
On Regular Expression Hashing to Reduce FA Size

Wikus Coetser, Derrick G. Kourie, and Bruce W. Watson

Fastar Research Group, Department of Computer Science, University of Pretoria
spring.haas.meester@gmail.com, dkourie@cs.up.ac.za, bruce@bruce-watson.com

Abstract. In [7], a new version of Brzozowski’s algorithm was put forward which re-
lies on regular expression hashing to possibly decrease the number of states in the
generated finite state automata. This method utilizes a hash function to decide which
states are merged, but does not, in general, construct *-equivalence classes on automa-
ton states, as is done in minimization algorithms. The consequences of this approach
depends on the hash function used, and include the construction of a super-automaton
and potential non-determinism. A revised version of the hashing algorithm in [7] is
presented that constructs a deterministic automaton. A method for rewriting the hash
function input is presented that allows the construction of a hash function that is an
injection, mapping a unique integer to each regular language. A method for measuring
the difference between the exact- and super-automaton is presented.

Keywords: finite state automaton, DFA, NFA, state merging, equivalence classes,
regular languages, super-automaton, approximate automaton, hash function, minimiza-
tion, exact automaton, sub-automaton

1 Introduction

Brzozowski has a well-known algorithm for deriving a finite automaton from a regular
expression. In [7], a modified version of Brzozowski’s Algorithm was presented for
constructing an approximate automaton, hereafter referred to as a super–automaton.
By merging the states in the event of hash function clashes, the resulting super-
automaton may have fewer states than the finite state automaton1 that would have
been generated by the original algorithm.

The results of this merging process are explored in this article: in section 2, the
original and modified versions of Brzozowski’s Algorithm are presented. In section 3,
a proof is given that the approach in section 2 always produces a super–automaton.
In section 4, it is shown why the approach in section 2 may lead to non–determinism,
and a new algorithm is put forward for constructing a deterministic automaton. In
section 5.1 a method is put forward for judging the relative quality of super- and
exact automata. In section 5.3, a method is given for modifying the input of the hash
function in order to allow the entire language of a state to be taken into account when
hashing. In section 5.4 the effect of the modulo function used in most hash functions
is considered.

2 Brzozowski’s Algorithm with state merging

In order to understand how state merging is implemented with a hash function, it is
necessary to first look at Brzozowski’s original algorithm, given in Algorithm 1, and
taken from [7].

1 Finite state automaton is abbreviated FA, a non-deterministic FA is abbreviated NFA and a
deterministic FA is abbreviated DFA.

Wikus Coetser, Derrick G. Kourie, Bruce W. Watson: On Regular Expression Hashing to Reduce FA Size, pp. 227–241.

Proceedings of PSC 2008, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04145-1 c© Czech Technical University in Prague, Czech Republic

228 Proceedings of the Prague Stringology Conference 2008

Brzozowski’s Algorithm takes a regular expression, and constructs a finite state
automaton from that expression, using left derivatives[1], first symbol sets and a test
for whether a regular language given by a regular expression contains the empty
string:2

– The left derivative of a regular expression RE with respect to an input symbol s

is written s−1RE, and represents all the strings of the regular language defined
by RE, with their respective first symbols removed.

– The first symbol set of a regular expression RE, written as first(RE), is the set
containing the first symbol of each string represented by the regular expression
RE.

– Given that ε represents the empty string and that L(RE) represents the set of
strings of the language described by the regular expression RE, the test ε ∈ L(RE)
is written nullable(RE).

Note that in Algorithms 1, 2 and 3, an FA is represented by a 4-tuple
〈Q, δ, E, F 〉, where Q is the set of states of the automaton, δ is the state transition
function, E is the initial state and F is the set of final states. The alphabet Σ is not
referenced in any of the respective algorithms and should therefore be regarded as
implicit in the FA’s representation.

The method used by Brzozowski’s Algorithm is illustrated in Figure 1: regular
expressions are associated with states in the algorithm.

Figure 1. Brzozowski’s Algorithm without state merging

Given the input regular expression RE, the first symbol set of RE is calculated.
In Figure 1 the first symbol set {s1, s2, s3} corresponds to the out-transition symbols
of the state marked as RE. For each first symbol s, the left derivative s−1RE is
calculated. This left derivative represents the next state for s. The remap function
in Algorithm 1 (Brzozowski’s original algorithm) maps each regular expression to
the next unassigned integer. If a regular expression re-appears (taking idempotence,
associativity and commutativity of regular expression operators into account) as a
result of computing the derivatives, a cycle forms in the automaton, representing a
plus or star closure. When a regular expression represents a regular language that
contains an empty string, a final state has been reached.

