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Maxime Crochemore (Université de Marne la Vallée, France)
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Pavlos Antoniou
Miroslav Baĺık
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Preface

The proceedings in your hands contains the papers presented in the Prague Stringol-
ogy Conference 2009 (PSC’09) which was held at the Department of Computer Sci-
ence and Engineering of the Czech Technical University in Prague, Czech Republic,
on August 31–September 2. The conference focused on stringology and related top-
ics. Stringology is a discipline concerned with algorithmic processing of strings and
sequences.

The papers submitted were reviewed by the program committee and twenty three
were selected for presentation at the conference, based on originality and quality. This
volume contains not only these selected papers but also abstract of one invited talk
devoted to the combination of text compression and string matching.

The Prague Stringology Conference has a long tradition. PSC’09 is the fourteenth
event of the Prague Stringology Club. In the years 1996–2000 the Prague Stringol-
ogy Club Workshops (PSCW’s) and the Prague Stringology Conferences (PSC’s) in
2001–2006, 2008 preceded this conference. The proceedings of these workshops and
conferences had been published by the Czech Technical University in Prague and
are available on WWW pages of the Prague Stringology Club. Selected contributions
were published in special issues of journals the Kybernetika, the Nordic Journal of
Computing, the Journal of Automata, Languages and Combinatorics, and the In-
ternational Journal of Foundations of Computer Science. The series of stringology
conferences was interrupted in 2007 when the members of the Prague Stringology
Club were honoured to organize Conference on Implementation and Application of
Automata 2007 (CIAA 2007).

The Prague Stringology Club was founded in 1996 as a research group at the
Department of Computer Science and Engineering of the Czech Technical University
in Prague. The goal of the Prague Stringology Club is to study algorithms on strings,
sequences, and trees with emphasis on finite automata theory. The first event orga-
nized by the Prague Stringology Club was the workshop PSCW’96 featuring only a
handful of invited talks. However, since PSCW’97 the papers and talks are selected
by a rigorous peer review process. The objective is not only to present new results
in stringology and related areas, but also to facilitate personal contacts among the
people working on these problems.

I would like to thank all those who had submitted papers for PSC’09 as well as the
reviewers. Special thanks go to all the members of the program committee, without
whose efforts it would not have been possible to put together such a stimulating pro-
gram of PSC’09. Last, but not least, my thanks go to the members of the organizing
committee for ensuring such a smooth running of the conference.

In Prague, Czech Republic
on August 2009

Jan Holub
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Combining Text Compression and String

Matching: The Miracle of Self-Indexing

Gonzalo Navarro⋆

Department of Computer Science, University of Chile.
Blanco Encalada 2120, Santiago, Chile. gnavarro@dcc.uchile.cl

This decade has witnessed the raise of what I consider the most important break-
through of modern times in text compression and indexed string matching. Self-
indexing is the mechanism by which a text is simultaneously compressed and indexed,
so that the self-index occupies space close to that of the compressed text, provides ran-
dom access to any part of it, and in addition supports efficient indexed pattern match-
ing. Thus a self-index can replace the text by a compressed version with enhanced
search functionalities. Self-indexing builds on a large base of compressed data struc-
tures, which is another fascinating algorithmic area that has appeared two decades
ago with the aim of obtaining compact representations of classical data structures.
Although they usually require more instructions than their classical counterparts to
operate, they can benefit from the memory hierarchy. This is particularly noticeable
when they can operate in main memory in cases where the classical structures require
disk storage.

My aim in this talk is to present a thin “vertical” slice of this construction, so that
there is time to visualize in sufficent detail a complete solution from the basics to the
final result. I will start with a plain and a compressed solution to provide rank on
bitmaps, a simple operation of counting the number of 1s up to a given position, with a
surprising number of applications. I will then introduce wavelet trees, which constitute
a sort of self-index for sequences, supporting operation rank for the alphabet symbols.
Then I will explain the Burrows-Wheeler Transform and the FM-index concept, which
coupled with wavelet trees offer a fully-functional self-index. Finally, I will show how
this simple combination is able of achieving high-order compression of a text, and
will give some insights on recent work around indexing highly repetitive sequence
collections, such as DNA and protein databases, versioned data, and temporal text
databases. I will conclude by posing some open challenges.

