
The Road Coloring and Černy Conjecture
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Abstract. A synchronizing word of a deterministic automaton is a word in the alpha-
bet of colors (considered as letters) of its edges that maps the automaton to a single
state. A coloring of edges of a directed graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.
The road coloring problem is the problem of synchronizing coloring of a directed fi-
nite strongly connected graph with constant outdegree of all its vertices if the greatest
common divisor of lengths of all its cycles is one. The problem was posed by Adler,
Goodwyn and Weiss over 30 years ago and evoked noticeable interest among the spe-
cialists in the theory of graphs, deterministic automata and symbolic dynamics.
The positive solution of the road coloring problem is presented.
Some consequences on the length of the synchronizing word are discussed.

Keywords: road coloring problem, graph, deterministic finite automaton, synchro-
nization

Introduction

The road coloring problem originates in [2] and was stated explicitly in [1] for a
strongly connected directed finite graph with constant outdegree of all its vertices
where the greatest common divisor (gcd) of lengths of all its cycles is one. The edges
of the graph are unlabelled. The task is to find a labelling of the edges that turns the
graph into a deterministic finite automaton possessing a synchronizing word. So the
road coloring problem is connected with the problem of existence of synchronizing
word for deterministic complete finite automaton.

The condition on gcd is necessary [1], [6]. It can be replaced by the equivalent
property that there does not exist a partition of the set of vertices on subsets V1, V2,
..., Vk+1 = V1 (k > 1) such that every edge which begins in Vi has its end in Vi+1 [6],
[20]. The outdegree of the vertex can be considered also as the size of an alphabet
where the letters denote colors.

The road coloring problem is important in automata theory: a synchronizing col-
oring makes the behavior of an automaton resistant against input errors since, after
detection of an error, a synchronizing word can reset the automaton back to its orig-
inal state, as if no error had occurred. The problem appeared first in the context of
symbolic dynamics and is important also in this area.

Together with the Černy conjecture [22], [24], the road coloring problem belongs
to the most fascinating problems in the theory of finite automata. The problem was
discussed even in “Wikipedia” – the popular Internet Encyclopedia. However, at the
same time it was considered as a “notorious open problem” [18], [6] and “unfeasible”
[13]. For some positive results in this area see [4], [5], [11], [12], [13], [15], [16], [20],
[21].

Avraham N. Trahtman: The Road Coloring and Černy Conjecture, pp. 1–12.
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The road coloring conjecture is settled in the affirmative: A finite strong digraph
with constant outdegree has a synchronizing coloring if and only if the greatest com-
mon divisor of the lengths of its cycles is 1.

The concept of a stable pair of states [6], [16] of Culik, Karhumaki and Kari with
corresponding results and consequences is used below. The first version of our paper
had also used results from [11]. However, we are now able to simplify the proof using
idea from [3], [25] and [26].

A problem of the minimal length of synchronizing word, best known as Černy’s
conjecture, was raised independently by distinct authors. Jan Černy found in 1964
[7] n-state complete DFA with shortest synchronizing word of length (n − 1)2 for
alphabet size q = 2. He conjectured that it is an upper bound for the length of the
shortest synchronizing word for any n-state complete DFA. The best known upper
bound is now equal to (n3 − n)/6 [10], [17]. The conjecture holds true for a lot of
automata, but in general the problem still remains open. Moreover, the examples of
automata with shortest synchronizing word of length (n − 1)2 are infrequent. After
the sequence found by Černy and example of Černy, Piricka and Rosenauerova [8] of
1971 for q = 2, the next such example was found by Kari [16] only in 2001 for n = 6
and q = 2. Roman [23] had found an analogous example for n = 5 and q = 3 in 2004.
There are no examples of automata for the time being such that the length of the
shortest synchronizing word is greater than (n − 1)2.

