
Edit Distance with

Single-Symbol Combinations and Splits

Manolis Christodoulakis1 and Gerhard Brey2

1 School of Computing & Technology, University of East London
Docklands Campus, 4–6 University Way, London E16 2RD, UK

m.christodoulakis@uel.ac.uk

2 Centre for Computing in the Humanities, King’s College London
26–29 Drury Lane, London WC2B 5RL, UK

gerhard.brey@kcl.ac.uk

Abstract. In this article we introduce new variants of the edit distance string sim-
ilarity measure, where apart from the traditional insertion, deletion and substitution
operations, two new operations are supported. The first one is called a combination and
it allows two or more symbols from one string, to be “matched” against one symbol
of the other. The dual of a combination, is the operation of a split, where one symbol
from the first string is broken down into a sequence of two or more other symbols,
that can then be matched against an equal number of symbols from the second string.
The notions of combining and splitting symbols can be defined in a variety of ways,
depending on how the application in hand defines similarity. Here we introduce three
different possible definitions, and we provide an algorithm that deals with one of them.
Our algorithm requires O(L) time for preprocessing, and O(mnk) time for computing
the edit distance, where L is the total length of all the valid combinations/splits, and
k is an upper bound on the number of valid splits of any single symbol.

Keywords: edit distance, combination, split, OCR

1 Introduction

One of the fundamental problems in string algorithmics has been, for more than 40
years now, the pattern matching problem, where exact copies of a given string, the
pattern, need to be identified within a normally much larger string, the text. However,
the need to relax the “exactness” of the pattern matching process, very soon became
obvious. An endless list of applications benefit from approximate, rather than exact,
pattern matching algorithms, including text processors, spell checking applications,
information retrieval and bioinformatics.

Numerous approaches have been used to incorporate “inexactness” in pattern-
matching (see for example [4], [2, Ch.12] or [7, Ch.10]), one of the most commonly
used being the edit distance metric (also known as Levenshtein distance, as a credit
to Vladimir Levenshtein who first mentioned it [3]). The edit distance between two
strings, is simply defined as the minimum number of edit operations (substitutions,
insertions, deletions) that are required to transform one string to the other.

In this paper, we introduce a new edit operation, called a combination, and its
dual, called a split. These operations, in contrast to the traditional ones, apply to
sequences of input symbols, rather than single symbols. The combination operation
is that of combining two or more symbols from one string, and considering this com-
bination to be equal to a single symbol from a second string. Equivalently, the single
symbol of the second string can be split into the combination of symbols from the

Manolis Christodoulakis, Gerhard Brey: Edit Distance with Single-Symbol Combinations and Splits, pp. 208–217.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 209

first. Defining which combinations match to what symbols, and vice versa, depends
on the application. In all examples in this paper, we are referring to combinations
that look similar to some symbol, but of course one can define any list of combina-
tions that are meaningful for their application. For example, the sequence of symbols
“rn” can be combined into the symbol “m”, or “m” can be split to “rn”, since the
two look similar to each other.

The motivation for this new variant of the edit distance metric, comes from the
approximate pattern matching problem on texts which originate from old documents
that have been scanned and processed with Optical Character Recognition (OCR)
Algorithms. In particular, we have been working on the Nineteenth-Century Serials
Edition (NCSE) [5], which is a digital edition of six nineteenth-century newspaper and
periodical titles. The corpus consists of about 100,000 pages that were micro-filmed,
scanned in and processed using OCR software.

The quality of some of the text resulting from the OCR process varies from barely
readable to illegible. This reflects the poor print quality of the original paper copies
of the publications. An exact search for a pattern in the scanned and processed text
would retrieve only a small number of matches, but ignore incorrectly spelled or
distorted variations; on the other hand, an approximate search using general edit
distance would yield too many false matches, since it cannot distinguish between
“random” errors and errors that come from misinterpreted combinations of symbols
which are common in OCR texts. For example, a general edit distance search for the
name “Billington” in the corpus, would fail to distinguish between the approximate
matches “Wellington” and “Billmgton”, both of which have edit distance 2 from the
pattern, but where in reality only the latter is a true match misinterpreted by the
OCR software.

The paper is organised as follows. In Section 2 we describe the notation used
throughout the paper, and formally define the notions of combinations and splits.
In Section 3 we describe the preprocessing part of our algorithm and in Section 4
the main algorithm for computing the edit distance with combinations and splits. In
Section 5 two variants of the problem we tackle here are presented. Finally, Section 6
contains our concluding remarks.