⋆ Partially funded by Millennium Institute for Cell Dynamics and Biotechnology (ICDB), Grant
ICM P05-001-F, Mideplan, Chile.

Gonzalo Navarro: Combining Text Compression and String Matching: The Miracle of Self-Indexing, p. 1.
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Feature Extraction for Image Pattern Matching

with Cellular Automata

Lynette van Zijl and Leendert Botha

Department of Computer Science
Stellenbosch University

South Africa
lvzijl@sun.ac.za, lbotha@cs.sun.ac.za

Abstract. It is shown that cellular automata can be used for feature extraction of
images in image pattern matching systems. The problem under consideration is an
image pattern matching problem of a single image against a database of LEGO bricks.
The use of cellular automata is illustrated, and solves this classical content-based image
retrieval problem in near realtime, with minimal memory usage.

Keywords: cellular automata, pattern matching, content-based image retrieval

1 Introduction

The use of cellular automata (CA) in image processing and graphical applications
has received some attention over the past few years (for example, [3,6,10]). In this
paper, CA are applied to the pattern matching of images in a content-based image
retrieval (CBIR) system.

CBIR systems generally require the recognition of semantically equivalent subim-
ages from a library of given images. For example, given a library of photographs, a
requirement may be the retrieval of all photographs containing (any kind of) flower.
The methods for solving this general problem, however, can be improved if specific
sub-domains of images are considered. In addition, solutions for specific problems can
then often be generalized to improve the general CBIR methods [4].

In this work, the specific domain of images is that of LEGO bricks. This seemingly
frivolous domain contains many mathematically interesting aspects. For example,
the image matching must be a semantically exact pattern matching, but the images
themselves can differ in rotation, scale and color (for example, see figure 1). Moreover,
a useful software implementation demands a realtime solution, which means that
computationally expensive mathematical solutions are not appropriate. This work
shows that the extraction of the semantic definition of a LEGO brick from a given
image (the so-called feature extraction phase of this problem) can be implemented
with CA. The CA solution allows for a direct parallel implementation, and is also
implementable directly on the GPU – this implies that the use of the CA allows
almost instantaneous feature extraction.

Section 2 contains the necessary background and definitions. The use of the CA
for feature extraction is described in section 3. The results are analysed in section 4,
and the conclusion is given in section 5.

2 Background and definitions

The relevant terminology and definitions for CA and CBIR are briefly summarized
in this section.

Lynette van Zijl, Leendert Botha: Feature Extraction for Image Pattern Matching with Cellular Automata, pp. 3–14.
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Figure 1. Two semantically equivalent LEGO bricks.

2.1 Cellular automata

We assume that the reader is familiar with CA as, for example, in [14]. We therefore
summarize only the necessary definitions here.

A cellular automaton (CA) C is a k-dimensional array of automata. Each of
the individual automata in the CA is said to occupy a cell in the CA. In the initial
configuration of C, each automaton in C is in its initial state – this is typically refered
to as time step t = 0. Each transition of C involves the simultaneous transitions of
each of the individual automata. In addition, the individual automata are aware of
the states of each of the other automata in the array, and the individual transitions
may depend on the states of the other automata in the array. The global state of
C thus evolves through time steps, where each time step describes the simultaneous
changes in the individual automata.

In our case, CA are used to model images. Hence, only two-dimensional CA are
considered, where each cell represents one pixel in the image plane. Furthermore,
it is assumed that the individual automata in each cell are identical, and hence one
transition function can be defined for the CA as a whole. Traditionally, each individual
automaton is not dependent on all the other automata in the CA, but only on a subset
of these automata. This subset is known as the neighbourhood of the automaton in
the cell under consideration. We now formalize these intuitive concepts (see [8] for
more detail):

Definition 1. A 2D CA is a 3-tuple M = (A,N, f), such that

– A is the finite nonempty state set,
– N = (x1, . . . ,xn) is the neighbourhood vector consisting of vectors in Z

2, and
– f : An → A is the transition rule.

Given a configuration c of the cells in the CA at a certain time t, the configuration
c′ at time t + 1 for each cell x can be calculated as

c′(x) = f(c(x1, . . . ,xn)) .

In such a 2D CA, specific neighbourhoods can be defined. For example, the so-call-
ed Von Neumann neighbourhood for a cell xi,j is defined as 〈xi−1,j, xi,j−1, xi,j+1, xi+1,j〉.

