
The Virtual Suffix Tree: An Efficient Data

Structure for Suffix Trees and Suffix Arrays⋆

Jie Lin, Yue Jiang, and Don Adjeroh

Lane Department of Computer Science and Electrical Engineering
West Virginia University, Morgantown, WV 26506

jlin@mix.wvu.edu, yue@csee.wvu.edu, don@csee.wvu.edu

Abstract. We introduce the VST (virtual suffix tree), an efficient data structure for
suffix trees and suffix arrays. Starting from the suffix array, we construct the suffix tree,
from which we derive the virtual suffix tree. The VST provides the same functionality
as the suffix tree, including suffix links, but at a much smaller space requirement. It
has the same linear time construction even for large alphabets, Σ, requires O(n) space
to store (n is the string length), and allows searching for a pattern of length m to be
performed in O(m log |Σ|) time, the same time needed for a suffix tree. Given the VST,
we show an algorithm that computes all the suffix links in linear time, independent of
Σ. The VST requires less space than other recently proposed data structures for suffix
trees and suffix arrays, such as the enhanced suffix array [1], and the linearized suffix
tree [16]. On average, the space requirement (including that for suffix arrays and suffix
links) is 13.8n bytes for the regular VST, and 12.05n bytes in its compact form.

1 Introduction

The suffix tree is an important data structure used to represent the set of all suffixes of
a string. The suffix tree is efficient in both time and space, and has been used in a va-
riety of applications, such as pattern matching, sequence alignment, the identification
of repetitions in genome-scale biological sequences, and in data compression. Various
algorithms have been developed for efficient construction of suffix trees [28,22,27,8].
However, one major problem with the suffix tree is its practical space requirement.
The suffix array is a related data structure, which was originally introduced in [21]
as a space-efficient alternative to the suffix tree. The suffix array simply provides a
listing of all the suffixes of a given string in lexicographic order. The suffix array can
be used in most (though, not all) situations where a suffix tree can be used.

Although the theoretical space complexity is linear for both data structures, typi-
cally, for a given string T of length n, the suffix array requires about three to five times
less space than the suffix tree. The construction time for both algorithms is also O(n)
on average. For suffix arrays, construction algorithms that run in O(n log n) worst
case1 are relatively easy to develop, but O(n) worst case algorithms are much harder
to come by. Recent suffix sorting algorithms with worst-case linear time have been
reported in [13,18,17,3]. Gusfield [11] provides a comprehensive treatment of suffix
trees and its applications. Puglisi et al [26] provide a recent survey on suffix arrays.
Adjeroh et al (2008) provide an extensive discussion on the connection between the
Burrows-Wheeler transform [6] and suffix trees and suffix arrays.

For small alphabet sizes, the suffix tree and the suffix array have about the same
complexity in pattern matching. For pattern matching, the suffix array requires time

⋆ Partly supported by a DOE CAREER award.
1 All logarithms are to base 2, unless otherwise stated.

Jie Lin, Yue Jiang, Don Adjeroh: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees and Suffix Arrays, pp. 68–83.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 69

in O(m log n) to locate one occurrence of a pattern of length m in T . However,
with additional data structures, such as the lcp array, this time can be reduced to
O(m + log n). With the suffix tree, the same search can be performed in O(m) time.
The problem, however, is for sequences with large alphabets. Here, |Σ|, the alphabet
size is no longer negligible. Using the array representation of nodes in the suffix tree
will require O(n|Σ|) space for the suffix tree, and O(m) time for pattern matching.
For linear space, the linked list or binary search tree can be used, but the search time
becomes O(m|Σ|) or O(m log |Σ|) respectively.

The challenge therefore is to develop space-efficient data structures that can sup-
port pattern matching using the same time complexity as suffix trees, but at a practi-
cal space requirement that approaches that of the suffix array. Such a data structure
should also support the complete functionality of the suffix tree, such as support for
suffix links, as may be required in certain applications. Two recent data structures
that have tried to address this problem are the ESA – enhanced suffix array [1], and
the LST – linearized suffix tree [15,16]. Both methods are based on the notion of
lcp-intervals [14], constructed using the suffix array and the lcp array. Other related
data structures that have been proposed include the suffix cactus [12], suffix vectors
[23,25], compact suffix trees [20], the lazy suffix trees [9], level-compressed suffix trees
[4], compressed suffix trees [24], and compressed suffix arrays [10]. See also [2].

1.1 Main results

We introduce another data structure, the virtual suffix tree (VST), an efficient data
structure for suffix trees and suffix arrays. The VST does not use the lcp-intervals,
but rather exploits the inherent nature of the suffix tree topology. We state our main
results in the form of two theorems about the VST.

Theorem 1. Given a string T = T [1..n], with symbols from an alphabet Σ, and
the virtual suffix tree for T , we can count the number of occurrences of a pattern
P = P [1..m] in T in O(m log |Σ|) time, and locate all the ηocc occurrences of P in T
in O(m log |Σ|+ ηocc) time.

Theorem 2. Given a string T = T [1..n], with symbols from an alphabet Σ, the virtual
suffix tree, including the suffix link, can be constructed in O(n) time, and O(n) space,
independent of Σ.

Essentially, the VST provides the same functionality as the suffix tree, but at a
much smaller space requirement. It has the same linear time construction for large
|Σ|, requires O(n) space to store, and allows searching for a pattern of length m to be
performed in O(m log |Σ|) time, the same time needed for a suffix tree. To provide the
complete functionality of the suffix tree, we describe a simple linear time algorithm
that computes the suffix links based on the VST. Although the space needed for the
VST is linear (as in suffix tree implementations using linked lists or binary trees),
the practical space requirement is much smaller than that of a suffix tree. The VST
requires less space than other recently proposed data structures for suffix trees and
suffix arrays, such as the ESA [1], and the LST [16]. On average, the space requirement
(including that for suffix arrays and suffix links) is 13.8n bytes for the regular VST,
and 12.05n bytes in its compact form. This can be compared with the 20n bytes
needed by the LST or the ESA.

