑n
i=p c(n, i) i

p
.

Example 5. For σ = 2, c(5, 2) is 12 because among all strings of length 5, all 0-
segments of length 2 are underlined as follows:

00000 00100 01000 01100 10000 10100 11000 11100

00001 00101 01001 01101 10001 10101 11001 11101

00010 00110 01010 01110 10010 10110 11010 11110

00011 00111 01011 01111 10011 10111 11011 11111

188 Proceedings of the Prague Stringology Conference 2008

Similarly, c(5, 3) = 5, c(5, 4) = 2 Macro 3 c(5, 5) = 1. Then C(5, 2) = 12 + 5 + 2 + 1 =
20. Ce(5, 2) = 12 · 2

2
+ 5 · 3

2
+ 2 · 4

2
+ 5

2
= 26.

Lemma 6. For any positive integer n and p ≤ n, it holds that

C(n, p) = (n− p + 1)σn−p − (n− p)σn−p−1, and

Ce(n, p) =
1

p

(
p(n− p + 1)σn−p − (p− 1)(n− p)σn−p−1

)
.

Proof. Let Qn,p be the set of pairs of strings separated by 0-segments of length p
giving in concatenation strings of length n:

Qn,p = {(α, β) : α0pβ ∈ Σn ∧ α, β ∈ Σ∗ ∧ α[|α| − 1] 6= 0 ∧ β[0] 6= 0}.

Then c(n, p) = |Qn,p| because a one-to-one correspondence exists between 0-segments
of length p and Qn,p.

Example 7. For σ = 2, n = 3 and p = 1, there are 0-segments of length p in Σn as
follows:

Σ3 = {000, 001, 010, 011, 100, 101, 110, 111}.
The number of 0-segments c(3, 1) is 5. Then Q3,1 becomes as follows:

Q3,1 = {(ε, 10), (01, ε), (ε, 11), (1, 1), (11, ε)}.

We get expression for c(n, p) by considering the number of elements of Qn,p in two
cases.

(1) For p ≤ n− 1,
When α = ε, since |β| = n− p and β[0] 6= 0, there are (σ− 1) choices for β[0] and
σn−p−1 choices for β[1..n− p− 1]. |Qn,p| = (σ − 1)σn−p−1. Similarly, when β = ε,
|Qn,p| = (σ − 1)σn−p−1. In the case of α 6= ε and β 6= ε, there are (n − p − 1)
choices for the position of 0p, (σ − 1) choices for α[|α| − 1] and β[0], and σn−p−2

choices for the other characters since |α| + |β| = n − p, α[|α| − 1] 6= 0, and
β[0] 6= 0. |Qn,p| = (n − p − 1)(σ − 1)2σn−p−2. For p = n − 1, α or β is ε, and
(n− p− 1)(σ − 1)2σn−p−2 equal to 0. Therefore,

c(n, p) = |Qn,p|
= 2(σ − 1)σn−p−1 + (n− p− 1)(σ − 1)2σn−p−2

= (n− p + 1)σn−p − 2(n− p)σn−p−1 + (n− p− 1)σn−p−2.

(2) For p = n,
Since α = β = ε,

c(n, p) = |Qn,p| = 1.

For p ≤ n− 1,

C(n, p) =
n∑

i=p

c(n, i)

=
n−2∑

i=p

(
(n− i + 1)σn−i − 2(n− i)σn−i−1 + (n− i− 1)σn−i−2

)
+ 2(σ − 1) + 1

= (n− p + 1)σn−p − (n− p)σn−p−1.

K.Kusano et al.: Average Value of Sum of Exponents of Runs in Strings 189

This equation holds for C(n, n) = 1.
For p ≤ n− 1,

Ce(n, p) =
n∑

i=p

c(n, i)
i

p

=
n−2∑

i=p

(
(n− i + 1)σn−i − 2(n− i)σn−i−1 + (n− i− 1)σn−i−2

) i

p

+2(σ − 1)
n− 1

p
+

n

p

=
1

p

(
p(n− p + 1)σn−p − (p− 1)(n− p)σn−p−1

)
.

This equation holds for Ce(n, n) = 1. ⊓⊔
Lemma 8. For any integer p and strings w and v of length n such that d(w, p) =
d(v, p), w[i..i + p− 1] = v[i..i + p− 1] for some i if and only if w = v.

Proof. (= :) We prove this by induction. Let i ≤ j < i + p and k are integers. For
k = 0, w[j + kp] = v[j + kp] is hold. For k ≥ 1, if w[j + kp] = v[j + kp] is hold,
w[j + (k + 1)p] = w[j + kp] + d(w, p)[j + kp] (mod σ) = v[j + kp] + d(v, p)[j + kp]
(mod σ) = v[j + (k + 1)p]. Then, w[i..n− 1] = v[i..n− 1]. Similarly, w[0..i + p− 1] =
v[0..i + p− 1]. Therefore, w = v.
(⇐=) It is clear. ⊓⊔

When w ∈ Σn, the length of d(w, p) is n − p and the number of 0-segments in
Σn−p is C(n − p, p). By Lemma 4 and 8, there are σpC(n − p, p) runs which have
period p in Σn. However, runs may have different periods. For example, 0101010101
has periods both 2 and 4. To prevent counting these runs more than once, we should
consider counting runs with the minimum period.

Lemma 9. The ratio of the number of runs whose shortest period is p to the number

of runs which have period p is pL(p)
σp .

Proof. The number of runs which have period p is σpC(n− p, p). On the other hand,
if a run of period p has different period q < p, the run also has period gcd(p, q) by
Periodicity Lemma [6]. So w[i..j] has no period q < p if its root is primitive. The
number of primitive strings of length p is pL(p). Therefore, the number of runs whose
shortest period is p is pL(p)C(n− p, p). ⊓⊔

By Lemma 4, 0-segments of length l (l ≥ p) in d(w, p) correspond to runs of length
l + p in w. The exponents of these runs are l

p
+ 1. This and Lemma 6, 8, and 9 derive

σne(n), the sum of exponents of all runs in Σn, as follows:

σne(n) =

n
2∑

p=1

pL(p) (Ce(n− p, p) + C(n− p, p))

=

n
2∑

p=1

L(p)
(
2p(n− 2p + 1)σn−2p − (2p− 1)(n− 2p)σn−2p−1

)
.

190 Proceedings of the Prague Stringology Conference 2008

 0

 1

 2

 3

 4

 5

 6

 7

 0 1 2 3 4 5 6 7 8

e
(n

)

n

σ=2
σ=3
σ=4
σ=5
σ=6

Figure 1. The average values e(n) of
sum of exponents of runs in strings on
various sized alphabets.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 50 100 150 200 250

e
(n

)/
n

n

σ=2
σ=3
σ=4
σ=5
σ=6

Figure 2. The average values e(n)
n

per
unit length of sum of exponents of runs
in strings on various sized alphabets.

We now get the Theorem 2. In Figure 1 it is shown that the average value e(n)

grows almost linearly, as n increases. The convergence of e(n)
n

is illustrated in Figure 2.
For the limit of e(n), we get the following theorem.

Theorem 10. The limit of e(n)
n

, as n→∞, is

∞∑

d=1

µ(d)

(
2(σ − 1)

σ2d − σ
+

1

dσ
ln

(
σ2d

σ2d − σ

))
.

To prove the theorem we deform e(n)
n

.

Proposition 11.

e(n)

n
=

n
2∑

d=1

µ(d)

n
2d∑

p=1

σ−2pd+p−1

(
2(σ − 1)− 4pd

n
(σ − 1) +

1

pd
+

2

n
(σ − 1)

)

Proof. Let 2p(n− 2p + 1)σ−2p − (2p− 1)(n− 2p)σ−2p−1 be f(p).

e(n) =

n
2∑

p=1

L(p)f(p)

=

n
2∑

p=1

∑

d|p
µ
(p

d

)
σd f(p)

p

= µ(1)σ1 f(1)
1

+µ(2)σ1 f(2)
2

+µ(1)σ2 f(2)
2

+µ(3)σ1 f(3)
3

+µ(1)σ3 f(3)
3

+µ(4)σ1 f(4)
4

+µ(2)σ2 f(4)
4

+µ(1)σ4 f(4)
4

+µ(5)σ1 f(5)
5

+µ(1)σ5 f(5)
5

+µ(6)σ1 f(6)
6

+µ(3)σ2 f(6)
6

+µ(2)σ3 f(6)
6

+µ(1)σ6 f(6)
6

...

K.Kusano et al.: Average Value of Sum of Exponents of Runs in Strings 191

=

n
2∑

d=1

µ(d)

n
2d∑

p=1

σp f(pd)

pd
(Factor µ(d) out)

=

n
2∑

d=1

µ(d)

n
2d∑

p=1

1

pd

(
2pd(n− 2pd + 1)σ−2pd+p − (2pd− 1)(n− 2pd)σ−2pd+p−1

)

e(n)

n
=

n
2∑

d=1

µ(d)

n
2d∑

p=1

1

npd

(
2pd(n− 2pd + 1)σ−2pd+p − (2pd− 1)(n− 2pd)σ−2pd+p−1

)

=

n
2∑

d=1

µ(d)

n
2d∑

p=1

σ−2pd+p−1

(
2(σ − 1)− 4pd

n
(σ − 1) +

1

pd
+

2

n
(σ − 1)

)

⊓⊔
Now we prove Theorem 10.

Proof. When n→∞, 1
n
→ 0 and σ−2pd+p−1 4pd

n
is also negligible because σ−2pd+p−1 is

small enough when pd
n

is considerable.

lim
n→∞

e(n)

n
= lim

n→∞

n
2∑

d=1

µ(d)

n
2d∑

p=1

σ−2pd+p−1

(
2(σ − 1) +

1

pd

)

= lim
n→∞

n
2∑

d=1

µ(d)

(
2σ−2d(σ − 1)

1− σ1−2d
− 1

dσ
ln(1− σ1−2d)

)

=
∞∑

d=1

µ(d)

(
2(σ − 1)

σ2d − σ
+

1

dσ
ln

(
σ2d

σ2d − σ

))

⊓⊔
Table 1 shows the limit values of e(n)

n
and r(n)

n
.

σ 2 3 4 5 6

lim
n→∞

e(n)

n
1.13103 0.73822 0.54459 0.43039 0.35536

lim
n→∞

r(n)

n
0.41165 0.30491 0.23736 0.19329 0.16268

Table 1. The limit values of e(n)
n

and r(n)
n

for various sized alphabets.

4 Conclusion

We showed a formula which expresses the average value of sum of exponents of runs
in strings exactly, although the upper bound of it is still open. The situation is similar
to the numbers of runs, as Puglisi and Simpson showed in [8]. Moreover we gave the
limit of the value per unit length as the length of strings approaches infinity. For the
alphabet size σ = 2, the value is approximately 1.13103.

192 Proceedings of the Prague Stringology Conference 2008

References

1. M. Crochemore and L. Ilie: Analysis of Maximal Repetitions in Strings, in Proc. 32nd
International Symposium on Mathematical Foundations of Computer Science (MFCS 2007),
vol. 4708 of LNCS, 2007, pp. 465–476.

2. M. Crochemore, L. Ilie, and L. Tinta: The “runs” conjecture.
http://www.csd.uwo.ca/˜ilie/runs.html.

3. M. Crochemore, L. Ilie, and L. Tinta: Towards a solution to the ”runs” conjecture, in
Proceedings of the 19th Annual Symposium on Combinatorial Pattern Matching (CPM 2008),
vol. 5029 of LNCS, 2008, pp. 290–302.

4. R. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time, in
Proc. 40th Annual Symposium on Foundations of Computer Science (FOCS’99), 1999, pp. 596–
604.

5. R. Kolpakov and G. Kucherov: On the sum of exponents of maximal repetitions in a word,
Tech. Rep. 99-R-034, LORIA, France, 1999.

6. M. Lothaire: Algebraic combinatorics on words, Cambridge University Press New York, 2002.
7. M. Lothaire: Applied Combinatorics on Words, Cambridge University Press, 2005.
8. S. J. Puglisi and J. Simpson: The expected number of runs in a string. Australasian Journal

of Combinatorics, 2008, in press.
9. S. J. Puglisi, J. Simpson, and W. F. Smyth: How many runs can a string contain? Theo-

retical Computer Science, 2007, in press.
10. W. Rytter: The number of runs in a string: Improved analysis of the linear upper bound,

in Proc. 23rd Annual Symposium on Theoretical Aspects of Computer Science (STACS 2006),
vol. 3884 of LNCS, 2006, pp. 184–195.

11. W. Rytter: The number of runs in a string. Information and Computation, 205(9) 2007,
pp. 1459–1469.

Usefulness of Directed Acyclic Subword Graphs in

Problems Related to Standard Sturmian Words

Pawe l Baturo1, Marcin Pia֒tkowski1, and Wojciech Rytter2,1⋆

1 Faculty of Mathematics and Computer Science, Nicolaus Copernicus University
2 Institute of Informatics, Warsaw University, Warsaw, Poland

Abstract. The class of finite Sturmian words consists of words having particularly
simple compressed representation, which is a generalization of the Fibonacci recurrence
for Fibonacci words. The subword graphs of these words (especially their compacted
versions) have a very special regular structure. The regularity of their structure has
been discovered in the context of the counting property of graphs. In this paper we
investigate the structure of these subword graphs in more detail than in the previ-
ous papers. As an application we show how several syntactical properties of Sturmian
words follow their graph properties. Alternative graph-based proofs of several known
facts are presented. Also the neat structure of subword graphs of Sturmian words leads
to algorithms computing several parameters (e.g. number of subwords, critical factor-
ization point, short description of lexicographically maximal suffix, the structure of
occurrences of subwords of a fixed length, right special factors) of standard Sturmian
words in linear time with respect to the length n of the compressed representation:
the directive sequence (though the words themselves can be of exponential size with
respect to n). Some of the computed parameters can be of exponential size, however
they have linear size grammar-based representation. This gives more examples of fast
computations for highly compressed words.

1 Introduction

The standard Sturmian words (standard words, in short) are generalization of Fi-
bonacci words and have a very simple grammar-based representation which has some
algorithmic consequences.

Let S denote the set of all standard Sturmian words. These words are described by
recurrences (or grammar-based representation) corresponding to so called directive
sequences: integer sequences

γ = (γ0, γ1, . . . , γn),

where γ0 ≥ 0, γi > 0 for 0 < i ≤ n. The word xn+1 corresponding to γ, denoted by
Word(γ), is defined by recurrences:

x−1 = b, x0 = a, ∀0≤i<n xi+1 = xγi

i xi−1 (1)

Fibonacci words are standard Sturmian words given by directive sequences of the
form

γ = (1, 1, . . . , 1).

We consider here standard words starting with the letter a, hence assume γ0 > 0.
The case γ0 = 0 can be considered similarly.

⋆ Supported by grant N206 004 32/0806 of the Polish Ministry of Science and Higher Education

Pawe l Baturo, Marcin Pia֒tkowski, Wojciech Rytter: Usefulness of Directed Acyclic Subword Graphs in Problems Related to Standard Sturmian Words,

pp. 193–207.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

194 Proceedings of the Prague Stringology Conference 2008

For even n > 0 a standard word xn has suffix ba, and for odd n > 0 it has suffix
ab. The number N = |xn+1| is the (real) size, while n + 1 can be thought as the
compressed size.

Example 1.
Consider directive sequence γ = (1, 2, 1, 3, 1). We have:

Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

x−1 = b, x0 = a, x1 = x1
0x−1 = ab, x2 = x2

1x0 = ababa,

x3 = x1
2x1 = ababaab, x4 = x3

3x2 = ababaabababaabababaabababa,

x5 = x1
4x3 = ababaabababaabababaabababaababaab

Some of the outputs of our algorithms will be given in the grammar-compressed form
which consists in giving a context-free grammar G generating a single word x. The
size of G is the total length of all productions of G.

