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Abstract. We show a new lower bound for the maximum number of runs in a string.
We prove that for any ε > 0, (α − ε)n is an asymptotic lower bound, where α =
174719/184973 ≈ 0.944565. It is superior to the previous bound 3/(1 +

√
5) ≈ 0.927

given by Franěk et al. [6,7]. Moreover, our construction of the strings and the proof is
much simpler than theirs.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of
strings. It was shown in [9] that when considering maximal repetitions, or runs, the
maximum number of runs ρ(n) in any string of length n is O(n), leading to a lin-
ear time algorithm for computing all the runs in a string. Although they were not
able to give bounds for the constant factor, there have been several works to this
end [12,13,11,2,1,8]. The currently known best upper bound3 is ρ(n) ≤ 1.048n [3],
obtained by calculations based on the proof technique of [2]. The technique bounds
the number of runs for each string by considering runs in two parts: runs with long
periods, and runs with short periods. The former is more sparse and easier to bound
while the latter is bounded by an exhaustive calculation concerning how runs of
different periods can overlap in an interval of some length. On the other hand, an
asymptotic lower bound on ρ(n) is presented in [7], where it is shown that for any
ε > 0, there exists an integer N > 0 such that for any n > N , ρ(n) ≥ (α− ε)n, where
α = 3

1+
√

5
≈ 0.927. It was conjectured in [6] that this bound is optimal.

In this paper, we prove that the conjecture was false, by showing a new lower
bound α = 174719/184973 ≈ 0.944565. First we show a concrete string τ of length
184973, which contains 174697 runs in it. It immediately disproves the conjecture,
since 174697/184973 ≈ 0.944445 is already higher than the previous bound 0.927.
Then we prove that the string τ k, which is the string obtained by concatenating k
copies of τ , contains 174719k − 21 runs for any k ≥ 2. Since |τ k| = 184973k, it yields
the new lower bound 174719/184973 as k → ∞.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said to
be a prefix, substring, and suffix of the string w = xyz, respectively. The length of

3 Presented on the website http://www.csd.uwo.ca/faculty/ilie/runs.html
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a string w is denoted by |w|. The i-th symbol of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the substring of w that begins at position i and ends at position j
is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has period p if w[i] = w[i + p]
for 1 ≤ i ≤ |w| − p. A string w is called primitive if w cannot be written as uk, where
k is a positive integer, k ≥ 2.

A string u is a run if it is periodic with (minimum) period p ≤ |u|/2. A substring
u = w[i : j] of w is a run in w if it is a run of period p and neither w[i − 1 : j] nor
w[i : j + 1] is a run of period p, that means the run is maximal. We denote the run
u = w[i : j] in w by the triple 〈i, j−i+1, p〉 consisting of the begin position i, the
length |u|, and the minimum period p of u. A run of w which is a prefix (resp. suffix)
of w is called a prefix (resp. suffix) run of w, For a string w, we denote by run(w) the
number of runs in w.

For example, the string aabaabaaaacaacac contains the following 7 runs:
〈1, 2, 1〉 = a2, 〈4, 2, 1〉 = a2, 〈7, 4, 1〉 = a4, 〈12, 2, 1〉 = a2, 〈13, 4, 2〉 = (ac)

2,

〈1, 8, 3〉 = (aab)
8

3 , and 〈9, 7, 3〉 = (aac)
7

3 . Thus run(aabaabaaaacaacac) = 7.
We are interested in the behavior of the maxrun function defined by

ρ(n) = max{run(w) | w is a string of length n}.
Franěk, Simpson and Smyth [6] showed a beautiful construction of a series of

strings which contains many runs, and later Franěk and Qian Yang [7] formally proved
a family of true asymptotic lower bounds arbitrarily close to 3

1+
√

5
n as follows.

Theorem 1 ([7]). For any ε > 0 there exists a positive integer N so that ρ(n) ≥
(

3

1+
√

5
− ε

)

n for any n ≥ N .

3 Basic Properties

In this section, we summarize some basic properties concerning periods and repeti-
tions in strings, which will be utilized in the sequel.

The next Lemma given by Fine and Wilf [5] provides an important property on
periods of a string.

Lemma 2 (Periodicity Lemma (see [10,4])). Let p and q be two periods of a string

w. If p + q − gcd(p, q) ≤ |w|, then gcd(p, q) is also a period of w.

For a string w, let us consider a series of strings w, w2, w3, w4 . . ., and observe
all runs contained in these strings. There are many cases, which confuse the task of
counting the number of runs in these strings.