2.2 Content-based image retrieval

Given an image pattern p, CBIR requires that p is compared to a set of images P
to find a set of semantically equivalent matches Q. To define semantic equivalence,
certain characteristics (features) of the images must correspond within given bound-
aries.
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The set of images P is preprocessed off-line to obtain a so-called feature vector
for each image, and this feature vector is stored with each image. The search pattern
p requires (realtime) preprocessing to obtain its feature vector, and the matching
process then becomes a comparison of the feature vector of p against all the feature
vectors in P . A distance measure between feature vectors is used to return all images
in P which are semantically closely related to the search image p.

The preprocessing of p in the case of the LEGO domain requires a number of
steps:

– Baseboard elimination: Each p is assumed to be an image of a LEGO brick on
a so-called baseboard, which is a flat LEGO surface with studs (see figure 1). It
is assumed that the baseboard has a color contrasting with the color of the brick.
The first step then is to eliminate the baseboard from p.

– Edge detection: The brick itself is identified in p by finding all the edges be-
longing to the brick.

– Stud location: The positions of the studs are located in p.
– 2D: From the stud locations, the top surface of the brick is identified by finding

the edges closest to the studs.
– Geometry: Given the stud locations, the arrangement of the studs in a geometric

pattern defines the final semantics of the brick.

This work covers the preprocessing of the search image p, and it is shown how to
accomplish this task by using CA.

3 Feature extraction with CA

The aim of the preprocessing phase is to construct a feature vector, and this process
is described in detail in this section.

3.1 Background elimination

To be able to calculate an accurate feature vector for p, all the pixels that correspond
to the background must be eliminated. As stated before, the background in this case
always consists of a LEGO baseboard which has a color distinguishable from the color
of the brick. As an initial step, the color of the pixels on the edge of the image is
subtracted from all pixels which have approximately the same color.

In figure 2, after the initial color subtraction, the reader may note that the base-
board studs are not fully eliminated. This is due to the fact that the studs form
shadows, which are not of the same color as the baseboard. To eliminate these shad-
ows, a CA is used.

Let p1 be the image obtained from p after the baseboard color subtraction. De-
fine a Von Neumann-type neighbourhood nx for each cell xi,j, such that nx =
(xN ,xS,xW ,xE), where

xN = 〈xi−δL,j, . . . , xi−1,j〉
xS = 〈xi+δL,j, . . . , xi+1,j〉
xW = 〈xi,j−δL

, . . . , xi,j−1〉
xE = 〈xi,j+δL

, . . . , xi,j+1〉 .
That is, the Von Neumann neighbourhood is taken in the usual four directions up

to a distance of δL from the current cell. Suppose that a background pixel in cell xi,j

is indicated by xi,j = 0. A CA CL can now be defined, with transition function
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c′(xi,j) =





0, if ∃kN , kS, kW , kE : xi−kN ,j = 0 &
xi+kS ,j = 0 &
xi,j−kW

= 0 &
xi,j+kE

= 0
1, otherwise,

where 1 ≤ kN , kS, kW , kE ≤ δL. That is, if there is any background pixel found
within a distance of δL in all four directions from the current cell, then the cell is taken
to be a background cell and will be eliminated. The number of iterations required
to eliminate background pixels with this CA method is linearly dependent on the
size of the original image p, and the relative size of the brick against the size of the
background baseboard.

Figure 2. The original image on the left and the image after removing background
pixels, based on their color. The small border around the picture indicates which
pixels were used to determine the background color.

Some careful consideration will show that there is one instance where CA CL will
fail to remove all background pixels. This occurs under certain lighting conditions
of p, when the background pixels form a straight line. In this scenario, there will be
background pixels in only one or two directions from a given cell, and hence the line
will not be removed. This is clear from the definition of the transition function of CA
CL above.

A second CA CS can be constructed to eliminate the straight lines. This CA
uses a smaller distance, δS, to look in all four directions. In contrast to CL, a pixel
is identified as background if either the horizontal or the vertical directions contain
background pixels within the distance δS. Hence, let p2 be the image obtained from p1

after the background elimination described above. Again, define a Von Neumann-type
neighbourhood nx for each cell xi,j, such that nx = (xS

N ,xS
S,xS

W ,xS
E), where

xS
N = 〈xi−δS ,j, . . . , xi−1,j〉

xS
S = 〈xi+δS ,j, . . . , xi+1,j〉

xS
W = 〈xi,j−δS

, . . . , xi,j−1〉
xS

E = 〈xi,j+δS
, . . . , xi,j+1〉 .