In particular each directive sequence of a standard Sturmian word corresponds to such
a compression – the sequence of recurrences corresponding to the directive sequence.
In this case the size of the grammar is proportional to the length of the directive
sequence.

For some lexicographic properties and structure of repetitions of standard Sturmian
words see [3] and [2].

2 The structure of subword graphs of standard Sturmian
words

Let Subwords(x) be the set of all nonempty subwords of x. We distinguish some
subwords as special ones:

– A special prefix of x is a prefix z of x such that za, zb ∈ Subwords(x).
– A basic prefix of x is a proper nonempty prefix of the type xj

kxk−1, where 0 ≤
k ≤ n and 0 ≤ j ≤ γk.

– A basic subword of x is a reverse of xk, for some k. Denote yk = Reverse(xk).

Denote by BP (x) the set of basic prefixes of x and by SP (x) the set of special prefixes
of x. Denote by x̂ the prefix of x of size 2, assuming |x| ≥ 2. Assume that ŷ0 = ab.

Lemma 1.
Assume x−1, x0, . . . , xn+1 is the sequence of standard Sturmian words given by
(γ0, γ1, . . . , γn).
(a) For i ≥ 1 we can represent standard word xi as

xi = yγ0

0 yγ1

1 · · · yγi−2

i−2 y
γi−1−1
i−1 ŷi−1,

(b) Each special prefix of xn has the form

yγ0

0 yγ1

1 · · · yj
i ,

where 0 ≤ j ≤ γi for i < n− 1 and 0 ≤ j ≤ γi − 1 for i = n− 1,
(c) Each special prefix results by cutting off two last symbols from a basic prefix.

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 195

ba b a b a ba a b a b a a b a b a b a a b a b a b a a b a b a a

ba b a b a ba a b a b a a b a b a b a a b a b a b a a b a b a a

y
4

y
3

y
3

y
3

y
2

y
1

y
1

y
0

BP

SP

Figure 1. The structure of basic prefixes (BP), special prefixes (SP) and basic sub-
words of Word(1, 2, 1, 3, 1).

Proof.
Point (a)
Notice that ŷi = ŷi+2 and yi+1 = yi−1y

γi

i for i ≥ 0.

First we show by induction that

yi = ŷiy
γ0

0 yγ1

1 · · · yγi−1−1
i−1 . (2)

For i = 1 we have
y1 = baγ0 = ŷ1y

γ0−1
0

Assume that for i ≤ n the equation (2) is true. We have

yn+1 = yn−1 · yγn
n

=
(
ŷn−1y

γ0

0 yγ1

1 · · · yγn−2−1
n−2

)
·
(
yn−2y

γn−1

n−1 yγn−1
n

)

= ŷn+1y
γ0

0 yγ1

1 · · · yγn−1
n

Now we can prove equation from the point (a) using induction. For i = 1 we have:

x1 = xγ0

0 x−1 = yγ0−1
0 ŷ0

Assume that for i ≤ n equation from the point (a) is true. We have

xn+1 = xγn
n xn−1

=
(
yγ0

0 · · · yγn−2

n−2 y
γn−1−1
n−1 ŷn−1

)γn

· yγ0

0 · · · yγn−2−1
n−2 ŷn−2

due to (2)
= yγ0

0 · · · yγn−1

n−1 yγn−1
n ŷn

Point (b).
Let w denotes here a word w with removed last two letters and assume that w contains
at least two letters.

From point (a) we know that
z = yγ0

0 yγ1

1 · · · yj
i

is a prefix of standard word xn generated by directive sequence (γ0, γ1, . . . , γn), where
0 ≤ j ≤ γi for i < n− 1 and 0 ≤ j ≤ γi − 1 for i = n− 1. We can also deduce, that

196 Proceedings of the Prague Stringology Conference 2008

prefix xn is a palindrome (see [4] for proof that every standard word x a word x is a
palindrome). Hence, if z is special prefix of standard word x, then z is also suffix of
x.

First assume that i < n− 1 and i is odd, the case for even i is similar.

If 0 ≤ j < γi, then z is prefix of xi+2 and zb is also prefix of xi+2 (first letter of yi is
b). Suffix of xi+2 is ab, hence za, as a suffix of xi+2, is also subword of xi+2.

If j = γi, then z is prefix of xi+3 and za is also prefix of xi+3 (first letter of yi+1 is a).
Suffix of xi+3 is is ba, hence zb, as a suffix of xi+3, is also subword of xi+3.

Now assume that i = n− 1. For 0 ≤ j < γn−1 proof is similar to the case i < n− 1. It
is obvious, due to the deduction above, that for i = n− 1, j must be less than γn−1.

Point (c)
Notice that ŷi = ŷi+2 and yi+1 = yi−1y

γi

i for i ≥ 0.

From (a) for basic prefix xj
kxk−1 we have:

xj
kxk−1 =

(
yγ0

0 · · · y
γk−2

k−2 y
γk−1−1
k−1 ŷk−1

)j

· yγ0

0 · · · y
γk−3

k−3 y
γk−2−1
k−2 ŷk−2

due to (2)
= yγ0

0 · · · y
γk−1

k−1 yj−1
k ŷk

From (b) we have that basic prefix xj
kxk−1 with last two letters removed (ŷk) is special

prefix.

Example 2.
For Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab we have:

BP = {x0, x1, x1x0, x2, x3, x3x2, x2
3x2, x4}

SP = {y0, y0y1, y0y
2
1, y0y

2
1y2, y0y

2
1y2y3, y0y

2
1y2y

2
3}

y0 = a y1 = ba y2 = ababa y3 = baababa

Word(1, 2, 1, 3, 1) = a ba ba ababa baababa baababa baababa ab

= y0 y2
1 y2 y3

3 ŷ4

The subword graph is a classical data structure representing all subwords of a given
word in a succinct manner. More precisely: the Directed Acyclic Word Graph (dawg
in short) of the word w is the minimal deterministic automaton (not necessarily
complete) that accepts all suffixes of w. We refer the reader to [6] for the complete
definition and more information of subword graphs.

The compacted subword graph (cdawg, in short) results from the subword graph by
removing all nodes of out-degree one (except the source node and the terminal nodes)
and replacing each chain by a single edge with the label representing the path label
of this chain. Internal nodes of dawg of out-degree greater than one, which are copied
to cdawg, are called fork nodes. In case of standard words the subword graph can be
considerably compressed.

The regularity of the structure of compacted subword graphs has been discovered in
[8]. The following theorem follows from the results of [8], Lemma 1 and our terminol-
ogy.

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 197

y
3

a by
3

y
3

y
3

y
2

y
1

y
1

y
0

a b

a b

a b

y
2

y
2

y
1

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

a

a

b
b

a

a

a

Figure 2. The structure of the subword graph (dawg) of Word(1, 2, 1, 3, 1) and its
compacted version (cdawg)

Theorem 2.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word.
(1) The labels of edges in compacted subword graph of w are basic subwords of w.
(2) The compacted subword graph of w has the structure illustrated on Figure 3.

3 The number of subwords

It is known that the number of distinct subwords in the n-th Fibonacci word is

Subwords(Fibn+1) = |Fibn| · |Fibn−1|+ 2 · |Fibn| − 1

Surprisingly essentially the same formula works generally for Sturmian words.

Theorem 3. Let γn = 1, and xn+1 = Word(γ0, γ1, ..., γn), then
∣∣Subwords(xn+1)

∣∣ = |xn| · |xn−1|+ 2 · |xn| − 1

Proof.
Denote by v0 the source node of the compacted subword graph for xn+1. Let tk = |xk|.
Define the multiplicity mult(v) of a vertex v as the number of paths v0

∗→ v, and
the weights of edges as lengths of corresponding label-strings of these edges in the
compacted subword graphs. Let edges(v) be the sum of all weight edges outgoing
from v.

Claim. Let w = Word(γ0, γ1, ..., γn). Then

∣∣Subwords(w)
∣∣ =

∑

v∈G

mult(v) · edges(v) (3)

198 Proceedings of the Prague Stringology Conference 2008

Case 1: γn = 1

y
1

y
1

y
1

y
1

y
2

y
2

y
2

y
2

y
2

y
0

y
0

y
0

y
0

γ
n−1

γ
2

γ
1

γ
0

y
2

y
3y

1

y
n−1

y
n−1

y
n−1y

n−1
a b

a b

Case 2: γn > 1

y
1

y
1

y
1

y
1

y
2

y
2

y
2

y
2

y
2

y
0

y
0

y
0

y
0

γ
2

γ
1

γ
0

γ
n−1

y
3y

1

y
2

y
n

y
n

y
n

y
n b a

b a

Figure 3. Compacted subwords graphs for words: Word(γ0, γ1, γ2, . . . , γn) and
Word(γ0, γ1, γ2, . . . , γn − 1, 1) are isomorphic (in the sense of graph structure).

1 1 2 2 5 7 7

72

2

2
2

7

5

5

7 7 7 25221

Figure 4. The structure of edge-lengths and multiplicities of nodes in the compacted
subword graph of Word(1, 2, 1, 3, 1). According to the Theorem 3 (and to the graph
above) there are |x4| · |x3|+ 2 · |x4| − 1 = 26 · 7 + 2 · 26− 1 = 233 subwords in our
example word.

See Figure 4 for edge-lengths and node-multiplicities structure in the cdawg of exam-
ple word.
We partition the set of edges into chunks, the first chunk consists of the first γ0

consecutive vertices starting from the v0, the second chunk contains the next γ1

vertices, etc. The last chunk slightly differs.

The contribution of k-th internal chunk in the sum in equation (3) is

(
tk−1 + (γk − 1)tk

)
· (tk + tk+1) = t2k+1 − t2k,

where t−1 = 1 (see Figure 5 for details).

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 199

The contribution of the last chunk is (see Figure 6)

(tn−1 + 2)(tn − tn−1) + 2tn−1.

Altogether we have

n−2∑

k=0

(
t2k+1 − t2k

)
+ (tn−1 + 2)(tn − tn−1) + 2tn−1 = tn · tn−1 + 2 · tn − 1

This completes the proof, since by definition |xk| = tk.

t k−1 t k t k t kt k t k t k+1

t k t k t k t k t k

t k+1t k+1
t k+1

t k+1

t k+1

t k+1

u v

Figure 5. The k-th internal chunk Gk of the subword graph, consists of γk nodes
from u to v (excluding u), and their outgoing edges. The multiplicity (number of
path leading from v0) of each node is written within the box corresponding to the
node. The weight of the edges are the lengths of corresponding words in the cdawg.

t n−2

t n−1 t n−1 t n−1 t n−1 t n−1

t n−1t n−1t n−1t n−1t n−1

u v
2

2

2
2

2

2

Figure 6. The final chunk Gn−1 of the subword graph, consists of γn−1 nodes from u
to v, and their outgoing edges.

The case γn > 1 reduces to the previous case.

Theorem 4. Let γn > 1. Then:

∣∣Subwords
(
Word(γ0, γ1, ..., γn)

)∣∣ =
∣∣Subwords

(
Word(γ0, γ1, ..., γn − 1, 1)

)∣∣.

Proof.
Compacted subword graphs of Word(γ0, γ1, ..., γn) and Word(γ0, γ1, ..., γn − 1, 1) are
isomorphic in the sense of graph structure (see Figure 3 for details). Hence we can
use the result of Theorem 3 to compute

∣∣Subwords
(
Word(γ0, γ1, ..., γn)

)∣∣.

200 Proceedings of the Prague Stringology Conference 2008

4 The structure of occurrences of subwords

In this section we are interested in the structure of first occurrences of the subwords
of a given length. One type of these subwords is particularly interesting – a right
special factors.

A right special factor of the word x is any word w such that both wa, wb are
subwords of x. For each k > 0 there is at most one right special factor of length k
of a given standard word. For standard Sturmian word x every right special factor is
either special prefix or suffix of some special prefix.

Theorem 5. Let w = Word(γ) be a standard Sturmian word. Then:
(1) For a given k > 0 the right special factor of w of length k has grammar-
representation of size O

(
|γ|
)
.

(2) The compressed representation of the right special factor of w of length k can be
computed in O

(
|γ|
)

time.

Proof.
Define length of the path in cdawg of w as number of edges in it and value of the
path as word created by concatenation of the labels of edges in it.

Let v be an internal node in compacted subwords graph of w and zπ be a value of
path π in this graph leading from root to v. It is clear that zπ is a subword of w.

Every internal node in compacted subword graph is a fork node, hence v has two
outgoing edges: one with label starting with letter a and the second with label starting
with letter b. This follows that zπ · a and zπ · b are also subwords of w and therefore
zπ is a right special factor of w.

Observe that value of every path from root to v in cdawg of w is suffix of the value
of the longest path from root to v. Moreover value of the longest path from root to v
is a prefix of w, hence it is a special prefix of w. This implies that every right special
factor of w is suffix of some special prefix of w.

Every right special factor of w is concatenation of some basic subwords of w. It follows
easily from Lemma 1 that every right special factor of w has grammar-representation
of size O

(
|γ|
)

which can be computed in time linear to the length of directive se-
quence γ.

Example 3.
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
Recall that:

y0 = a y1 = ba y2 = ababa y3 = baababa

Right special factors of w with their lengths are (special prefixes are bold):

1 y0

2 y1

3 y0y1

4 y2
1

5 y0y
2
1

6 y0y2

7 y1y2

8 y0y1y2

9 y2
1y2

10 y0y
2
1y2

11 y2
1y3

12 y2y3

13 y0y2y3

14 y1y2y3

15 y0y1y2y3

16 y2
1y2y3

17 y0y
2
1y2y3

18 y2
1y

2
3

19 y2y
2
3

20 y0y2y
2
3

21 y1y2y
2
3

22 y0y1y2y
2
3

23 y2
1y2y

2
3

24 y0y
2
1y2y

2
3

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 201

See Figure 2 for the structure of cdawg of the word w.

For a set X of integers and an integer k define

X ⊕ k = { x + k : x ∈ X }
Let occ(u,w) be the set of first positions of occurrences of u in w, we define also the
set of final positions of occurrences of a word u :

fin(u,w) = occ(u,w)⊕ |u| and first-fin(u,w) = min
(
fin(u,w)

)
.

For k ≥ we investigate also the structure of the set

FIN (k, w) =
{

first-fin(u,w) : u is a subword of w of size k
}
.

k
1

16

17

15

14

13

12

11

10

9

8

7

6

5

4

3

2

a b a b a a b a b a b a a b a b a b a a b a b a b a a b a b a a b

b b

a

a
a

a

a

Figure 7. The subword graph of w and the structure of the sets FIN (k, w) for w =
Word(1, 2, 1, 3, 1).

Theorem 6. Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:
(1) The set FIN (k, w) consists of a single interval or of two disjoint intervals.
(2) For a given k we can compute the intervals representing FIN (k, w) in linear time
with respect to the size of the directive sequence.

Proof.
The structure of the set FIN (k, w) easily follows from the way how paths of length k−
1 in dawg of w are extended into path of length k. Only fork nodes i ∈ FIN (k−1, w)
generate two elements of FIN (k, w), each other node i ∈ FIN (k − 1, w) generates
single element i + 1 in FIN (k, w) (see Figure 7).

It is clear that the set FIN (k + 1, w) results from FIN (k, w) by shifting each position
by one to the right and adding an extra position for the fork node. Hence thesis
follows from the structure of subword graphs of standard Sturmian words.

202 Proceedings of the Prague Stringology Conference 2008

5 Relation of subword graphs to the dual Ostrovski
numeration system

The dual Fibonacci numeration system has been introduced in [10], where its relation
to the subword structure of Fibonacci words has been investigated. We extend these
results to Sturmian words. In this case we have Ostrovski numeration system which
is a generalization of Fibonacci system.

In (only) this section we consider infinite directive sequences.