1. A run in wk which is neither a suffix nor prefix run of wk is also a run in wk+1.
2. A suffix run in wk and a prefix run in w may be merged into one run in wk+1.
3. A suffix run in wk may be extended to a run in wk+1.
4. A new run may be newly created at the border between wk+1 and w.

Concerning case 4, note that a new run that did not appear in w or w2 may be
created in w3. For example, consider strings w = abcacabc, and r = (cabca)2. We
can verify that r is a run 〈8, 10, 5〉 of w3 = abcacabcabcacabcabcacabc, while r does
not appear in w2 = abcacabcabcacabc. Moreover, the same argument holds also
for binary alphabet 0, 1; Replace a, b, c into 01, 10, 00, respectively in the above
example.

However, the following lemma shows that the length of such new runs can be
bounded.
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Lemma 3. Let w be a string of length n. For any k ≥ 3, let r = 〈i, l, p〉 be a run in

wk. If l ≥ 2n, then i = 1 and l = kn, that is, r = wk.

Proof. We assume that n > 1, since it is trivial for the case n = 1. Since p is the
minimum period of the run r, we know |r| = l ≥ 2p and l ≥ 2n . Let u be a primitive
string of length m where w = ut for some integer t ≥ 1. Then, |u| = m ≤ n is also a
period of run r. Since p + m ≤ l , Lemma 2 claims that gcd(p,m) is also a period of
run r. If p > m, then gcd(p,m) < p, which contradicts the assumption that p is the
minimum period of r. If p < m, then it contradicts the assumption that u is primitive.
Therefore we have p = m. Since m is a period of wk, we have r = 〈1, kn,m〉 = wk.

This lets us prove the following lemma which gives a formula for run(wk).

Lemma 4. Let w be a string of length n. For any k ≥ 2, run(wk) = Ak − B, where

A = run(w3) − run(w2) and B = 2run(w3) − 3run(w2).

Proof. We think about the increase in the number of runs, when concatenating wk and
w. Let r = 〈i, l, p〉 be a run of wk+1 such that i+ l > nk+1, that is, r ends somewhere
in the last w of wk+1. By Lemma 3, if i ≤ (k − 2)n then r = wk+1. In such a case, r
does not increase the number of runs since the run will have already been considered
in w2. Therefore, the increase in runs can be considered by restricting our attention
to runs with i > (k − 2)n, that is, the increase in runs for the last 3 w’s of wk+1

when concatenating w to the last 2 w’s of wk. This gives us run(wk+1) − run(wk) =
run(w3) − run(w2).

run(wk) = run(wk−1) + run(w3) − run(w2)

= run(wk−2) + 2(run(w3) − run(w2))

= run(w2) + (k − 2)(run(w3) − run(w2))

= k(run(w3) − run(w2)) − (2run(w3) − 3run(w2))

for k ≥ 3. It is easy to see that the equation also holds for k = 2.

Theorem 5. For any string w and any ε > 0, there exists a positive integer N such

that for any n ≥ N ,
ρ(n)

n
>

run(w3) − run(w2)

|w| − ε.

Proof. By Lemma 4, run(wk) = Ak − B, where A = run(w3) − run(w2) and B =
2run(w3) − 3run(w2).

For any given ε > 0, we choose N > A−B

ε
. For any n ≥ N , let k be the integer

satisfying |w|(k−1) ≤ n < |w|k. Notice that k > n

|w| ≥ N

|w| ≥ A−B

|w|ε . Since ρ(i+1) ≥ ρ(i)

for any i, and |wk−1| = |w|(k − 1),

ρ(n)

n
≥ ρ(|w|(k − 1))

|w|k ≥ run(wk−1)

|w|k =
A(k − 1) − B

|w|k =
Ak − A − B

|w|k

=
A

|w| −
A − B

|w|k >
A

|w| − ε.

⊓⊔
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4 New Lower Bounds

We found some strings which contain many runs, by running a computer program
which utilizes a simple heuristic search for run-rich binary strings. Given a buffer size,
the search first starts with the single string 0 in the buffer. At each round, two new
strings are created from each string in the buffer by appending 0 or 1 to the string.
The new strings are then sorted in order of run(w3) − run(w2), and only those that
fit in the buffer are retained for the next round. Strings that give a high ratio of runs
are recorded.

We tried several variations of the algorithm, and found many run-rich strings.
Among these strings found so far, the string τ , lets us prove the currently best lower
bound on the maximum number of runs in a string. Since τ is too long to include
in the paper, we will make τ available on our web site 4. Once we have τ , it is
straightforward to confirm that the following lemma holds. Any näıve program to
count runs in a string would be sufficient.