That is, a Von Neumann neighbourhood in all four directions up to a distance of
δS is used. Suppose that a background pixel in cell xi,j is indicated by xi,j = 0. The
transition function is then defined as

c′(xi,j) =





0, if ∃kS
N , kS

S : xi−kS
N

,j = 0 & xi+kS
S

,j = 0

0, if ∃kS
W , kS

E : xi,j−kS
W

= 0 & xi,j+kS
E

= 0

1, otherwise .
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Thus, a single subtraction of image pixels, followed by an application of CA C1,
followed by an application of CA C2, yields the desired results, with all of the back-
ground pixels removed. The result is illustrated in figure 3.

Figure 3. The image after applying CAs CL and CS.

Once the background has been eliminated from the given image, one can proceed
to find the edges of the brick itself.

3.2 Edge detection

The edge detection algorithm for the LEGO brick problem needs to isolate the inside
and outside edges of the brick, as well as the pattern of studs on the top of the brick.

Our solution implements a CA-based method originally proposed by Popovici et
al [10]. Let ϕ(a, b) define a similarity measure between pixels a and b. The simplest
example of such a similarity measure is the Euclidean distance in RGB-space 1, so
that ϕ(a, b) = ‖a− b‖. Hence, the value of ϕ(a, b) decreases as the similarity between
pixels a and b increases, so that ϕ(a, a) = 0.

Let ǫ be a specified lower threshold. Then define the CA Ce with the transition
function as given below:

c′(xi,j) =





0, if ϕ(xi,j, xi,j−1) < ǫ & ϕ(xi,j, xi,j+1) < ǫ &
ϕ(xi,j, xi−1,j) < ǫ & ϕ(xi,j, xi+1,j) < ǫ

xi,j, otherwise .

Again, the neighbourhood is clearly a Von Neumann neighbourhood, and in this
case the distance is 1.

Sample output from Ce is shown in figure 4.

Figure 4. The edge detected images using cellular automaton Ce.

1 Both Euclidean distance and vector angle were implemented as similarity measure, in both RGB
space and YIQ space, in the software.



8 Proceedings of the Prague Stringology Conference 2009

3.3 Feature extraction

The semantics of a LEGO brick is determined by its form, the number of studs
and the arrangement of the studs2. For example, consider figure 5. Brick number 1
is a rectangular 2 by 4 brick. It has eight studs that are arranged in two rows of
four studs each, in straight lines. There are also rounded bricks (brick number 3),
macaroni bricks (brick number 4), and L-shaped bricks (brick number 6). Note that
bricks number 2 and 3 have the same number of studs in the same arrangement, but
their edges define the bricks to be semantically different. Also, brick number 2 and
brick number 5 have the same number of studs (namely, four each), but in a different
arrangement and hence these two bricks are also semantically different.

Figure 5. The semantic forms of LEGO bricks.

It is now necessary to find a feature vector that mathematically describes a LEGO
brick, based on its form, number of studs, and stud arrangement. These characteristics
are to be extracted and combined into a single feature vector for any given brick. These
steps are discussed below.

Stud location The edges of a stud are difficult to find with standard shape-detection
methods, as the edges have a distinctive halfmoon shape (see figure 6). A possible
solution is to use template matching, where template shapes are moved around the
image until a location is found which maximizes some match function. A popular
match function is the squared error [13]:

SE(x, y) =
N∑

α=1

N∑

β=1

(f(x− α, y − β)− T (α, β))2

where f is the image and T is the N ×N template.

Figure 6. Four edge detected bricks showing similarity in the shape of the studs.

2 In some user-defined cases, the color of the brick may also be used as an additional semantic
feature.
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The template used for the studs of the LEGO bricks is shown in figure 7. Note
that templates of different size are provided, as scaling is not accurate in this specific
case. The score of the matching function is scaled relative to the size of the template
to prevent larger templates from getting higher scores.

Figure 7. The set of templates used in the template matching process.

