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Abstract. The Burrows-Wheeler Transform is a building block for many text com-
pression applications and self-index data structures. It reorders the letters of a text T to
obtain a new text bwt(T ) which can be better compressed. This forward transform has
been intensively studied over the years, but a major problem still remains: bwt(T ) has
to be entirely recomputed whenever T is modified. In this article, we are considering
standard edit operations (insertion, deletion, substitution of a letter or a factor) that
are transforming a text T into T ′. We are studying the impact of these edit operations
on bwt(T ) and are presenting an algorithm that converts bwt(T ) into bwt(T ′). More-
over, we show that we can use this algorithm for converting the suffix array of T into
the suffix array of T ′. Even if the theoretical worst-case time complexity is O(|T |), the
experiments we conducted indicate that it performs really well in practice.

1 Introduction

Data compression plays an important role in computer science. Its main goal is to
reduce the normal consumption of data storage (one can easily store a large selec-
tion of books on a single USB key or CD). Nowadays, one of its main interests is
to save network bandwith, enabling fast access to large distant resources, permit-
ting the development of services such as Video On Demand or WebTV broadcasting
over DSL [2]. While efficient image, video or sound compressions are traditionnally
achieved using lossy algorithms, text compression only tolerates lossless algorithms,
as no letter of the text should be omitted.

Some of the most popular lossless text compression tools, such as bzip, 7Z or
winzip, are using a preprocessing engine that reorders the letters of the original text
and eases the compression, paving the way for Run-Length Encoding, entropy encod-
ing or Prediction by Partial Matching methods [4,3]. This preprocessor, the Burrows-
Wheeler Transform [1], is a very interesting block-sorting algorithm: conceptually
speaking, it is very close to the suffix array proposed in [17,12] and has been proved
to be a particular case of the Gessel-Reutenauer transforms [5].
Due to its intrinsic structure and its similarity with the suffix array, it has been
also used for advanced compressed index structures [8,9] that authorize approximate
pattern matching, and therefore can be used by search engines.

The Burrows-Wheeler Transform of a text T of length n, bwt(T ), is often obtained
from the fitting suffix array. Its construction is based on the construction of the suffix
array, usually performed in O(n)-time [19]. Storing the intermediate suffix array is
still one of the main technological bottlenecks, as it requires Ω(n log n) bits, while
storing bwt(T ) and T only require O(n log σ) bits, where σ is the size of the alphabet.

Even if this transform has been intensively studied over the years [10], one essential
problem still remains: bwt(T ) has to be totally reconstructed as soon as the text T is

⋆ Funded by the French Ministry of Research – Grant 26962-2007
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altered. Although some authors already addressed the issue of maintaining an index
for a dynamic text [6,7,14], their answer cannot be fully applied to the Burrows-
Wheeler Transform.

In this article, we are considering the usual edit operations (insertion, deletion,
substitution of a letter or a factor) that are transforming T into T ′. We are studying
their impact on bwt(T ) and are presenting an algorithm for converting bwt(T ) into
bwt(T ′). Moreover, we show that we can use this algorithm for changing the suffix
array of T into the suffix array of T ′.

The article is organized as follows: in section 2 we introduce the Burrows-Wheeler
Transform and all associated vocabulary and structures and state the formal problem
we are facing. In section 3, we present a detailed explanation of the proposed algorithm
when considering an insertion. We then extend the algorithm to handle the other
edit operations, exhibiting their respective complexities. In section 4, we expose our
results and compare them with the theoretical assumptions and finally in section 5
we conclude and draw perspectives.

2 Preliminaries

Let the text T = T [0 . . n] be a word of length n + 1 over a finite ordered alphabet
Σ of size σ. Mimicking the suffix tree and suffix array structures, we are considering
here that the rightmost letter of T is a sentinel letter $. This letter has been added
to the alphabet Σ and is smaller than any other letter of Σ.
A factor starting at position i and ending at position j is denoted by T [i . . j] and a
single letter is denoted by T [i] (or Ti to facilitate the reading). We add that when
i > j, T [i . . j] is the empty word. The cyclic shift of order i of the text T is T [i] =
T [i . . n]T [0 . . i− 1] for a given 0 ≤ i ≤ n.