2 Preliminaries

Consider strings x = x[1] · · · x[n] and y = y[1] · · · y[m] over an alphabet Σ; the edit
distance between x and y is defined as the minimum number of edit operations (in-
sertions, deletions or substitutions) to transform x to y, or vice versa [6,3]. Implicitly,
the simple edit distance assigns to each operation a unit cost, and computes the min-
imum cost of transforming x to y. A generalised version of the edit distance, is one
that allows the different operations to have different costs; let dsub be the cost for one
substitution operation, and dindel that of one insertion or deletion operation (one is a
dual of the other, hence the identical cost). The generalised edit distance is defined
then as the minimum cost of transforming x to y.

Notice how traditional variants of the edit distance always compare a single symbol
from one string with either a single symbol from the other (e.g. x[i] against y[j])
or a single symbol from one string with the empty string (e.g. x[i] deletion or y[j]
insertion). In the variant of the edit distance that we introduce in this paper, we allow
more than one symbol to be “matched” either against a single symbol (that is, many
symbols are combined into one) or against a different combination of symbols (called

210 Proceedings of the Prague Stringology Conference 2008

Figure 1. Example of a single-symbol combination

a recombination). For example, the symbol “m” is a combination of the symbols
contained in the string “in” or “rri”, and “b” is a combination of “lo”. As seen
in this example, there may very well exist, and they normally do, more than one
combinations for the same symbol (symbol “m” in this example). Formally, we define
combinations in the following way:

Definition 1. Given a string x = x[1] · · · x[n] and a symbol α, α is called a single-
symbol combination, or simply a combination, of x (equivalently, x is called a split
of α), if and only if x is a valid match for α; we write α 7→ x.

Obviously, any algorithm that makes use of combinations of symbols must be able
to differentiate between meaningful (valid) and random combinations. In our case,
meaningful ones are those combinations of symbols that optically resemble one or
more other symbols. It is worth noting however that any kind of valid combinations
may as well be used. For instance, one may consider combinations of symbols which
sound similar to other (combinations of) symbols.

We assume that the list of valid combinations is given in the following way: for
every symbol, α, for which valid combinations exist, a combination list Cα is provided
such that

Cα = {x ∈ Σ∗|α 7→ x}

We further introduce the following notation

kα = |Cα| (1)

lα =
∑

x∈Cα

|x| (2)

L =
∑

α∈Σ

lα (3)

Simply, kα denotes the number of keywords (valid combinations) in Cα, lα is sum of
the lengths of all the strings in Cα, and L is the overall sum of lengths of all the
strings over all combination lists.

With these definitions in place, the problem we are going to tackle in this paper
is defined as follows:

Definition 2 (Edit Distance with Single-Symbol Combinations (EDSSC)).
Given strings x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and
lists Cα for α ∈ Σ, the edit distance with single-symbol combinations problem is that
of finding the minimum cost of transforming x to y (equivalently, y to x) allowing
substitutions, insertions or deletions, and single-symbol combinations or splits.

An example of this problem is illustrated in Figure 1. The substring “in” of the
first string is combined and matched against the symbol “m” of the second string. The
EDSSC is therefore dcomb, since one combination operation is required to transform
one string to the other. Normally, the cost for a combination/split will be smaller

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 211

Algorithm 6 Function next for moving inside a tree Tα

1: function next(v, a)
2: while g(v, a) =“fail” do

3: v ← f(v)

4: return g(v, a)

(possibly zero) than that of a substitution or insertion/deletion; thus, the cost dcomb

is going to be much smaller —reflecting the fact that the two strings look similar to
each other— than the dindel + dsub of the simple edit distance for the same pair of
strings.

3 Preprocessing

In this stage we preprocess the lists of valid combinations and splits, which are given
as input; the purpose of preprocessing is to allow the main algorithm to run faster.

Recall that for every symbol α we are given a list, Cα, of combinations that match
α. The preprocessing starts by building an Aho-Corasick automaton [1], Tα, from the
strings contained in Cα, for every α ∈ Σ. We will then slightly modify these Tα’s to
better suit our edit distance algorithm. First, let us briefly describe the Aho-Corasick
automaton.