We use a new efficient algorithm for finding a synchronizing word. The known
algorithm of Eppstein [9] finds a synchronizing word for n-state DFA in O(n3 + n2q)
time. The actual running time of our algorithm (O(n2q)) on a lot of examples proved
to be less than in the case of O(n3q) time complexity (the worst case). It gives a
chance to extend noticeably the class of considered DFA.

The program had studied all automata with strongly connected transition graph
of size n ≤ 10 for q = 2, of size n ≤ 8 for q ≤ 3 and of size n ≤ 7 for q ≤ 4. All known
together with some new examples of DFA with shortest synchronizing word of length
(n − 1)2 from this class of automata were obtained. So all examples of DFA with
shortest synchronizing word of length (n − 1)2 in this area are known for today. The
size of the alphabet of the examples is two or three. The contradictory examples for
the Černy conjecture do not exist in this class of automata. Moreover, the program
does not find examples of DFA with reset word of length (n − 1)2 for n > 4 as well
as for q > 3. No such examples exist also for alphabet of size four if n ≤ 7 and of size
three if n ≤ 8.

All examples on the Černy border (n−1)2 except one have loops and therefore by
some recoloring have shortest synchronizing word of length not greater than n − 1.
It supports the conjecture that by some coloring every synchronizing automaton has
synchronizing word of length less than (n − 1)2.

Preliminaries

A finite directed strongly connected graph with constant outdegree of all its vertices
where the gcd of lengths of all its cycles is one will be called AGW graph as aroused
by Adler, Goodwyn and Weiss.

The bold letters will denote the vertices of a graph (the states of an automaton).
If there exists a path in an automaton from the state p to the state q and the

edges of the path are consecutively labelled by σ1, ..., σk, then for s = σ1...σk ∈ Σ+

let us write q = ps and p � r.
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Let Ps be the map of the subset P of states of an automaton by help of s ∈ Σ+

and let Ps−1 be the maximal set of states Q such that Qs ⊆ P . For the transition
graph Γ of an automaton let Γs denote the map of the set of states of the automaton.

|P | – the size of the subset P of states from an automaton (of vertices from a
graph).

A word s ∈ Σ+ is called a synchronizing (or2-reset) word of the automaton with
transition graph Γ if |Γs| = 1.

A coloring of a directed finite graph is synchronizing if the coloring turns the
graph into a deterministic finite automaton possessing a synchronizing word.

A pair of distinct states p,q of an automaton (of vertices of the transition graph)
will be called synchronizing if ps = qs for some s ∈ Σ+. In the opposite case, if for
any s ps 6= qs, we call the pair deadlock.

A synchronizing pair of states p, q of an automaton is called stable if for any word
u the pair pu,qu is also synchronizing [6], [16].

We call the set of all outgoing edges of a vertex a bunch if all these edges are
incoming edges of only one vertex.

The subset of states (of vertices of the transition graph Γ ) of maximal size such
that every pair of states from the set is deadlock will be called an F -clique.

A state [a vertex] r is called sink of an automaton [of a graph] if p � r for all
states p.

The direct product Γ 2 of two copies of the graph Γ over the alphabet Σ consists
of vertices (p, r) and edges (p, r) → (pσ, rσ) labelled by σ. Here p, r ∈ Γ , σ ∈ Σ.

1 Some properties of F -clique

The road coloring problem was formulated for AGW graphs [1] and only such graphs
are considered below. We exclude from the consideration also the primitive cases of
graphs with loops and of only one color [1], [20].

Let us recall that a binary relation ρ on the set of the states of an automaton is
called congruence if ρ is equivalence and for any word u from p ρ q follows pu ρ qu.
Let us formulate an important result from [16] in the following form:

Theorem 1. [16] Let us consider a coloring of AGW graph Γ . Stability of states is a
binary relation on the set of states of the obtained automaton; denote this relation by
ρ. Then ρ is a congruence relation, Γ/ρ presents an AGW graph and synchronizing
coloring of Γ/ρ implies synchronizing recoloring of Γ .