Remark 1. Ti = T [(i+1) mod |T |][n] that will be simply denoted by T
[(i+1) mod |T |]
n there-

after.

The Burrows-Wheeler Transform of T , denoted bwt(T ), is the text of length n+1
corresponding to the last column L of the conceptual matrix whose rows are the
lexicographically sorted T [i] (see Fig. 1b).Note that F , the first column of this matrix,
is sorted, so can be trivially deduced from L, and that in Fig. 1c, π is the fitting sort
function.
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Figure 1. bwt(GTCT$) = L =TT$CG
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Remark 2. We can observe that π corresponds to the suffix array of T , SA confirming
the adjacency between L (letters) and SA (integers). Moreover, we simply have L[i] =
T [(SA[i]− 1) mod |T |], meaning we can deduce L from SA.

Combining Remarks 1 and 2, one can easily recover the original word T when

considering both columns L and π. We know that: T0=T
[1]
4 , T1=T

[2]
4 , T2=T

[3]
4 , T3=T

[4]
4

and T4=T
[0]
4 . The orders of the cyclic shifts are (1, 2, 3, 4, 0) in the π(i)-column, that

is (4, 1, 3, 0, 2) in the i-column and finally (G, T, C, T, $) in the L-column. We obtain
T=GTCT$.
Similarly, a right-to-left reconstruction of T will use sequence (0, 4, 3, 2, 1), that is
(2, 0, 3, 1, 4) in the i-column and finally ($, T, C, T, G) in the L-column. Reading this
sequence from right to left, we obtain T=GTCT$.

We clearly know how to progress in the π(i)-column, if we consider a value j in this
column, its predecessor is (j−1) mod 5. Starting with j = 0, we obtain the sequence
(0, 4, 3, 2, 1). We have now to study how to progress in the i-column. Considering a
value j in this column, the corresponding value in π(i)-column is obviously π(j). Its
predecessor in π(i)-column is (π(j)−1) mod 5) and finally the associated value back
in the i-column is π−1((π(j)− 1) mod 5).

i π(i) (π(i)− 1) mod 5 π−1((π(i)− 1) mod 5)
0 4 3 3
1 2 1 4
2 0 4 0
3 3 2 1
4 1 0 2

Using this formula, we obtain a permutation 0→3, 3→1, 1→4, 4→2, 2→0. We have
to start with i such that π(i) =0, that is i = 2, corresponding to (2, 0, 3, 1, 4) in the
i-column and subsequently ($, T, C, T, G) in the L-column. Reading this sequence
from right to left, we obtain T=GTCT$.

This function is of crucial importance, since it creates a link between two consec-
utive elements of L or more precisely between an element of L and its equivalent in
F , as described in Fig. 2. It has been shown [8] that this function, which creates a
table LF of size n + 1, can be computed using only L and the functions rankc(U, i)
that return the number of c in U [0 . . i].

i F L LF

0 $ T 3

1 C T 4

2 G $ 0

3 T C 1

4 T G 2

T = G
0

T
1

C
2

T
3

$
4

The second T in L (rankT(L, 1)=2) is linked to the second T in F

(rankT(F, 4)=2). This specific T occurs at position 1 in the text.
LF [1]=4 so L[1]=T is immediately preceded by L[LF [1]]=L[4]=G.

Figure 2. LF : Establishing a relation between L and F

Remark 3. Without the added sentinel letter $, LF can not be necessarily determined
from bwt(T ), e.g. T=AAA. It is clear that F and L would be both equal to AAA and
that rankA(L, i) = rankA(F, i) for all 0 ≤ i < 3, annihilating all possible relation
between consecutive elements of L.

To cut a long story short, LF provides a convenient way of navigating between
cyclic shifts of order i and i− 1 and will be intensively used in this article.
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We already explained that L is conceptually very close to SA, with a simple forward
transform from the former to the latter. It follows that most of the algorithms con-
structing L are using the existing O(n)-time (theoretical) algorithms that build SA

[19] and are applying the forward transform afterwards. Storing SA is still the main
technological bottleneck, as it requires Ω(n log n) bits while L and T only require
O(n log σ) bits. Such a requirement prevents large texts to be encoded, even if a re-
cent promising result [15] authorizes large texts to be processed by computing the
suffix array, a block at a time.