Given the stud locations, the next step is to determine the stud formation.

Stud formation After the previous step, the center points of the locations of all the
studs are available. The next step is to define the formation in which the studs occur.
In other words, the number of rows and columns of the studs have to be extracted.
For example, a brick with eight studs may have two rows of four studs each, or one
row of eight studs.

Hence, it is necessary to find the minimal set of straight lines L = {l1, l2, . . . , ln}
where each stud lies on exactly one li. Note that the stud location is point-specific,
so that a point is deemed to lie on a line if it is within a given perpendicular small
distance from the line.

Our algorithm is given below (see Algorithm 1), and is described in more detail
in [1]. The output of Algorithm 1 gives the number of studs, and the number of lines
needed to cover those studs, and these are used directly in the final feature vector.

Next, the form of the brick must be determined. A LEGO brick has a three-
dimensional form, defined by both the inside and outside edges of the brick. The
standard three-dimensional matching algorithms available in the literature would
have been too computationally expensive in this case [13]. We therefore simplified
the problem to a two dimensional problem, by the observation that all LEGO bricks
are rectangular protrusions of the top surface of the brick 3. Hence, it is only necessary
to identify the top surface.

Identifying the top surface The top surface of the brick is identified by finding
the edges surrounding the stud locations found in the previous step. This is a three
step process: first, the edges of the studs themselves are removed by subtraction. This
leaves random noise on the top surface, which is removed with a CA similar to the CA
used to eliminate the background. Lastly, a CA is defined to flood in all directions,
from the stud locations to the nearest edge.

The first step (removing the stud edges) is simply done by subtracting the match-
ing template shape. This results in random noise, as the templates are not a perfect
pixel-by-pixel match. The CA C1 as defined previously, is used to remove this noise.

The flooding process to find the edges on the top surface of the brick, is again
easily defined with a CA Cf . Initialize Cf so that there are four possible states in
each cell: background, edge, top surface and not top surface. All the pixels where there
were studs, are identified as top surface, and any cell that is not background, edge or
top surface, is identified as not top surface.

3 We only consider ‘standard’ LEGO bricks in this work. Other forms (such as sloped bricks, or
bricks with a base larger than the top, such as cones) will be considered in subsequent work.
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Algorithm 1 Determining the formation of the studs
procedure Get Formation(Set of studs S )
L ← ∅ ⊲ Initialize the set holding the lines
for i← 1 to size(S) do ⊲ Add all possible lines

for j ← i + 1 to size(S) do

L ← L + new Line{S.get(i),S.get(j)}
end for

end for

for each line l in L do ⊲ Determine how many studs covered by each line
for each stud s in S do

if distance(l, s) < δ then ⊲ If s lies very close to l

l.coveredStuds.add(s) ⊲ Add s to set covered by l

end if

end for

end for

count← 0 ⊲ The cardinality of the covering set
while size(S) > 0 do

l ← L.removeMax() ⊲ Remove line that covers most studs
S ← S − l.coveredStuds

count+ = 1
end while

return count, size(S) ⊲ The formation is count by size(S)
count

end procedure

The neighbourhood to be used in Cf is a Moore neighbourhood 4, with a specified
distance ns. The transition function then considers each cell. If it is not a top surface
cell, then the cell changes into a top surface cell if it is adjacent to any top surface cell
in the Moore neighbour and it is neither edge nor background. That is, from the stud
locations, the neighbours of each cell are considered. Count the number of neighbours
that are not edge or background. If this number exceeds a given threshold, then the
current cell is top surface. Formally, let th be the threshold and ns the neighbourhood
size. Let a top surface cell be represented by 0, edges by 1, and background by 2.
Then Cf has the transition function

c′(xi,j) =





0, if c(xi,j) 6= 0 & c(xi,j) 6= 2 &
(Σm,nxm,n = 0) > th,
where i− ns/2, j − ns/2 < m,n < i + ns/2, j + ns/2,

1, otherwise .

An example of the stud edge, noise removal and flooding is shown in figure 8.
At this point, if color is to be used as a distinguising feature, a standard 256-bin

histogram [11] is used to construct the color information for the brick.
It is now finally possible to encode the feature vector of a given LEGO brick,

based on its number of studs, stud locations, form, and color. In our case, we used
the Hu-set of invariant moments [7] to encode the feature vector with the information
extracted from the image p.