70 Proceedings of the Prague Stringology Conference 2008

1.2 Organization

The next section introduces the key notations and definitions used. In Section 3, we
introduce the basic data structure and discuss the properties of the VST. Section 4
presents an improved data structure, along with algorithms for its construction. A
complexity analysis on the construction and use of the VST is also presented in this
section. Section 5 shows how the suffix link can be constructed on the VST. The
paper is concluded in Section 6.

2 Basic notations and definitions

Let T = T [1..n] be the input string of length n, over an alphabet Σ. Let T = αβγ, for
some strings α, β, and γ (α and γ could be empty). The string β is called a substring
of T , α is called a prefix of T , while γ is called a suffix of T . The prefix α is called
a proper prefix of T if α 6= T . Similarly, the suffix γ is called a proper suffix of T if
γ 6= T . We will also use ti = T [i] to denote the i-th symbol in T — both notations
are used interchangeably. We use Ti = T [i..n] = titi+1 · · · tn to denote the i-th suffix
of T . For simplicity in constructing suffix trees, we usually ensure that no suffix of
the string is a proper prefix of another suffix by appending a special symbol, $ to T ,
such that $ /∈ Σ, and $ < σ, ∀σ ∈ Σ.

Given a string T , its suffix tree (ST) is a rooted tree with n leaves, where the
i-th leaf node corresponds to the i-th suffix Ti of T . Except for the root node and
the leaf nodes, every node must have at least two descendant child nodes. Each edge
in the suffix tree represents a substring of T , and no two edges out of a node start
with the same character. For a given edge, the edge label is simply the substring in T
corresponding to the edge. We use li to denote the i-th leaf node. Then, li corresponds
to Ti, the i-th suffix of T . When the edges from each node are sorted alphabetically,
then li will correspond to TSA[i], the i-th suffix of T in lexicographic order.

For edge (u, v) between nodes u and v in ST, the edge label (denoted label(u, v))
is a non-empty substring of T . The edge length is simply the length of the edge label.
The edge label is usually represented compactly using two pointers to the beginning
and end of its corresponding substring in T . For a given node u in the suffix tree,
its path label, L(u) is defined as the label of the path from the root node to u. Since
each edge represents a substring in T , L(u) is essentially the string formed by the
concatenation of the labels of the edges traversed in going from the root node to the
given node, u. The string depth of node u, (also called its length) is simply |L(u)|,
the number of characters in L(u). The node depth (also called node level) of node u is
the number of nodes encountered in following the path from the root to u. The root
is assumed to be at node depth 0.

Certain suffix tree construction algorithms make use of suffix links. The notion of
suffix links is based on a well-known fact about suffix trees [28,20], namely, if there is
an internal node u in ST such that its path label L(u) = aα for some single character
a ∈ Σ, and a (possibly empty) string α ∈ Σ∗, then there is a node v in ST such that
L(v) = α. A pointer from node u to node v is called a suffix link. If α is an empty
string, then the pointer goes from u to the root node. Suffix links are important in
certain applications, such as in computing matching statistics needed in approximate
pattern matching, regular expression matching, or in certain types of traversal of the
suffix tree.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 71

A predominant factor in the space cost for suffix trees is the number of interior
nodes in the tree, which depends on the tree topology. Thus, a major consideration
is how the outgoing edges from a node in the suffix tree are represented. The three
major representations used for outgoing edges are arrays, linked lists, and binary
search trees. While the array is simple to implement, it could require a large memory
for large alphabets. However, independent of the specific method adopted, a simple
implementation of the suffix tree can require as large as 33n bytes of storage with
suffix links, or 25n bytes without suffix links [2].

The suffix array (SA) is another data structure, closely related to the suffix tree.
The suffix array simply provides a lexicographically ordered list of all the suffixes
of a string. If SA[i] = j, it means that the i-th smallest suffix of T is Tj, the suffix
starting at position j in T . A related structure, the lcp array contains the length of the
longest common prefixes between adjacent positions in the suffix array. Combining
the suffix array with the lcp information provides a powerful data structure for
pattern matching. With this combination, decisions on the occurrence (or otherwise)
of a pattern P of length m in the string T of length n can be made in O(m + log n)
time. Given the new worst-case linear-time direct SA construction algorithms, and the
small memory footprint of suffix arrays, it is becoming more attractive to construct
the suffix tree from the suffix array. A linear-time algorithm for constructing ST from
SA is presented in [2].

3 Basic Data Structure

Starting from the suffix array, we construct an efficient data structure to simulate the
suffix tree (ST). We call this structure a Virtual Suffix Tree (VST). The VST stores
information about the basic topology of the suffix tree, the suffix array, and the suffix
links. Thus, the VST is represented as a set of arrays that maintains information on
the internal nodes of the suffix tree. The leaf nodes are not stored directly. However,
whenever needed, information about any leaf node can be obtained via the suffix array.
Unlike the ESA and LST, the VST neither uses the lcp-interval tree nor stores the
lcp array. We call the data structure a virtual suffix tree in the sense that it provides
all the functionalities of the suffix tree using the same space and time complexity
as a suffix tree, but without storing the actual suffix tree. Later, we show that the
VST leads to a more compact representation of suffix trees and suffix arrays. (We
mention that [14] also used the term “virtual suffix tree”, but for a limited form of
the enhanced suffix array).