Nevertheless, L is a text that accepts no direct modification: a simple transfor-
mation of T into T ′ traditionally leads to the computation of its Burrows-Wheeler
Transform, L′, from scratch. Our goal is to study how L is affected when standard
edit operations (insertion, deletion or substitution of a block of letters) are applied
to T . Based on these observations, we are presenting an algorithm for transforming
L into L′ with only a very limited extra space and prove its correctness.

3 A Four-stage Algorithm for Updating L

We start by conducting a complete study on how an edit operation, transforming
T into T ′, is impacting L (either directly or implicitly). To illustrate this study, we
are considering the simple case consisting of the insertion of a single letter. Based
on this study, we propose a four-stage algorithm for transforming L into L′. We are
conducting a parallel study for F , which is required for the construction of L′. In
order to do so, we are maintaining a two-column matrix gathering F and L. Each
row contains the F and L values corresponding to a given cyclic shift (as described
in Fig. 2). At the end of the process, L is equal to bwt(T ′). Finally, we extend our
approach to the insertion of a factor, and explain how we can consider substitutions
and deletions.

In order to study the impact the insertion of a single letter has, we have first to
recall that L′ strongly depends on the ranking of all cyclic shifts of T ′. We thus have
to study how the insertion of a letter is modifying the cyclic shifts. Assume we are
inserting a letter c at position i in T . Depending on the cyclic shift we are considering,
we can formalize these four cases, remembering that Tn=$, by:

T ′[j] =



















T [j − 1 . . n− 1] $ T [0 . . i− 1] c T [i . . j − 2] if i + 1 < j ≤ n + 1 (Ia)

T [i . . n− 1] $ T [0 . . i− 1] c if j = i + 1 (Ib)

c T [i . . n− 1] $ T [0 . . i− 1] if j = i (IIa)

T [j . . i− 1]c T [i . . n− 1] $ T [0 . . j − 1] if 0 ≤ j < i (IIb)

(II) $ (I) c appears: (I) right to $, (II) left to $.
ւ ց ւ ց That means:

(IIa) (IIb) $ (Ia) (Ib) c appears: (Ia) between $ and L, (Ib) in L.
F L c appears: (IIa) in F , (IIb) between F and $.

Figure 3. All possible locations of c in T ′[j] after the insertion

3.1 Cyclic Shifts of Order j > i (I)

In this section, we are considering all cyclic shifts associated with positions in T

that are strictly greater than i. We show that the two stages (Ia) and (Ib) are not
modifying the respective ranking of the corresponding cyclic shifts.
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From Fig. 3 (Ia), T ′[j+1] = T [j . . n − 1]$T [0 . . i − 1]cT [i . . j − 1], ∀j ≥ i meaning
that T ′[j+1] and T [j] are sharing a common prefix T [j . . n− 1]$T [0 . . i− 1].

Lemma 4. Inserting a letter c at position i in T has no effect on the respective

ranking of cylic shifts whose orders are strictly greater than i. That is, for all j ≥ i

and j′ ≥ i, we have T [j] < T [j′] ⇐ : T ′[j+1] < T ′[j′+1].

Proof. In order to prove this lemma, we have to prove that the relative lexicographical
rank of two cyclic shifts, of orders strictly greater than i is the same before and after
the insertion.

Assume without loss of generality that j > j′ and T [j] < T [j′].
We know that for every k < |T |, T [j][0 . . k] ≤ T [j′][0 . . k]. The prefix of T [j] ending
before the sentinel letter $ is of length n− j < |T |, and therefore T [j][0 . . n− j− 1] ≤
T [j′][0 . . n − j − 1]. That is, T [j . . n − 1] ≤ T [j′ . . j′ + n − j − 1] (grey rectangles
below). Moreover $, the smallest letter of Σ, occurs only once in T . The fact that
T [j + n − j] is equal to $ induces T [j′ + n − j] 6=$, and is therefore strictly greater
than $. It follows that T [j][0 . . n− j] < T [j′][0 . . n− j].