In the remainder of this text, state(RE) is used to designate a state associated
in some unspecified (i.e. abstract) way with the regular expression RE. If we wish to
emphasise that in some concrete implementation, the association of the state with the

2 The notation for first symbols, left derivatives and nullable regular expressions is taken from [3].

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 229

Algorithm 1 (Brzozowski’s Algorithm with Remapping)

func Brz(REinit)
next, δ, F, remap := 0, ∅, ∅, ∅;
remap[REinit], next := next, next + 1;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj

if destination 6∈ done ∪ todo→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ {destination};
remap[destination], next := next, next + 1

8 destination ∈ done ∪ todo→ skip
fi
; δ(remap[REj], s) := remap[destination]

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {remap[REj]}

8 ¬nullable(REj)→ skip
fi

od;
return 〈{0, . . . , next− 1}, δ, 0, F 〉

cnuf

regular expression is via a function, for example hash, then the notation hash(RE)
is used.

Consider two regular expressions RE1 and RE2. Jointly, these two regular expres-
sions might form state(RE1) and state(RE2) in some FA, denoted by F . Suppose
L(RE1) = {ab}, L(RE2) = {cd} and L(F) = {ab, cd} respectively. If F had been
built by Algorithm 1, then states remap(RE1) and remap(RE2) respectively would
have been constructed, and the languages associated with these states, as well as with
F would be preserved.

In the Algorithm 2, hashing is used to assign an integer to each state, instead of
the remap function. If the two regular expressions RE1 and RE2 hash to the same
integer, then the collision is not resolved. Instead, the states are merged. This is
illustrated in Figure 2. Note that the language of the automaton with the states
merged is {ab, ad, cd, cb}, which is different from L(F), given above as {ab, cd}.

This merging behaviour has two consequences: the construction of a super-automaton,
and the automaton becoming potentially non-deterministic. These consequences are
discussed in the next two sections.

3 Super-automata and exact automata

Previously in [7], approximate automata were described informally as being the out-
put of Algorithm 2. Here the preferred nomenclature of super-automata will be used

230 Proceedings of the Prague Stringology Conference 2008

Figure 2. Brzozowski’s Algorithm with state merging: state(RE1) and state(RE2)
have been merged

Algorithm 2 (Brzozowski’s Algorithm with Hashing — NFA version)

func Brz hash NFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo, h := done ∪REj , todo\REj , hash(REj);
Q := Q ∪ {h};
{ Only expand out-transitions for symbols in the first symbol set ofREj }
for s : first(REj)→
{ Use the left derivatives to calculate the next state }
destination := s−1REj ;
if destination 6∈ done ∪ todo→
{ Update the todo set in order to expand the automaton for destination }
todo := todo ∪ destination

8 destination ∈ done ∪ todo→ skip
fi
; δ(h, s) := δ(h, s) ∪ {hash(destination)};

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf

instead of approximate automata. The notion of a super-automaton of a regular lan-
guage is formally defined, and it is then formally shown that the output of Algorithm
2 is a super-automaton of the regular language associated with its input regular ex-
pression.

Let RL denote an intended regular language, for example the regular language
described by the regular expression REinit which is to form the input for Brzozowski’s
Algorithm. The definition of an exact automaton is:

Definition 1. If RL is a regular language and FA is an automaton for which L(FA) =
RL, then FA is an exact automaton of RL.

The definition for a super-automaton is:

Definition 2. If RL is a regular language and FA is an automaton for which L(FA) ⊇
RL, then FA is a super-automaton of RL.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 231

For the sake of completeness, the definition of a sub-automaton is also given, even
though it does not play a direct role in this article.

Definition 3. If RL is a regular language and FA is an automaton with L(FA) ⊆
RL, then FA is a sub-automaton of RL.

As can be seen from the definitions above, a super-automaton accepts the same
language as an exact automaton, and (possibly) also additional strings. The proof that
Algorithm 2 produces a super-automaton of its input regular expression is presented

next. Note that
−→
L (s) represents the right language of a state s, and

←−
L (s) represents

the left language.