Below, we present the basic VST. This structure will require 14 bytes for each node
in the VST and supports pattern matching in O(m log |Σ|) time, for an m-length
pattern. In the next section, we present an improved data structure that reduces
the space cost by eliminating the need to store edge lengths, while still maintaining
O(m log |Σ|) time for pattern matching. We also describe a more compact structure
for the VST that uses only 10 bytes for each internal node of the VST, and 5 bytes
for each leaf node. Pattern matching on this compact representation will, however,
be in O(m|Σ|) time.

Each node in the VST corresponds to a distinct internal node in the suffix tree. In
its basic form, each node in the VST is characterized by five attributes. For a given
node in the VST (say node u), with a corresponding internal node in ST (say node
uST), the five attributes are defined as follows.

72 Proceedings of the Prague Stringology Conference 2008

– sa index: index in the suffix array (SA index) of the leftmost leaf node under the
internal node uST of the suffix tree.

– fchild: the node ID of the first child node of uST that is also an internal node.
(Scanning is done left to right; edges at a node are also sorted left to right in
ascending lexicographic order). If node u is a leaf node in the VST, the value
will be negative. The absolute value will point to the first child node of the next
internal node in the VST.

– elength: The edge length of the edge (v, u) in the VST, or equivalently (vST , uST)
in the suffix tree, where v is the parent node of u and vST is the parent node of
uST .

– nfleaf: the number of child leaf nodes before the first child of uST that is also an
internal node.

– nnleaf: the number of sibling leaf nodes after uST , the current internal node of
the suffix tree, but before the next sibling internal node.

In terms of storage, the sa index, fchild and elength each requires one integer
(4 bytes), while nfleaf and nnleaf each requires one byte of storage (assuming
|Σ| ≤ 256).

3.1 Example VST

We use an example sequence to explain the above definitions. The suffix tree and
VST for the string missississippi$ are shown in Figure 1. Note that the string
missississippi$ is made intentionally different from mississippi$, to capture
some of the cases involved in a VST. Only the internal nodes (dark nodes) are ex-
plicitly stored in the VST. The leaf nodes (empty circles) are not stored. The order
of storage is based on the node-depths, from top to bottom. Table 1 shows the cor-
responding values of the VST node attributes for each VST node in the example.

root

N

N

N

i

$

ppi$
ssi

ssi

ssippippi

ppi$

missississippi$

p

N

i$
pi$

N

N

N

N

N

s

si
i

ssi

ssi

ppi$

ppi$
ssippi$

ppi$

ssippippi

1

8

7

5
4

3

2

14
13

12

11

10

9

6

$
0

1

2

3

4

5

6

7

8

9

root

N

N

N

i

ssi

ssi

p

N

N

N

N

N

N

s

si
i

ssi

ssi

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 1. Suffix tree and virtual suffix tree for the string T = missississippi$. (a)
suffix tree; (b) virtual suffix tree. The number at each leaf node indicates the position
in SA. The number at each internal node indicates the node ID in the VST.

3.2 Properties of the Virtual Suffix Tree

We can trace the properties of the VST based on the standard properties of a suffix
tree.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 73

node root N1 N2 N3 N4 N5 N6 N7 N8 N9

sa index 0 1 7 9 3 9 12 4 10 13
fchild N1 N4 −N5 N5 N7 N8 N9

elength 0 1 1 1 3 1 2 3 3 3
nfleaf 1 2 2 0 1 1 1 2 2 2
nnleaf 0 1 0 0 0 0 0 0 0 0

Table 1. VST node attributes for the example sequence T = missississippi$ used
in Figure 1.

1. The VST only stores the internal nodes of the suffix tree. No leaf nodes in the
ST are represented in the VST. Information about the leaf nodes can be obtained
from the SA when needed. Then the space requirement of the VST depends on
the topology of the the suffix tree, or more specifically, on the number of internal
nodes.

2. The number of leaf nodes in a suffix tree is n. The number of internal nodes in
the suffix tree (and hence number of nodes in the VST) is at most n.

3. The VST stores only the SA index of the leftmost leaf nodes and information
about the child nodes.

4. For a given node in the VST, the number of child nodes will be no larger than
|Σ|. Thus, the time needed to match a symbol is at most O(log |Σ|).

5. The nodes in the VST are ordered based on the internal nodes of the suffix tree
using the HSAM (hierarchy sequential access method). The child nodes from any
given node will be stored sequentially. The child nodes of two nearby nodes will
therefore be stored in nearby locations. This is an important property for address-
ing problems involving locality of reference.

We introduce further definitions needed in the description below. For a given node
u in the VST, we use the term prior node to denote the node that appears before the
current node u in the HSAM ordering. Similarly, next node denotes the node that
appears after the current node u in this ordering. We use lsa index (left sa index)
to denote the SA index of the leftmost leaf node that is a descendant of u. Similarly,
rsa index (right sa index) denotes the rightmost leaf node that has u as its ancestor.
Figure 2 shows an example.

It is simple to determine the lsa index and the leftmost child node of any given
node. The properties of the VST and the organization of the VST lead to the following
lemma about the VST (we omit the proof for brevity):

Lemma 3. For a given node in the VST, its rightmost child node, and the right
sa index can each be determined in constant time.