T
[j]

$

j n − 1 0 j−1

$

T
[j′]

j′ n−1 0 j′ −1

insertion of c

insertion of c

$

T
′[j+1]

c

j + 1 n 0 i j

$

T
′[j′+1]

c

j′ +1 n 0 i j′

Since T ′[j + 1 . . n]$ = T [j . . n− 1]$ and T ′[j′ + 1 . . n + j′− j + 1] = T [j′ . . n + j′− j],
we have T ′[j +1 . . n]$ < T ′[j′ +1 . . n+ j′− j +1]. So T ′[j +1 . . n]$u < T ′[j′ +1 . . n+
j′ − j + 1]v, for all texts u, v over Σ. Finally, T [j] < T [j′]:T ′[j+1] < T ′[j′+1].

The proof of T ′[j+1] < T ′[j′+1]:T [j] < T [j′] is done in a similar way.

Remark 5. This lemma can be generalized to the insertion of a factor of length k by
considering T ′[j+k] < T ′[j′+k] instead of T ′[j+1] < T ′[j′+1].

Cyclic Shifts of Order j > i + 1: (Ia) c between $ and L It follows, from
Lemma 4, that the ranking of all cyclic shifts T ′[j+1] is identical to the ranking of all
cyclic shifts T [j]. In the rows corresponding to T ′[j], F and L are unchanged.

Cyclic Shift of Order i + 1: (Ib) c in L → Modification of L The respective
ranking of this cyclic shift with respect to the cyclic shifts of greater order is preserved.
Since c is inserted at position i, it follows that T ′[i+1] = T [i]c. These two cyclic shifts
are sharing a common prefix T [i]. In the row corresponding to T ′[i+1], F is unchanged
while L, which was equal to Ti−1, is now equal to c.
We find the position of T ′[i+1] by using a subsampling of π (see [9,16]) and computing
k such that π(k)=i.

Insertion of G at position i=2 in T

T=C
0

T
1

C
2

T
3

G
4

C
5

$
6

→ T ′=C
0

T
1

G

2

C
3

T
4

G
5

C
6

$
7

(Ia): no modification.

(Ib): T [i] is at position k=3 (π(3)=2), L[3]←G.

After stage (Ib), we have: one G in F and two Gs in L, two

Ts in F and one T in L.

π F L F L

6 $ C $ C
5 C G C G
0 C $ C $

i= 2 C T
(Ib)
−→ C G

4 G T G T
1 T C T C
3 T C T C
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3.2 Cyclic Shifts of Order j ≤ i

Cyclic Shift of Order i: (IIa) c in F → Insertion of a new row After
considering the cyclic shift T ′[i+1] that ends with the added letter c, we now have to
consider the brand new cyclic shift that starts with the added c, that is T ′[i] = cT [i] =
cT [i . . n − 1]$T [0 . . i − 1] which ends with Ti−1. Since T ′[i+1] is located at position
k, T ′[i] has to be inserted in the table at position LF [k] (derived from the function
rankc(L, k)).

Insertion of G at position i=2 in T

T=C
0

T
1

C
2

T
3

G
4

C
5

$
6

→ T ′=C
0

T
1

G

2

C
3

T
4

G
5

C
6

$
7

(IIa): T ′[i] is inserted in the table at position LF [k].

For this inserted row F=c=G and L=Ti−1=T.

T ′[i+1] finishes with a G which is the second G in L.

T ′[i] begins with this G which has to be the second G in F .

After stage (IIa), we have: two Gs in F and two Gs in L, two Ts in

F and two Ts in L.

F L F L

$ C $ C
C G C G
C $ C $

C G
(IIa)
−→ C G

G T G T
T C G T

T C T C
T C

Cyclic Shifts of Order j < i: (IIb) c between F and $ → Reordering So
far, the L-value of one row has been updated (Ib) and one new row has been inserted
(IIa). However, cyclic shifts T ′[j], for any j < i, may have a different lexicographical
rank than T [j] (e.g. AAG$ < AG$A but ATAG$ > AG$AT). Consequently, some
rows corresponding to those cyclic shifts may be moved.