4 A Moore neighbourhood consists of all eight cells surrounding the current cell.
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Figure 8. The output of the flooding process. The top left picture shows the edges
after the studs have been removed. A CA is applied to remove the noise and the
output is shown in the top right picture. The flooded region is shown on the bottom
left and the boundary of this region, which is to be encoded into a feature vector, is
shown on the bottom right.

Once the feature vector has been calculated for the search image p, that vector
can be matched against all the pre-calculated images in the database. Our software
can handle multiple search criteria on any of the elements in the feature vector, and
hold a match score so that a set of best possible matches can be retrieved.

4 Analysis

This section illustrates some of the results in the final implemented CBIR system.
More details, and comparative results with more traditional approaches, are discussed
in [1]. In our initial experiments, bricks were correctly identified in almost 80% of our
test cases.

An example of the shape-based retrieval is illustrated in figure 9. The bricks are
shown in best match order (the lower the number, the better the match). In figure 9,
note that an identical brick to the search image p was the best match, followed by
two other curved bricks, while the rectangular bricks were the worst matches. Note
that any shape is described by the Hu-set of invariant moments. In comparing two
shapes, the Euclidean distance between the two shapes is calculated – the smaller
the distance, the better the match. In figure 9 below, it therefore follows that the
macaroni-shaped bricks are nearer to each other than to rectangular bricks.

Figure 9. A sample shape retrieval query with match scores presented in thousands.

If an image is not of sufficient quality, the edge detection can result in discon-
tinuous edges. This invalidates the flooding process. Recall that the flooding process
terminates when an edge is encountered. Figure 10 shows an example of a brick for
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which the flooding process fails. Here, note that the brick does not have a continuous
edge separating the top surface from the rest of the brick. Hence, the entire brick is
flooded, resulting in an inaccurate feature vector.

Figure 10. Shape extraction process fails for a brick that does not have a continuous
edge separating the top surface from the rest of the brick.

To solve the problem, one can simply adjust the threshold of the edge detector
CA (this is a parameter which can be set by the user in our software). As long as
the image p is of sufficient quality, the increased threshold will always result in a
continuous edge. Figure 11 illustrates a changed threshold and consequent successful
edge detection.

Figure 11. The same brick from figure 10, using a better threshold, and resulting in
a correct identification of the top surface.

Almost all mismatches are due to an input image p where the edge detection fails.
Failed or incorrect edge detection are due primarily either to a threshold that is not
high enough for the picture quality (see below), or to distracting features which result
in an incorrect edge detection. Figure 12 shows some examples of bricks that will not
be correctly identified. The brick on the left is the same colour as the background,
and hence is eliminated during the background elimination phase. The brick on the
right results in false edges, due to the vertical stripes. This leads to a feature vector
with an incorrect shape description for a 1× 2 brick.

Figure 12. Bricks that cannot be recognized, due to background colour (left), lighting
conditions (middle), and distracting features (right).

4.1 Comparison with existing systems

General content-based image retrieval systems cannot be directly compared to our
system. Most CBIR system (such as the FIRE search engine [5]) classify images into
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broad groups and find matching topics. For example, given an image of a LEGO
brick, the FIRE engine would return a wide variety of images of toys, with at best a
few LEGO bricks.

We can compare at least one part of the image pre-processing with other algo-
rithms, namely, the edge detection. There are many different edge detection algo-
rithms and systems. In general, the more accurate the edge detection, the longer the
algorithm takes to execute. For example, the well-known Canny [2] and SUSAN [12]
edge detectors are extremely accurate, but too slow for real-time analysis. Other less
accurate methods have other issues that make their use difficult in this domain. For
example, the Marr-Hildreth algorithm [9] lacks in the localization of curved edges,
which is essential in the LEGO images. It is also interesting to note that the more
accurate edge detectors result in thin edges (see figure 13), while the rest of our
algorithms such as flooding and template matching, work best with thick edges.

Figure 13. Results from he CA edge detector (left) versus the Canny edge detector
(right).

5 Conclusion

We showed that cellular automata can be successfully applied for the realtime retrieval
of LEGO brick images. The advantage of this approach is the limited memory use
and fast execution time of a CA implementation.