3.3 Pattern matching on VST

Lemma 3 provides an indication of how pattern matching can be performed on the
VST. For pattern matching using the suffix tree, an important issue is how to quickly
locate all the child nodes for a given internal node. In the VST, each node points to its
leftmost leaf node using the sa index. During pattern matching, at any given node in
the VST, we will need to determine four parameters, namely the leftmost child node
(lchild), the rightmost child node (rchild), the left sa index (lsa index) and the
right sa index (rsa index). These parameters define the boundaries of the search
at the given node. To search in a leaf node of the VST, we will need only the left

74 Proceedings of the Prague Stringology Conference 2008

Figure 2. Example VST (solid nodes) showing left SA index (lSA) and right SA
index (rSA) for sample nodes.

sa index and right sa index of the node. When we search in an internal node, we will
need all the four parameters to match a pattern. Lemma 3 shows that for any given
node, we can determine each of these parameters in constant time. The following two
examples further illustrate the two cases involved in computing the rsa index, and
how pattern matching can be performed on the VST.

Example 4. Determining the right boundary from a next sibling node. Consider node
N5 in Figure 2. The left sa index of N5 is 9 and the right sa index is 11, since
N5.sa index=9 and N5+1.sa index=12, and hence the right sa index of N5=12-
1=11. The leftmost child node is the fchild of the current node, thus the leftmost
child of N5 is N8. The next node of the rightmost child node is N5+1.fchild=N9.
Then the rightmost child node is N9−1=N8, since the child node will be stored side
by side between sibling nodes.

Example 5. Determining the right boundary from the right boundary of the parent
node. Consider node N1 in Figure 2. The left sa index of N1 is N1.sa index=1.
The right sa index of N1 is N2.sa index - (N1.nnleaf -1)=7-1-1=5. The leftmost
child node of N1 is N1.fchild=N4. The next node of N1 is N2. Since N2.fchild=-
N5 is negative, N2 must be a leaf node in the VST. The right node of N1 will thus
point to N5. We therefore know that the next node of the rightmost child node
of N1 will be N5. Finally, the rightmost child node of N1 can be determined as
N5−N1.nnleaf = N5−1 = N4.

We summarize the foregoing discussion as the first main result of this paper:

Theorem 6. Given a string T = T [1..n] of length n, with symbols from an alphabet
Σ, and the virtual suffix tree for T , we can count the number of occurrences of a
pattern P = P [1..m] in T in O(m log |Σ|) time, and locate all the ηocc occurrences of
P in T in O(m log |Σ|+ ηocc) time.

Proof. The theorem is a consequence of Lemma 3. First consider the cost of one single
symbol-by-symbol comparison at a node in the VST. The number of child nodes at

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 75

any internal node can be no larger than |Σ|, and we can find the boundaries of the
search in constant time. Since the edges are ordered lexically at each internal node,
and given the HSAM ordering, matching a single symbol can be done in O(log |Σ|)
time steps using binary search. To find the first match, we need to consider the m
symbols in the pattern. We perform the above symbol-by-symbol comparisons at most
m times to decide whether there is a match or not. After a match is found, we can
again use binary search (using lsa index and rsa index as bounds) to determine
all the ηocc occurrences of the pattern. Reporting each occurrence can be done in
constant time, or an additional ηocc time for all the occurrences. ⊓⊔

4 Improved Virtual Suffix Tree

The basic data structure introduced above stores the length of each edge in the
VST. We can improve the structure to reduce the space requirement by avoiding
the need to store information about the edge lengths directly. The improved data
structure has only four attributes rather than five. The attributes sa index and
elength in the basic structure are now combined into one attribute called the adjusted
SA index (asa index). This requires a key modification to the suffix tree, leading to
an important distinction between the suffix tree and the virtual suffix tree.

4.1 Adjusting edge lengths

A well-known property of the suffix tree is that no two edges out of a node in the
tree can start with the same symbol. For efficient representation of the VST, this
characteristic of the ST is modified such that, for a given node, every edge that leads
to an internal node in the VST has an equal length. This modification is done as
follows: Start from the root node and progress towards the leaf nodes in the VST.
For a given internal node, say u, adjust the edge label from u to each of its children
such that all edges that lead to an internal node will have the same edge length. The
major criteria is that, for two sibling internal nodes, their edge labels differ only in
the last symbol. If for some edge, say (u,w), the original edge length (or edge label)
is longer than the new length, prepend the extraneous part of old label(u,w) to each
outgoing edge from w. The edge length for edges that lead to leaf nodes are left
unchanged. Then repeat the adjustment at each child node of u. Figure 3 shows an
example of this procedure. We can observe that this adjustment only affects the edge
lengths, and does not change the general topology of the suffix tree.

The above adjustment procedure leads to an important property of the VST:
Property: In the improved VST, all internal sibling nodes occur at the same

node-depth, and same string-depth, and the edge labels for the edges from the parent to
each sibling differ only in the last symbol. This means that, in the VST, two branches
from the same node can start with the same symbol, but their edge labels will differ.

This property provides an important difference between the suffix tree and the
VST. The suffix tree mandates that no two edges from the same node have the same
starting symbol. Further, the suffix tree only guarantees that the node-depth of two
sibling nodes are the same, but not their string depth. This property of equal-length
sibling edge labels is the key to more efficient representation of the VST, without
explicit edge labels. Figure 4 shows an example of the modified suffix tree with equal-
length edges for sibling nodes that are also internal nodes, and the corresponding
improved virtual suffix tree. Table 2 shows the corresponding values of the attributes

76 Proceedings of the Prague Stringology Conference 2008

for each node in the improved VST. What remains is how we compute asa index, the
adjusted SA index. This is done by combining the original sa index with elength.
We state the following lemma without proof:

Lemma 7. Given a node in the VST say u, and its parent node (say v), we can
compute the adjusted SA index in constant time. Further, when required, the edge
length can be determined in constant time.