For an infinite directive sequence γ = (γ0, γ1, . . .) we introduce [∗]γ-numeration sys-
tem: a version of Ostrowski’s numeration system from [1] which is a generalization of
the Fibonacci number system. Let us define the base sequence q as a sequence:

q = (q0, q1, . . .) =
(
|x0|, |x1|, ...

)
,

where xi’s are as in equation (1).

The base sequence can be defined without reference to words xi as follows:

q−1 = q0 = 1, qi+1 = qi · γi + qi−1 for i ≥ 0.

Example 4.
If γ = (1, 2, 1, 2, . . .), then the base sequence is:

q = (1, 2, 5, 7, 19, . . .)

If γ = (1, 2, 1, 1, 1, . . .), then the base sequence is:

q = (1, 2, 5, 7, 12, 19, . . .)

Define:
valγ(α0, α1, . . . , αn) = α0 · q0 + α1 · q1 + . . . + αn · qn

For 0 ≤ i < |xn| the representation of i in Ostrovski numeration system is defined as
follows:

[i]γ = (α0, α1, . . . , αn),

where we require:

(1) valγ(α0, α1, . . . , αn) = i
(2) ∀0≤j<n αj ≤ γj

(3) αj+1 = γj+1:αj = 0

In other words in the representation of a number i we take at most γk numbers |xk|,
for each k, and if we take exactly γk numbers |xk| then we take zero numbers |xk−1|.
Example 5.
Let γ = (1, 2, 1, 3, 1, . . .). Then

q =
(
|x0|, |x1|, ...

)
= (1, 2, 5, 7, 26, 33, . . .)

We have [29]γ = (1, 1, 0, 0, 1), because

29 = 1 · 1 + 1 · 2 + 0 · 5 + 0 · 7 + 1 · 26

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 203

We have [58]γ = (0, 2, 0, 3, 0, 1), because

58 = 0 · 1 + 2 · 2 + 0 · 5 + 3 · 7 + 0 · 26 + 1 · 33

For 0 ≤ i < |xn| we define representation of i in the dual Ostrovski numeration
system as:

[̂i]γ = (α0, α1, . . . , αn),

where:

(1) valγ(α0, α1, . . . , αn) = i
(2) ∀0≤j<n αj ≤ γj

(3)
(

αj < γj and ∃ (i > j) αi > 0
)

:αj+1 > 0

In other words in the representation of a number i in numeration system defined
above we take at most γk numbers |xk|, and if we take αk < γk numbers |xk| and αk

is not the last one component of this representation then we must take at least one
number |xk+1|.
Example 6.
Let γ = (1, 2, 1, 3, 1, . . .). Then

q =
(
|x0|, |x1|, ...

)
= (1, 2, 5, 7, 26, 33, . . .)

We have ˆ[29]γ = (1, 1, 1, 3), because

29 = 1 · 1 + 1 · 2 + 1 · 5 + 3 · 7

We have ˆ[58]γ = (0, 2, 0, 3, 0, 1), because

58 = 0 · 1 + 2 · 2 + 0 · 5 + 3 · 7 + 0 · 26 + 1 · 33

Uniqueness of representation in Ostrovski numeration system was proved in [1].
Uniqueness of representation in dual Ostrovski numeration system was proved in [8].

Let G∞ be the infinite compacted subword graph corresponding to a given directive
sequence γ = (γ0, γ1, . . .).

The following fact is an interpretation of the corresponding result in [8] in terms of
the dual Ostrovski numeration system.

Theorem 7.

(1) Let π be a path from the root to another node of G∞. Let rep(π) = (h0, h1, . . .),
where hi is the number of edges of weight qi on the path π. Then rep(π) is the rep-
resentation of the length |π| of this path in the dual Ostrovski numeration system
corresponding to the directive sequence of G∞.

(2) For each k > 1 there is exactly one fork-path of length k in G∞.

Proof.
Point (1)
Let π be a path from root to some node v in G∞ – infinite compacted subwords graph
corresponding to directive sequence (γ0, γ1, γ2, . . .), and let rep(π) = (h0, h1, . . .) be

204 Proceedings of the Prague Stringology Conference 2008

q
3

q
3

q
3 q

4
q

1
q

2
q

3

q
1 q

3

q
2 q

4

0
q

0
q

0
q

0
q

0
q q

1
q

1
q

1
q

1
q

1 q
2

q
2

q
2

q
3

q
3

Figure 8. The illustration of the point (1) of Theorem 7. In this case representation
of the length of the path π in dual Ostrovski numeration system is given by: rep(π) =
(1, 4, 3, 2) and |π| = 1 · |q0|+ 4 · |q1|+ 3 · |q2|+ 2 · |q3|.

defined as above. It is sufficient to check if requirements of definition of dual Ostrovski
numeration system are satisfied.

Construction of π implies that

|π| = h0 · q0 + h1 · q1 + h2 · q2 + · · ·

and ∀i 0 ≤ hi ≤ γi. Moreover from G∞ structure (see Figure 8) it is obvious that
if hi < γi (we have taken qi less than γi times) and hi is not the last non zero element
in rep(π) then hi+1 > 0 (we must take at least one qi+1 to continue construction of π).
This concludes the proof of point (1).

Point (2) follows directly from point (1) and uniqueness of representation in dual
Ostrovski numeration system.

Ostrovski automata

For a directive sequence γ = (γ0, γ1, . . . , γn) we define SD(γ) as the set of represen-
tations (i0, i1, . . . , in) in the dual Ostrovski numeration system of all numbers not
exceeding the number written as γ in this representation.

Remark.
Observe that for any symbol a the value of a0 is an empty word.

Denote

L(γ) = {ai0
0 ai1

1 ...ain
n : (i0, i1, . . . , in) ∈ SD(γ)}

for alphabet Σ = {a0, a1, . . . , an}.

The minimal deterministic finite automaton accepting language L(γ) is called the
Ostrovski automaton and denoted by OA(γ).

Theorem 8. The minimal Ostrovski automaton for γ, without the dead state, is iso-
morphic as a graph to the compact directed acyclic subword graph of Word(γ).

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 205

a1a1a0

a1

a2 a3 a3 a3 a4

a4

a4

a4

a3

a2

a2

Figure 9. Minimal deterministic automaton (without dead state) OA(1, 2, 1, 3, 1) ac-
cepting the set of strings ai0

0 ai1
1 ai2

2 ai3
3 ai4

4 , where (i0, i1, . . . , i4) is a representation in the
dual Ostrovski numeration system of a natural number.

6 Critical factorization and maximal suffixes

The minimal local period in a word w at position k is a positive integer p such
that w[i− p] = w[i] for every k ≤ i < k + p, where w[i] and w[i− p] are defined.

The critical factorization point in a word w is position k in w for which minimal
local period at k equals the (global) minimal period of w. We refer the reader to [6]
for the more detailed definition of the critical factorization point.

The following nontrivial fact was shown by Crochemore and Perrin [5].

Fact 1
The critical factorization point of w is given as the starting position of a lexicograph-
ically maximal suffix, maximized over all possible orders of the alphabet.

Example 7
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
Minimal local periods of w are as follows:

i

p(i)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 · · · · · ·
a b a b a a b a b a b a a b a b a · · · · · ·

1 2 2 2 5 1 7 2 2 2 2 7 1 7 2 2 2 2 · · · · · ·

i

p(i)

· · · · · · 18 19 20 21 22 23 24 25

∣∣∣∣ 26 27 28 29 30 31 32 33

· · · · · · b a a b a b a b

∣∣∣∣ a a b a b a a b

· · · · · · 2 7 1 7 2 2 2 4 33 1 5 2 2 5 1 3 1

where i denotes position in w and p(i) – minimal local period at position i in w.
Hence critical factorization point is at position i = 25.

For a word w define πa(w) as a path in the dawg of w which starts in the root, ends
in the sink, and in which we use the letter a whenever we have a choice (in every fork
node). Similarly define πb(w). Path πa(w) (πb(w) respectively) can be also defined for
cdawg of w: in every fork node we choose the edge with label starting with letter a
(letter b respectively). Length of the path, denoted |π|, is is defined as length of the
word given by π.

206 Proceedings of the Prague Stringology Conference 2008

It is easily seen that lexicographically maximal suffix of w with respect to the letter
ordering “a < b” is given by πb(w) and the lexicographically maximal suffix of w with
respect to the letter ordering “a > b” is given by πa(w).

Lemma 9.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word and πa(w), πb(w) be de-
fined as above. Then:

πa(w) = yγ0

0 yγ2

2 · · · yγ2k

2k · ŷn−1

πb(w) = yγ1

1 yγ3

3 · · · y
γ2l+1

2l+1 · ŷn−1

where k = ⌊n−1
2
⌋ and l = ⌊n−2

2
⌋.

Proof.
Recall that definition of basic subwords follows that yi starts with letter a for even i
and yi starts with letter b for odd i.

We are constructing path πa(w) in cdawg of w by choosing edge with label starting
with letter a whenever it is possible. From structure of cdawgs of standard Sturmian
words (see Figure 3) we have that every fork node has two outgoing edges: one with
label y2i (starting with letter a) and second with label y2i+1 (starting with letter b).

To construct πa(w) we have to choose γ0 times edge with label y0, then γ2 times edge
with label y2, and so on up to y2k, where k = ⌊n−1

2
⌋. Finally, by Lemma 1, it suffices

to add ŷn−1, the last two letters of w.

The same proof works for path πb(w).

Construction of paths πa(w) and πb(w) implies the following fact.

Theorem 10.
Let w = Word(γ0, γ1, . . . , γn) be a standard Sturmian word. Then:
(1) The critical factorization point of w is at position

k = |w| −min
{
|πa(w)|, |πb(w)|

}

(2) The critical factorization point of w can be computed in linear time with respect
to the size of the directive sequence.

Proof.
The proof is immediate by Fact 1 and recalling that πa(w) and πb(w) corresponds to
lexicographically maximal suffixes of w with respect to letter orderings “a > b” and
“a < b” respectively.

Example 8.
Let w = Word(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.
See Figure 2 for its subword graph structure.
We have

πa(w) = y0y2ab = a ababa ab

πb(w) = y2
1y

3
3ab = ba ba baababa baababa baababa ab

Hence the position
i = |w| − |y0y2ab| = 33− 8 = 25

is the critical factorization point of w.

Similar computations were given in [7,9] for Fibonacci words. The paths πa(w) and
πb(w) have regular structure, consequently the words represented by them are well
compressible. This implies the following fact.

P.Baturo et al.: Usefulness of Directed Acyclic Subword Graphs in Problems Related to. . . 207

Theorem 11. Let w = Word(γ) be a standard Sturmian word. Then:
(1) The lexicographically maximal suffix of w has grammar-based representation of
size O

(
|γ|
)
.

(2) The compressed representation of the lexicographically maximal suffix of w can
be computed in O

(
|γ|
)

time.

Proof.
The lexicographically maximal suffix of a standard Sturmian word w is given either
by path πa(w) or by path πb(w) (depending on which letter ordering was chosen).
The thesis follows directly from the structure of πa(w), πb(w) and the subword graph
of w (see Lemma 9).

References

1. J. Allouche and J. Shallit: Automatic Sequences: Theory, Applications, Generalizations,
Cambridge University Press, 2003.

2. P. Baturo, M. Pia֒tkowski, and W. Rytter: The number of runs in Sturmian words,
CIAA, 2008.

3. P. Baturo and W. Rytter: Occurrence and lexicographic properties of standard Sturmian
words, LATA, 2007.

4. J. Berstel and P. Seebold: Sturmian words, in: M. Lothaire, Algebraic combinatorics on
words, (Chapter 2), vol. 90 of Encyclopedia of Mathematics and its Applications, Cambridge
University Press, 2002.

5. M. Crochemore and D. Perrin: Two-Way String Matching, J. ACM 38(3): 651-675, 1991.
6. M. Crochemore and W. Rytter: Jewels of stringology: text algorithms, World Scientific,

2003.
7. T. Harju and D. Nowotka: On the density of critical factorizations, ITA 36(3): 315-327,

2002.
8. F. Mignosi, J. Shallit, and I. Venturini: Sturmian Graphs and a Conjecture of Moser,

Lecture Notes in Computer Science 3340, 175-187, 2004.
9. W. Rytter: The structure of subword graphs and suffix trees of Fibonacci words, Theoretical

Computer Science Volume 363, Issue 2, 211 - 223, 2006.
10. W. Rytter: The number of runs in a string, Information and Computation Volume 205, Issue

9, 1459-1469, 2007.

Edit Distance with

Single-Symbol Combinations and Splits

Manolis Christodoulakis1 and Gerhard Brey2

1 School of Computing & Technology, University of East London
Docklands Campus, 4–6 University Way, London E16 2RD, UK

m.christodoulakis@uel.ac.uk
2 Centre for Computing in the Humanities, King’s College London

26–29 Drury Lane, London WC2B 5RL, UK
gerhard.brey@kcl.ac.uk

Abstract. In this article we introduce new variants of the edit distance string sim-
ilarity measure, where apart from the traditional insertion, deletion and substitution
operations, two new operations are supported. The first one is called a combination and
it allows two or more symbols from one string, to be “matched” against one symbol
of the other. The dual of a combination, is the operation of a split, where one symbol
from the first string is broken down into a sequence of two or more other symbols,
that can then be matched against an equal number of symbols from the second string.
The notions of combining and splitting symbols can be defined in a variety of ways,
depending on how the application in hand defines similarity. Here we introduce three
different possible definitions, and we provide an algorithm that deals with one of them.
Our algorithm requires O(L) time for preprocessing, and O(mnk) time for computing
the edit distance, where L is the total length of all the valid combinations/splits, and
k is an upper bound on the number of valid splits of any single symbol.

Keywords: edit distance, combination, split, OCR

1 Introduction

One of the fundamental problems in string algorithmics has been, for more than 40
years now, the pattern matching problem, where exact copies of a given string, the
pattern, need to be identified within a normally much larger string, the text. However,
the need to relax the “exactness” of the pattern matching process, very soon became
obvious. An endless list of applications benefit from approximate, rather than exact,
pattern matching algorithms, including text processors, spell checking applications,
information retrieval and bioinformatics.

Numerous approaches have been used to incorporate “inexactness” in pattern-
matching (see for example [4], [2, Ch.12] or [7, Ch.10]), one of the most commonly
used being the edit distance metric (also known as Levenshtein distance, as a credit
to Vladimir Levenshtein who first mentioned it [3]). The edit distance between two
strings, is simply defined as the minimum number of edit operations (substitutions,
insertions, deletions) that are required to transform one string to the other.

In this paper, we introduce a new edit operation, called a combination, and its
dual, called a split. These operations, in contrast to the traditional ones, apply to
sequences of input symbols, rather than single symbols. The combination operation
is that of combining two or more symbols from one string, and considering this com-
bination to be equal to a single symbol from a second string. Equivalently, the single
symbol of the second string can be split into the combination of symbols from the

Manolis Christodoulakis, Gerhard Brey: Edit Distance with Single-Symbol Combinations and Splits, pp. 208–217.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 209

first. Defining which combinations match to what symbols, and vice versa, depends
on the application. In all examples in this paper, we are referring to combinations
that look similar to some symbol, but of course one can define any list of combina-
tions that are meaningful for their application. For example, the sequence of symbols
“rn” can be combined into the symbol “m”, or “m” can be split to “rn”, since the
two look similar to each other.

The motivation for this new variant of the edit distance metric, comes from the
approximate pattern matching problem on texts which originate from old documents
that have been scanned and processed with Optical Character Recognition (OCR)
Algorithms. In particular, we have been working on the Nineteenth-Century Serials
Edition (NCSE) [5], which is a digital edition of six nineteenth-century newspaper and
periodical titles. The corpus consists of about 100,000 pages that were micro-filmed,
scanned in and processed using OCR software.

