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Abstract. Arithmetic encoders enable the best compressors both for bi-level images
(JBIG) and for grey scale and color images (CALIC), but they are often ruled out
because too complex. The compression gap between simpler techniques and state of
the art compressors can be significant. Storer extended dictionary text compression to
bi-level images to avoid arithmetic encoders (BLOCK MATCHING), achieving 70 per-
cent of the compression of JBIG1 on the CCITT bi-level image test set. We were able to
partition an image into up to a hundred areas and to apply the BLOCK MATCHING
heuristic independently to each area with no loss of compression effectiveness. On the
other hand, we presented in [5] a simple lossless compression heuristic for gray scale and
color images (PALIC), which provides a highly parallelizable compressor and decom-
pressor. In fact, it can be applied independently to each block of 8x8 pixels, achieving
80 percent of the compression obtained with LOCO-I (JPEG-LS), the current lossless
standard in low-complexity applications. We experimented the BLOCK MATCHING
and PALIC heuristics with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors
machine in Italy (avogadro.cilea.it) on a test set of large topographic bi-level images
and color images in RGB format. We obtained the expected speed-up of the compres-
sion and decompression times, achieving parallel running times about twenty-five times
faster than the sequential ones.
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lelization

1 Introduction

Lossless image compression is often realized by extending string compression meth-
ods to two-dimensional data. Standard lossless image compression methods extend
model driven text compression [1], consisting of two distinct and independent phases:
modeling [16] and coding [15]. In the coding phase, arithmetic encoders enable the
best model driven compressors both for bi-level images (JBIG [10]) and for grey scale
and color images (CALIC [20]), but they are often ruled out because too complex.
The compression gap between simpler techniques and state of the art compressors
can be significant.

Storer [18] extended dictionary text compression [17] to bi-level images to avoid
arithmetic encoders by means of a square greedy matching technique (BLOCK
MATCHING), achieving 70 percent of the compression of JBIG1 on the CCITT bi-
level image test set. The technique is a two-dimensional extension of LZ1 compression
[12] and is suitable for high speed applications by means of a simple hashing scheme.
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Rectangle matching improves the compression performance, but it is slower since it
requires O(M log M) time for a single match, where M is the size of the match [19].
Therefore, the sequential time to compress an image of size n by rectangle matching
is Ω(n log M). However, rectangle matching is more suitable for polylogarithmic time
work-optimal parallel implementations on the PRAM EREW [3], [6] and the mesh of
trees [2], [7]. Polylogarithmic time parallel implementations were also presented for
decompression on both the PRAM EREW and the mesh of trees in [2].

Parallel models have two types of complexity, the interprocessor communication
and the input-output mechanism. While the input/output issue is inherent to any
sublinear algorithm and has standard solutions, the communication cost of the com-
putational phase after the distribution of the data among the processors and before
the output of the final result is obviously algorithm-dependent. So, we need to limit
the interprocessor communication and involve more local computation. The simplest
model for this phase is, of course, a simple array of processors with no interconnec-
tions and, therefore, no communication cost. The parallel implementations mentioned
above require more sophisticated architectures than a simple array of processors to
be executed on a distributed memory system.

Dealing with square matches, we were able to partition an image into up to a
hundred areas and to apply the BLOCK MATCHING heuristic independently to
each area with no loss of compression effectiveness. With rectangles we cannot ob-
tain the same performance since the width and the length are shortened while the
corresponding pointers are more space consuming than with squares. So we would
rather implement the square BLOCK MATCHING heuristic on an array of size up
to a hundred processors.

The extension of Storer’s method to grey scale and color images was left as an open
problem, but it seems not feasible since the high cardinality of the alphabet causes
an unpractical exponential blow-up of the hash table used in the implementation.

As far as the model driven method for grey scale and color image compression is
concerned, the modeling phase consists of three components: the determination of the
context of the next pixel, the prediction of the next pixel and a probabilistic model
for the prediction residual, which is the value difference between the actual pixel and
the predicted one. In the coding phase, the prediction residuals are encoded. A first
step toward a good low complexity compression scheme was FELICS (Fast Efficient
Lossless Image Compression System) [11], which involves Golomb-Rice codes [9], [14]
rather than the arithmetic ones. With the same complexity level for compression (but
with a 10 percent slower decompressor) LOCO-I (Low Complexity Lossless Compres-
sion for Images) [13] attains significantly better compression than FELICS, only a few
percentage points of CALIC (Context-Based Adaptive Lossless Image Compression).
As explained in [5], also polylogarithmic time parallel implementations of FELICS
and LOCO-I would require more sophisticated architectures than a simple array of
processors.