An Aho-Corasick automaton, T , is constructed from a set of keywords, C, essen-
tially by generating a trie of all the strings contained in C, and computing functions
g, f and out as described below. Let v be one node in T , a be a symbol, and Lv be
the string spelled out on the path from the root to node v. Then:

– The “forward” (or goto) function g(v, a) returns a node u in T if there exists an
outgoing edge from v to u labeled with a, or returns “fail” if no such node u exists;
exceptionally for the root node, g(root, a) = root if in the trie there is no outgoing
edge from root labeled with a.

– The “failure” function f(v) returns a node u whose label, Lu, corresponds to the
longest proper suffix of Lv that occurs in T ; if no such suffix exists, f(v) = root.

– The “output” function out(v) returns all the keywords of C that are suffixes of
Lv.

The algorithm that searches a text, s, for any of the strings in C, operates by
repeatedly calling the function g(v, a), where v is the current node at any stage and a

is the symbol of s currently being processed; initially, v is the root of T and a = s[1].
If at any stage g(v, a) returns “fail”, then the failure function is used and the search
continues from the failure link node, g(f(v), a). To make the notation easier, we define
function next, shown in Algorithm 6, which for a node v and input symbol a, follows
as many failure links as necessary (possibly zero) and then calls g once.

For the purposes of our algorithm we need to slightly modify function out. In-
stead of storing the actual keywords that match at a specific node, we only need
to know the lengths of all these matching keywords. This information will be later
used to compute the cost of performing combination operations. The modification is
easily implemented during the construction of the automaton, without modifying the
running time of the algorithm.

Figure 2 demonstrates an example of preprocessing the combination list of the
symbol m, Cm = {iii,iin,in,ni,nn,rn,rri}. Nodes are represented by circles, solid edges

212 Proceedings of the Prague Stringology Conference 2008

Figure 2. Preprocessing Cm = {iii,iin,in,ni,nn,rn,rri}

represent the forward links (function g), and dashed edges represent the failure links
(function f); for those nodes for which a failure link is not shown in the diagram, it
is implied to be the root. Next to those nodes for which one or more keywords match,
we show the lengths of the matching keywords. See for example, node 4 at which both
keywords “iin” and “in” match, we store the lengths of these two keywords, 3 and 2
respectively.

4 EDSSC Algorithm

Let x = x[1] · · · x[n] and y = y[1] · · · y[m] be the two strings whose distance we
want to compute; assume that the combination lists have already been provided and
pre-processed, yielding Aho-Corasick automata Tα, for all α ∈ Σ for which valid
combinations exist.

The algorithm works by processing gradually increasing prefixes of x and y. While
processing prefixes x[1..i] and y[1..j], where 1 ≤ i ≤ n and 1 ≤ j ≤ m, the permitted
edit operations are as follows:

– substitution of a symbol x[i] with the symbol y[j], with cost dsub

– insertion of the symbol y[j] into x, with cost dindel

– deletion of the symbol x[i] from x, with cost dindel

– combination of the symbols x[ℓ..i] (for some 1 ≤ ℓ < i) to match y[j], with cost
dcomb

– split of the symbol x[i] to match y[h..j] (for some 1 ≤ h < j), with cost dcomb

The algorithm maintains a dynamic programming table D(0..n, 0..m), where
D(i, j) represents the minimum cost of transforming x[1..i] to y[1..j], allowing the
operations mentioned above. In contrast to the traditional edit distance dynamic pro-
gramming algorithm, the whole D table must be maintained throughout the operation
of the algorithm, rather than the last row (column) which were the only needed in
the row-wise (column-wise) operation of traditional dynamic programming.

The base conditions for D are D(i, 0) = i · dindel and D(0, j) = j · dindel, similarly
to the simple edit distance algorithm. The correctness of these base conditions comes
from the fact that the empty string ǫ is not a valid split for any α ∈ Σ, and thus the

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 213

only way to transform x[1..i] to ǫ is by deleting x[1..i] from x and similarly the only
way of transforming ǫ to y[1..j] is by inserting y[1..j] into x.

The recurrence relation for D(i, j), for i, j > 0, is

D(i, j) = min

D(i− 1, j − 1) + sub(x[i], y[j]) {substitution}

D(i, j − 1) + dindel {insertion}

D(i− 1, j) + dindel {deletion}

comb(x[1..i], y[j]) {combination}

split(x[i], y[1..j]) {split}

where the functions sub, comb and split are defined as follows:

– sub: this function simply compares x[i] with y[j] and returns 0 if they are equal
and dsub otherwise;

– comb: finds the suffix of x[1..i] that can be combined into symbol y[j] with the
minimum cost and returns this cost, or returns +∞ if there is no such suffix;

– split: finds the suffix of y[1..j] that can be combined into symbol x[i] with the
minimum cost and returns this cost, or returns +∞ if there is no such suffix.