Theorem 4 (The construction of a super-automaton). Algorithm 2 produces
a super-automaton, FAs, of L(REinit), i.e. L(FAs) ⊇ L(REinit).
Proof Consider any two states s1 and s2 of L(REinit). The language of s1 is L(s1) =
←−
L (s1) ·

−→
L (s1) and similarly, the language of s2 is L(s2) =

←−
L (s2) ·

−→
L (s2). If Algorithm

2 merges these states into one called merge(s1, s2), then its language is:

L(merge(s1, s2)) = (
←−
L (s1) ∪

←−
L (s2)) · (

−→
L (s1) ∪

−→
L (s2))

Distributing · over ∪ gives

←−
L (s1) ·

−→
L (s1) ∪

←−
L (s1) ·

−→
L (s2) ∪

←−
L (s2) ·

−→
L (s1) ∪

←−
L (s2) ·

−→
L (s2)

⊇
←−
L (s1) ·

−→
L (s1) ∪

←−
L (s2) ·

−→
L (s2)

= L(s1) ∪ L(s2)

Since L(merge(s1, s2)) ⊇ L(s1) ∪ L(s2) for any two states s1 and s2 that are merged
by Algorithm 2, it follows that L(FAs) ⊇ L(REinit).

Note that the notion of proper set containment does not play a role in theorem 4.
Therefore it does not exclude the possibility that Algorithm 2 may produce an au-
tomaton FAs that has the same language as the initial regular expression REinit.
What is particularly noteworthy is that this equality may hold even if two or more

states are merged. An example of this is when
−→
L (s1) =

−→
L (s2) and

←−
L (s1) =

←−
L (s2),

i.e. when the states being merged have the same language. In that case, Algorithm 2
partially fulfills the role of minimizing the output of Algorithm 1.

4 Non-determinism arising from the hashing algorithm

One of the consequences of merging states is that the resulting automaton may, under
rather special circumstances, be non-deterministic. To see where non-determinism
arises, consider two regular expressions REi and REj that represent different regular
languages. Suppose that
∃ s : (first(REj) ∩ first(REi)) · L(s−1REi) 6= L(s−1REj)

Suppose also that the hash function used in Algorithm 2 hashed REi and REj to the
same value, but hashed s−1REi and s−1REj to different values.

Example 5. Let REi = sb, REj = sc, s−1REi = b and s−1REj = c and let hash(REi) =
hash(REj) but let hash(s−1REi) 6= hash(s−1REj). Assume that s is the only first
symbol in REi and REj. In this case Algorithm 2 will construct the automaton shown
in Figure 3. Note that, because of the duplicate out-transition for hash(REi) (which
has been merged with hash(REj)), the automaton is non-deterministic.

232 Proceedings of the Prague Stringology Conference 2008

Figure 3. Non-determinism resulting from Algorithm 2

The fact that Algorithm 2 has been designed to generate a non-deterministic automa-
ton is evident from its transition function, δ, that maps from a set of hashed states
and transition symbol to a set of hashed states.

As is well-known, it is generally preferable to work with a DFA instead of an NFA.
The reason for this is that the NFA cannot be represented as a two dimensional state
transition table and this has implications for the size of the resulting automaton, as
well as for the complexity of the associated FA-related algorithms. Of course, the
NFA resulting from Algorithm 2 could be transformed to an equivalent DFA in the
normal way. However, in Algorithm 3 a revised version of Algorithm 2 is presented
that directly constructs a DFA. As in Algorithm 2, the revised algorithm relies on a
hash function.

In the remainder of this text we will take the liberty of overloading the union
operator, ∪. Thus, when used as a regular expression operator, as in (REi ∪ REj),
the result is a regular expression such that L(REi ∪ REj) = L(REi) ∪ L(REj).
Nevertheless, the semantics of ∪ will be clear from the context in which it is used.

Algorithm 3 is premised on the observation that if the non-determinism in the
automaton in Figure 3 is to be avoided, then an out-transition on s from a state
hash(REj) should not be inserted if:

– the state hash(REj) corresponds to an existing state hash(REi); and
– it is discovered that a transition on s out of state hash(REi) already exists.

Indeed, in such an event, the existing transition from state hash(REi) (which is equal
to hash(REj)) should be removed. Additionally, a new transition on s from state
hash(REi) should then be provided to a new destination state. The new destination
state should now be represented by the hashed value of of the regular expression
(s−1REi ∪ s−1REj). The resulting automaton is shown in Figure 4. Note that the
resulting automaton is a super-automaton of the regular language of the NDF that
would have been constructed by Algorithm 2. It is therefore also a super-automaton
of the regular language of the input regular expression to the algorithm.