Lemma 2. Let F be F -clique via some coloring of AGW graph Γ . For any word s
the set Fs is also an F -clique and any state [vertex] p belongs to some F -clique.

Proof. Any pair p, q from an F -clique F is a deadlock. To be deadlock is a stable
binary relation, therefore for any word s the pair ps, qs from Fs also is a deadlock.
So all pairs from Fs are deadlocks.

For any r from a strongly connected graph Γ , there exists a word u such that
r = pu for p from the F -clique F , whence r belongs to the F -clique Fu.

Lemma 3. Let A and B (|A| > 1) be distinct F -cliques via some coloring without
stable pairs of the AGW graph Γ . Then |A| − |A ∩ B| = |B| − |A ∩ B| > 1.
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Proof. Let us assume the contrary: |A| − |A ∩ B| = 1. By the definition of F -clique,
|A| = |B| and |B| − |A ∩ B| = 1, too.

The pair of states p ∈ A\B and q ∈ B \A is not stable. Therefore for some word
s the pair (ps,qs) is a deadlock. Any pair of states from the F -clique A and from the
F -clique B as well as from F -cliques As and Bs is a deadlock. So any pair of states
from the set (A ∪ B)s is a deadlock.

One has |(A ∪ B)s| = |A| + 1 > |A| in spite of maximality of the size of F -clique
A among the sets of states such that every pair of its states is deadlock.

Lemma 4. Let some vertex of AGW graph Γ have two incoming bunches. Then any
coloring of Γ has a stable couple.

Proof. If a vertex p has two incoming bunches from vertices q and r, then the couple
q, r is stable for any coloring because qα = rα = p for any letter (color) α ∈ Σ.

2 The spanning subgraph of cycles and trees with maximal

number of edges in the cycles

Définition 1 Let us call a subgraph S of the AGW graph Γ a spanning subgraph of
Γ if to S belong all vertices of Γ and exactly one outgoing edge of every vertex.

A maximal subtree of the spanning subgraph S with root on a cycle from S and
having no common edges with cycles from S is called a tree of S.

The length of path from a vertex p through the edges of the tree of the spanning
set S to the root of the tree is called the level of p in S.

Remark 5. Any spanning subgraph S consists of disjoint cycles and trees with roots
on cycles; any tree and cycle of S is defined identically, the level of the vertex from
cycle is zero, the vertices of trees except root have positive level, the vertex of maximal
positive level has no incoming edge from S.

Lemma 6. Let L be a set of vertices of level l from some tree of the spanning
subgraph S of AGW graph Γ and let all edges of S have a color α by some coloring
of Γ . Then for any F -clique F of the coloring holds |F ∩ L| ≤ 1.

Proof. Some power of α synchronizes all states of given level of the tree and maps
them into the root. Any couple of states from an F -clique could not be synchronized
and therefore could not belong to L.

Lemma 7. Let AGW graph Γ have a spanning subgraph R of only disjoint cycles
(without trees). Then Γ also has another spanning subgraph with exactly one vertex
of maximal positive level.

Proof. The spanning subgraph R has only cycles and therefore the levels of all vertices
are equal to zero. In view of gcd =1 in the strongly connected graph Γ , not all
edges belong to a bunch. Therefore there exist two edges u = p → q 6∈ R and
v = p → s ∈ R with common first vertex p but such that q 6= s. Let us replace the
edge v = p → s from R by u. Then only the vertex s has maximal level L > 0 in the
new spanning subgraph.

Lemma 8. Let any vertex of an AGW graph Γ have no two incoming bunches.
Then Γ has a spanning subgraph such that all its vertices of maximal positive level
belong to one non-trivial tree.
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Proof. Let us consider a spanning subgraph R with a maximal number of vertices
[edges] in its cycles. In view of Lemma 7, suppose that R has non-trivial trees and
let L > 0 be the maximal value of the level of a vertex.

Further consideration is necessary only if at least two vertices of level L belong
to distinct trees of R with distinct roots.