The use of prediction residuals for grey scale and color image compression re-
lies on the fact that most of the times there are minimal variations of color in the
neighborood of one pixel. Therefore, differently than for bi-level images we should be
able to implement an extremely local procedure which is able to achieve a satisfying
degree of compression by working independently on different very small blocks. In
[5], we showed such procedure. We presented the heuristic for grey scale images, but
it could also be applied to color images by working on the different components [4].
We call such procedure PALIC (Parallelizable Lossless Image Compression). In fact,
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the main advantage of PALIC is that it provides a highly parallelizable compressor
and decompressor since it can be applied independently to each block of 8x8 pix-
els, achieving 80 percent of the compression obtained with LOCO-I (JPEG-LS), the
current lossless standard in low-complexity applications.

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 255 254 254 110 110 110

255 255 254 128 127 128 129 130

255 253 253 128 128 129 130 131

254 253 252 129 129 130 131 132

253 252 251 130 130 130 254 255

Figure 1. An 8x8 pixel block of a grey scale image.

The compressed form of each block employs a header and a fixed length code. Two
different techniques might be applied to compress the block. One is the simple idea of
reducing the alphabet size by looking at the values occurring in the block. The other
one is to encode the difference between the pixel value and the smallest one in the
block. Observe that this second technique can be interpreted in terms of the model
driven method, where the block is the context, the smallest value is the prediction
and the fixed length code encodes the prediction residual. More precisely, since the
code is fixed length the method can be seen as a two-dimensional extension of differ-
ential coding [8]. Differential coding, often applied to multimedia data compression,
transmits the difference between a given signal sample and another sample.

In this paper, we experimented the square BLOCK MATCHING and PALIC
heuristics with up to 32 processors of a 256 Intel Xeon 3.06 GHz processors machine
in Italy (avogadro.cilea.it) on a test set of large topographic bi-level images and
color images in RGB format. We obtained the expected speed-up of the compression
and decompression times, achieving parallel running times about twenty-five times
faster than the sequential ones.

In section 2, we explain the heuristics. In section 3 we provide the experimental
results on the parallel machine. Conclusions are given in section 4.

2 BLOCK MATCHING and PALIC

Among the different ways of reading an image, we assume the square BLOCK
MATCHING heuristic scans an m x m′ image row by row (raster scan). A 64K
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table with one position for each possible 4x4 subarray is the only data structure
used. All-zero and all-one rectangles are handled differently. The encoding scheme is
to precede each item with a flag field indicating whether there is a monochromatic
square, a match or raw data. When there is a match, the 4x4 subarray in the current
position is hashed to yield a pointer to a copy. This pointer is used for the current
square greedy match and then replaced in the hash table by a pointer to the cur-
rent position. The procedure for computing the largest square match with left upper
corners in positions (i, j) and (k, h) takes O(M) time, where M is the size of the
match. Obviously, this procedure can be used for computing the largest monochro-
matic square in a given position (i, j) as well. If the 4 x 4 subarray in position (i, j)
is monochromatic, then we compute the largest monochromatic square in that po-
sition. Otherwise, we compute the largest square match in the position provided by
the hash table and update the table with the current position. If the subarray is not
hashed to a pointer, then it is left uncompressed and added to the hash table with
its current position. The positions covered by matches are skipped in the linear scan
of the image. Therefore, the sequential time to compress an image of size n by square
matching is O(n). We want to point out that besides the proper matches we use to
call a match every rectangle of the parsing of the image produced by the heuristic. We
also call a pointer the encoding of every match. As mentioned above, the encoding
scheme for the pointers uses a flag field indicating whether there is a monochromatic
rectangle (0 for the white ones and 10 for the black ones), a proper match (110) or
raw data (111).

As mentioned in the introduction, we were able to partition an image into up
to a hundred areas and to apply the BLOCK MATCHING heuristic independently
to each area with no loss of compression effectiveness on both the CCITT bi-level
image test set and the bi-level version of the set of five 4096 x 4096 pixels images in
Figures 2–6.

Moreover, in order to implement decompression on an array of processors, we
want to indicate the end of the encoding of a specific area. Therefore, we change the
encoding scheme by associating the flag field 1110 to the raw match so that we can
indicate with 1111 the end of the sequence of pointers corresponding to a given area.