Next, we will demonstrate how functions comb and split operate. We will assume
a row-wise scan of the dynamic programming table D (a column-wise scanning is
equivalent).

4.1 Combinations

Recall that, while computing D(i, j), a combination operation translates to finding
one suffix of x[1..i] that can be combined to y[j]; here we are interested in the suffix
with the minimum cost. This suffix can be found by searching the combination list of
y[j], Cy[j], and more specifically by making use of the Aho-Corasick automaton, Ty[j],
which was created during preprocessing. Ty[j] is traversed, starting from the root, and
descending down the tree, using failure links where necessary (functions next, see
Section 3), until the whole prefix x[1..i] has been spelled out. Then the number of
valid combinations is the number of elements in the set returned by function out, in
the last node we visited in Ty[j]. If this set is empty, then there is no suffix of x[1..i]
that is a valid split of y[j] and thus the algorithm returns +∞ cost. On the other
hand, if it has one or more elements, the algorithm must check the cost of each of
those combinations and return the minimum.

Let v be the last node visited in T when parsing x[1..i], and out(v) = {v1, . . . , vr}
be the output of node v, where v1, . . . , vr are integers representing the lengths of the
keywords that match suffixes of x[1..i]. Thus, x[i − v1 + 1..i], . . . , x[i − vr + 1..i] are
all the valid splits of y[j]. What remains to be done is compute the cost of each of
those.

If x[i− v1 + 1..i] is combined and matched to y[j], then the prefix x[1..i− v1] of x

and the prefix y[1..j−1] of y must be aligned with each other. That is, the cost of this
combination operation is the minimum cost of transforming x[1..i− v1] to y[1..j− 1],
plus the cost of combining x[i−v1+1..i] into y[j], i.e. D(i−v1, j−1)+dcomb. We repeat
the same process for all the values in out(v) and return the minimum, and since the
cost for every combination is constant, dcomb, the minimum cost for a combination at
cell D(i, j) is

min{D(i− v1, j − 1), . . . , D(i− vr, j − 1)}+ dcomb

214 Proceedings of the Prague Stringology Conference 2008

The algorithm for comb, as it has been described so far, is not efficient: for every
prefix x[1..i] we spend O(i) time to traverse Ty[j] from the root until all i symbols
of x[1..i] have been processed. Let v be the last node visited in this traverse. We
notice that, during the computation of D(i+1, j), when the prefix x[1..i+1] must be
spelled out on Ty[j], one can avoid parsing this whole prefix simply by remembering
that x[1..i] ended in node v. Then, the traversal for x[1..i + 1] requires only one call
to function next, next(v, x[i + 1]).

To take advantage of this observation, and given the assumption that D is pro-
cessed in a row-wise manner, the algorithm must store the node where the suffix x[1..i]
ends in each Ty[j] (for all 1 ≤ j ≤ m). To do that we create a vector t[1..m], which
while working on the i-th row of D will contain values t[j] = next(root(Ty[j]), x[1..i]),
1 ≤ j ≤ m. Then, during processing the (i + 1)-th row of D, t[j] is updated with the
value t[j] = next(t[j], x[i + 1]). The initial values of vector t —that correspond to
the empty prefix of x— are of course t[j] = root(Ty[j]).

4.2 Splits

A split operation is the dual of a combination; a split on x is a combination on y

and vice versa. During the computation of D(i, j), a split means finding the suffix of
y[1..j] that is a valid split of x[i] and is of minimal cost. Similarly to the combination
operation, this can be found by spelling out y[1..j] on the Aho-Corasick automaton
of x[i], Tx[i].

Storing and recalling the last node visited by the prefix y[1..j] on Tx[i], works here
too, only somewhat in a simpler way. The row-wise processing of D ensures that all
prefixes of y are processed one after the other on Tx[i], before moving to Tx[i+1]. Thus
in this case, only a single variable u is required such that, during the computation
of D(i, j), u = next(root(Tx[i]), y[1..j]), and then while computing D(i, j + 1), u is
updated as u = next(u, y[j + 1]). The initial value of u, which corresponds to the
empty prefix of y, is u = root(Tx[i]).