Let us consider a tree T from R with vertex p of maximal level L and edge b̄
from vertex b to the tree root r ∈ T on the path of length L from p. Let the root r

belong to the cycle H of R with the edge c̄ = c → r ∈ H. There exists also an edge
ā = a → p that does not belong to R because Γ is strongly connected and p has no
incoming edge from R.

p

r
a

d

c

b· · ·

· · ·

· · · · · · · · · · · ·

ā

w̄

c̄
b̄

H

T

Let us consider the path from p to r of maximal length L in T . Our aim is to
extend the maximal level of the vertex on the extension of the tree T much more
than the maximal level of vertex of other trees from R. We plan to use the following
three changes:

1) replace the edge w̄ from R with first vertex a by the edge ā = a → p,

2) replace the edge b̄ from R by some other outgoing edge of the vertex b,

3) replace the edge c̄ from R by some other outgoing edge of the vertex c.

If one of the ways does not succeed let us go to the next assuming the situation
in which the previous way fails and excluding the successfully studied cases. So we
diminish the considered domain. We can use sometimes two changes together. Let us
begin with

1) Suppose first a 6∈ H. If a belongs to a path in T from p to r then a new cycle
with part of the path and edge a → p is added to R extending the number of vertices
in its cycles in spite of the choice of R. In opposite case the level of a in the new
spanning subgraph is L + 1 and the vertex r is a root of the new tree containing all
vertices of maximal level (in particular, the vertex a or its ancestors in R).

So let us assume a ∈ H and suppose w̄ = a → d ∈ H. In this case the vertices
p, r and a belong to a cycle H1 with new edge ā of a new spanning subgraph R1. So
we have the cycle H1 ∈ R1 instead of H ∈ R. If the length of path from r to a in H
is r1 then H1 has length L + r1 + 1. A path to r from the vertex d of the cycle H
remains in R1. Suppose its length is r2. So the length of the cycle H is r1 + r2 + 1.
The length of the cycle H1 is not greater than the length of H because the spanning
subgraph R has maximal number of edges in its cycles. So r1 + r2 + 1 ≥ L + r1 + 1,
whence r2 ≥ L. If r2 > L, then the length r2 of the path from d to r in a tree of R1

(and the level of d) is greater than L and the level of d (or of some other ancestor of
r in a tree from R1) is the desired unique maximal level.

So assume for further consideration L = r2 and a ∈ H. Analogously, for any
vertex of maximal level L with root in the cycle H and incoming edge from a vertex
a1 the proof can be reduced to the case a1 ∈ H and L = r2 for the corresponding
new value of r2.

2) Suppose the set of outgoing edges of the vertex b is not a bunch. So one can
replace in R the edge b̄ from the vertex b by an edge v̄ from b to a vertex v 6= r.
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The vertex v could not belong to T because in this case a new cycle is added to R
and therefore a new spanning subgraph has a number of vertices in the cycles greater
than in R.

If the vertex v belongs to another tree of R but not to cycle, then T is a part of
a new tree T1 with a new root of a new spanning subgraph R1 and the path from p

to the new root is extended. So only the tree T1 has states of new maximal level.
If v belongs to some cycle H2 6= H from R, then together with replacing b̄ by v̄,

we replace also the edge w̄ by ā. So we extend the path from p to the new root v

at least by the edge ā = a → p and by almost all edges of H. Therefore the new
maximal level L1 > L has either the vertex d or its ancestors from the old spanning
subgraph R.

Now there remains only the case when v belongs to the cycle H. The vertex p

also has level L in new tree T1 with root v. The only difference between T and T1

(just as between R and R1) is the root and the incoming edge of the root. The new
spanning subgraph R1 has also a maximal number of vertices in cycles just as R. Let
r3 be the length of the path from d to the new root v ∈ H.

For the spanning subgraph R1, one can obtain L = r3 just as it was done on the
step 1) for R. From v 6= r follows r3 6= r2, though L = r3 and L = r2.

So for further consideration suppose that the set of outgoing edges of the vertex
b is a bunch to r.