The pseudocode of Algorithm 3 that appears below relies on the following:

– In the algorithm, the inverse mapping of hash is used, and is called regex Thus if
RE is a regular expression such that hash(RE) = p, then regex(p) = RE. While
one cannot in general rely on a hash function having an inverse, if the hash(RE)

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 233

Figure 4. Determinism resulting from Algorithm 3

has previously been computed as p, it is a simple matter to store a backward
reference to RE from the stored p.

– In the algorithm, the transition function δ is treated as a set of pairs of the form
〈〈h, s〉, d〉, i.e. the first element of the pair is itself a pair. In this case, h is the
hashed value of a regular expression corresponding to a source state, and d is
the hashed value to the regular expression corresponding to the destination state
when the symbol s is encountered.

– In order to update δ to account for a newly discovered transition from h to d upon
input symbol s, a set union operation is used to augment the set that currently
represents δ by an additional element. The form of the operation is thus:
δ ∪ {〈〈h, s〉, d〉}

– In order to remove from δ a mapping that represents the transition from h to
d upon input symbol s, the set difference operation is used. The form of the
operation is thus: δ \ {〈〈h, s〉, d〉}

The foregoing discussion about Algorithm 3 referred to the removal of an existing
transition, the creation of a new transition and the creation of a new destination state.
Examination of the details of the algorithm’s pseudocode will indicate where and how
these operations take place. However, both the discussion and the algorithm are silent
about what should happen to the existing state labelled hash(s−1REi) in Figure 3.
Should this state as well as its in- and out-transitions be removed? The answer to
this question requires special consideration, which is given now, with reference to the
contents of Figure 3.

Firstly, note that in dealing with the hash function clash, the algorithm inserts
the regular expression (s−1REj ∪ s−1REi) into the todo set. (More specifically, the
expression in the code destination ∪ regex(d) builds the regular expression (s−1REj∪
s−1REi), which is then assigned to destination, and subsequently inserted into todo

by computing todo∪{destination}.) Thus, in some future iteration of the algorithm,
it will be selected and all out-transitions that might have been generated previously
on state hash(s−1REi) will be generated once more on state hash(s−1REi∪s−1REj).
This is because first(s−1REi) ⊆ first(s−1REi∪s−1REj). This means that if the only
in-transition into state hash(s−1REi) was on s, nothing would be lost by discarding
state hash(s−1REi) from Q, as well as all transitions out of it, as stored in the δ

function.
However, if there were more transitions into state hash(s−1REi) than simply on s,

then the algorithm might no longer generate a super-automaton of the input regular
expression, if this state and associated transitions were to be discarded. For this
reason, the state hash(s−1REi) should not be summarily discarded.

On the other hand, if s was indeed the only in-transition to state hash(s−1REi),
then not removing this state means that it may become an unreachable state in

234 Proceedings of the Prague Stringology Conference 2008

Algorithm 3 (Brzozowski’s Algorithm with Hashing — DFA version)

func Brz hash DFA(REinit)
Q, δ, F := ∅, ∅, ∅;
done, todo, := ∅, {REinit};
do todo 6= ∅ →

let REj be some regular expression such that REj ∈ todo;
done, todo := done ∪ {REj}, todo\{REj};
h := hash(REj);
Q := Q ∪ {h};
{ expand out-transitions for symbols in the first symbol set of REj }
for s : first(REj)→
{ compute the left derivative of REj with respect tos }
destination := s−1REj ;
if (∃d : 〈〈h, s〉, d〉 ∈ δ)→

δ := δ \ {〈〈h, s〉, d〉};
destination := destination ∪ regex(d)

8 (∄d : 〈〈h, s〉, d〉 ∈ δ)→ skip
fi
;
if destination 6∈ done ∪ todo→

todo := todo ∪ {destination}
8 destination ∈ done ∪ todo→ skip
fi
;δ := δ ∪ {〈〈h, s〉, hash(destination)〉}

rof
;
if nullable(REj)→
{ The final states all have a right language containing the empty string }
F := F ∪ {h}

8 ¬nullable(REj)→ skip
fi

od;
return 〈Q, δ, hash(REinit), F 〉

cnuf

the resulting DFA, since the algorithm removes its only in-transition. At the im-
plementation level, this would mean that an amount of total storage used for the
transition function would be wastefully occupied. In our implementation of Algo-
rithm 3, the removal of such dead states and associated transitions is quite simple,
but implementation-dependent. For this reason, and for the sake of brevity, these
details have been omitted from Algorithm 3.