The quality of some of the text resulting from the OCR process varies from barely
readable to illegible. This reflects the poor print quality of the original paper copies
of the publications. An exact search for a pattern in the scanned and processed text
would retrieve only a small number of matches, but ignore incorrectly spelled or
distorted variations; on the other hand, an approximate search using general edit
distance would yield too many false matches, since it cannot distinguish between
“random” errors and errors that come from misinterpreted combinations of symbols
which are common in OCR texts. For example, a general edit distance search for the
name “Billington” in the corpus, would fail to distinguish between the approximate
matches “Wellington” and “Billmgton”, both of which have edit distance 2 from the
pattern, but where in reality only the latter is a true match misinterpreted by the
OCR software.

The paper is organised as follows. In Section 2 we describe the notation used
throughout the paper, and formally define the notions of combinations and splits.
In Section 3 we describe the preprocessing part of our algorithm and in Section 4
the main algorithm for computing the edit distance with combinations and splits. In
Section 5 two variants of the problem we tackle here are presented. Finally, Section 6
contains our concluding remarks.

2 Preliminaries

Consider strings x = x[1] · · · x[n] and y = y[1] · · · y[m] over an alphabet Σ; the edit
distance between x and y is defined as the minimum number of edit operations (in-
sertions, deletions or substitutions) to transform x to y, or vice versa [6,3]. Implicitly,
the simple edit distance assigns to each operation a unit cost, and computes the min-
imum cost of transforming x to y. A generalised version of the edit distance, is one
that allows the different operations to have different costs; let dsub be the cost for one
substitution operation, and dindel that of one insertion or deletion operation (one is a
dual of the other, hence the identical cost). The generalised edit distance is defined
then as the minimum cost of transforming x to y.

Notice how traditional variants of the edit distance always compare a single symbol
from one string with either a single symbol from the other (e.g. x[i] against y[j])
or a single symbol from one string with the empty string (e.g. x[i] deletion or y[j]
insertion). In the variant of the edit distance that we introduce in this paper, we allow
more than one symbol to be “matched” either against a single symbol (that is, many
symbols are combined into one) or against a different combination of symbols (called

210 Proceedings of the Prague Stringology Conference 2008

Figure 1. Example of a single-symbol combination

a recombination). For example, the symbol “m” is a combination of the symbols
contained in the string “in” or “rri”, and “b” is a combination of “lo”. As seen
in this example, there may very well exist, and they normally do, more than one
combinations for the same symbol (symbol “m” in this example). Formally, we define
combinations in the following way:

Definition 1. Given a string x = x[1] · · · x[n] and a symbol α, α is called a single-
symbol combination, or simply a combination, of x (equivalently, x is called a split
of α), if and only if x is a valid match for α; we write α 7→ x.

Obviously, any algorithm that makes use of combinations of symbols must be able
to differentiate between meaningful (valid) and random combinations. In our case,
meaningful ones are those combinations of symbols that optically resemble one or
more other symbols. It is worth noting however that any kind of valid combinations
may as well be used. For instance, one may consider combinations of symbols which
sound similar to other (combinations of) symbols.

We assume that the list of valid combinations is given in the following way: for
every symbol, α, for which valid combinations exist, a combination list Cα is provided
such that

Cα = {x ∈ Σ∗|α 7→ x}
We further introduce the following notation

kα = |Cα| (1)

lα =
∑

x∈Cα

|x| (2)

L =
∑

α∈Σ

lα (3)

Simply, kα denotes the number of keywords (valid combinations) in Cα, lα is sum of
the lengths of all the strings in Cα, and L is the overall sum of lengths of all the
strings over all combination lists.

With these definitions in place, the problem we are going to tackle in this paper
is defined as follows:

Definition 2 (Edit Distance with Single-Symbol Combinations (EDSSC)).
Given strings x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and
lists Cα for α ∈ Σ, the edit distance with single-symbol combinations problem is that
of finding the minimum cost of transforming x to y (equivalently, y to x) allowing
substitutions, insertions or deletions, and single-symbol combinations or splits.

An example of this problem is illustrated in Figure 1. The substring “in” of the
first string is combined and matched against the symbol “m” of the second string. The
EDSSC is therefore dcomb, since one combination operation is required to transform
one string to the other. Normally, the cost for a combination/split will be smaller

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 211

Algorithm 6 Function next for moving inside a tree Tα

1: function next(v, a)
2: while g(v, a) =“fail” do

3: v ← f(v)

4: return g(v, a)

(possibly zero) than that of a substitution or insertion/deletion; thus, the cost dcomb

is going to be much smaller —reflecting the fact that the two strings look similar to
each other— than the dindel + dsub of the simple edit distance for the same pair of
strings.

3 Preprocessing

In this stage we preprocess the lists of valid combinations and splits, which are given
as input; the purpose of preprocessing is to allow the main algorithm to run faster.

Recall that for every symbol α we are given a list, Cα, of combinations that match
α. The preprocessing starts by building an Aho-Corasick automaton [1], Tα, from the
strings contained in Cα, for every α ∈ Σ. We will then slightly modify these Tα’s to
better suit our edit distance algorithm. First, let us briefly describe the Aho-Corasick
automaton.

An Aho-Corasick automaton, T , is constructed from a set of keywords, C, essen-
tially by generating a trie of all the strings contained in C, and computing functions
g, f and out as described below. Let v be one node in T , a be a symbol, and Lv be
the string spelled out on the path from the root to node v. Then:

– The “forward” (or goto) function g(v, a) returns a node u in T if there exists an
outgoing edge from v to u labeled with a, or returns “fail” if no such node u exists;
exceptionally for the root node, g(root, a) = root if in the trie there is no outgoing
edge from root labeled with a.

– The “failure” function f(v) returns a node u whose label, Lu, corresponds to the
longest proper suffix of Lv that occurs in T ; if no such suffix exists, f(v) = root.

– The “output” function out(v) returns all the keywords of C that are suffixes of
Lv.

The algorithm that searches a text, s, for any of the strings in C, operates by
repeatedly calling the function g(v, a), where v is the current node at any stage and a
is the symbol of s currently being processed; initially, v is the root of T and a = s[1].
If at any stage g(v, a) returns “fail”, then the failure function is used and the search
continues from the failure link node, g(f(v), a). To make the notation easier, we define
function next, shown in Algorithm 6, which for a node v and input symbol a, follows
as many failure links as necessary (possibly zero) and then calls g once.

For the purposes of our algorithm we need to slightly modify function out. In-
stead of storing the actual keywords that match at a specific node, we only need
to know the lengths of all these matching keywords. This information will be later
used to compute the cost of performing combination operations. The modification is
easily implemented during the construction of the automaton, without modifying the
running time of the algorithm.

Figure 2 demonstrates an example of preprocessing the combination list of the
symbol m, Cm = {iii,iin,in,ni,nn,rn,rri}. Nodes are represented by circles, solid edges

212 Proceedings of the Prague Stringology Conference 2008

Figure 2. Preprocessing Cm = {iii,iin,in,ni,nn,rn,rri}

represent the forward links (function g), and dashed edges represent the failure links
(function f); for those nodes for which a failure link is not shown in the diagram, it
is implied to be the root. Next to those nodes for which one or more keywords match,
we show the lengths of the matching keywords. See for example, node 4 at which both
keywords “iin” and “in” match, we store the lengths of these two keywords, 3 and 2
respectively.

4 EDSSC Algorithm

Let x = x[1] · · · x[n] and y = y[1] · · · y[m] be the two strings whose distance we
want to compute; assume that the combination lists have already been provided and
pre-processed, yielding Aho-Corasick automata Tα, for all α ∈ Σ for which valid
combinations exist.

The algorithm works by processing gradually increasing prefixes of x and y. While
processing prefixes x[1..i] and y[1..j], where 1 ≤ i ≤ n and 1 ≤ j ≤ m, the permitted
edit operations are as follows:

– substitution of a symbol x[i] with the symbol y[j], with cost dsub

– insertion of the symbol y[j] into x, with cost dindel

– deletion of the symbol x[i] from x, with cost dindel

– combination of the symbols x[ℓ..i] (for some 1 ≤ ℓ < i) to match y[j], with cost
dcomb

– split of the symbol x[i] to match y[h..j] (for some 1 ≤ h < j), with cost dcomb

The algorithm maintains a dynamic programming table D(0..n, 0..m), where
D(i, j) represents the minimum cost of transforming x[1..i] to y[1..j], allowing the
operations mentioned above. In contrast to the traditional edit distance dynamic pro-
gramming algorithm, the whole D table must be maintained throughout the operation
of the algorithm, rather than the last row (column) which were the only needed in
the row-wise (column-wise) operation of traditional dynamic programming.

The base conditions for D are D(i, 0) = i · dindel and D(0, j) = j · dindel, similarly
to the simple edit distance algorithm. The correctness of these base conditions comes
from the fact that the empty string ǫ is not a valid split for any α ∈ Σ, and thus the

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 213

only way to transform x[1..i] to ǫ is by deleting x[1..i] from x and similarly the only
way of transforming ǫ to y[1..j] is by inserting y[1..j] into x.

The recurrence relation for D(i, j), for i, j > 0, is

D(i, j) = min

D(i− 1, j − 1) + sub(x[i], y[j]) {substitution}
D(i, j − 1) + dindel {insertion}
D(i− 1, j) + dindel {deletion}
comb(x[1..i], y[j]) {combination}
split(x[i], y[1..j]) {split}

where the functions sub, comb and split are defined as follows:

– sub: this function simply compares x[i] with y[j] and returns 0 if they are equal
and dsub otherwise;

– comb: finds the suffix of x[1..i] that can be combined into symbol y[j] with the
minimum cost and returns this cost, or returns +∞ if there is no such suffix;

– split: finds the suffix of y[1..j] that can be combined into symbol x[i] with the
minimum cost and returns this cost, or returns +∞ if there is no such suffix.

Next, we will demonstrate how functions comb and split operate. We will assume
a row-wise scan of the dynamic programming table D (a column-wise scanning is
equivalent).

4.1 Combinations

Recall that, while computing D(i, j), a combination operation translates to finding
one suffix of x[1..i] that can be combined to y[j]; here we are interested in the suffix
with the minimum cost. This suffix can be found by searching the combination list of
y[j], Cy[j], and more specifically by making use of the Aho-Corasick automaton, Ty[j],
which was created during preprocessing. Ty[j] is traversed, starting from the root, and
descending down the tree, using failure links where necessary (functions next, see
Section 3), until the whole prefix x[1..i] has been spelled out. Then the number of
valid combinations is the number of elements in the set returned by function out, in
the last node we visited in Ty[j]. If this set is empty, then there is no suffix of x[1..i]
that is a valid split of y[j] and thus the algorithm returns +∞ cost. On the other
hand, if it has one or more elements, the algorithm must check the cost of each of
those combinations and return the minimum.

Let v be the last node visited in T when parsing x[1..i], and out(v) = {v1, . . . , vr}
be the output of node v, where v1, . . . , vr are integers representing the lengths of the
keywords that match suffixes of x[1..i]. Thus, x[i − v1 + 1..i], . . . , x[i − vr + 1..i] are
all the valid splits of y[j]. What remains to be done is compute the cost of each of
those.

If x[i− v1 + 1..i] is combined and matched to y[j], then the prefix x[1..i− v1] of x
and the prefix y[1..j−1] of y must be aligned with each other. That is, the cost of this
combination operation is the minimum cost of transforming x[1..i− v1] to y[1..j− 1],
plus the cost of combining x[i−v1+1..i] into y[j], i.e. D(i−v1, j−1)+dcomb. We repeat
the same process for all the values in out(v) and return the minimum, and since the
cost for every combination is constant, dcomb, the minimum cost for a combination at
cell D(i, j) is

min{D(i− v1, j − 1), . . . , D(i− vr, j − 1)}+ dcomb

214 Proceedings of the Prague Stringology Conference 2008

The algorithm for comb, as it has been described so far, is not efficient: for every
prefix x[1..i] we spend O(i) time to traverse Ty[j] from the root until all i symbols
of x[1..i] have been processed. Let v be the last node visited in this traverse. We
notice that, during the computation of D(i+ 1, j), when the prefix x[1..i+ 1] must be
spelled out on Ty[j], one can avoid parsing this whole prefix simply by remembering
that x[1..i] ended in node v. Then, the traversal for x[1..i + 1] requires only one call
to function next, next(v, x[i + 1]).

To take advantage of this observation, and given the assumption that D is pro-
cessed in a row-wise manner, the algorithm must store the node where the suffix x[1..i]
ends in each Ty[j] (for all 1 ≤ j ≤ m). To do that we create a vector t[1..m], which
while working on the i-th row of D will contain values t[j] = next(root(Ty[j]), x[1..i]),
1 ≤ j ≤ m. Then, during processing the (i + 1)-th row of D, t[j] is updated with the
value t[j] = next(t[j], x[i + 1]). The initial values of vector t —that correspond to
the empty prefix of x— are of course t[j] = root(Ty[j]).

4.2 Splits

A split operation is the dual of a combination; a split on x is a combination on y
and vice versa. During the computation of D(i, j), a split means finding the suffix of
y[1..j] that is a valid split of x[i] and is of minimal cost. Similarly to the combination
operation, this can be found by spelling out y[1..j] on the Aho-Corasick automaton
of x[i], Tx[i].

Storing and recalling the last node visited by the prefix y[1..j] on Tx[i], works here
too, only somewhat in a simpler way. The row-wise processing of D ensures that all
prefixes of y are processed one after the other on Tx[i], before moving to Tx[i+1]. Thus
in this case, only a single variable u is required such that, during the computation
of D(i, j), u = next(root(Tx[i]), y[1..j]), and then while computing D(i, j + 1), u is
updated as u = next(u, y[j + 1]). The initial value of u, which corresponds to the
empty prefix of y, is u = root(Tx[i]).

4.3 Analysis of the Algorithm

The complete algorithm for the “edit distance with single-symbol combinations” prob-
lem is shown in Algorithm 7. Notice that the first argument of comb (split) is only
a node in an Aho-Corasick automaton, the function does not need to know the whole
prefix of x (y) that has already been processed.

Theorem 3. Algorithm 7 requires O(L) time for preprocessing, and O(mnk) time for
computing the edit distance, where L is the total length of all the valid combinations
(see Eq. 3), and k is an upper bound on the number of valid splits of any single symbol.

Proof. The preprocessing consists of building an Aho-Corasick automaton, Tα, for
each list of valid combinations, Cα. This process requires time linear in the length
of the input [1], that is O(lα) (see Eq. 2). The updating of function out to return
the lengths of the matching keywords, rather than the keywords themselves, does
not increase the running time since during construction we can, in constant time per
entry in out(v), replace every keyword x ∈ out(v) with its length, |x|. Collectively,
the preprocessing of all the combination lists requires O(

∑
α∈Σ lα) = O(L) time.

In the edit distance algorithm, initialization (lines 10–14 of Algorithm 7) takes
O(m+n) time for assigning values to the first column of D, of size O(n), the first row

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 215

Algorithm 7 EDSSC algorithm

1: function edssc(x, y)
2: n← |x|, m← |y|
3: for all α ∈ Σ do {Preprocess combination lists}
4: Tα ← Aho-Corasick(Cα)
5: for all v ∈ Tα do

6: out′ ← {}
7: for all x ∈ out(v) do

8: out′ ← out′ ∪ {|x|}
9: out← out′

10: for i← 1 to n do {Initializations}
11: D(i, 0)← i · dindel

12: for j ← 1 to m do

13: D(0, j)← j · dindel

14: t[j]← root(Ty[j])

15: for i← 1 to n do {Main algorithm}
16: u← root(Tx[i])
17: for j ← 1 to m do

18: D(i, j)← min(D(i− 1, j − 1)+sub(x[i], y[j]),
D(i, j − 1) + dindel, D(i− 1, j) + dindel,

comb(t[j], x[i]), split(u, y[j]))

19: return D(n, m)

20: function sub(α, β)
21: if α = β then

22: return 0
23: else

24: return dsub

25: function comb(v, α)
26: v ← next(v, α) {Update v}
27: min← +∞
28: for all r ∈ out(v) do

29: if D(i− r, j − 1) + dcomb < min then

30: min← D(i− r, j − 1) + dcomb

31: return min

32: function sub(v, α)
33: v ← next(v, α) {Update v}
34: min← +∞
35: for all r ∈ out(v) do

36: if D(i− 1, j − r) + dcomb < min then

37: min← D(i− 1, j − r) + dcomb

38: return min

216 Proceedings of the Prague Stringology Conference 2008

of D, of size O(m), and the vector, t, of size O(m), which is initialized with pointers
to the roots of Ty[j]. The main body of the algorithm (lines 15–18) computes the
values of D(i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, by performing one of the operations
substitution, insertion, deletion, combination, or split. The first three clearly require
constant time, to examine cells D(i−1, j−1), D(i, j−1) and D(i−1, j) respectively,
while combinations and splits need deeper analysis.