To know which rows have to move, we compare the position of T [j] with the
computed position of T ′[j], from j = i − 1 downto 0, until these two positions are
equal. The position of T [j] is obtained from T [j+1] and the LF -table we updated while
considering T [j+1] (UpdateLF in the algorithm). The position of T ′[j] is obtained
from T ′[j+1] and the current LF -table.
When these two positions are different, the row corresponding to T [j] is moved to the
computed position of T ′[j] (MoveRow in the algorithm).

We give the pseudocode of the reordering step. The function index returns the
position of a cyclic shift in the matrix.

Reorder(L, i)

1 j ← index(T [i−1]) ⊲ Gives the position of T [i−1]

2 j′ ← LF [index(T ′[i])] ⊲ Gives the computed position of T ′[i−1]

3 while j 6= j′ do

4 new j← LF [j]
5 MoveRow(j, j′)
6 UpdateLF(j′, new j)
7 j ← new j

8 j′ ← LF [j′]

We now prove that the algorithm Reorder is correct: it ends as soon as all the
cyclic shifts of T ′ are sorted. In the following lemma, we denote by C a succinct
representation of F . Since the letters of the text are lexicographically sorted in F ,
we only need to store the number of times each letter appears in the text. Thus, C[c]
is defined as the number of letters in the text strictly lower than c, e.g. when F =
$AAACCGGT, C[$] = 0 and C[G] = 6.

Lemma 6. ∀j < i, ∀j′ > j, T ′[j] < T ′[j′] ⇐ : index(T ′[j]) < index(T ′[j′]), after the

iteration considering T [j], in Reorder.
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Proof. We prove the lemma recursively for any j ≤ i + 1.
From the previous lemma, ∀j′ ≥ i + 1 we have T ′[i+1] < T ′[j′] ⇐ : T [i] < T [j′−1].

Obviously, the property we want to prove is true for any j, on the text T and the
original BWT. Thus T ′[i+1] < T ′[j′] ⇐ : index(T [i]) < index(T [j′−1]). Neither T ′[i+1]

nor T ′[j′] have been moved in the algorithm. Thus, index(T ′[i+1]) < index(T ′[j′]) ⇐
: index(T [i]) < index(T [j′−1]) ⇐ : T ′[i+1] < T ′[j′].

We have shown that the lemma is true for j = i+1, now let us prove it recursively
for j − 1.

By definition, T
′[j−1]
0 = T

′[j]
n+1, let r = rank

T
′[j]
n+1

(L, index(T ′[j])). The index of T ′[j−1] is

computed using LF with the following formula:

index(T ′[j−1]) = C[T
′[j−1]
0 ] + r − 1. We distinguish two different cases:

– if the first letter of T ′[j−1] is different from the first one of T ′[j′], then C[T
′[j−1]
0 ] 6=

C[T
′[j′]
0 ]. Without loss of generality, consider T

′[j−1]
0 < T

′[j′]
0 . By definition, r ≤

C[T
′[j′]
0 ]−C[T

′[j−1]
0 ]. Thus C[T

′[j−1]
0 ]+r−1 ≤ C[T

′[j′]
0 ]−1. However, the rank com-

puted for the index of T ′[j′] is strictly positive. Finally T
′[j−1]
0 < T

′[j′]
0 :index(T ′[j−1]) <

index(T ′[j′]).
– otherwise, both letters are equal. Then, we can write T ′[j−1] < T ′[j′] ⇐ : T ′[j−1][1 . . n+

1] < T ′[j′][1 . . n + 1] ⇐ : T ′[j−1][1 . . n + 1]T
′[j−1]
0 < T ′[j′][1 . . n + 1]T

′[j′]
0 ⇐ : T ′[j] <

T ′[j′+1]. We know that the lemma is true for j, thus we have T ′[j] < T ′[j′+1] ⇐
: index(T ′[j]) < index(T ′[j′+1]).