5 Characterising hash functions

5.1 A basis for measuring hash function quality

It has been established above that the automaton constructed through state merging
is a super-automaton of the language associated with the algorithm’s input regular
expression. Informally, one might say that the “difference” between the languages
recognised by these respective automata reflects the quality of the hash function
used to generate the super-automaton. In this section, we propose a more precise

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 235

and formal notion of the quality of the hash function. In the penultimate section,
preliminary empirical investigations to assess these ideas are described.

The notion of hash function quality is based on the perception that the language
associated with the algorithm’s input regular expression has a unique minimum DFA,
which may or may not be produced by Algorithm 3. The approach to finding this
unique minimum DFA described in [6] is based on the notion of k-equivalence between
states. The k-equivalence relation between states is inductively defined as follows [2]:

Definition 6. Two states t1 and t2 are:

– 0-equivalent iff they are both either accepting or rejecting states.

– k-equivalent iff for all input symbols s on the states t1 and t2, the next states
δ(t1, s) and δ(t2, s) are (k − 1)-equivalent.

– *-equivalent iff they are k-equivalent for all values of k larger than some constant
value.

In [5] it is shown that if, in an automaton that contains |Q| states, two states are
k-equivalent for k = |Q| − 2, then these two states are *-equivalent. If two states are
*-equivalent, it means that they represent the same regular language.

In the above-mentioned minimization algorithm, pairs of states of a given DFA
are examined to determine their k-equivalence status. The algorithm therefore implic-
itly determines membership of k-equivalence classes in general, and of *-equivalence
classes in particular. States in each *-equivalent class are eventually merged into a
single state, resulting in the required unique minimal FA.

The foregoing suggests an approach to measuring the quality of a hash function,
namely to associate quality with the extent to which state merging (caused by hash-
clashes) approximates the merging of *-equivalent states.

However, before formalising this insight, note that hash functions in Algorithm
3 take regular expressions as input. For this reason, the notion k-equivalent regular
expressions needs to be defined. The definition is analogous to the definition of k-
equivalent states, namely:

Definition 7. Two regular expressions REi and REj are:

– 0-equivalent iff nullable(REi) = nullable(REj)

– k-equivalent iff first(REi) = first(REj) and for all s ∈ first(REi), s−1REi and
s−1REj are (k − 1)-equivalent.

When a given hash function maps two regular expressions to the same value, we
may enquire about the maximum k-equivalence. They may not have any equivalence
relationship at all, or they be maximally k-equivalent for some k < |Q|−2, or they may
be *-equivalent. Various weighting schemes could be proposed to reflect the overall
quality of all clashes during a run of Algorithm 3: the higher the maximal k-equivalent
status of two clashing regular expressions, the more favourably the clash should weigh
in the overall measure. In the preliminary empirical experiments discussed below, the
percentage of hash clashes that result from *-equivalent regular expressions relative
to the total number of hash clashes is used as a measure of the quality of a number of
different hash functions. Other measures of quality are not considered at this stage.

236 Proceedings of the Prague Stringology Conference 2008

5.2 Ideal hash functions

The foregoing raises the question: what are the characteristics of an ideal hash func-
tion? To give such a characterisation, note that the signature of hash functions in
Algorithm 3 are of the form h : Re → N, where Re is the set of regular expressions.
Suppose that Rℓ is the set of regular languages, and that L : Re → Rℓ, so that L(R)
is the regular language associated with regular expression R. Finally, suppose that f

denotes a function f : Rℓ → N. An ideal hash function may now be defined as the
composition of the latter two functions as follows:

Definition 8. h is an ideal hash function for Re iff h = f · L and f is an injection.

This means an ideal hash function maps all regular expressions that have the same
language (and only those expressions) to the same natural number. Put differently,
an ideal hash function maps regular expressions to the same value if and only if they
are *-equivalent. Thus, if it were possible to find an ideal hash function for use in
Algorithm 3, then the algorithm would be guaranteed to produce the minimum exact
DFA for the input regular expression.

Note that our notion of an ideal hash function for regular expressions is slightly
different from the conventional notion of a perfect hash function for a set. The latter
is an injection from that set to the natural numbers. In fact, the above definition
could be reformulated to indicate that h is an ideal hash function on Re if f is a
perfect hash function on Rℓ.