Lemma 6. There exists a string τ such that |τ | = 184973, run(τ) = 174697,
run(τ 2) = 349417, and run(τ 3) = 524136.

It immediately disproves the conjecture, since 174697/184973 ≈ 0.944445 is al-
ready higher than the previous bound 3

1+
√

5
≈ 0.927. We now show the main result

of this paper.

Theorem 7. For any ε > 0 there exists a positive integer N so that

ρ(n) > (α − ε) n for any n ≥ N , where α = 174719

184973
≈ 0.944565.

Proof. From Theorem 5 and Lemma 6, we have

ρ(n)

n
>

524136 − 349417

184973
− ε =

174719

184973
− ε.

⊓⊔

For proof of concept, we present in the Appendix, a shorter string τ1558 with
|τ1558| = 1558, run(τ1558) = 1455, run(τ 2

1558) = 2915, run(τ 3
1558) = 4374 that gives a

smaller bound (4374 − 2915)/1558 ≈ 0.93645 compared to τ , but is still better than
previously known.

5 Conclusion and Further Research

We presented a new lower bound 174719/184973 ≈ 0.944565 for the maximum num-
ber of runs in a string. The proof was very simple, once after we verified that the runs
in the string τ is 174697, and noticed some trivial properties of the string. We do not
think that the bound is optimal. We believe that our work would revive the interests
to push the lower bound higher up, since the previous bound 3/(1+

√
5) ≈ 0.927 was

conjectured to be the optimal since 2003.
Further research will include trying to find properties of run-rich strings by an-

alyzing strings obtaining from heuristic search. We believe that compression gives
a clue to understanding the property of run-rich strings, since while τ has length
184973, it can be represent by mere 24 terms of LZ factors (see Appendix).

4 http://www.shino.ecei.tohoku.ac.jp/runs/
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Appendix

The binary string τ1558 with |τ1558| = 1558, run(τ1558) = 1455, run(τ 2
1558) = 2915,

run(τ 3
1558) = 4374, giving lower bound (4374 − 2915)/1558 ≈ 0.93645 > 0.927.

110101101001011010110100101101011001101011010010110101101001011010

110010110101101001011010110100101101011001101011010010110101101001

011010110010110101101001011010110010110100101101011010010110101100

101101011010010110101101001011010110010110100101101011010010110101

100101101011010010110101100101101001011010110100101101011001011010

110100101101011010010110101100101101011010010110101100101101001011

010110100101101011001011010110100101101011010010110101100101101001

011010110100101101011001011010110100101101011001011010010110101101

001011010110010110101101001011010110100101101011001011010110100101

101011001011010010110101101001011010110010110101101001011010110010

110100101101011010010110101100101101011010010110101101001011010110

010110100101101011010010110101100101101011010010110101100101101001

011010110100101101011001011010110100101101011010010110101100101101

011010010110101100101101001011010110100101101011001011010110100101

101011010010110101100101101001011010110100101101011001011010110100

101101011001011010010110101101001011010110010110101101001011010110

100101101011001011010110100101101011001011010010110101101001011010

110010110101101001011010110010110100101101011010010110101100101101

011010010110101101001011010110010110100101101011010010110101100101

101011010010110101100101101001011010110100101101011001011010110100

101101011010010110101100101101011010010110101100101101001011010110

100101101011001011010110100101101011010010110101100101101001011010

110100101101011001011010110100101101011001011010010110101101001011

0101100101101011010010110101101001011010

By interpreting τ1558 as a binary representation of an integer, it can be expressed
in hexadecimal representation by:

0x35A5AD2D66B4B5A5ACB5A5AD2D66B4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD

2D65AD2D65A5AD2D65AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B5969

6B4B596B4B5A5ACB5A5ACB4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD2D65AD2D6

5A5AD2D65AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B59696B4B596B4

B5A5ACB5A5ACB4B5A5ACB5A5ACB4B5A5ACB5A5AD2D65A5AD2D65AD2D65A5AD2D65

AD2D696B2D696B2D2D696B2D696B4B59696B4B596B4B59696B4B596B4B5A5A

The string τ of Lemma 6 can be represented by 24 terms of LZ factors.
τ = a / (0,1) / b / (1,3) / (1,4) / (2,8) / (5,13) / (12,19) /

(26,31) / (49,38) / (50,63) / (89,93) / (113,162) / (57,317) /

(249,693) / (275,984) / (879,2120) / (942,3041) / (2811,6521) /

(2999,9374) / (8764,20072) / (9332,28878) / (27096,45341) /

(38210,67195)