Let k = index(T ′[j]), k′ = index(T ′[j′+1]), r′ = rank
T

′[j′+1]
n−1

(L, k′) and c = T
′[j−1]
0 =

T
′[j′]
0 .

index(T ′[j−1]) = C[c] + rankc(L, k)− 1
index(T ′[j′]) = C[c] + rankc(L, k′)− 1

We know that T
′[j]
n+1 = Lk = c, T

′[j′+1]
n+1 = Lk′ = c and k′ > k. So rankc(L, k′) >

rankc(L, k) and eventually index(T ′[j−1]) < index(T ′[j′]).
Finally, T ′[j−1] < T ′[j′]:index(T ′[j−1]) < index(T ′[j′]). We can prove T ′[j−1] <

T ′[j′] ⇐= index(T ′[j−1]) < index(T ′[j′]) in a similar way.

Thus, if the property is true for j, it is also true for j − 1. Finally, when the
algorithm finishes (with j = 0), we have ∀j, j′, T ′[j] < T ′[j′] ⇐ : index(T ′[j]) <

index(T ′[j′]). In other words, at the end of the algorithm, the cyclic shifts are ordered.

We now have to prove that stopping the algorithm when the computed position
and the initial one are identical is sufficient, all cyclic shifts being ordered.

Lemma 7. index(T [k]) = index(T ′[k]):index(T [j]) = index(T ′[j]), for j < k < i.

Proof. Given index(T [k]),

index(T [k−1]) = C[T
[k]
n ] + rank

T
[k]
n

(L, index(T [k]))

= C[T
′[k]
n+1] + rank

T
′[k]
n+1

(L, index(T ′[k])) = index(T ′[k−1])

Therefore, index(T [k]) = index(T ′[k]):index(T [k−1]) = index(T ′[k−1]).
By induction, we prove the property for each j < k.

Consider a cyclic shift T [j] and k the number of times T
[j]
n appears in L from the

beginning to the position of T [j]. The LF -value for the cyclic shift T [j] is the position

corresponding to T [j−1] in L which is the k-th cyclic shift beginning with a T
[j]
n .
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At the position of T ′[i−2], we have the first $ in L, and at the position of T [i−3], we
have the first $ in F . Therefore, we do not need to move a cyclic shift anymore. In
fact, we reach the leftmost position of the text, preventing us from considering further
move.
Finally, L = bwt(T ′).

3.3 Insertion of a Factor rather than a Single Letter

We can generalize our approach to handle the insertion of a factor S at position i in
T . Consider T ′ = T [0 . . i− 1]S[0 . . m− 1]T [i . . n] with m > 1.
The four stages can be extended as follows:

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.
(Ib) Cyclic shift T ′[i+m]: modification L=Sm−1 instead of Ti−1.
(IIa) Cyclic shifts T ′[j] from j=i + m− 1 downto i + 1:

insertion F=Sj−i and L=Sj−i−1.
T ′[i]: insertion F=S0 and L=Ti−1.

(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm on page 18.

However a problem arises: we delete Ti−1 from L during stage (Ib), and reintroduce it
after all the other insertions at the end of stage (IIa). During this stage, all rankTi−1

values that have been computed before the final insertion may be wrong. These values
have to be computed only if a Sj, j > 0, is such that Sj = Ti−1.

A simple solution consists in not relying on rankTi−1
and, depending on the loca-

tion we are considering and the location of the original Ti−1, adding 1 to the obtained
value.

More precisely, if we are computing LF(ℓ) such that L[ℓ] = Ti−1 and ℓ > π−1(i),
then we must add one to the result of LF(i) (see Fig. 4).