In fact, the remapping in Algorithm 1 may be viewed abstractly as the application
of a perfect hash function on Re, not to regular expressions representing the right
language of a state, but to regular expressions representing the language of a state.
This is the concept next defined.

5.3 A regular expression for the language of a state

Consider a regular expression, R, that is to be hashed or remapped in one of the
algorithms previously discussed. Its language, L(R), corresponds with the so-called

right language of its associated state in the constructed FA, denote by
−→
L (state(R)).

That same state also has a left language,
←−
L (state(R)), which is the set of all prefixes

of all strings of the FA that pass through state(R). Indeed the set of all strings passing
through state(R), is is called the language of state(R). It is denoted by L(state(R)),

and is given by
←−
L (state(R)) ·

−→
L (state(R)).

However, when constructing state(R) during the execution of any of the algo-

rithms, a regular expression whose language is
←−
L (state(R)) is not available. All that

is available during any iteration is the initial regular expression, REinit, and the
regular expression currently under consideration, R. Fortunately, this information is
sufficient to find an explicit form for a regular expression, R′, whose language corre-
sponds L(state(R)), namely:

R′ = (Σ∗ ·R) ∩REinit (1)

Note that (Σ∗ · R) designates all possible strings that end in a string that is in R’s
right language. Intersecting these strings with REinit ensures that only strings in
L(state(R)) remain.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 237

Thus, abstractly, the remapping in Algorithm 1 can be viewed as a perfect hash
function that is applied, not to the right language of a regular expression R, but to the
corresponding regular expression R′ as defined abovince the language of each state
in a DFA is unique, this perfect hash function never merges any states. Of course,
this claim has to be qualified in terms of the precise way in which a given application
implements the remapping in the algorithm. A given implementation might have a
more liberal notion of regular expression equality than strict lexicographic equality,
taking into account operator properties such as idempotence or commutativity. (For
example a may be treated as the same regular expression as a ∪ a, and/or a ∪ b as
the same regular expression as b ∪ a, etc.)

Below we report briefly on a preliminary experiment in which Algorithm 2 is run
with a variety of hash functions that are applied to R, while Algorithm 3 is run with
these same hash functions applied to R′.

5.4 The effects of the modulo function

Most hash functions are of the form (h(r) mod n)—i.e. they they apply modulo n

to some integer value that they compute, where n reflects the address space being
hashed to. This application of modulo n will clearly tend to undermine the quality
of hash function h. If h happened to be an ideal hash function, then there is no
guarantee that (h(r) mod n) will deliver ideal behaviour.

6 Preliminary empirical investigations

In preliminary experiments to test the above ideas, Gödel numbers [4] were used
to generate over 190 000 short different regular expressions of length 7, based on
4-character alphabet. Algorithm 1 was applied to each of these regular expressions.
The largest FA generated by Algorithm 1 had 7 states.

In order to apply Algorithms 2 and 3, various hash functions were selected, based
on the recommendations in [7]. In particular, various morphisms were selected, each
structurally mapping the regular expressions to a different hash function. By this
we mean that wherever an operator occurs in a regular expression, a corresponding
integer operator is selected in the hash function which is structurally similar to the
regular expression operator. For example, since the regular expression ∪-operator
is idempotent and commutative, a hash function should be used that relies on an
integer operator with these properties wherever the ∪-operator occurs in the regular
expression. Such an integer operator might be, for example, addition, bitwise-and,
bitwise-or, etc. Eight such mappings are shown in table 1.

Algorithm 2 was repeatedly invoked to construct DFAs for each of the more than
190000 regular expressions. Each of the eight hash functions in table 1 was used, as
well as modulo i (i = 2, . . . , 5) variants of the each hash function. Thus 8 × 5 = 40
DFAs were constructed for each regular expression. This entire experiment was then
repeated using a modified version of Algorithm 3 in which the regular expression in
equation (1) was used to determine the hashed value of each state, instead of the
derivative representing the state’s right language. (The results of Algorithms 2 and
3 based on hashing the right language of a state were similar, and consequently, the
results of Algorithm 3 run in this mode are not further discussed here.)

In each application of Algorithms 2 and 3, whenever two states were to be merged,
their *-equivalent status was assessed. This was done by verifying the k-equivalent

238 Proceedings of the Prague Stringology Conference 2008

status of the two states up to k = |Q| − 2, the point at which *-equivalence is
attained [5]. Since the exact value of |Q| was not known a priori, the upper bound
on |Q| established by Algorithm 1 was used, namely 7.