4.3 Analysis of the Algorithm

The complete algorithm for the “edit distance with single-symbol combinations” prob-
lem is shown in Algorithm 7. Notice that the first argument of comb (split) is only
a node in an Aho-Corasick automaton, the function does not need to know the whole
prefix of x (y) that has already been processed.

Theorem 3. Algorithm 7 requires O(L) time for preprocessing, and O(mnk) time for
computing the edit distance, where L is the total length of all the valid combinations
(see Eq. 3), and k is an upper bound on the number of valid splits of any single symbol.

Proof. The preprocessing consists of building an Aho-Corasick automaton, Tα, for
each list of valid combinations, Cα. This process requires time linear in the length
of the input [1], that is O(lα) (see Eq. 2). The updating of function out to return
the lengths of the matching keywords, rather than the keywords themselves, does
not increase the running time since during construction we can, in constant time per
entry in out(v), replace every keyword x ∈ out(v) with its length, |x|. Collectively,
the preprocessing of all the combination lists requires O(

∑

α∈Σ lα) = O(L) time.
In the edit distance algorithm, initialization (lines 10–14 of Algorithm 7) takes

O(m+n) time for assigning values to the first column of D, of size O(n), the first row

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 215

Algorithm 7 EDSSC algorithm

1: function edssc(x, y)
2: n← |x|, m← |y|
3: for all α ∈ Σ do {Preprocess combination lists}
4: Tα ← Aho-Corasick(Cα)
5: for all v ∈ Tα do

6: out′ ← {}
7: for all x ∈ out(v) do

8: out′ ← out′ ∪ {|x|}

9: out← out′

10: for i← 1 to n do {Initializations}
11: D(i, 0)← i · dindel

12: for j ← 1 to m do

13: D(0, j)← j · dindel

14: t[j]← root(Ty[j])

15: for i← 1 to n do {Main algorithm}
16: u← root(Tx[i])
17: for j ← 1 to m do

18: D(i, j)← min(D(i− 1, j − 1)+sub(x[i], y[j]),
D(i, j − 1) + dindel, D(i− 1, j) + dindel,

comb(t[j], x[i]), split(u, y[j]))

19: return D(n, m)

20: function sub(α, β)
21: if α = β then

22: return 0
23: else

24: return dsub

25: function comb(v, α)
26: v ← next(v, α) {Update v}
27: min← +∞
28: for all r ∈ out(v) do

29: if D(i− r, j − 1) + dcomb < min then

30: min← D(i− r, j − 1) + dcomb

31: return min

32: function sub(v, α)
33: v ← next(v, α) {Update v}
34: min← +∞
35: for all r ∈ out(v) do

36: if D(i− 1, j − r) + dcomb < min then

37: min← D(i− 1, j − r) + dcomb

38: return min

216 Proceedings of the Prague Stringology Conference 2008

of D, of size O(m), and the vector, t, of size O(m), which is initialized with pointers
to the roots of Ty[j]. The main body of the algorithm (lines 15–18) computes the
values of D(i, j) for 1 ≤ i ≤ n and 1 ≤ j ≤ m, by performing one of the operations
substitution, insertion, deletion, combination, or split. The first three clearly require
constant time, to examine cells D(i−1, j−1), D(i, j−1) and D(i−1, j) respectively,
while combinations and splits need deeper analysis.

A combination on cell D(i, j), first makes a call to next (line 26), which in turn
makes zero or more calls to function f and a single call to function g (Algorithm 6).
Although the number of calls to f is not constant, from [1] we know that collectively
for a string of size n, there are O(n) calls to both f and g. At the end of our algorithm,
we have processed m columns, each of which can be seen collectively as a single parsing
of string x on one Aho-Corasick automaton, i.e. O(mn) time; similarly each of the
n rows can be seen collectively as a single parsing of string y on one Aho-Corasick
automaton, i.e. O(mn) time. Therefore, overall, the total time spent on next is
O(mn).

After calling next, the function comb computes the cost of each combination
suggested by out(v), in time constant per entry or |out(v)| in total, as can be seen in
lines 28–30 of Algorithm 7. Unfortunately, in the worst case the number of elements in
out(v) can be as large as the number of keywords, kα, in the Aho-Corasick automaton.
Let k be an upper bound of kα, that is kα ≤ k for all α ∈ Σ. Then, for every call
to comb we spend O(k) time to examine all the valid combinations. Thus, the total
time for computing the whole table D is O(mnk).