3) The set of outgoing edges of the vertex c is not a bunch to r because r has
another bunch from b.

Let us replace in R the edge c̄ by an edge ū = c → u such that u 6= r. The vertex
u could not belong to the tree T because in this case the cycle H is replaced by a
cycle with all vertices from H and some vertices of T whence its length is greater
than |H|. Therefore the new spanning subgraph has a number of vertices in its cycles
greater than in spanning subgraph R in spite of the choice of R.

So remains the case u 6∈ T . Then the tree T is a part of a new tree with a new
root and the path from p to the new root is extended at least by a part of H from
the former root r. The new level of p therefore is maximal and greater than the level
of any vertex in some another tree.

Thus anyway there exists a spanning subgraph with vertices of maximal level in
one non-trivial tree.

Theorem 9. Any AGW graph Γ has a coloring with stable couple.

Proof. By Lemma 4, in the case of vertex with two incoming bunches Γ has a coloring
with stable couples. In opposite case, by Lemma 8, Γ has a spanning subgraph R
such that the vertices of maximal positive level L belong to one tree of R.

Let us give to the edges of R the color α and denote by C the set of all vertices
from the cycles of R. Then let us color the remaining edges of Γ by other colors
arbitrarily.

By Lemma 2, in a strongly connected graph Γ for every word s and F -clique F
of size |F | > 1, the set Fs also is an F -clique of the same size and for any state p

there exists an F -clique F such that p ∈ F .
In particular, some F has non-empty intersection with the set N of vertices of

maximal level L. The set N belongs to one tree, whence by Lemma 6 this intersection
has only one vertex. The word αL−1 maps F on an F -clique F1 of size |F |. One has
|F1 \C| = 1 because the sequence of edges of color α from any tree of R leads to the
root of the tree, the root belongs to a cycle colored by α from C and only for the set
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N with vertices of maximal level holds NαL−1 6⊆ C. So |NαL−1 ∩ F1| = |F1 \ C| = 1
and |C ∩ F1| = |F1| − 1.

Let the integer m be a common multiple of the lengths of all considered cycles
from C colored by α. So for any p from C as well as from F1 ∩ C holds pαm = p.
Therefore for an F -clique F2 = F1α

m holds F2 ⊆ C and C ∩ F1 = F1 ∩ F2.
Thus two F -cliques F1 and F2 of size |F1| > 1 have |F1| − 1 common vertices. So

|F1 \ (F1 ∩ F2)| = 1. Consequently, in view of Lemma 3, there exists a stable couple
in the considered coloring.

Theorem 10. Every AGW graph Γ has synchronizing coloring.

The proof follows from Theorems 9 and 1.

3 Some auxiliary properties

Lemma 11. Suppose p 6∈ Γs. Then p 6∈ Γus for any word u.

Proof follows from Γu ⊆ Γ .

Lemma 12. Suppose p 6∈ Γs for a word s and a state p of transition graph Γ of
DFA.

Then there exist two minimal integer k and r such that psk = psk+r. The pair
of states p,psr has 2-reset word sk and for every i < k the pair of states psi,psr+i

has 2-reset word sk−i. The word sk is a 2-reset word for at least k different pairs of
states.
In the case r = 1, the word sk maps the set of states p,ps, ...,psk on psk.

Proof. The sequence ps,ps2, ...,pst, ... is finite and belongs to Γs. Therefore such k
and r exist. Two states psi and psr+i are mapped by the power sk−i on psk = psk+r

as well as the states p and psr are mapped by the power sk on psk. All states psi

are distinct for i ≤ k, whence the word sk unites at least k distinct pairs of states.
In the case r = 1, psk = psjsk for any j. All states psi are distinct for 0 ≥ i ≤ k,

whence the word sk unites in this case at least k + 1 distinct states.

Lemma 13. Suppose rα = tα for a letter α and two distinct states r, t of transition
graph Γ of DFA and let the states r and rα be consecutive states of a cycle C of Γ .