While we store only the asa index, our calculations will still use the original
sa index. However, this can be derived from asa index in constant time. In fact, we
can observe that in practice, we need to compute the asa index for only the leftmost
child node at each node-level, while keeping the original sa index for all other nodes.
To determine the new elength for these other nodes, we simply make a constant time
access to their leftmost (sibling) node (at the same node-level), and then use this to
compute the length. For searching with the VST, we will calculate the length of the
common string at each level. If the length is greater than 0, then we know there is a
common string in the child nodes and only the last character is different. Thus, we
do not need to store the edge lengths explicitly, leading to a reduction of one integer
per node over the basic VST.

NodeName root N1 N2 N3 N4 N5 N6 N7 N8 N9

sa index 0 1 7 9 3 9 12 4 10 13
fchild N1 N4 -N5 N5 N7 N8 N9

new elength 0 1 1 1 1 1 1 3 1 2
nfleaf 1 2 2 0 1 1 1 2 2 2
nnleaf 0 1 0 0 0 0 0 0 0 0
asa index 0 1 7 9 3 9 12 4+3=7 10 13+2=15

Table 2. Node attributes in the improved VST for the example sequence,
T = missississippi$. We have included new elength, so one can compare with
elength in Table 1. However, in practice this will not be stored in the VST.

(a) (b)

Figure 3. VST edge-length adjustment procedure. (a) original tree; (b) improved tree
after adjusting the edge lengths.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 77

4.2 Construction algorithm

Construction of the VST makes use of an array Q which records the internal nodes
of the suffix tree. This array maps the internal nodes of the suffix tree to nodes in
the VST. Thus, elements in the array are in the same ordering as the corresponding
nodes in the VST.

Given an input string T , the first step is to construct the suffix array for T . This
can be done in worst case linear time and linear space using any of the existing
algorithms [13,18,17,3]. Using the SA, we construct the suffix tree as described in
[2]. While the suffix tree can be constructed directly in linear time, working from
the SA to the ST will require less space for the construction. The suffix tree is then
preprocessed in linear time to adjust the edges from a given parent node that lead
to internal child nodes to equal-length edges. Using the adjusted suffix tree, the
algorithm will process the internal nodes in the suffix tree in a top-down manner to
determine the attributes (fchild, nfleaf and nnleaf) for the corresponding nodes
in the VST. Next, we process the VST from the VST leaf nodes to the root, using
the Q array to update the asa index at each node. The adjusted asa index field
includes information on the sa index and edge length.

The steps for constructing the VST for a given input string are summarized in
Algorithm 1.

4.3 Further space reduction

We can further reduce the space needed by the VST, at the cost of an increased time
for pattern matching. In the pattern matching phase, if the algorithm is to compare
symbols one-by-one, rather than using binary search on the branches from a given
node in the VST, we will only need to compute the lsa index and rsa index of the
node.

Consider an arbitrary node (say node u) in the VST. The number of children
from u or the number of u’s leaf nodes cannot be larger than |Σ|. Thus, the sa index

of any child node of u will lie between node u’s lsa index and rsa index. Then
comparing one symbol from the pattern against the first symbol on each edge from
u to its children will require at most O(|Σ|) time steps. The left child node and the
right child node will not need to be used again. Thus, the attributes fchild and

root

N

N

N

i

$

ppi$
s

sis

sissippi$sippi$

sippi$

missississippi$

p

N

i$ pi$

N

N

N

N

N

s

s

i

s

is

ppi$

sippi$

sissippi$

ippi$

sissippi$
sippi$

1

8
7

5
4

3

2

14

13

12

11

10

9

6

$
0

1

2

3

4

5

6

7

8

9

root

N

N

N

i

s

sis

p

N

N

N

N

N

N

s

s

i

s

is

1

2

3

4

5

6

7

8

9

(a) (b)

Figure 4. Improved VST for the string T = missississippi$: (a) modified suffix
tree; (b) improved virtual suffix tree

.

78 Proceedings of the Prague Stringology Conference 2008

nfleaf in the leaf nodes of the VST are no longer required. We make the asa index

to be negative for the leaf nodes. Thus, during pattern matching, this serves as a flag
for the VST leaf nodes. This compact structure will reduce the space requirement at
each leaf node of the VST by 5 bytes. Pattern matching time, however, will increase
to O(|Σ|) for each symbol in P , or O(m|Σ|) overall.

4.4 Complexity Analysis

Time and space complexity The time cost for lines 1-3 in the construction algo-
rithm (Algorithm 1) is O(n)+O(n)+O(n)=O(n). Lines 5-17 in the algorithm perform
a one time traversal of the nodes in the suffix tree. The respective values of pTop and
pBottom range from 1 to 2n. Thus the cost for the traversals is O(n). Lines 18-27 in
the algorithm run at most pBottom times. The time for lines 18-27 in the algorithm is
thus O(n), since each iteration of the loop requires constant time. Therefore, for the
regular VST, the overall construction time is O(n). The time for pattern matching is
in O(m log |Σ|). For the compact structure, the construction time is the same as the
regular structure, but the VST is no longer stored linearly. Here we use an array to
store the relation between the Q array and the compact VST. The searching time is
now O(m|Σ|).

The space requirement clearly depends on the number of nodes in the VST, which
is at most n for a sequence of length n. Each node requires a fixed amount of memory
to store, leading to an O(n) space requirement.