It is worth noting that, despite the worst-case running time being O(mnk), in
practice the algorithm is expected to run in time closer to O(mn), since the number
of matching strings, out(v), for every node v, is rarely larger than two or three, and
most often it is either zero or one (see for example Figure 2).

5 Variants of the EDSSC Problem

In this section we present two possible variants of the EDSSC problem, which further
extend the notions of combining and splitting symbols. Both can be seen as useful
generalisations of EDSSC, but unfortunately the algorithm we presented in this paper
cannot (at least not trivially) extend to solve them, and we leave these as open
problems for further investigation.

Similar to the way we defined the combination lists, Cα, for symbols α ∈ Σ,
we could also define recombination lists, Cx, x ∈ Σ∗; that is, lists of combinations
of symbols that validly represent a different combination of symbols. For example,
Cbl = {lol, ld}. In this way, when computing the edit distance between strings x

and y, we allow whole substrings of x (rather than single symbols) to be matched
against different substrings of y, and vice versa. Therefore, a more general version of
the EDSSC problem is that of allowing the operation of symbol recombinations, in
parallel to all operations allowed in the EDSSC problem.

Definition 4 (Edit Distance with Re-Combinations (EDRC)). Given strings
x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and lists Cx for
x ∈ Σ∗, the edit distance with recombinations problem is that of finding the minimum
cost of transforming x to y (equivalently, y to x) allowing substitutions, insertions or
deletions, single-symbol combinations or splits, and string recombination operations.

M.Christodoulakis, G. Brey: Edit Distance with Single-Symbol Combinations and Splits 217

An even more general variant of the edit distance with (re-)combinations problem,
is that of allowing transitive (re-)combinations of symbols. We illustrate this problem
with an example. Consider strings x =“m” and y =“rri”, and combination lists
Cm = {rn, in} and Cn = {ri}; although the two strings look similar there is no
explicit valid combination “rri” in Cm. However, notice that the suffix “ri” of y is a
valid combination in Cn, and thus y could be matched to y′=“rn”; now x 7→ y′ since
“rn” ∈ Cm, and thus we can infer that x 7→ y.

Definition 5 (Edit Distance with Transitive Combinations (EDTC)). Given
strings x = x[1] · · · x[n] and y = y[1] · · · y[m], values dsub, dindel and dcomb, and lists Cx
for x ∈ Σ∗, the edit distance with transitive combinations problem is that of finding
the minimum cost of transforming x to y (equivalently, y to x) allowing substitutions,
insertions or deletions, single-symbol combinations or splits, and string recombination
operations, where any of the (re-)combination operations can be transitive:

x 7→ y and y 7→ z : x 7→ z where x, y, z ∈ Σ∗

6 Conclusions

In this paper we have introduced the problem of edit distance with single-symbol
combinations and splits, where in addition to the traditional edit distance operations,
consecutive symbols in one string may be combined and matched against one symbol
from the other. Our algorithm runs in O(mnk) time with a prior O(L) time for
preprocessing, where L is the sum of lengths of all the valid combinations and k is
the maximum number of valid splits for any symbol.

We also defined two variants of the above problem which allow a) two or more
consecutive symbols of one string to match a different sequence of two or more consec-
utive symbols in the other string (recombinations), and b) combinations of symbols
to be constructed by combining known smaller valid combinations (transitive com-
binations). These two variants are equally, if not more, interesting problems, both
from a practical/application point of view, as well as from an algorithmic point of
view, and have been left as open problems. As it stands, the algorithm we presented
here does not appear to extend towards solving either of these problems, and further
research is required.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: An aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. M. Crochemore and W. Rytter: Jewels of Stringology: Text Algorithms, World Scientific,
2002.

3. V. I. Levenshtein: Binary codes capable of correcting deletions, insertions and reversals. Soviet
Physics Doklady, 10 1966, pp. 707–710.

4. G. Navarro: A guided tour to approximate string matching. ACM Computing Surveys, 33(1)
2001, pp. 31–88.

5. Nineteenth-Century Serials Edition (NCSE): http://www.ncse.ac.uk.
6. D. Sankoff and J. Kruskal, eds., Time Warps, String Edits, and Macromolecules: The Theory

and Practice of Sequence Comparison, Addison-Wesley, 1983.
7. B. Smyth: Computing Patterns in Strings, Pearson Education, 2003.