Then there exists a word s of length of the cycle C such that rs = r and |Γs| < |Γ |.
For some state p ∈ Γ \ Γs there exists a minimal integer k such that psk = psk+1.
The pair of states p,psk has 2-reset word sk and for every i < k the pair of states
psi,psk has 2-reset word sk−i. The word sk unites at least k + 1 distinct states.

Proof. A word s with first letter α can be obtained from consecutive letters on the
edges of the cycle C. Therefore |s| is equal to the length of the cycle and rs = r.
|Γs| < |Γ | follows from rα = tα.

From rs = r 6= t and rα = tα follows that ts = r 6= t, whence r = tsi 6= t for any
integer i. In the case t ∈ Γ \ Γs suppose p = t, and so the state p is defined.

In opposite case the state t has by mapping s some preimage ts−1 and in view of
tsi 6= t for all i there exists an integer k (only one) such that the state ts−k belongs
to Γ \ Γs. Now suppose p = ts−k. One has psk = psk+1 = r for p from Γ \ Γs.

So the pair of states p,psk has 2-reset word sk and for every i < k the pair of
states psi,psk has 2-reset word sk−i. The states psi for i ≤ k and p are distinct
because k is unique. The word sk maps all these states on the state r.
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Lemma 14. Let Γ be strongly connected graph of synchronizing automaton with tran-
sition semigroup S. Suppose Γa = Γb for reset words a and b. Then a = b. Any reset
word is an idempotent.

Proof. The elements a and b from S induce equal mappings on the set of states of
Γ . S can be embedded into the semigroup of all functions on the set of states under
composition. Therefore a = b in S. Γa = Γa2, whence a = a2 for any reset word a
and the element a ∈ S is an idempotent.

4 Synchronizing Algorithms

The following help construction was supposed by Eppstein [9]. Let us keep for any pair
of states r,p the first letter α of the minimal 2-reset word w of the pair together with
the length of the word w. The second letter of w is the first letter of the analogical
word of the pair of states rα,pα. Therefore the 2-reset word w of minimal length
can be restored on this way. The time and space complexity of this preprocessing is
O(n2) [9] for n-state automaton.

4.1 Checking synchronizability

A help algorithm with O(n2q) time complexity in the worst case verifies whether or
not a given n-state DFA of alphabet size q is synchronizing. The algorithm follows
[9]. Our modification of the algorithm finds first all SCC of the graph (the first-depth
search is a linear) and then checks the minimal SCC Γs of sink states of the graph (if
exists). If there is no sink state then the automaton is not synchronizing. Exactly one
sink state implies synchronizability. The time and space complexity of the algorithm
in both these cases are linear.

Let us consider the graph Γs with at least two sink states. The next step is the
consideration of Γ 2

s . We unite any pair of states (p, r) and (r,p), all states (r, r) are
united in one state (0, 0). Then let us mark sink state (0, 0) and all ancestors of (0, 0)
using the first-depth search on the reverse of the obtained graph G. The graph Γ is
synchronizing if any node of G will be marked.

4.2 An efficient algorithm for reset word

An efficient semigroup algorithm, essential improvement of the algorithm [9], based
on the properties of transition semigroup and inspired mostly by results from the
previous section plays a central role in the program.

We consider the square Γ 2 and the reverse graph I of Γ . The graph I is not
deterministic for synchronizing graph Γ . Suppose that the graph Γ is synchronizing,
all sink states are found on the stage of checking of the synchronizability, the graph
Γ 2 and the reverse graph I were build.

Let us find by help of the reverse graph I for any pair of states r,p from Γ 2 the
first letter of the minimal 2-reset word w of the pair and the length of w [9]. So for
any pair r,p can be restored a 2-reset word w of minimal length.