3.4 Deletion of a Factor

Consider a deletion of m consecutive letters in T , starting at position i. The resulting
text is T ′ = T [0 . . i− 1]T [i + m . . n]. The four stages can be modified as follows:

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.
(Ib) Cyclic shift T [i+m]: modification L=Ti−1 instead of Ti+m−1.
(IIa) Cyclic shifts T [j] from j=i + m− 1 downto i:

deletion of the corresponding row.
We still have to pay attention to rankTi−1

: during the deletion of cyclic shifts,
Ti−1 appears twice in L. Therefore, we may have to subtract one from the value
returned by rankTi−1

.
(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm page 18.
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π F L F L i

6 $ C $ C 0
5 C G C G 1
0 C $ C $ 2
2 C T C T 3
4 G T G T 4

1 T C
(Ib)
−→ T G 5

3 T C T C 6

Assume we are having an insertion at position 1 which
causes such a modification in L.
During step (Ib) a disequilibrium is introduced between
L and F (two G in L, one G in F and two C in L, three
C in F ).

Computing LF at position 6 gives position 2 (ie. the position of the second C in F ). However it
should be position 3: π(6) = 3 and π(3) = π(6)− 1 = 2. To correct this, we have to remember, until
we insert back the original C, that at position p = 5 we had a C.
Using the solution we proposed, since L[6] = C and 6 > π−1(1) = 5, we must add one to the original
LFvalue obtained and finally the value is correct (that is 3).

Figure 4. Example of the problem induced by the insertion of a factor.

3.5 Substitution of a Factor

Consider the substitution of T [i . . i + m − 1] by S[0 . . m − 1]: that is T ′=T [0 . . i −
1]S[0 . . m− 1]T [i + m . . n].

(Ia) Cyclic shifts T ′[j] with j > i + m: unchanged.

(Ib) Cyclic shift T ′[i+m]: modification L=Sm−1 instead of Ti+m−1.

(IIa) Cyclic shifts T ′[j] from j=i + m− 1 downto i + 1:
substitution F=Sj−i and L=Sj−i−1

move this row to the appropriate position.
T ′[i]: modification F=S0.

(IIb) Cyclic shifts T ′[j] with j < i: as presented in algorithm on page 18.

3.6 Complexity

After the three first stages, a modification and an insertion have modified the two
columns. The fourth stage, that consists in finding the new ranking of all extended
cyclic shifts of order less than i, is the greediest part of the algorithm. The worst-case
scenario occurs when the new ranking is obtained after each cyclic shift has been
considered (e.g. Am$ → AmC$). It follows that the worst-time complexity depends
on the O(n) iterations presented in the algorithm on page 18.

Since we are dealing with insertions and deletions, we cannot use constant-time
static structures in the functions MoveRow and UpdateLF. Very recent dynamic
data structures can handle insertions and deletions while allowing to perform rankc,
insertions and deletions in logarithmic time [16,13], leading to an overall practical
complexity bounded by O(n log n log σ).

These structures [16,13] can store any text in nH0 + o(n log σ) bits. However
Mäkinen and Navarro proved [16] that storing the BWT with such structures needs
only nHk + o(n log σ) bits, where Hk corresponds to the k-th order entropy of the
text. C is represented in little space using O(σ log n) bits. Our algorithm by itself
needs only constant space consisting in few variables which store values that have
been replaced.



22 Proceedings of the Prague Stringology Conference 2008

4 Experiments and Results

In the previous section, we presented a four-stage algorithm for updating the Burrows-
Wheeler Transform of a modified text. We conducted experiments on real-life texts
as follows: we downloaded four texts from the Pizza&Chili corpus1 on March, 15th
2008. We added two other type of texts: a random text drawn on an alphabet of size
100 and a Fibonacci word. These texts are of various types (length, content, entropy
and alphabet size). For each category, we extracted randomly 10 texts of length 100,
250 and 500 KB, and 1 MB. For each text T , the letter at a random position i was
replaced by another letter c drawn from T , resulting in T ′. Because of the closeness
between the Burrows-Wheeler Transform and the suffix array, we generated, for each
sample, the two suffix arrays, one for T and one for T ′. We measured the number of
differences between these two suffix arrays and repeated this operation 100 times to
compute an average value. We used substitution, instead of insertion, in these tests
because the number of modifications is much easier to compute: with an insertion at
position i, the suffix beginning at position j > i in T begins at position j + 1 in T ′.
Thus, all values greater than i in the original suffix array are incremented by one in
the modified suffix array. Note that the impact an insertion or a deletion has on the
lexicographical order of suffixes (or cyclic shifts) is not different from the impact of a
substitution.