Number of nodes and practical space requirement The actual space needed
for the VST depends on the topology of the suffix tree. This topology can be captured
by the number of internal nodes in the suffix tree, or alternatively, by the quantity
RIL, the ratio between the number of internal nodes and the number of leaf nodes.
We call RIL the density or branching factor for the suffix tree. We conducted an
experiment to evaluate the effect of this branching factor on the storage requirement
of the VST. The suffix tree was constructed and the branching factors computed for
a set of files taken from [26]. For each file, we used the first 224 symbols as the text,
and computed the branching factor. Table 3 shows the results. The maximum ratio of
0.76 was observed for the file Jdk13c. On average, however, the maximum ratio was
around 0.63. The worst case occurs for a sequence with |Σ| = 1, (that is, T = an),
leading to a branching factor of 1. The table shows that, for a given sequence, the
branching factor depends on a complex relationship between n, |Σ|, and the mean
LCP.

The space requirement for the VST, for both the compact and regular structures
depends directly on the branching factor. The last two columns in Table 3 show the
maximum space requirement for each file.

The foregoing discussion leads to the following lemma on the construction of the
VST:

Lemma 8. Given a string T = T [1..n], with symbols from an alphabet Σ, the virtual
suffix tree (without the suffix link) can be constructed in O(n) time, and O(n) space,
independent of Σ.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 79

File |Σ| Max Ratio Compact Regular Description
Bible 63 0.61 8.60n 10.13n King James bible
Chr22 5 0.73 9.50n 11.33n Human chromosome 22
E.coli 4 0.65 8.89n 10.52n Escherichia coli genome
Etext 146 0.54 8.02n 9.36n Texts from Gutenberg project
Howto 197 0.55 8.13n 9.51n Linux Howto files
Jdk13c 113 0.76 9.69n 11.59n JDK 1.3 documentation
Rctail 93 0.66 8.95n 10.60n Reuters news in XML format
Rfc 120 0.64 8.77n 10.36n Concatenated IETF RFC files
Sprot 94 0.61 8.54n 10.05n
World 94 0.54 8.06n 9.41n CIA world fact book
Average 0.63 8.71n 10.29n

Table 3. Branching factor and maximum space requirement for various sample files.

5 Computing Suffix Links

Constructing the suffix tree from the suffix array as described in [2] does not include
the suffix link. There are also a number of other suffix tree construction algorithms
that build the suffix tree without the suffix link. See Farach et al [8], and Cole and
Hariharan [7]. The suffix link, however, is a significant component of the suffix tree,
and is important in certain applications, such as approximate pattern matching using
matching statistics, and other forms of traversal on the suffix tree. Thus, a data
structure to support the complete functionality of the suffix tree requires an inclusion
of the suffix link. Recent efficient data structures for suffix trees have thus provided
mechanisms for constructing the suffix link. The ESA [1] provided suffix links using
complicated RMQ preprocessing [5]. The LST [16] also supported suffix links using
the lcp-interval tree and intervals defined on the inverse suffix array. A recent work
by Maaβ [19] focused exclusively on suffix link construction from suffix arrays, or
from suffix trees that do not have such links.

The virtual suffix tree provides a natural mechanism for constructing suffix links.
The key idea is that suffix links in the VST can be computed bottom-up, from the
nodes with the highest node-depth (leaf nodes) in the VST to those with the least
(the root). This is based on the following two observations about suffix links.

1. Consider a leaf node uST in the suffix tree corresponding to suffix Ti in the original
sequence. The suffix link from uST will point to the leaf node corresponding to the
suffix Ti+1 (that is, the suffix that starts at the next position in the sequence).

2. The suffix link from a node u in the VST will point to some node w with a
smaller string-depth in the VST, such that |L(u)| = |L(w)| + 1 (or equivalently
|L(uST)| = |L(wST)|+ 1).

The following lemma establishes how we can build suffix links on the VST.

Lemma 9. Given the VST for a string T = T [1..n] of length n, the suffix links can
be constructed in O(n) time using additional O(n) space.

Proof. Let u and w be two arbitrary nodes in the VST. Let v be the parent node of u.
Let u.slink be the node to which the suffix link from node u points to. We consider
two cases:

Case A: u is a leaf node in the VST. Then, using the above observations, the suffix
link from node u will point to node w in the VST (that is, u.slink = w) such that

80 Proceedings of the Prague Stringology Conference 2008

SA[w.sa index] = SA[u.sa index] + 1. Clearly, |L(w)| = |L(u)| − 1, where L(x) is
the path label of node x. Note that this path label is not explicitly stored in the VST,
but for each node, the length can be computed in constant time. This computation
can be performed in constant time by maintaining two arrays and observing that
n− |L(w)| = n− |L(u)|+ 1. One array is the inverse suffix array (ISA) for the given
string, defined as follows: ISA[i] = j if SA[j] = i, (i, j = 1, 2, ..., n). The second
is an array M that maps the SA values to the corresponding parent nodes in the
VST, defined as follows: M [i] = u, if uST in ST is the parent node of the leaf node
corresponding to the suffix TSA[i]. Clearly, both arrays can be computed in linear time,
and require linear space.