A combination on cell D(i, j), first makes a call to next (line 26), which in turn
makes zero or more calls to function f and a single call to function g (Algorithm 6).
Although the number of calls to f is not constant, from [1] we know that collectively
for a string of size n, there are O(n) calls to both f and g. At the end of our algorithm,
we have processed m columns, each of which can be seen collectively as a single parsing
of string x on one Aho-Corasick automaton, i.e. O(mn) time; similarly each of the
n rows can be seen collectively as a single parsing of string y on one Aho-Corasick
automaton, i.e. O(mn) time. Therefore, overall, the total time spent on next is
O(mn).

After calling next, the function comb computes the cost of each combination
suggested by out(v), in time constant per entry or |out(v)| in total, as can be seen in
lines 28–30 of Algorithm 7. Unfortunately, in the worst case the number of elements in
out(v) can be as large as the number of keywords, kα, in the Aho-Corasick automaton.
Let k be an upper bound of kα, that is kα ≤ k for all α ∈ Σ. Then, for every call
to comb we spend O(k) time to examine all the valid combinations. Thus, the total
time for computing the whole table D is O(mnk).

It is worth noting that, despite the worst-case running time being O(mnk), in
practice the algorithm is expected to run in time closer to O(mn), since the number
of matching strings, out(v), for every node v, is rarely larger than two or three, and
most often it is either zero or one (see for example Figure 2).

5 Variants of the EDSSC Problem

In this section we present two possible variants of the EDSSC problem, which further
extend the notions of combining and splitting symbols. Both can be seen as useful
generalisations of EDSSC, but unfortunately the algorithm we presented in this paper
cannot (at least not trivially) extend to solve them, and we leave these as open
problems for further investigation.

Similar to the way we defined the combination lists, Cα, for symbols α ∈ Σ,
we could also define recombination lists, Cx, x ∈ Σ∗; that is, lists of combinations
of symbols that validly represent a different combination of symbols. For example,
Cbl = {lol, ld}. In this way, when computing the edit distance between strings x
and y, we allow whole substrings of x (rather than single symbols) to be matched
against different substrings of y, and vice versa. Therefore, a more general version of
the EDSSC problem is that of allowing the operation of symbol recombinations, in
parallel to all operations allowed in the EDSSC problem.

Definition 4 (Edit Distance with Re-Combinations (EDRC)). Given strings
x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and lists Cx for
x ∈ Σ∗, the edit distance with recombinations problem is that of finding the minimum
cost of transforming x to y (equivalently, y to x) allowing substitutions, insertions or
deletions, single-symbol combinations or splits, and string recombination operations.

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 217

An even more general variant of the edit distance with (re-)combinations problem,
is that of allowing transitive (re-)combinations of symbols. We illustrate this problem
with an example. Consider strings x =“m” and y =“rri”, and combination lists
Cm = {rn, in} and Cn = {ri}; although the two strings look similar there is no
explicit valid combination “rri” in Cm. However, notice that the suffix “ri” of y is a
valid combination in Cn, and thus y could be matched to y′=“rn”; now x 7→ y′ since
“rn” ∈ Cm, and thus we can infer that x 7→ y.

Definition 5 (Edit Distance with Transitive Combinations (EDTC)). Given
strings x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and lists Cx
for x ∈ Σ∗, the edit distance with transitive combinations problem is that of finding
the minimum cost of transforming x to y (equivalently, y to x) allowing substitutions,
insertions or deletions, single-symbol combinations or splits, and string recombination
operations, where any of the (re-)combination operations can be transitive:

x 7→ y and y 7→ z : x 7→ z where x, y, z ∈ Σ∗

6 Conclusions

In this paper we have introduced the problem of edit distance with single-symbol
combinations and splits, where in addition to the traditional edit distance operations,
consecutive symbols in one string may be combined and matched against one symbol
from the other. Our algorithm runs in O(mnk) time with a prior O(L) time for
preprocessing, where L is the sum of lengths of all the valid combinations and k is
the maximum number of valid splits for any symbol.

We also defined two variants of the above problem which allow a) two or more
consecutive symbols of one string to match a different sequence of two or more consec-
utive symbols in the other string (recombinations), and b) combinations of symbols
to be constructed by combining known smaller valid combinations (transitive com-
binations). These two variants are equally, if not more, interesting problems, both
from a practical/application point of view, as well as from an algorithmic point of
view, and have been left as open problems. As it stands, the algorithm we presented
here does not appear to extend towards solving either of these problems, and further
research is required.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. M. Crochemore and W. Rytter: Jewels of Stringology: Text Algorithms, World Scientific,
2002.

3. V. I. Levenshtein: Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10 1966, pp. 707–710.

4. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1)
2001, pp. 31–88.

5. Nineteenth-Century Serials Edition (NCSE): http://www.ncse.ac.uk.
6. D. Sankoff and J. Kruskal, eds., Time Warps, String Edits, and Macromolecules: The Theory

and Practice of Sequence Comparison, Addison-Wesley, 1983.
7. B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.

A Concurrent Specification of an Incremental DFA

Minimisation Algorithm

Tinus Strauss, Derrick G. Kourie, and Bruce W. Watson

FASTAR, University of Pretoria
Pretoria, South Africa

{tstrauss,dkourie,bwatson}@cs.up.ac.za
http://www.fastar.org

Abstract. In this paper a concurrent version of a published sequential incremental
deterministic finite automaton minimisation algorithm is developed. Hoare’s Commu-
nicating Sequential Processes (CSP) is used as the vehicle to specify the concurrent
processes.
The specification that is proposed is in terms of the composition of a number of con-
current processes, each corresponding to a pair of nodes for which equivalence needs
to be determined. Each of these processes are again composed of several other possibly
concurrent processes.
To facilitate the specification, a new CSP concurrency operator is defined which, in
contrast to the conventional CSP concurrency operator, does not require all processes
to synchronise on common events. Instead, it is sufficient for any two (or more) processes
to synchronise on such events.

Keywords: DFA minimisation, concurrency, CSP, automata

1 Introduction

As pointed out in [10], two contemporary trends drive the need for the development
of concurrent implementations of automata algorithms. On the one hand, finite au-
tomaton technology is being applied to ever-larger applications. On the other hand,
hardware is tending towards ever-increasing support for concurrent processing. Chip
multiprocessors [7], for example, implement multiple CPU cores on a single die. Ad-
ditionally, scale-out systems [1] – collections of interconnected low-cost computers
working as a single entity – also provide parallel processing facilities. These hardware
developments present the challenging task of producing quality concurrent software
[6,11,12].

The problem of minimising a finite state automaton has been studied quite ex-
tensively over the years and many algorithms have been proposed to address this
problem. See [14, Chap. 7] for a comprehensive coverage of the area.

Previous parallel algorithms that have been proposed include [5,8,13]. These al-
gorithms typically depend on a specific parallel computational models. In the present
case, we abstract away from these considerations and model the algorithm as a process
in the Communicating Sequential Processes (CSP) process algebra. Our purpose is to
expose maximally the possibilities for concurrency inherent in the problem itself—at
least to the extent that these possibilities may be latent in the sequential algorithm.
As a consequence, we are not concerned with issues such as allocation of processes to
processors, determination of which processes could be coalesced into a single process
to limit context switching, etc. These are regarded as implementation issues for later
consideration.

Tinus Strauss, Derrick G. Kourie, Bruce W. Watson: A Concurrent Specification of an Incremental DFA Minimisation Algorithm, pp. 218–226.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 219

The article is structured as follows. Section 2 gives the preliminaries of the problem
domain under consideration, and the sequential algorithmic solution to the problem is
given in section 3. A very brief account is given in section 4 of CSP. We also introduce
a so-called optional-parallel operator that will be used. Section 5 then provides a
concurrent specification to the problem, before a brief conclusion in the final section.

2 Preliminaries

Throughout this paper, we will consider a specific DFA (Q,Σ, δ, q0, F) where Q is
the finite set of states, Σ is the input alphabet, δ : Q × Σ → Q is the transition
function, q0 ∈ Q is the start state, and F ⊆ Q is the set of final states. We further
assume that all states in the automaton are reachable from q0. The size of a DFA,
|(Q,Σ, δ, q0, F)|, is defined as the number of states, |Q|.

To make some definitions simpler, we will use the shorthand Σq to refer to the set
of all alphabet symbols which appear as out-transition labels from state q. Sometimes
when it is the case that Σp = Σq we will write Σpq instead of Σp or Σq to emphasise
their equality.

We take δ∗ : Q×Σ∗ → Q to be the transitive closure of δ defined inductively (for
state q) as δ(q, ε) = q and (for a ∈ Σq, w ∈ Σ∗) δ∗(q, aw) = δ∗(δ(q, a), w).

The right language of a state q, written
−→L (q), is the set of all words spelled out

on paths from q to a final state. Formally,
−→L (q) = {w | δ∗(q, w) ∈ F }. With the

inductive definition of δ∗, we can give an inductive definition of
−→L :

−→L (q) =

 ⋃

a∈Σq

{a}−→L (δ(q, a))

 ∪

{
{ε} if q ∈ F
∅ if q /∈ F

We define predicate Equiv to be ‘equivalence’ of states:

Equiv(p, q) ≡ −→L (p) =
−→L (q)

With the inductive definition of
−→L , we can rewrite Equiv as follows:

Equiv(p, q) ≡ (p ∈ F ≡ q ∈ F) ∧ Σp = Σq ∧
〈∀ a ∈ Σp ∩Σq :: Equiv(δ(p, a), δ(q, a))〉 (1)

The primary definition of minimality of a DFA M is:

〈∀ M ′ : M ′ is equivalent to M : |M | ≤ |M ′|〉

where equivalence of DFAs means that they accept the same language. Using right
languages, minimality can also be written as the following predicate:

〈∀ p, q ∈ Q : p 6= q : ¬Equiv(p, q)〉

Equiv indicates whether two states are interchangeable. If they are, then one can be
eliminated in favour of the other. (Of course, in-transitions to the eliminated state
are redirected to the equivalent remaining one.) This reduction step is not addressed
here.

220 Proceedings of the Prague Stringology Conference 2008

3 The Sequential Algorithm

This section briefly details the sequential algorithm [15] for which we intend to pro-
vide a CSP model in the forthcoming sections. The algorithm is different from other
minimisation algorithms in the sense that it is incremental, i.e. it may be halted at
any time, yielding a partially minimised automaton.

From the problem of deciding the structural equivalence of two types, it is known
that equivalence of two states can be computed recursively by turning the mutually
recursive set of equivalences Equiv into a functional program. If the definition were to
be used directly as a functional program, there is the possibility of non-termination
in cyclic automata. In order for the functional program to work, it takes a third
parameter along with the two states. An invocation equiv(p, q, ∅) returns via the
local variable eq the truth value of Equiv(p, q). During the recursion, it assumes that
two states are equivalent (by placing the pair of states in S, the third parameter)
until shown otherwise.

Since it is known that the depth of recursion can be bounded by the larger of |Q|−2
and 0 (expressed as (|Q| − 2) max 0) without affecting the result [14, §7.3.3], we add
a parameter k to function equiv such that an invocation equiv(p, q, ∅, (|Q|−2) max 0)
returns Equiv(p, q).

Purely for efficiency, the third parameter S is made a global variable. We assume
that S is initialized to ∅. When S = ∅, an invocation equiv(p, q, (|Q| − 2) max 0)
returns Equiv(p, q); after such an invocation S = ∅.

Algorithm 3.1 (Pointwise computation of Equiv(p, q)):

func equiv(p, q, k)→
if k = 0→ eq := (p ∈ F ≡ q ∈ F)
[] k 6= 0 ∧ {p, q} ∈ S → eq := true
[] k 6= 0 ∧ {p, q} 6∈ S →

eq := (p ∈ F ≡ q ∈ F) ∧ (Σp = Σq);
S := S ∪ {{p, q}};
for a : a ∈ Σp ∩Σq →

eq := eq ∧ equiv(δ(p, a), δ(q, a), k − 1)
rof ;
S := S \ {{p, q}}

f i;
return eq

cnuf

The function equiv can be used to compute the relation (i.e. set of pairs) Equiv . In
variable G, we maintain a set consisting of the pairs of states known to be inequivalent
(distinguished), while in H, we accumulate pairs of states belonging to the set Equiv .
To initialize G and H, we note that final states are never equivalent to nonfinal ones,
and that a state is always equivalent to itself. Since Equiv is an equivalence relation,
we ensure that H is transitive at each step. Finally, we have global variable S used
in Algorithm 3.1:

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 221

Algorithm 3.2 (Computing Equiv):

S,G,H := ∅, ((Q \ F)× F) ∪ (F × (Q \ F)), { (q, q) | q ∈ Q };
{ invariant: G ⊆ ¬Equiv ∧ H ⊆ Equiv }
do (G ∪H) 6= Q×Q→

let p, q : (p, q) ∈ ((Q×Q) \ (G ∪H));
if equiv(p, q, (|Q| − 2) max 0)→

H := H ∪ {(p, q), (q, p)};
H := H+

[] ¬equiv(p, q, (|Q| − 2) max 0)→
G := G ∪ {(p, q), (q, p)}

f i
od; { H = Equiv }
merge states according to H
{ (Q,Σ, δ, q0, F) is minimal }

The repetition in this algorithm can be interrupted and the partially computed H
can be safely used to merge states.

4 CSP

Of the many process algebras that have been developed to concisely and accurately
model concurrent systems, we have selected CSP [4,3,9] as a fairly simple and easy
to use notation. It is arguably better known and more widely used than most other
process algebras. Below, we first briefly introduce the conventional CSP operators that
are used in the article. Thereafter we also introduce the so-called optional parallel
operator—a new proposed CSP operator [2].

4.1 Introductory Remarks

CSP is concerned with specifying a system of concurrent sequential processes (hence
the CSP acronym) in terms of sequences of atomic events, called traces. In fact, the
semantics of a concurrent system is seen as being precisely described by the set of all
possible traces that characterise such as system. A fundamental assumption is that
events are instantaneous and atomic, i.e. they cannot occur concurrently. Various
operators are available to describe the sequence in which events may occur, as well
as to connect processes. Table 1 briefly outlines the operators used in this article.

Full details of the operator semantics and laws for their manipulation are available
in [4,3,9]. Note that SKIP designates a special process that engages in no further
event, but that simply terminates successfully. Parallel synchronization of processes
means that if A ∩ B 6= ∅, then process (x?A → P (x)) || (y?B → Q(y)) engages in
some nondeterministically chosen event z ∈ A ∩ B and then behaves as the process
P (z) || Q(z). However, if A ∩ B = ∅ then deadlock results. A special case of such

parallel synchronization is the process (b!e → P)
||
α(b) (b?x → Q(x)), where α(b)

denotes the alphabet on channel b. This should be viewed as a process that engages

in the event b.e and thereafter behaves as the process P
||
α(b) Q(e). Note that parallel

composition that involves more than two processes, requires that all processes always
synchronise on common events. If they do not, then deadlock occurs. However, in
the present context, it was considered desirable to introduce an alternative operator,
called the optional parallel operator, that relaxes this requirement.