The results are presented in Table 1.

Ratio
Entropy H0 100 KB 250 KB 500 KB 1 MB 1 MB:100 KB

DNA 1.982 10.12 9.52 10.26 10.91 1.08
English 4.53 7.75 7.94 9.03 10.31 1.33
Fibo 0.96 25,414.13 63,527.09 119,780.37 261,910.49 10.31
Random 6.60 3.89 4.03 4.21 4.36 1.12
Source 5.54 92.88 55.76 118.54 72.22 0.77
XML 5.23 26.43 28.84 34.8 44.08 1.67

Table 1. Number of modifications for a random substitution of a single letter.

These results are encouraging since multiplying the size of the text by 10 does
not increase by the same factor the number of differences (apart from Fibonacci).
Moreover, the number of modifications is closer to log(n) rather than n. We would
like to conduct an in-depth study of these experiments to examine the impact of the
size of the alphabet, the entropy and other possible factors that are impacting the
update.

Using dynamic structures implemented by Gerlach [11], we compare the time
needed for running our update algorithm to a total reconstruction of the Burrows-
Wheeler Transform (with both static and dynamic structures). The computation of
the Burrows-Wheeler Transform using static structures is due to Maniscalco and
Puglisi [18] and is one of the most time-efficient.

Due to technical restrictions of the implementation of the dynamic structures, we
run the tests on different kinds of texts: DNA, random text and Fibonacci word. We
are considering two types of updates with our algorithm: factor insertion (of length
500) and 500 insertions of a single letter.

1 http://pizzachili.dcc.uchile.cl/texts.html
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The tests are conducted on a machine under Linux 2.6.24 and the programs were
compiled using gcc 4.2. The results are presented in Fig. 5. Note that in the graphs,
y-axis uses a logarithmic scale.

Figure 5. Time for updating and reconstructing the Burrows-Wheeler Transform.
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We note that the insertion of a factor outperforms Maniscalco and Puglisi’s very
efficient algorithm. For the Fibonacci word, as soon as the text is long enough, our
algorithm is still more efficient for the insertion of a factor although the number of
iterations in step (IIb) is very high (see Table 1). However, due to the very particular
structure of a Fibonacci word, one insertion of a single letter is as costly as the
insertion of a 500-letter block, which explains the upper curve for Fibonacci. Note
also that the reconstruction using dynamic structures is about 10 times slower than
the static reconstruction, and thus our implementation may suffer from the slowdown
induced by the dynamic structures.

5 Conclusions and Perspectives

We proposed an algorithm of theoretical worst-case time complexity O(|T |) that mod-
ifies the Burrows-Wheeler Transform of a text T whenever standard edit operations
are modifying T . The correctness of this algorithm has been proved and its efficiency
in practice has been demonstrated: we selected various texts, edited randomly these
texts and, with respect to the results, we confirmed that we are far from the worst-
case bound. Yet, determining precisely the average-case bound of our algorithm still
needs some extra work.

Moreover, this algorithm can be adapted for updating a suffix array. From a suffix
array, we deduce the corresponding L, update it and retrieve the updated suffix array.
Here is a pseudocode for retrieving the suffix array SA from L:

RetrieveSA(L)

1 j ← index(L, T [n])
2 i← 0
3 repeat SA[j]← i

4 j ← LF[j]
5 i← (i− 1) mod (n + 1)
6 until i = 0

From the practical viewpoint, the dynamic structures that need to be maintained
during the conversions are slowing down the process, losing the fight against “from
scratch” SA constructions. Nevertheless, as far as we know, this is the first method
for updating a suffix array rather than reconstructing it from scratch.

Our plan is now to adapt our strategy for updating directly a suffix array without
using intermediate Burrows-Wheeler Transforms.

The algorithm we developed is also of interest for compressed indexes. Structures
that are based on the Burrows-Wheeler Transform, such as FM-index, can be main-
tained in a way that is very similar to the one we developed for the transform, paving
the way for the first fully-dynamic compressed full-text index.
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