Case B: u is not a leaf node in the VST. This is a simpler case. When u is
an internal node in the VST, the suffix link of u will point to some node w, such
that w is an ancestor of node u.fchild.slink, such that |label(u, u.fchild)| =
|label(w, u.fchild.slink)|. The O(n) time result then follows by using the skip/count
trick [11], by observing that a VST has at most n nodes, a node depth of at most
n, and that each upward traversal on the suffix link decreases the node depth by at
least 1. ⊓⊔

Algorithm 1: VST Construction Algorithm

Construct-VST(T, n)
1 SA← Compute-SuffixArray(T, n)
2 ST ← SuffixTree-From-SuffixArray(SA)
3 ST ← Adjust-EdgeLengths(ST)
4 Initialize VST[],Q[], pTop=0, pBottom=0, curNode=root, Q[pTop]=root
5 while (pBottom >= pTop)
6 for (each childnode in curNode) do

7 if (childnode is internal node in ST) then

8 pBottom ← pBottom + 1; Q[pBottom] ← childNode
9 if childnode is first internal node then

10 VST[pTop].fchild ← pBottom
11 end if

12 else

13 Update VST[pTop].nfleaf and VST[pBottom].nnleaf
14 end if

15 end for

16 pTop ← pTop + 1; curNode ← Q[pTop]
17 end while

18 for (pb ← pBottom down to 0) do

19 if (VST[pb] is leaf node) then

20 VST[pb].asa index ← Q[pb].fchild
21 else if (Q[pb].elength=1) then

22 VST[pb].asa index←VST[pb].fchild.asa index

+ VST[pb].nfleaf - Q[pb].elength
23 else

24 VST[pb].asa index←VST[pb].fchild.asa index

+ VST[pb].nfleaf - Q[pb].elength+ Q[pb].elength
25 end if

26 end if

27 end for

Although the above description is from the viewpoint of a VST already con-
structed, the suffix links can be constructed as the VST is being constructed, by

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 81

some modification of the VST construction algorithm. Algorithm 2 shows a modifi-
cation of Algorithm 1 (the VST construction algorithm) to incorporate sections to
compute the suffix link. The suffix link construction algorithm is based on the Q array
used during the VST construction.

Algorithm 2: VST construction with suffix links

4 Initialize VST[],Q[],ISA[],M[], pTop←0, pBottom←0, curNode←root, Q[pTop]←root
...

18 for (pb ← pBottom down to 0) do

19 if (VST[pb] is leaf node) then

20 Update array M to map SA index and node VST [pb]
...

26 end if

27 end for

28 for (pb ← pBottom down to 0) do

29 if (VST[pb] is leaf node) then

30 VST[pb].slink ← M[ISA[VST[pb].sa index+1]]
31 else

32 Find ancestor w of VST[pb].fchild.slink s.t.
|label(w, VST[pb].fchild.slink)|=|label(VST[pb], VST[pb].fchild)|

33 Set VST[pb].slink ← w

34 end if

35 end for

Figure 5 shows the result of the suffix link algorithm when applied to the VST of
our example string T = missississippi$. Essentially, given the VST, the suffix link
is constructed right to left, node-depth by node-depth, starting with the rightmost
node at the deepest node-depth, and moving up the VST until we reach the root.
Thus, the order of suffix link construction in the example will be SL1, SL2, . . . , SL9.

root

N

N

N

i

$

ppi$

s

sis

sissippi$
sippi$

sippi$

missississippi$

p

N

i$
pi$

N

N

N

N

N

s

s

i

s

is

ppi$

sippi$

sissippi$

ippi$

sissippi$

sippi$

1

8
7

5
4

3

2

14

13

12

11

10

9

6

13

5

8

3

6

9

11

12

0

1

4

7

10

2

SL
_1

 SL_2

SL
_3

SL_4

SL_5

SL_7

SL
_6

S
L
_
9

SL_8

$

0
14

1

2

3

4

5

6

7

8

9

Figure 5. Suffix link on the VST for the sample string T = missississippi$.

Algorithm 2 shows that the additional work required to compute all the suffix
links is linear in the length of the string. After construction, the suffix link on the

82 Proceedings of the Prague Stringology Conference 2008

VST will require one additional integer per internal node in the VST. This can be
compared with the 2 integers per node required to store the suffix link using the
ESA, or LST. In a typical VST, where the maximum leaf node to internal node ratio
is usually less than 0.7, the suffix link will require a maximum total extra space of
0.7n ∗ 4 = 2.8n bytes. Table 4 shows the space required for the VST (including the
suffix array and suffix links) for both the compact structure and the regular VST, at
varying values of the branching factor.

Table 4. Storage requirement for the VST, including suffix links

Ratio Compact Regular
Worst Case 1 15.50n 18.00n
Average Case 0.75 12.63n 14.50n

0.7 12.05n 13.80n
0.65 11.48n 13.10n
0.6 10.90n 12.40n

We summarize the above discussion in the following theorem which captures the
second main result of the paper:

Theorem 10. Given a string T = T [1..n], with symbols from an alphabet Σ, the
virtual suffix tree, including the suffix link, can be constructed in O(n) time and O(n)
space, independent of Σ.

Proof. The theorem follows directly from Lemma 8 and Lemma 9. ⊓⊔

6 Conclusion

In this paper, we have presented the virtual suffix tree (VST), an efficient data struc-
ture for suffix trees and suffix arrays. The searching performance is the same as the
suffix tree, that is, O(m log |Σ|) for a pattern of length m, with symbol alphabet
Σ. We also showed how suffix links can be constructed on the VST in linear time,
independent of the alphabet size. The VST does not store the edge lengths explicitly.
This is achieved by modifying a key property of the suffix tree - the requirement that
no two edges from a given node in the suffix tree can start with the same symbol.
This key modification leads to a major distinction between the VST and the suffix
tree, and results in extra space saving. However, whenever needed, the length for any
arbitrary edge in the VST can be obtained in constant time using a simple computa-
tion. A further space reduction leads to a more compact representation of the VST,
but at the expense of an increased search time, from O(m log |Σ|) to O(m|Σ|).