222 Proceedings of the Prague Stringology Conference 2008

a→ P event a then process P
a→ P |b→ Q a then P choice b then Q
x?A→ P (x) choice of x from set A then P (x)

P
||
X Q P in parallel with Q

Synchronize on events in set X
b!e on channel b output event e
b?x from channel b input to variable x
P ; Q process P followed by process Q
P |||Q process P interleave process Q
P

a
Q process P interrupted by process Q

P ⊓ Q external choice between processes P and Q
P ⊓ Q internal choice between processes P and Q

Table 1. Selected CSP Notation

4.2 Optional parallel operator

To position the new optional parallel operator, consider first the definition of the
generalised parallel operator. The definition is expressed in terms of a so-called step
law. The step law describes the initial actions in which the process may engage and
then, for each possible initial action, it defines the behaviour of the process following
that action. Suppose R1 =?x : A1 → R′1 and R2 =?x : A2 → R′2. Referring to Figure 1

the
||
X -step law, provided by Roscoe [9, §2.4] can be expressed as the external choice

between four different processes:

X

A1\(A2 ∪X)

X ∩ A1 ∩ A2

A2\(A1 ∪X)

X\(A1 ∪A2)

(A1 ∩ A2)\X

A2 A1

(X ∩ A1)\A2

(X ∩ A2)\A1

Figure 1. Venn diagram for sets of first actions.

R1
||
X R2 = (?x : X ∩ A1 ∩ A2 → (R′1

||
X R′2))

⊓ (?x : (A1 ∩ A2)\X → (R′1
||
X R2) ⊓ (R1

||
X R′2))

⊓ (?x : A1\(X ∪ A2)→ (R′1
||
X R2))

⊓ (?x : A2\(X ∪ A1)→ (R1
||
X R′2))

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 223

Note that the
||
X -step law does not allow for any progress when the environment

offers only some x in the shaded areas of Figure 1, i.e. when x ∈ ((X ∩ A1)\A2) ∪
((X ∩ A2)\A1).

Suppose, however, that those restrictions were to be lifted. The resulting operator
is then our optional (or partial) parallel operator, denoted by ⇑

X. The optional parallel
operator’s step law needs to indicate what is to happen when the environment offers
x ∈ ((X ∩ A1)\A2) or x ∈ ((X ∩ A2)\A1). Evidently, in the first case an interaction
between the environment and R1 should occur, and in the second case, an interaction
between the environment and R2. The ⇑

X -step law is therefore:

R1
⇑
X R2 = (?x : X ∩ A1 ∩ A2 → (R′1

⇑
X R′2))

⊓ (?x : (A1 ∩ A2)\X → (R′1
⇑
X R2) ⊓ (R1

⇑
X R′2))

⊓ (?x : A1\(X ∪ A2)→ (R′1
⇑
X R2))

⊓ (?x : A2\(X ∪ A1)→ (R1
⇑
X R′2))

⊓ (?x : (X ∩ A1)\A2 → (R′1
⇑
X R2))

⊓ (?x : (X ∩ A2)\A1 → (R1
⇑
X R′2))

This can be simplified to:

R1
⇑
X R2 = (?x : X ∩ A1 ∩ A2 → (R′1

⇑
X R′2))

⊓ (?x : (A1 ∩ A2)\X → (R′1
⇑
X R2) ⊓ (R1

⇑
X R′2))

⊓ (?x : A1\A2 → (R′1
⇑
X R2))

⊓ (?x : A2\A1 → (R1
⇑
X R′2))

Now, for P = (x→ P ′), the process P
||
X (R1

⇑
X R2) will lead to the desired behaviour:

the process evolves into P ′
||
X (R′1

⇑
X R2) or P ′

||
X (R1

⇑
X R′2), depending on whether

x ∈ (X∩A1)\A2 or x ∈ (X∩A2)\A1 respectively, as depicted in the Venn diagram of

Figure 1. Of course, if x ∈ (X∩A1∩A2) then the process evolves into P ′
||
X (R′1

⇑
X R′2).

Of course, of itself the step law does not fully define the operator’s semantics.
This has been provided elsewhere [2], giving the denotational, trace, divergence and
failures sematics, as well as the firing rules that specify the operational semantics.

It should be noted that the inspiration for this operator derives specifically from
our earlier attempts to specify the present problem. The existing CSP operators were
found to be deficient for our purposes. Once the semantics of the operator had been
worked out, it became apparent that it can be usefully employed to specify a range of
announcer/listener or reader/write-type problems. It will be seen that the operator
neatly expresses the interaction between the fine-grained abstract processes that we
have defined to solve the DFA minimisation problem.

5 Concurrent Specification

The principle concern in translating Algorithm 3.2 into a concurrent specification,
is to translate its outer do-loop into a set of equivalent concurrent processes. To
simplify the discussion, assume that P is the set of state pairs for which that loop
would execute, i.e. P = (Q × Q)\(G ∪ H), where G and H are as initialised in
Algorithm 3.2.

224 Proceedings of the Prague Stringology Conference 2008

The overall system of interacting processes, called Sys , is conceived of as two
processes that run in parallel with each other, and communicate via an alphabet, α.
The two processes are called Global and PairEquiv respectively:

Sys = Global ||α PairEquiv (2)

Global is a process that, for each state pair to be investigated, (p, q), receives infor-
mation about the equivalence status of these states on a frompq channel (whose alpha-
bet is therefore {frompq.true, frompq.false}) and announces the equivalence status
of state-pairs on a topq channel (whose alphabet is therefore {topq.true, topq.false}).
It is defined as follows:

Global = |||(p,q)∈P Inpq

Inpq = frompq?e→ Announcepq(e)

Announcepq(e) = (topq!e→ Announcepq(e) (3)

| frompq?e→ Announcepq(e))

The Global process is thus the interleaving of Inpq processes—one for each (p, q)
pair in the system. Each Inpq process receives the equivalence status of its asso-
ciated (p, q) pair on the frompq channel and then repeatedly announces this sta-
tus on the topq channel. Each Inpq engages in events from the alphabet: α(pq) =
{frompq.true, frompq.false, topq.true, topq.false}. The Global process communicates
with the PairEquiv process via the alphabet given by

α =
⋃

(p,q)∈P

α(pq)

The PairEquiv process not only passes on the equivalence status of each state pair
to Global ; it also acts as the “audience” to whom Global announces the equivalence
status of pairs. It is the optional parallel composition, synchronising on events in α,
of a set of processes called Equiv pq, there being one such process for each (p, q) pair.
PairEquiv is thus defined as:

PairEquiv = ⇑
α (p,q)∈P Equiv pq(∅, (|Q| − 2) max 0)

Note that, in general, each Equiv pq process has a parameter indicating the set S of
pairs inspected by it to date, as well as the “recursion level”, k, apparent in the
sequential algorithm. In the initial Equiv pq processes as encountered in PairEquiv ,
S = ∅ and k = (|Q| − 2) max 0)).

Also note that the fact that these subprocesses of PairEquiv , namely Equiv pq,
mutually interact under optional parallelism with one another through α, while
PairEquiv interacts with Global under generalised parallelism, also through α, means
that whenever one or more of these subprocesses are ready to interact with Global
on some arbitrary to or from channel, that interaction will take place as soon as the
corresponding Global subprocess is ready to engage in it.

T. Strauss et al.: A Concurrent Specification of an Incremental DFA Minimisation Algorithm 225

The generalised definition of Equiv pq is given by:

Equiv pq(S, k) =

if (p = q) then frompq!true → SKIP

else if (k = 0) then frompq!(p ∈ F ≡ q ∈ F)→ SKIP

else (EqSet := ∅
; FanOutpq(S, k)

; (eq :=∧e∈EqSet e)

; (frompq!eq → SKIP))

The mapping from the above process to its sequential counterpart is direct, except
that the test of circularity in paths visited to date is shifted to just before the recursive
invocation of Equiv , as shown below, in the expansion of the FanOut process:

FanOutpq(S, k) = |||a∈Σpq

(if ({δ(p, a), δ(q, a)} /∈ S) then

(Equiv δ(p,a),δ(q,a)(S ∪ {(p, q)}, k − 1)
i

(4)

(toδ(p,a),δ(q,a)?eqa → (EqSet := EqSet ∪ {eqa}))

else (EqSet := EqSet ∪ {true})) (5)

The interrupt operator
a

in (4) requires justification. In the first place, it has been
used there to ensure that the equivalence status of a pair is not needlessly sought by
virtue of recursive calls to Equiv subprocesses, when that status had already been
established and announced on the from channel to Global by some prior instance of
an Equiv subprocess1.

In the second place, the interrupt operartor’s use here is justified, even though the
CSP definition of the operator requires that if it is used in say (P

a
(a → Q)), then

a may not be in the alphabet of P . This is in order to ensure that non-determinism
cannot arise, such as in a situation where, say, P = a → R. In such an case, the
determination of the evolved process description after the occurrence of a would have
to be non-deterministically chosen between Q and P . In the case of (4) above, such
a non-deterministic choice will never be offered.

To realise that this is indeed the case, note the general form of the line, namely:
Equiv pq(S, k)

a
(topq?eq → · · ·)

Now the only point at which an event on the channel topq can occur in Equiv pq(S, k)
is when the chain of subprocesses spawned by Equiv pq(S, k) has cycled back to a
new instance of itself. However, this is explicitly prevented by the condition of the
if-statement preceding the process Equiv pq(S, k)

a
(topq?eq → · · ·). In such an case

the process defined in (5) is executed. Thus, in the present context, the relaxation
of the rule governing the use of the interrupt operator is justified—non-deterministic
confusion cannot arise.

Note also that when the if-statement’s condition is false—i.e. when a cycle has
been detected on the fan-out branch from (p, q) for symbol a, then (as in the sequential

1 Note that the semantics of the interrupt operator is such that when its first event occurs, all
further activity of the initial process ceases, and the overall process behaves henceforth as the
interrupting process. Furthermore, if the main process runs to completion, then the interrupting
process plays no further role.

226 Proceedings of the Prague Stringology Conference 2008

algorithm) this branch plays no role in the determination of (p, q)’s equivalence status.
This is expressed by adding true into the EqSet set. It could equally well have been
expressed by executing the SKIP process instead.

6 Conclusions

Just as in the case of the sequential algorithm, the foregoing specification has many
optimisation possibilities. For example, the transitivity of the equivalence relation
could be used to bring some of the Equiv processes more rapidly to an end. Also, as
already mentioned, symmetry allows us to remove Equivqp if Equivpq is to be run.

This is the second well-known FA algorithm for which we have provided a con-
current CSP specification, the first one having been in [10]. The next phase of this
ongoing project will be to experiment with implementations of these specifications.
This will require reflection on ways in which the fine-grained processes that have been
defined here can be coalesced with one another, and/or allocated to limited numbers
of processors.

References

1. T. Agerwala and M. Gupta: Systems research challenges: A scale-out perspective. IBM
Journal of Research and Development, 50(2/3) March/May 2006, pp. 173–180.

2. S. Gruner, D. G. Kourie, M. Roggenbach, T. Strauss, and B. W. Watson: A new
CSP operator for optional parallelism, 2008, Submitted.

3. C. A. R. Hoare: Communicating sequential processes. Communications of the ACM, 26(1)
1983, pp. 100–106.

4. C. A. R. Hoare: Communicating sequential processes (electronic version), 2004, http://www.
usingcsp.com/cspbook.pdf.

5. J. F. Jájá and K. W. Ryu: An efficient parallel algorithm for the single function coarsest
partition problem, in SPAA ’93: Proceedings of the fifth annual ACM symposium on Parallel
algorithms and architectures, New York, NY, USA, 1993, ACM Press, pp. 230–239.

6. R. McDougall: Extreme software scaling. ACM Queue, 3(7) September 2005, pp. 36–46.
7. K. Olukoton and L. Hammond: The future of microprocessors. ACM Queue, 3(7) Septem-

ber 2005, pp. 26–29.
8. B. Ravikumar and X. Xiong: A parallel algorithm for minimization of finite automata, in

IPPS: 10th International Parallel Processing Symposium, IEEE Computer Society Press, 1996.
9. A. W. Roscoe: The theory and practice of concurrency, Prentice Hall, 1997.

10. T. Strauss, D. G. Kourie, and B. W. Watson: A concurrent specification of Brzozowski’s
DFA construction algorithm, in Proceedings of Prague Stringology Conference ’06, 2006, pp. 90–
99.

11. H. Sutter: A fundamental turn toward concurrency in software. Dr. Dobb’s Journal, 30(3)
March 2005, pp. 16–20,22.

12. H. Sutter and J. Larus: Software and the concurrency revolution. ACM Queue, 3(7) Septem-
ber 2005, pp. 54–62.

13. A. Tewari, U. Srivastava, and P. Gupta: A parallel DFA minimization algorithm, in
Proceedings of HiPC2002, Lecture Notes in Computer Science 2552, Springer, 2002, pp. 34–40.

14. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Eind-
hoven University of Technology, September 1995.

15. B. W. Watson and J. Daciuk: An efficient incremental DFA minimization algorithm. Journal
of Natural Language Engineering, 9(1) March 2003, pp. 49–64.

On Regular Expression Hashing to Reduce FA Size

Wikus Coetser, Derrick G. Kourie, and Bruce W. Watson

Fastar Research Group, Department of Computer Science, University of Pretoria
spring.haas.meester@gmail.com, dkourie@cs.up.ac.za, bruce@bruce-watson.com

Abstract. In [7], a new version of Brzozowski’s algorithm was put forward which re-
lies on regular expression hashing to possibly decrease the number of states in the
generated finite state automata. This method utilizes a hash function to decide which
states are merged, but does not, in general, construct *-equivalence classes on automa-
ton states, as is done in minimization algorithms. The consequences of this approach
depends on the hash function used, and include the construction of a super-automaton
and potential non-determinism. A revised version of the hashing algorithm in [7] is
presented that constructs a deterministic automaton. A method for rewriting the hash
function input is presented that allows the construction of a hash function that is an
injection, mapping a unique integer to each regular language. A method for measuring
the difference between the exact- and super-automaton is presented.

Keywords: finite state automaton, DFA, NFA, state merging, equivalence classes,
regular languages, super-automaton, approximate automaton, hash function, minimiza-
tion, exact automaton, sub-automaton

1 Introduction

Brzozowski has a well-known algorithm for deriving a finite automaton from a regular
expression. In [7], a modified version of Brzozowski’s Algorithm was presented for
constructing an approximate automaton, hereafter referred to as a super–automaton.
By merging the states in the event of hash function clashes, the resulting super-
automaton may have fewer states than the finite state automaton1 that would have
been generated by the original algorithm.

The results of this merging process are explored in this article: in section 2, the
original and modified versions of Brzozowski’s Algorithm are presented. In section 3,
a proof is given that the approach in section 2 always produces a super–automaton.
In section 4, it is shown why the approach in section 2 may lead to non–determinism,
and a new algorithm is put forward for constructing a deterministic automaton. In
section 5.1 a method is put forward for judging the relative quality of super- and
exact automata. In section 5.3, a method is given for modifying the input of the hash
function in order to allow the entire language of a state to be taken into account when
hashing. In section 5.4 the effect of the modulo function used in most hash functions
is considered.

2 Brzozowski’s Algorithm with state merging

In order to understand how state merging is implemented with a hash function, it is
necessary to first look at Brozozwski’s original algorithm, given in Algorithm 1, and
taken from [7].

1 Finite state automaton is abbreviated FA, a non-deterministic FA is abbreviated NFA and a
deterministic FA is abbreviated DFA.