Mapping 1 Mapping 2
∅ 7→ 000 . . . 00016 ∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∧ arg arg? 7→ 000 . . . 00016 ∧ arg

arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1))) arg+ = ¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ = arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∧ arg2 arg1 ∪ arg2 7→ arg1 ∧ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 3 Mapping 4
∅ 7→ 000 . . . 00016 ∅ 7→ 000 . . . 00016

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∨ arg arg? 7→ 000 . . . 00016 ∨ arg

arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1))) arg+ 7→ ¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∨ arg2 arg1 ∪ arg2 7→ arg1 ∨ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 5 Mapping 6
∅ 7→ FFF . . . FFF16 ∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∧ arg arg? 7→ 000 . . . 00016 ∧ arg

arg+¬arg ∨ (arg ∨ (1 << (n− 1))) arg+¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∧ arg2 arg1 ∪ arg2 7→ arg1 ∧ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Mapping 7 Mapping 8
∅ 7→ FFF . . . FFF16 ∅ 7→ FFF . . . FFF16

ε 7→ 000 . . . 00016 ε 7→ 000 . . . 00016

arg? 7→ 000 . . . 00016 ∨ arg arg? 7→ 000 . . . 00016 ∨ arg

arg+¬arg ∨ (arg ∨ (1 << (n− 1))) arg+¬arg ∨ (arg ∨ (1 << (n− 1)))
arg∗ 7→ arg ∨ (1 << (n− 1)) arg∗ 7→ arg ∨ (1 << (n− 1))
arg1 ∩ arg2 7→ arg1 ∧ arg2 arg1 ∩ arg2 7→ arg1 ∨ arg2

arg1 ∪ arg2 7→ arg1 ∨ arg2 arg1 ∪ arg2 7→ arg1 ∨ arg2

arg1 · arg2 7→ ¬arg1 ∨ arg2 arg1 · arg2 7→ ¬arg1 ∨ arg2

Table 1. Mappings of regular expression operators to hash function operators

Tables 2 and 3 summarise the results of these experiments. Columns headed *-eq
% indicate the percentage of hash clashes (and thus merged states) that turned out
to be *-equivalent for the specific hash function version. Columns headed “States”
indicate the size of the largest DFAs (in terms of number of states) generated by the
respective hash function. The tables reveal the following patterns:

– The relative hash function performance (as indicated in the *-eq% columns) ap-
pears very similar for the two algorithms: good hash functions seem to perform
consistently well, and bad functions consistently badly. In fact, Spearman’s rank
correlation test was applied to the *-equivalent rankings in the two tables of the

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 239

No MOD MOD 2 MOD 3 MOD 4 MOD 5
Mapping *-eq % States *-eq % States *-eq % States *-eq % States *-eq % States
1 77 4 73 2 73 3 75 4 75 4
2 79 4 73 2 74 3 76 4 76 4
3 83 4 75 2 76 3 78 4 79 4
4 82 4 74 2 75 3 77 4 77 4
5 77 4 73 2 73 3 75 4 75 4
6 79 4 73 2 74 3 76 4 75 4
7 83 4 75 2 76 3 78 4 79 4
8 81 4 74 2 74 3 76 4 76 4

Table 2. Algorithm 2 results: hashed regular expressions represent right language of
states.

No MOD MOD 2 MOD 3 MOD 4 MOD 5
Mapping *-eq % States *-eq % States *-eq % States *-eq % States *-eq % States
1 69 1 69 1 69 1 69 1 69 1
2 71 2 69 1 71 2 69 1 71 2
3 80 4 69 1 71 2 69 1 71 2
4 71 3 74 2 71 2 69 1 71 2
5 69 1 69 1 69 1 69 1 69 1
6 69 1 69 1 69 1 69 1 69 1
7 80 4 74 2 74 3 76 4 77 4
8 71 3 69 2 70 3 76 4 77 4

Table 3. Algorithm 3 results: hashed regular expressions represent full language of
states.

hash functions without the modulo operation. A correlation value of 0.92 was ob-
tained, which is well above the 95% confidence level of 0.72 (for sample size of
8) for rejecting the hypothesis that the hash function performance differed in the
two algorithms.

– Data in table 2 indicating the largest DFA generated under each hash function is
very much in line with expectations. All hash functions of a given modulo produce
the same size largest DFAs, and these largest sizes rise as the modulo value rises.
They attain a maximum size of 4, when modulo 4 is reached. This suggests (but
does not prove) that 4 is the maximum size of the minimized DFA generated from
the more than 190000 regular expressions.