We explain now how to apply the PALIC heuristic independently to blocks of 8x8
pixels of a grey scale image. We still assume to read the image with a raster scan
on each block. The heuristic applies at most three different ways of compressing the
block and chooses the best one. The first one is the following.

The smallest pixel value is computed on the block. The header consists of three
fields of 1 bit, 3 bits and 8 bits, respectively. The first bit is set to 1 to indicate that
we compress a block of 64 pixels. This is because one of the three ways will partition
the block in four sub-blocks of 16 pixels and compress each of these smaller areas.
The 3-bits field stores the minimum number of bits required to encode in binary the
distance between the smallest pixel value and every other pixel value in the block. The
8-bits field stores the smallest pixel value. If the number of bits required to encode
the distance, say k, is at most 5, then a code of fixed length k is used to encode the
64 pixels, by giving the difference between the pixel value and the smallest one in the
block. To speed up the procedure, if k is less or equal to 2 the other ways are not
tried because we reach a satisfying compression ratio on the block. The second and
third ways are the following.

The second way is to detect all the different pixel values in the 8x8 block and to
create a reduced alphabet. Then, to encode each pixel in the block using a fixed length
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Figure 2. Image 1.

Figure 3. Image 2.

code for this alphabet. The employment of this technique is declared by setting the
1-bit field to 1 and the 3-bits field to 110. Then, an additional three bits field stores
the reduced alphabet size d with an adjusted binary code in the range 2 ≤ d ≤ 9.
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Figure 4. Image 3.

Figure 5. Image 4.

The last componenent of the header is the alphabet itself, a concatenation of d bytes.
Then, a code of fixed length ⌈log d⌉ bits is used to encode the 64 pixels.

The third way compresses the four 4x4 pixel sub-blocks. The 1-bit field is set to
0. Four fields follow the flag bit, one for each 4x4 block. The two previous techniques
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Figure 6. Image 5.

are applied to the blocks and the best one is chosen. If the first technique is applied
to a block, the corresponding field stores values from 0 to 7 rather than from 0 to 5
as for the 8x8 block. If such value is in between 0 and 6, the field stores three bits.
Otherwise, the three bits (111) are followed by three more. This is because 111 is used
to denote the application of the second way to the block as well, which is less frequent
to happen. In this case, the reduced alphabet size stored in these three additional
bits has range from 2 to 7, it is encoded with an adjusted binary code from 000 to
101 and the alphabet follows. 110 denotes the application of the first technique with
distances expressed in seven bits and 111 denotes that the block is not compressed.
After the four fields, the compressed forms of the blocks follow, which are similar
to the ones described for the 8x8 block. When the 8x8 block is not compressed, 111
follows the flag bit set to 1.

We now show how PALIC works on the example of Figure 1.

Since the difference between 110, the smallest pixel value, and 255 requires a code
with fixed length 8 and the number of different values in the 8x8 block is 12, the way
employed to compress the block is to work separately on the 4x4 sub-blocks. Each
block will be encoded with a raster scan (row by row). The upper left block has 254
as its smallest pixel value and 255 is the only other value. Therefore, after setting the
1-bit field to zero the corresponding field is set to 001. The compressed form after the
header is 1110111011101110. The reduced alphabet technique is more expensive since
the raw pixel values must be given. On the other hand, the upper right block needs the
reduced alphabet technique. In fact, one byte is required to express the difference be-
tween 110 and 254. Therefore, the corresponding field is set to 111000, which indicates
that the reduced alphabet size is 2, and the sequence of two bytes 0110111011111110
follows. The compressed form after the header is 1000100010001000. The lower left
block has 8 different values so we do not use the reduced alphabet technique since
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the alphabet size should be between 2 and 7. The smallest pixel value in the block is
128 and the largest difference is 127 with the pixel value 255. Since a code of fixed
length 7 is required, the corresponding field is 111110. The compressed form after
the header is (we introduce a space between pixel encodings in the text to make it
more readable): 1111111 1111111 1111110 0000000 1111111 1111101 1111101 0000000
1111110 1111101 1111100 0000001 1111101 1111100 1111011 0000010. Observe that
the compression of the block would have been the same if we had allowed the reduced
alphabet size to grow up to 8. However, experimentally we found more advantageous
to exclude this case in favor of the other technique. Our heuristic does not compress
the lower right block since it has 8 different values and the difference between pixel
values 127 and 255 requires 8 bits. Therefore, the corresponding field is 111111 and
the uncompressed block follows.