The space requirement depends on the topology of the suffix tree, in particular
on the branching factor. For the compact structure, the worst case space requirement
(including the suffix array) is 11.5n bytes without suffix links, and 15.5n bytes with
suffix links, where n is the length of the string. However, in practice, the branching
factor is typically less than 0.7. For the compact structure, this gives less than 9.25n
bytes on average without the suffix links, or 12.05n bytes with suffix links.

In this work, we have focused on efficient storage of the suffix tree and suffix array
after they have been constructed. Thus, we constructed the VST from the suffix
tree, which in turn was constructed from the suffix array. An interesting question is
whether the virtual suffix tree can be constructed directly, without the intermediate
suffix tree stage. This could lead to a significant reduction in space requirement at
the time of VST construction.

J. Lin et al.: The Virtual Suffix Tree: An Efficient Data Structure for Suffix Trees. . . 83

References

1. M. I. Abouelhoda, S. Kurtz, and E. Ohlebusch: Replacing suffix trees with enhanced

suffix arrays. J. Discrete Algorithms, 2(1) 2004, pp. 53–86.
2. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Com-

pression, Suffix Arrays and Pattern Matching, Springer, to appear, 2008.
3. D. Adjeroh and F. Nan: Suffix sorting via Shannon-Fano-Elias codes, in DCC, IEEE Com-

puter Society, 2008, p. to appear.
4. A. Andersson and S. Nilsson: Efficient implementation of suffix trees. Softw., Pract. Exper.,

25(2) 1995, pp. 129–141.
5. M. A. Bender and M. Farach-Colton: The LCA problem revisited., in LATIN, G. H.

Gonnet, D. Panario, and A. Viola, eds., vol. 1776 of Lecture Notes in Computer Science, Springer,
2000, pp. 88–94.

6. M. Burrows and D. J. Wheeler: A block-sorting lossless data compression algorithm, Tech.
Rep. 124, Digital Equipment Corporation, Palo Alto, California, May 1994.

7. R. Cole and R. Hariharan: Faster suffix tree construction with missing suffix links, in STOC,
2000, pp. 407–415.

8. M. Farach-Colton, P. Ferragina, and S. Muthukrishnan: On the sorting-complexity

of suffix tree construction. Journal of the ACM, 47(6) 2000, pp. 987–1011.
9. R. Giegerich, S. Kurtz, and J. Stoye: Efficient implementation of lazy suffix trees. Software

— Practice and Experience, 33(11) 2003.
10. R. Grossi and J. S. Vitter: Compressed suffix arrays and suffix trees with applications to

text indexing and string matching. SIAM Journal on Computing, 35(2) 2005, pp. 378–407.
11. D. Gusfield: Algorithms on Strings, Trees and Sequences: Computer Science and Computa-

tional Biology, Cambridge University Press, 1997.
12. J. Kärkkäinen: Suffix cactus: A cross between suffix tree and suffix array, in CPM: 6th

Symposium on Combinatorial Pattern Matching, 1995.
13. J. Kärkkäinen, P. Sanders, and S. Burkhardt: Linear work suffix array construction.

Journal of the ACM, 53(6) 2006, pp. 918–936.
14. T. Kasai, G. Lee, H. Arimura, S. Arikawa, and K. Park: An efficient index data structure

with the capabilities of suffix trees and suffix arrays for alphabets of non-negligible size, in 12th
Annual Symposium on Combinatorial Pattern Matching, 2001.

15. D. K. Kim, J. E. Jeon, and H. Park: An efficient index data structure with the capabilities

of suffix trees and suffix arrays for alphabets of non-negligible size, in SPIRE 2004, 2004.
16. D. K. Kim, M. Kim, and H. Park: Linearized suffix tree: an efficient index data structure

with the capabilities of suffix trees and suffix arrays. Algorithmica, 2007.
17. D. K. Kim, J. S. Sim, H. Park, and K. Park: Constructing suffix arrays in linear time. J.

Discrete Algorithms, 3(2-4) 2005, pp. 126–142.
18. P. Ko and S. Aluru: Space efficient linear time construction of suffix arrays. J. Discrete

Algorithms, 3(2-4) 2005, pp. 143–156.
19. M. G. Maaβ: Computing suffix links for suffix trees and arrays. Information Processing Letters,

101(6) 2007.
20. V. Mäkinen: Compact suffix array – a space-efficient full-text index. Fundam. Inform., 56(1-2)

2003, pp. 191–210.
21. U. Manber and E. W. Myers: Suffix arrays: A new method for on-line string searches. SIAM

Journal on Computing, 22(5) 1993, pp. 935–948.
22. E. M. McCreight: A space-economical suffix tree construction algorithm. Journal of the ACM,

23(2) 1976, pp. 262–272.
23. K. Monostori, A. Zaslavsky, and H. Schmidt: Suffix vector: Space- and time-

efficient alternative to suffix trees, in Twenty-Fifth Australasian Computer Science Conference
(ACSC2002), M. J. Oudshoorn, ed., Melbourne, Australia, 2002, ACS.

24. J. I. Munro, V. Raman, and S. S. Rao: Space efficient suffix trees. J. Algorithms, 39(2)
2001, pp. 205–222.

25. E. Prieur and T. Lecroq: From suffix trees to suffix vectors, in Prague Stringology Confer-
ence(PCS2005), Prague, 2005.

26. S. J. Puglisi, W. F. Smyth, and A. Turpin: A taxonomy of suffix array construction

algorithms. ACM Computing Surveys, 39(2) 2007.
27. E. Ukkonen: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249–260.
28. P. Weiner: Linear pattern matching algorithm. Proceedings, 14th IEEE Symposium on Switch-

ing and Automata Theory, 21 1973, pp. 1–11.