– By contrast, data in table 3 in relation to the largest DFA generated under various
hash functions, does not seem to be influenced significantly by the modulo opera-
tion. In fact, the overall quality measures in this table are lower than in table 2. If
the inference above is correct that the maximum size of the minimized DFA is 4,
then maximum DFA sizes increasingly less than 4 lead to super-automata increas-
ingly different from the associated exact automata. This suggests that hashing on
the language of a state is not a good idea. The reasons for this relatively poor
performance will be further researched in future work.

– Entries in the *-eq % columns seem surprisingly high. It is interesting to note in
table 3 that all hash functions that reduce the maximum sized DFA (and therefore
all DFAs) down to 1 state, have a *-equivalent rating of 69%. This means that the
percentage *-equivalent mergers attributable to different regular expressions being

240 Proceedings of the Prague Stringology Conference 2008

hashed to the same value, ranges across the two tables from 69%− 69% = 0% to
a maximum of 83%− 69% = 14%.

– Hash functions 3 and 7 appear to perform consistently well, whereas hash functions
1 and 5 (and possibly 6) perform consistently badly. It would seem that the last
three mappings in each block of table 1 play a critical role in determining the hash
function quality. Worst case behaviour arises when the regular expression operator
∪ is associated with the bitwise operator ∧ (see mappings 1, 2, 5 and 6), which
significantly improves when the association is switched to the bitwise operator ∨
(see mappings 3, 4, 7 and 8). Optimal performance is reached (in mapping 3 and
7) when, in addition, ∩ is mapped to ∧, but this mapping also leads to worst case
performance is also reached (in mappings 1 and 5) if ∪ is wrongly mapped.

Even though the automata constructed are small in size, a large range of regu-
lar expressions have been tested, representing a diverse range of regular expression
structures. Nevertheless, a shortcoming of this approach is it becomes impractical
for larger regular expressions: the Gödel numbers involved become extremely large,
making it impossible to iterate over them.

In the future, we intend generating a sample of random large regular expressions,
to assess the impact of different hash functions under such circumstances.

7 Conclusions and Further Work

In this article, the consequences of regular expression hashing as a means of finite state
automaton reduction was explored based on variations of Brzozowski’s Algorithm. It
was shown that a super-automaton is always constructed, no matter what the hash
function may be. It was also demonstrated that a non-deterministic automaton can
be constructed, and a new algorithm was put forward for constructing a deterministic
FA, using the same approach as the original two algorithms.

An approach was proposed to measuring the quality of a hash function that derives
a super-automaton of an exact automaton, based on k-equivalence classes on regular
expressions. A derivation was also presented to represent the language of a state with
regular expressions. These ideas were empirically tested on a large sample of relatively
small regular expressions and their associated automata.

Further work will focus on searching for hash functions that are closer to the
ideal, and on gaining a more precise understanding of why some hash functions are
better than others, given the k-equivalence criteria and the definition of an ideal hash
function. This will include exploring substitution variations on integer functions for
regular expression operators.

References

1. J. Brzozowski: Derivatives of regular expressions. Journal of the Association of Computing
Machinery, 11 October 1964, pp. pages 481–494.

2. S. Epp: Discrete Mathematics with Applications, International Tomson Publishing, Inc., 1995.
3. M. Frishert: FIRE Works & FIRE Station: A finite automata & regular expression playground,

tech. rep., Technical University Eindhoven, 2004.
4. R. McNaughton: Elementary Computability, Formal Languages and Automata, Prentice Hall

PTR, Upper Saddle River, NJ, USA, 1981.
5. B. W. Watson: A taxonomy of finite automata minimization algorithms, tech. rep., Technical

University Eindhoven, 1994.

W.Coetser, D.G.Kourie, B.W.Watson: On Regular Expression Hashing to Reduce FA Size 241

6. B. W. Watson and J. Daciuk: An efficient incremental DFA minimization algorithm. Journal
of Natural Language Engineering, 9(1) March 2003, pp. 49–64.

7. B. W. Watson, D. G. Kourie, E. Ketcha Ngassam, T. Strauss, and L. Cleophas: Ef-

ficient automata constructions and approximate automata. International Journal of Foundations
of Computer Science, Vol. 19(1) 2008, pp. 185–193.