We experimented PALIC on the kodak image test set, which is an extension of the
standard jpeg image test set and reached 70 to 85 percent of LOCO-I compression
ratio (78 percent in average). We also experimented it on the set of five 4096 x 4096
pixels grey scale topographic images in Figure 2-6 and the compression effectiveness
was about 80 percent of LOCO-I compression effectiveness as for the kodak image set.
The heuristic can be trivially extended to RGB color images by working sequentially
on each of the three components of the block and the same compression effectiviness
results in comparison with LOCO-I were obtained for the RGB version of the five
images in Figures 2–6.

3 Experimental Results on a Parallel Machine

We show in Figures 7–8 the compression and decompression times of PALIC on the
RGB version of the five images in Figures 2–6 doubling up the number of processors
of the avogadro.cilea.it machine from 1 to 32. We executed the compression and
decompression on each image several times. The variances of both the compression
and decompression times were small and we report the greatest running times, con-
servatively. As it can be seen from the values on the tables, also the variance over the
test set is quite small. The decompression times are faster than the compression ones
and in both cases we obtain the expected speed-up, achieving parallel running times
about twenty-five times faster than the sequential ones.

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 227 117 57 34 17 9

2 243 120 69 33 16 10

3 235 118 72 35 17 9

4 236 131 71 34 16 9

5 232 113 67 30 16 11

Avg. 234.6 119.8 67.2 33.2 16.4 9.6

Figure 7. PALIC compression times (cs.).

The images of Figures 2–4 have the greatest parallel decompression times with 32
processors. On the other hand, the image of Figure 3 has the greatest sequential com-
pression and decompression times. The smallest compression time with 32 processors
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Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 128 65 32 18 11 6

2 133 66 35 21 10 6

3 130 66 44 21 13 6

4 129 91 36 20 10 5

5 123 95 46 17 10 5

Avg. 128.6 76.6 38.6 19.4 10.8 5.6

Figure 8. PALIC decompression times (cs.).

is given by the image of Figure 4, together with the images of Figure 2 and Figure 5.
Instead, the smallest decompression time with 32 processors is given by the images
of Figures 5–6. The image of Figure 6 also has the smallest sequential decompression
time and the greatest compression time with 32 processors.

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 76 39 19 11 6 3

2 81 40 23 11 5 3

3 78 39 24 12 6 3

4 79 44 24 11 5 3

5 77 38 22 10 5 4

Avg. 78.2 40 22.4 11 5.4 3.2

Figure 9. BLOCK MATCHING compression times (cs.).

Image 1 proc. 2 proc. 4 proc. 8 proc. 16 proc. 32 proc.

1 43 22 11 6 4 2

2 44 22 12 7 3 2

3 43 22 15 7 4 2

4 43 30 12 7 3 2

5 41 32 15 6 3 2

Avg. 42.8 25.6 13 6.6 3.4 2

Figure 10. BLOCK MATCHING decompression times (cs.).

We obtained similar results for the BLOCK MATCHING heuristic. In Figures 9–
10 we show the compression and decompression times of the square BLOCK MATCH-
ING heuristic on the bi-level version of the five images in Figures 2–6, doubling up the
number of processors of the avogadro.cilea.it machine from 1 to 32. This means
that when 2k processors are involved, for 1 ≤ k ≤ 5, the image is partitioned into 2k

areas and the compression heuristic is applied in parallel to each area, independently.
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As far as decompression is concerned, each of the 2k processors decodes the pointers
corresponding to a given area.

4 Conclusions

In this paper, we showed experimental results on the coding and decoding times of two
lossless image compression methods on a real parallel machine. By doubling up the
number of processors from 1 to 32, we obtained the expected speed-up on a test set of
large topographic bi-level images and color images in RGB format, achieving parallel
running times about twenty-five times faster than the sequential ones. The feasibility
of a highly parallelizable compression method for grey scale and color images relied on
the fact that most of the times there are minimal variations of color in the neighborood
of one pixel. Therefore, we were able to implement an extremely local procedure which
achieves a satisfying degree of compression by working independently on different very
small blocks. On the other hand, we designed a non-massive approach to bi-level image
compression which could be implemented on an array of processors of reasonable size,
achieving a satisfying degree of compression. Such goal was realized by making each
processor work on a single large block rather than on many very small blocks as when
the non-massive way is applied to grey scale or color images.
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