Let us order the set of states (r,p) according to the length of the word w. The
ordering can be made linear in the size of the set in the following way:

Let us find first the number ci of all states (r,p) with given length i of minimal
2-reset word for any i, then adjust the intervals of size ci for to place the pairs and
then allocate in every interval the pairs with common length. It needs O(n2) time.
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We use also a complementary idea for to reorder the pairs of states. If a word w
unites at least two states let us find the number of states united by powers of w and
use this value for complementary order.

The important part of the preprocessing supposed by Eppstein was the computing
of the mapping Γw of the graph Γ induced by the minimal 2-reset word w of the pair
of states r,p. This stage begins from the shortest words w and therefore is linear for
any considered pair of states r,p. Nevertheless, the time complexity of the stage is
O(n3). For to avoid the extremes of this step, our algorithm stops on linear number
of pairs. The obtained set G of 2-reset words is considered as a set of generators of
some subsemigroup from A and will be marked together with corresponding pairs
of states. The time complexity of this step is therefore O(n2). Let us reorder G in
the complementary order and use the mapping of the graph induced by powers of
generators.
Let Γi be consecutive images of the graph Γ = Γ0 such that for wi ∈ A holds
Γiwi+1 = Γi+1 and |Γi| > |Γi+1|. Let Ai be a semigroup generated by the set w1, ...
wi. Let us check pairs of states corresponding to the words from G. If the pair belongs
to Γi then the corresponding minimal reset word wi+1 together with its powers may
be used for to find the image Γi+1.

In the case no minimal 2-reset word of a pair from Γi was marked, let us consider
the products of marked words. If some product unites a pairs of states of Γi, then let
us use the mapping, mark the product of words and the pair of states. Let us notice
that on this step are considered not all marked pairs. The number of considered
products must be linear in the size of Γ . The product of two mappings can be found
in linear time. Therefore the time complexity of this stage is O(nk) for the defect k
of the mapping of Γi.

If two considered stages still do not find a reset word, then the new generator
must be added to considered subsemigroup Ai. Let us take a pair of states r,p from
Γi with reset word wi. Suppose wi = uivi such that the word vi was marked. Then
the mapping wi can be found in n|ui| time. Let us notice that only on this step the
time complexity may by greater than quadratic.

Lemma 15. Let Γi be consecutive images of the graph Γ = Γ0 such that for vi from
semigroup A Γivi+1 = Γi+1, |Γi| > |Γi+1| and |Γs| = 1 for some integer s. Let Ai be a
semigroup generated by the set w1, ... wi such that wi = uivi is a reset word for some
pair of states from Γi−1 and vi is a marked element of the subsemigroup Ai−1.

Then the considered algorithm has max(O(|Γ |2q), O(|Γ ||u1...us|) time complexity.

Proof. The time complexity of the step of the building of Γ 2 is O(|Γ |2q). So O(|Γ |2q)
is a lower bound for the complexity of the considered algorithm.

Let the set w1, ... wi generate Ai. The creation of the mapping wi needs |Γ ||ui|+1
steps because for the marked element vi the mapping is known.

The element will be marked and used only if it is either a generator from Ai or a
product of two marked elements. With a marked semigroup element will be associated
the mapping of Γ defined by the element. The finding of the mapping of the product
of two elements with known images is linear in the size of the graph.

We repeat the process with the obtained image Γi. The defect of the mapping is
growing on every step. After not over than |Γ | − 1 steps Γ will be synchronized.

As for complexity of the algorithm, let us notice that the length of the synchroniz-
ing word found by the algorithm was less than n2 in all considered cases. The stage
of adding of new generators was used only in a small number of cases, only some per-
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cents of considered automata. The number of generators of the semigroup A is usually
small. For instance, for Černy graphs there are only two generators. Therefore the
time complexity of the algorithm is O(n2q) in majority of cases and the algorithm
can be considered as subquadratic.

4.3 An algorithm for reset word of minimal length

A straightforward algorithm for finding synchronizing word of minimal length is used
by the program on its last stage. The algorithm is not polynomial in the most worst
case (the finding of the synchronizing word of minimal length is NP-hard [9], [19]).
The size of the transition semigroup is in general not polynomial in the size of the
transition graph. The program for search of minimal reset word uses this algorithm
relatively rare.