Wikus Coetser, Derrick G. Kourie, Bruce W. Watson: On Regular Expression Hashing to Reduce FA Size, pp. 227–241.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

228 Proceedings of the Prague Stringology Conference 2008

Brzozowski’s Algorithm takes a regular expression, and constructs a finite state
automaton from that expression, using left derivatives[1], first symbol sets and a test
for whether a regular language given by a regular expression contains the empty
string:2

– The left derivative of a regular expression RE with respect to an input symbol s
is written s−1RE, and represents all the strings of the regular language defined
by RE, with their respective first symbols removed.

– The first symbol set of a regular expression RE, written as first(RE), is the set
containing the first symbol of each string represented by the regular expression
RE.

– Given that ε represents the empty string and that L(RE) represents the set of
strings of the language described by the regular expression RE, the test ε ∈ L(RE)
is written nullable(RE).

Note that in Algorithms 1, 2 and 3, an FA is represented by a 4-tuple
〈Q, δ, E, F 〉, where Q is the set of states of the automaton, δ is the state transition
function, E is the initial state and F is the set of final states. The alphabet Σ is not
referenced in any of the respective algorithms and should therefore be regarded as
implicit in the FA’s representation.

The method used by Brzozowski’s Algorithm is illustrated in Figure 1: regular
expressions are associated with states in the algorithm.

Figure 1. Brzozowski’s Algorithm without state merging

Given the input regular expression RE, the first symbol set of RE is calculated.
In Figure 1 the first symbol set {s1, s2, s3} corresponds to the out-transition symbols
of the state marked as RE. For each first symbol s, the left derivative s−1RE is
calculated. This left derivative represents the next state for s. The remap function
in Algorithm 1 (Brzozowski’s original algorithm) maps each regular expression to
the next unassigned integer. If a regular expression re-appears (taking idempotence,
associativity and commutativity of regular expression operators into account) as a
result of computing the derivatives, a cycle forms in the automaton, representing a
plus or star closure. When a regular expression represents a regular language that
contains an empty string, a final state has been reached.

In the remainder of this text, state(RE) is used to designate a state associated
in some unspecified (i.e. abstract) way with the regular expression RE. If we wish to
emphasise that in some concrete implementation, the association of the state with the

2 The notation for first symbols, left derivatives and nullable regular expressions is taken from [3].

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 229

Algorithm 1 (Brzozowski’s Algorithm with Remapping)

func Brz(REinit)
next, δ, F, remap := 0, ∅, ∅, ∅;
remap[REinit], next := next, next + 1;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj

if destination 6∈ done ∪ todo→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ {destination};
remap[destination], next := next, next + 1

8 destination ∈ done ∪ todo→ skip
fi
; δ(remap[REj], s) := remap[destination]

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {remap[REj]}

8 ¬nullable(REj)→ skip
fi

od;
return 〈{0, . . . , next− 1}, δ, 0, F 〉

cnuf

regular expression is via a function, for example hash, then the notation hash(RE)
is used.

Consider two regular expressions RE1 and RE2. Jointly, these two regular expres-
sions might form state(RE1) and state(RE2) in some FA, denoted by F . Suppose
L(RE1) = {ab}, L(RE2) = {cd} and L(F) = {ab, cd} respectively. If F had been
built by Algorithm 1, then states remap(RE1) and remap(RE2) respectively would
have been constructed, and the languages associated with these states, as well as with
F would be preserved.

In the Algorithm 2, hashing is used to assign an integer to each state, instead of
the remap function. If the two regular expressions RE1 and RE2 hash to the same
integer, then the collision is not resolved. Instead, the states are merged. This is
illustrated in Figure 2. Note that the language of the automaton with the states
merged is {ab, ad, cd, cb}, which is different from L(F), given above as {ab, cd}.

This merging behaviour has two consequences: the construction of a super-automaton,
and the automaton becoming potentially non-deterministic. These consequences are
discussed in the next two sections.

3 Super-automata and exact automata

Previously in [7], approximate automata were described informally as being the out-
put of Algorithm 2. Here the preferred nomenclature of super-automata will be used

230 Proceedings of the Prague Stringology Conference 2008

Figure 2. Brzozowski’s Algorithm with state merging: state(RE1) and state(RE2)
have been merged

Algorithm 2 (Brzozowski’s Algorithm with Hashing — NFA version)

func Brz hash NFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo, h := done ∪REj , todo\REj , hash(REj);
Q := Q ∪ {h};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj ;
if destination 6∈ done ∪ todo→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ destination

8 destination ∈ done ∪ todo→ skip
fi
; δ(h, s) := δ(h, s) ∪ {hash(destination)};

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf

instead of approximate automata. The notion of a super-automaton of a regular lan-
guage is formally defined, and it is then formally shown that the output of Algorithm
2 is a super-automaton of the regular language associated with its input regular ex-
pression.

Let RL denote an intended regular language, for example the regular language
described by the regular expression REinit which is to form the input for Brzozowski’s
Algorithm. The definition of an exact automaton is:

Definition 1. If RL is a regular language and FA is an automaton for which L(FA) =
RL, then FA is an exact automaton of RL.

The definition for a super-automaton is:

Definition 2. If RL is a regular language and FA is an automaton for which L(FA) ⊇
RL, then FA is a super-automaton of RL.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 231

For the sake of completeness, the definition of a sub-automaton is also given, even
though it does not play a direct role in this article.

Definition 3. If RL is a regular language and FA is an automaton with L(FA) ⊆
RL, then FA is a sub-automaton of RL.

As can be seen from the definitions above, a super-automaton accepts the same
language as an exact automaton, and (possibly) also additional strings. The proof that
Algorithm 2 produces a super-automaton of its input regular expression is presented

next. Note that
−→
L (s) represents the right language of a state s, and

←−
L (s) represents

the left language.

Theorem 4 (The construction of a super-automaton). Algorithm 2 produces
a super-automaton, FAs, of L(REinit), i.e. L(FAs) ⊇ L(REinit).
Proof Consider any two states s1 and s2 of L(REinit). The language of s1 is L(s1) =←−
L (s1) ·

−→
L (s1) and similarly, the language of s2 is L(s2) =

←−
L (s2) ·

−→
L (s2). If Algorithm

2 merges these states into one called merge(s1, s2), then its language is:

L(merge(s1, s2)) = (
←−
L (s1) ∪

←−
L (s2)) · (

−→
L (s1) ∪

−→
L (s2))

Distributing · over ∪ gives

←−
L (s1) ·

−→
L (s1) ∪

←−
L (s1) ·

−→
L (s2) ∪

←−
L (s2) ·

−→
L (s1) ∪

←−
L (s2) ·

−→
L (s2)

⊇ ←−
L (s1) ·

−→
L (s1) ∪

←−
L (s2) ·

−→
L (s2)

= L(s1) ∪ L(s2)

Since L(merge(s1, s2)) ⊇ L(s1) ∪ L(s2) for any two states s1 and s2 that are merged
by Algorithm 2, it follows that L(FAs) ⊇ L(REinit).

Note that the notion of proper set containment does not play a role in theorem 4.
Therefore it does not exclude the possibility that Algorithm 2 may produce an au-
tomaton FAs that has the same language as the initial regular expression REinit.
What is particularly noteworthy is that this equality may hold even if two or more

states are merged. An example of this is when
−→
L (s1) =

−→
L (s2) and

←−
L (s1) =

←−
L (s2),

i.e. when the states being merged have the same language. In that case, Algorithm 2
partially fulfills the role of minimizing the output of Algorithm 1.

4 Non-determinism arising from the hashing algorithm

One of the consequences of merging states is that the resulting automaton may, under
rather special circumstances, be non-deterministic. To see where non-determinism
arises, consider two regular expressions REi and REj that represent different regular
languages. Suppose that
∃ s : (first(REj) ∩ first(REi)) · L(s−1REi) 6= L(s−1REj)

Suppose also that the hash function used in Algorithm 2 hashed REi and REj to the
same value, but hashed s−1REi and s−1REj to different values.

Example 5. Let REi = sb, REj = sc, s−1REi = b and s−1REj = c and let hash(REi) =
hash(REj) but let hash(s−1REi) 6= hash(s−1REj). Assume that s is the only first
symbol in REi and REj. In this case Algorithm 2 will construct the automaton shown
in Figure 3. Note that, because of the duplicate out-transition for hash(REi) (which
has been merged with hash(REj)), the automaton is non-deterministic.

232 Proceedings of the Prague Stringology Conference 2008

Figure 3. Non-determinism resulting from Algorithm 2

The fact that Algorithm 2 has been designed to generate a non-deterministic automa-
ton is evident from its transition function, δ, that maps from a set of hashed states
and transition symbol to a set of hashed states.

As is well-known, it is generally preferable to work with a DFA instead of an NFA.
The reason for this is that the NFA cannot be represented as a two dimensional state
transition table and this has implications for the size of the resulting automaton, as
well as for the complexity of the associated FA-related algorithms. Of course, the
NFA resulting from Algorithm 2 could be transformed to an equivalent DFA in the
normal way. However, in Algorithm 3 a revised version of Algorithm 2 is presented
that directly constructs a DFA. As in Algorithm 2, the revised algorithm relies on a
hash function.

In the remainder of this text we will take the liberty of overloading the union
operator, ∪. Thus, when used as a regular expression operator, as in (REi ∪ REj),
the result is a regular expression such that L(REi ∪ REj) = L(REi) ∪ L(REj).
Nevertheless, the semantics of ∪ will be clear from the context in which it is used.

Algorithm 3 is premised on the observation that if the non-determinism in the
automaton in Figure 3 is to be avoided, then an out-transition on s from a state
hash(REj) should not be inserted if:

– the state hash(REj) corresponds to an existing state hash(REi); and
– it is discovered that a transition on s out of state hash(REi) already exists.

Indeed, in such an event, the existing transition from state hash(REi) (which is equal
to hash(REj)) should be removed. Additionally, a new transition on s from state
hash(REi) should then be provided to a new destination state. The new destination
state should now be represented by the hashed value of of the regular expression
(s−1REi ∪ s−1REj). The resulting automaton is shown in Figure 4. Note that the
resulting automaton is a super-automaton of the regular language of the NDF that
would have been constructed by Algorithm 2. It is therefore also a super-automaton
of the regular language of the input regular expression to the algorithm.

The pseudocode of Algorithm 3 that appears below relies on the following:

– In the algorithm, the inverse mapping of hash is used, and is called regex Thus if
RE is a regular expression such that hash(RE) = p, then regex(p) = RE. While
one cannot in general rely on a hash function having an inverse, if the hash(RE)

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 233

Figure 4. Determinism resulting from Algorithm 3

has previously been computed as p, it is a simple matter to store a backward
reference to RE from the stored p.

– In the algorithm, the transition function δ is treated as a set of pairs of the form
〈〈h, s〉, d〉, i.e. the first element of the pair is itself a pair. In this case, h is the
hashed value of a regular expression corresponding to a source state, and d is
the hashed value to the regular expression corresponding to the destination state
when the symbol s is encountered.

– In order to update δ to account for a newly discovered transition from h to d upon
input symbol s, a set union operation is used to augment the set that currently
represents δ by an additional element. The form of the operation is thus:
δ ∪ {〈〈h, s〉, d〉}

– In order to remove from δ a mapping that represents the transition from h to
d upon input symbol s, the set difference operation is used. The form of the
operation is thus: δ \ {〈〈h, s〉, d〉}
The foregoing discussion about Algorithm 3 referred to the removal of an existing

transition, the creation of a new transition and the creation of a new destination state.
Examination of the details of the algorithm’s pseudocode will indicate where and how
these operations take place. However, both the discussion and the algorithm are silent
about what should happen to the existing state labelled hash(s−1REi) in Figure 3.
Should this state as well as its in- and out-transitions be removed? The answer to
this question requires special consideration, which is given now, with reference to the
contents of Figure 3.

Firstly, note that in dealing with the hash function clash, the algorithm inserts
the regular expression (s−1REj ∪ s−1REi) into the todo set. (More specifically, the
expression in the code destination ∪ regex(d) builds the regular expression (s−1REj∪
s−1REi), which is then assigned to destination, and subsequently inserted into todo
by computing todo∪{destination}.) Thus, in some future iteration of the algorithm,
it will be selected and all out-transitions that might have been generated previously
on state hash(s−1REi) will be generated once more on state hash(s−1REi∪s−1REj).
This is because first(s−1REi) ⊆ first(s−1REi∪s−1REj). This means that if the only
in-transition into state hash(s−1REi) was on s, nothing would be lost by discarding
state hash(s−1REi) from Q, as well as all transitions out of it, as stored in the δ
function.

However, if there were more transitions into state hash(s−1REi) than simply on s,
then the algorithm might no longer generate a super-automaton of the input regular
expression, if this state and associated transitions were to be discarded. For this
reason, the state hash(s−1REi) should not be summarily discarded.

On the other hand, if s was indeed the only in-transition to state hash(s−1REi),
then not removing this state means that it may become an unreachable state in

234 Proceedings of the Prague Stringology Conference 2008

Algorithm 3 (Brzozowski’s Algorithm with Hashing — DFA version)

func Brz hash DFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo, := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
h := hash(REj);
Q := Q ∪ {h};
{ expand out-transitions for symbols in the first symbol set of REj }
for s : first(REj)→
{ compute the left derivative of REj with respect tos }
destination := s−1REj ;
if (∃d : 〈〈h, s〉, d〉 ∈ δ)→

δ := δ \ {〈〈h, s〉, d〉};
destination := destination ∪ regex(d)

8 (∄d : 〈〈h, s〉, d〉 ∈ δ)→ skip
fi
;
if destination 6∈ done ∪ todo→

todo := todo ∪ {destination}
8 destination ∈ done ∪ todo→ skip
fi
;δ := δ ∪ {〈〈h, s〉, hash(destination)〉}

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf

the resulting DFA, since the algorithm removes its only in-transition. At the im-
plementation level, this would mean that an amount of total storage used for the
transition function would be wastefully occupied. In our implementation of Algo-
rithm 3, the removal of such dead states and associated transitions is quite simple,
but implementation-dependent. For this reason, and for the sake of brevity, these
details have been omitted from Algorithm 3.

5 Characterising hash functions

5.1 A basis for measuring hash function quality

It has been established above that the automaton constructed through state merging
is a super-automaton of the language associated with the algorithm’s input regular
expression. Informally, one might say that the “difference” between the languages
recognised by these respective automata reflects the quality of the hash function
used to generate the super-automaton. In this section, we propose a more precise

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 235

and formal notion of the quality of the hash function. In the penultimate section,
preliminary empirical investigations to assess these ideas are described.

The notion of hash function quality is based on the perception that the language
associated with the algorithm’s input regular expression has a unique minimum DFA,
which may or may not be produced by Algorithm 3. The approach to finding this
unique minimum DFA described in [6] is based on the notion of k-equivalence between
states. The k-equivalence relation between states is inductively defined as follows [2]:

Definition 6. Two states t1 and t2 are:

– 0-equivalent iff they are both either accepting or rejecting states.

– k-equivalent iff for all input symbols s on the states t1 and t2, the next states
δ(t1, s) and δ(t2, s) are (k − 1)-equivalent.

– *-equivalent iff they are k-equivalent for all values of k larger than some constant
value.

In [5] it is shown that if, in an automaton that contains |Q| states, two states are
k-equivalent for k = |Q| − 2, then these two states are *-equivalent. If two states are
*-equivalent, it means that they represent the same regular language.

In the above-mentioned minimization algorithm, pairs of states of a given DFA
are examined to determine their k-equivalence status. The algorithm therefore implic-
itly determines membership of k-equivalence classes in general, and of *-equivalence
classes in particular. States in each *-equivalent class are eventually merged into a
single state, resulting in the required unique minimal FA.

The foregoing suggests an approach to measuring the quality of a hash function,
namely to associate quality with the extent to which state merging (caused by hash-
clashes) approximates the merging of *-equivalent states.

However, before formalising this insight, note that hash functions in Algorithm
3 take regular expressions as input. For this reason, the notion k-equivalent regular
expressions needs to be defined. The definition is analogous to the definition of k-
equivalent states, namely:

Definition 7. Two regular expressions REi and REj are:

– 0-equivalent iff nullable(REi) = nullable(REj)

– k-equivalent iff first(REi) = first(REj) and for all s ∈ first(REi), s−1REi and
s−1REj are (k − 1)-equivalent.

When a given hash function maps two regular expressions to the same value, we
may enquire about the maximum k-equivalence. They may not have any equivalence
relationship at all, or they be maximally k-equivalent for some k < |Q|−2, or they may
be *-equivalent. Various weighting schemes could be proposed to reflect the overall
quality of all clashes during a run of Algorithm 3: the higher the maximal k-equivalent
status of two clashing regular expressions, the more favourably the clash should weigh
in the overall measure. In the preliminary empirical experiments discussed below, the
percentage of hash clashes that result from *-equivalent regular expressions relative
to the total number of hash clashes is used as a measure of the quality of a number of
different hash functions. Other measures of quality are not considered at this stage.

236 Proceedings of the Prague Stringology Conference 2008

5.2 Ideal hash functions

The foregoing raises the question: what are the characteristics of an ideal hash func-
tion? To give such a characterisation, note that the signature of hash functions in
Algorithm 3 are of the form h : Re → N, where Re is the set of regular expressions.
Suppose that Rℓ is the set of regular languages, and that L : Re → Rℓ, so that L(R)
is the regular language associated with regular expression R. Finally, suppose that f
denotes a function f : Rℓ → N. An ideal hash function may now be defined as the
composition of the latter two functions as follows:

Definition 8. h is an ideal hash function for Re iff h = f · L and f is an injection.

This means an ideal hash function maps all regular expressions that have the same
language (and only those expressions) to the same natural number. Put differently,
an ideal hash function maps regular expressions to the same value if and only if they
are *-equivalent. Thus, if it were possible to find an ideal hash function for use in
Algorithm 3, then the algorithm would be guaranteed to produce the minimum exact
DFA for the input regular expression.

Note that our notion of an ideal hash function for regular expressions is slightly
different from the conventional notion of a perfect hash function for a set. The latter
is an injection from that set to the natural numbers. In fact, the above definition
could be reformulated to indicate that h is an ideal hash function on Re if f is a
perfect hash function on Rℓ.

In fact, the remapping in Algorithm 1 may be viewed abstractly as the application
of a perfect hash function on Re, not to regular expressions representing the right
language of a state, but to regular expressions representing the language of a state.
This is the concept next defined.

5.3 A regular expression for the language of a state

Consider a regular expression, R, that is to be hashed or remapped in one of the
algorithms previously discussed. Its language, L(R), corresponds with the so-called

right language of its associated state in the constructed FA, denote by
−→
L (state(R)).

That same state also has a left language,
←−
L (state(R)), which is the set of all prefixes

of all strings of the FA that pass through state(R). Indeed the set of all strings passing
through state(R), is is called the language of state(R). It is denoted by L(state(R)),

and is given by
←−
L (state(R)) · −→L (state(R)).

However, when constructing state(R) during the execution of any of the algo-

rithms, a regular expression whose language is
←−
L (state(R)) is not available. All that

is available during any iteration is the initial regular expression, REinit, and the
regular expression currently under consideration, R. Fortunately, this information is
sufficient to find an explicit form for a regular expression, R′, whose language corre-
sponds L(state(R)), namely:

R′ = (Σ∗ ·R) ∩REinit (1)

Note that (Σ∗ · R) designates all possible strings that end in a string that is in R’s
right language. Intersecting these strings with REinit ensures that only strings in
L(state(R)) remain.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 237

Thus, abstractly, the remapping in Algorithm 1 can be viewed as a perfect hash
function that is applied, not to the right language of a regular expression R, but to the
corresponding regular expression R′ as defined abovince the language of each state
in a DFA is unique, this perfect hash function never merges any states. Of course,
this claim has to be qualified in terms of the precise way in which a given application
implements the remapping in the algorithm. A given implementation might have a
more liberal notion of regular expression equality than strict lexicographic equality,
taking into account operator properties such as idempotence or commutativity. (For
example a may be treated as the same regular expression as a ∪ a, and/or a ∪ b as
the same regular expression as b ∪ a, etc.)

Below we report briefly on a preliminary experiment in which Algorithm 2 is run
with a variety of hash functions that are applied to R, while Algorithm 3 is run with
these same hash functions applied to R′.

5.4 The effects of the modulo function

Most hash functions are of the form (h(r) mod n)—i.e. they they apply modulo n
to some integer value that they compute, where n reflects the address space being
hashed to. This application of modulo n will clearly tend to undermine the quality
of hash function h. If h happened to be an ideal hash function, then there is no
guarantee that (h(r) mod n) will deliver ideal behaviour.

6 Preliminary empirical investigations

In preliminary experiments to test the above ideas, Gödel numbers [4] were used
to generate over 190 000 short different regular expressions of length 7, based on
4-character alphabet. Algorithm 1 was applied to each of these regular expressions.
The largest FA generated by Algorithm 1 had 7 states.

In order to apply Algorithms 2 and 3, various hash functions were selected, based
on the recommendations in [7]. In particular, various morphisms were selected, each
structurally mapping the regular expressions to a different hash function. By this
we mean that wherever an operator occurs in a regular expression, a corresponding
integer operator is selected in the hash function which is structurally similar to the
regular expression operator. For example, since the regular expression ∪-operator
is idempotent and commutative, a hash function should be used that relies on an
integer operator with these properties wherever the ∪-operator occurs in the regular
expression. Such an integer operator might be, for example, addition, bitwise-and,
bitwise-or, etc. Eight such mappings are shown in table 1.

Algorithm 2 was repeatedly invoked to construct DFAs for each of the more than
190000 regular expressions. Each of the eight hash functions in table 1 was used, as
well as modulo i (i = 2, . . . , 5) variants of the each hash function. Thus 8 × 5 = 40
DFAs were constructed for each regular expression. This entire experiment was then
repeated using a modified version of Algorithm 3 in which the regular expression in
equation (1) was used to determine the hashed value of each state, instead of the
derivative representing the state’s right language. (The results of Algorithms 2 and
3 based on hashing the right language of a state were similar, and consequently, the
results of Algorithm 3 run in this mode are not further discussed here.)

In each application of Algorithms 2 and 3, whenever two states were to be merged,
their *-equivalent status was assessed. This was done by verifying the k-equivalent

238 Proceedings of the Prague Stringology Conference 2008

status of the two states up to k = |Q| − 2, the point at which *-equivalence is
attained [5]. Since the exact value of |Q| was not known a priori, the upper bound
on |Q| established by Algorithm 1 was used, namely 7.

Mapping 1 Mapping 2
∅ 7→ 000 . . . 00016 ∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∧ arg arg? 7→ 000 . . . 00016 ∧ arg
arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1))) arg+ = ¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ = arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∧ arg2 arg1 ∪ arg2 7→ arg1 ∧ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 3 Mapping 4
∅ 7→ 000 . . . 00016 ∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∨ arg arg? 7→ 000 . . . 00016 ∨ arg
arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1))) arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∨ arg2 arg1 ∪ arg2 7→ arg1 ∨ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 5 Mapping 6
∅ 7→ FFF . . . FFF16 ∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∧ arg arg? 7→ 000 . . . 00016 ∧ arg
arg+¬arg ∨ (arg ∨ (1 << (n− 1))) arg+¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∧ arg2 arg1 ∪ arg2 7→ arg1 ∧ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 7 Mapping 8
∅ 7→ FFF . . . FFF16 ∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∨ arg arg? 7→ 000 . . . 00016 ∨ arg
arg+¬arg ∨ (arg ∨ (1 << (n− 1))) arg+¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∨ arg2 arg1 ∪ arg2 7→ arg1 ∨ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Table 1. Mappings of regular expression operators to hash function operators

Tables 2 and 3 summarise the results of these experiments. Columns headed *-eq
% indicate the percentage of hash clashes (and thus merged states) that turned out
to be *-equivalent for the specific hash function version. Columns headed “States”
indicate the size of the largest DFAs (in terms of number of states) generated by the
respective hash function. The tables reveal the following patterns:

– The relative hash function performance (as indicated in the *-eq% columns) ap-
pears very similar for the two algorithms: good hash functions seem to perform
consistently well, and bad functions consistently badly. In fact, Spearman’s rank
correlation test was applied to the *-equivalent rankings in the two tables of the

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 239

No MOD MOD 2 MOD 3 MOD 4 MOD 5
Mapping *-eq % States *-eq % States *-eq % States *-eq % States *-eq % States
1 77 4 73 2 73 3 75 4 75 4
2 79 4 73 2 74 3 76 4 76 4
3 83 4 75 2 76 3 78 4 79 4
4 82 4 74 2 75 3 77 4 77 4
5 77 4 73 2 73 3 75 4 75 4
6 79 4 73 2 74 3 76 4 75 4
7 83 4 75 2 76 3 78 4 79 4
8 81 4 74 2 74 3 76 4 76 4

Table 2. Algorithm 2 results: hashed regular expressions represent right language of
states.

No MOD MOD 2 MOD 3 MOD 4 MOD 5
Mapping *-eq % States *-eq % States *-eq % States *-eq % States *-eq % States
1 69 1 69 1 69 1 69 1 69 1
2 71 2 69 1 71 2 69 1 71 2
3 80 4 69 1 71 2 69 1 71 2
4 71 3 74 2 71 2 69 1 71 2
5 69 1 69 1 69 1 69 1 69 1
6 69 1 69 1 69 1 69 1 69 1
7 80 4 74 2 74 3 76 4 77 4
8 71 3 69 2 70 3 76 4 77 4

Table 3. Algorithm 3 results: hashed regular expressions represent full language of
states.

hash functions without the modulo operation. A correlation value of 0.92 was ob-
tained, which is well above the 95% confidence level of 0.72 (for sample size of
8) for rejecting the hypothesis that the hash function performance differed in the
two algorithms.

– Data in table 2 indicating the largest DFA generated under each hash function is
very much in line with expectations. All hash functions of a given modulo produce
the same size largest DFAs, and these largest sizes rise as the modulo value rises.
They attain a maximum size of 4, when modulo 4 is reached. This suggests (but
does not prove) that 4 is the maximum size of the minimized DFA generated from
the more than 190000 regular expressions.

– By contrast, data in table 3 in relation to the largest DFA generated under various
hash functions, does not seem to be influenced significantly by the modulo opera-
tion. In fact, the overall quality measures in this table are lower than in table 2. If
the inference above is correct that the maximum size of the minimized DFA is 4,
then maximum DFA sizes increasingly less than 4 lead to super-automata increas-
ingly different from the associated exact automata. This suggests that hashing on
the language of a state is not a good idea. The reasons for this relatively poor
performance will be further researched in future work.

– Entries in the *-eq % columns seem surprisingly high. It is interesting to note in
table 3 that all hash functions that reduce the maximum sized DFA (and therefore
all DFAs) down to 1 state, have a *-equivalent rating of 69%. This means that the
percentage *-equivalent mergers attributable to different regular expressions being

240 Proceedings of the Prague Stringology Conference 2008

hashed to the same value, ranges across the two tables from 69%− 69% = 0% to
a maximum of 83%− 69% = 14%.

– Hash functions 3 and 7 appear to perform consistently well, whereas hash functions
1 and 5 (and possibly 6) perform consistently badly. It would seem that the last
three mappings in each block of table 1 play a critical role in determining the hash
function quality. Worst case behaviour arises when the regular expression operator
∪ is associated with the bitwise operator ∧ (see mappings 1, 2, 5 and 6), which
significantly improves when the association is switched to the bitwise operator ∨
(see mappings 3, 4, 7 and 8). Optimal performance is reached (in mapping 3 and
7) when, in addition, ∩ is mapped to ∧, but this mapping also leads to worst case
performance is also reached (in mappings 1 and 5) if ∪ is wrongly mapped.

Even though the automata constructed are small in size, a large range of regu-
lar expressions have been tested, representing a diverse range of regular expression
structures. Nevertheless, a shortcoming of this approach is it becomes impractical
for larger regular expressions: the Gödel numbers involved become extremely large,
making it impossible to iterate over them.

In the future, we intend generating a sample of random large regular expressions,
to assess the impact of different hash functions under such circumstances.

7 Conclusions and Further Work

In this article, the consequences of regular expression hashing as a means of finite state
automaton reduction was explored based on variations of Brzozowski’s Algorithm. It
was shown that a super-automaton is always constructed, no matter what the hash
function may be. It was also demonstrated that a non-deterministic automaton can
be constructed, and a new algorithm was put forward for constructing a deterministic
FA, using the same approach as the original two algorithms.

An approach was proposed to measuring the quality of a hash function that derives
a super-automaton of an exact automaton, based on k-equivalence classes on regular
expressions. A derivation was also presented to represent the language of a state with
regular expressions. These ideas were empirically tested on a large sample of relatively
small regular expressions and their associated automata.

Further work will focus on searching for hash functions that are closer to the
ideal, and on gaining a more precise understanding of why some hash functions are
better than others, given the k-equivalence criteria and the definition of an ideal hash
function. This will include exploring substitution variations on integer functions for
regular expression operators.

References

1. J. Brzozowski: Derivatives of regular expressions. Journal of the Association of Computing
Machinery, 11 October 1964, pp. pages 481–494.

2. S. Epp: Discrete Mathematics with Applications, International Tomson Publishing, Inc., 1995.
3. M. Frishert: FIRE Works & FIRE Station: A finite automata & regular expression playground,

tech. rep., Technical University Eindhoven, 2004.
4. R. McNaughton: Elementary Computability, Formal Languages and Automata, Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1981.
5. B. W. Watson: A taxonomy of finite automata minimization algorithms, tech. rep., Technical

University Eindhoven, 1994.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 241

6. B. W. Watson and J. Daciuk: An efficient incremental DFA minimization algorithm. Journal
of Natural Language Engineering, 9(1) March 2003, pp. 49–64.

7. B. W. Watson, D. G. Kourie, E. Ketcha Ngassam, T. Strauss, and L. Cleophas: Ef-
ficient automata constructions and approximate automata. International Journal of Foundations
of Computer Science, Vol. 19(1) 2008, pp. 185–193.

Author Index

Adjeroh, Don 68
Antoniou, Pavlos 108

Bannai, Hideo 84, 140
Baturo, Pawe l 193
Brey, Gerhard 208

Cantone, Domenico 170
Christodoulakis, Manolis 208
Cinque, Luigi 26, 35
Coetser, Wikus 227
Coste, François 54
Cristofaro, Salvatore 170
Crochemore, Maxime 108

De Agostino, Sergio 26, 35
Deguchi, Satoshi 84

Faro, Simone 146, 170

Gallé, Matthias 54

Higashijima, Fumihito 84

Iliopoulos, Costas S. 108
Inenaga, Shunsuke 84
Ishino, Akira 140, 185

Jayasekera, Inuka 108
Jiang, Yue 68
Jolion, Jean-Michel 116

Klein, Shmuel T. 46
Kourie, Derrick G. 218, 227

Kusano, Kazuhiko 140, 185

Léonard, Martine 13
Landau, Gad M. 108
Lecroq, Thierry 13, 146
Lin, Jie 68
Lombardi, Luca 35

Matsubara, Wataru 140, 185
Mouchard, Laurent 13

Paquin, Geneviève 126
Peterlongo, Pierre 54
Pia֒tkowski, Marcin 193
Puglisi, Simon J. 161

Rebecchi, Sébastien 116
Rytter, Wojciech 193

Salson, Mikaël 13
Shapira, Dana 46
Shinohara, Ayumi 140, 185
Smyth, William F. 95, 161
Strauss, Tinus 218

Takeda, Masayuki 84
Trahtman, Avraham N. 1

Wang, Shu 95
Watson, Bruce W. 218, 227

Yu, Mao 95
Yusufu, Munina 161

242