We find mappings of the graph of the automaton induced by the letters of the al-
phabet of the labels. Mappings with the same set of states are identified. It essentially
simplifies the process. Distinct mappings are saved. For this aim, any two mappings
must to be compared, so we have O(s(s − 1)/2) steps for s mappings.
The mappings correspond to semigroup elements. With any mapping let us connect
a previous mapping and the letter that creates the mapping. On this way, the path
on the graph of the automaton can be constructed. The time complexity of the con-
sidered procedure is O(nqs2) with O(ns) space complexity.

Proposition 16. The algorithm finds a list of all words (elements of transition semi-
group) of length k where k is growing. The first synchronizing word of the list has
minimal length.

5 Experimental data

The considered synchronization algorithms were used in a program for search of auto-
mata with minimal reset word of relatively great length. The program has investigated
all complete DFA for n ≤ 10, q = 2 and for n ≤ 7, q ≤ 4.
An automaton with k states outside sink SCC A of the transition graph can be
mapped on A by word of length not greater than k(k − 1)/2. Therefore only auto-
mata with strongly connected transition graphs need investigation. The graphs with
synchronizing proper subgraph obtained by moving off letters from the alphabet are
omitted too. In particular, there are no synchronizing 3-state automata for q ≥ 3 such
that by removing any letter the obtained automata are not synchronizing. Therefore
such automata are not studied and in the table below for n = 3 appears zero.

The known n-state automata with minimal reset word of length (n − 1)2 are
presented by sequence of Černy [7] (here n=28):

a a a a a a a a a a a a ab b b b b b b b b b b b b

a b a

a a a a a a a a a a a a a

b b b b b b b b b b b b b b

by automata supposed by Černy, Piricka and Rosenauerova [8], by Kari [16] and
Roman [23].
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a b

a
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a a

a a

a
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b b
b

b

b

c c

a

ab

a, b c a, b

b

Our program has found five new following examples on the border (n − 1)2.

b

a

a

c

c b, c

a, b

a

a a
c

c abb

b
a
b

baa c

a

a, b

b c b a

c
a, b

b

c

The corresponding reset words of minimal length are: abcacabca, acbaaacba, baab,
acba, bacb. All considered algorithms have found the same reset word for every ex-
ample. The size of the transition semigroup found by the package TESTAS is 148,
180, 24, 27 and 27 correspondingly.

There are no contradictory examples for the Černy conjecture in considered class
of automata. Moreover, there are no new examples of automata with reset word of
length (n − 1)2 for n > 4 and q > 3 in this class. And what is more, the examples
with minimal length of reset word disappear even for values near the Černy bound
(n − 1)2 with growth of the size of the automaton and of the size of the alphabet.
The following table displays this noteworthy trend for the maximum of lengths of
minimal reset words of length less than (n−1)2. By ∗ are denoted here non-isomorphic
automata having minimal reset words of length (n− 1)2 that do not belong to Černy
sequence.

size of the automaton n=3 n=4 n=5 n=6 n=7 n=8 n=9 n=10
(n − 1)2 4 9 16 25 36 49 64 81

max length, 2 letters 3 ∗ 8 ∗ 15 23 ∗ 32 44 58 74
max length, 3 letters 0 ∗ ∗ 8 ∗ ∗ 15 ∗ 23 31 ≤44 – –
max length, 4 letters 0 8 15 22 30 – – –

The gap between (n−1)2 and the maximum of considered length of the minimal reset
word grows with n and q. This gap supports the following funny

Conjecture The set of n-state DFA with minimal reset word of length not less
than (n− 1)2 contains only the sequence of Černy and the eight automata mentioned
above, three of size 3, three of size 4, one of size 5 and one of size 6.

and also
Conjecture Any AGW graph has coloring with minimal reset word of length less

than (n − 1)2.
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