We showed that it is possible to simplify the three-dimensional shape extraction
problem to a two-dimensional case for the LEGO brick. We implemented a fully
functional CBIR system based on the CA feature extraction, and illustrated the
results.

For future work, we intend to extend this work to more general LEGO bricks. In
particular, we want to consider those cases that are not simply protrusions of a brick
with rectangular stud formations.

References

1. L. Botha: A CBIR system for LEGO brick image retrieval, tech. rep., Stellenbosch University,
2008.

2. J. Canny: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach.
Intell., 8(6) 1986, pp. 679–698.

3. C. Chan, Y. Zhang, and Y. Gdong: Cellular automata for edge detection of images, in
Proceedings of the Third International Conference on Machine Learning and Cybernetics, Au-
gust 2004, pp. 3830–3834.



14 Proceedings of the Prague Stringology Conference 2009

4. R. Datta, D. Joshi, J. Li, and J. Wang: Image retrieval: ideas, influences, and trends of
the new age. ACM Computing Surveys, 40(2) April 2008.

5. T. Deselaers, D. Keysers, and H. Ney: Features for image retrieval – a quantitative
comparison, in In DAGM 2004, Pattern Recognition, 26th DAGM Symposium, number 3175 in
LNCS, 2004, pp. 228–236.

6. S. Druon, A. Crosnier, and L. Brigandat: Efficient cellular automata for 2D/3D free-form
modeling. Journal of Winter School of Computer Graphics, 11(1) 2003, pp. 102–108.

7. K. Hu: Visual pattern recognition by moment invariants. IRE Transactions on Information
Theory, IT-8 February 1962, pp. 179–187.

8. V. Lukkarila: On undecidability of sensitivity of reversible cellular automata, in AUTOMATA
2008, 2008, pp. 100–104.

9. D. Marr and E. Hildreth: Theory of edge detection. Proceedings of the Royal Society of
London. Series B, Biological Sciences, 207(1167) 1980, pp. 187–217.

10. A. Popovici and D. Popovici: Cellular automata in image processing, in Proceedings of the
15th International Symposium on Mathematical Theory of Networks and Systems, University
of Notre Dame, 2002.

11. S. Siggelkow: Feature Histograms for Content-Based Image Retrieval, PhD thesis, Albert-
Ludwigs-Universität Freiburg, Fakultät für Angewandte Wissenschaften, Germany, Dec. 2002.

12. S. Smith and J. Brady: Susan - a new approach to low level image processing. International
Journal of Computer Vision, 23 1997, pp. 45–78.

13. W. Snyder and H. Qi: Machine Vision, Cambridge University Press, New York, NY, USA,
2003.

14. S. Wolfram: Cellular Automata and Complexity, Westview Press, 1994.



On-line construction of a small automaton for a

finite set of words

Maxime Crochemore1 and Laura Giambruno2

1 King’s College London, London WC2R 2LS, UK, and Université Paris-Est, France
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Abstract. In this paper we describe a “light” algorithm for the on-line construction
of a small automaton recognising a finite set of words. The algorithm runs in linear
time. We carried out good experimental results on the suffixes of a text, showing how
this automaton is small. For the suffixes of a text, we propose a modified construction
that leads to an even smaller automaton.

1 Introduction

The aim of this paper is to design a “light” algorithm that builds a small automaton
accepting a finite set of words and that works on-line in linear time. The study of
algorithms for the construction of automata recognising finite languages is interesting
for parsing natural text and for motif detection (see [4]). It is used also in many
software like the intensively used BLAST [2]. In particular it is important to study
algorithms with good time and space complexities since the dictionaries used for
natural languages can contain a large number of words.

It is in general easy to construct an automaton recognising a given list of words.
Initially the list can be represented by a trie (see [6]) and then, using an algorithm for
tree minimisation (see [1], [9]), we can minimise the trie to get the minimal automaton
of the finite set of words of the list. But this solution requires a large memory space
to store the temporary large data structure.

Another solution was drafted by Revuz in his thesis ([11]) where he proposed a
pseudo-minimisation algorithm that builds from set of words in lexicographic inverse
order an automaton smaller than the trie, but that is not necessarily minimal. Anyway
the solution is not completely experimentally tested and remains unpublished.

Other solutions were proposed recently by several authors (cf. [15], [13], [14], chap-
ter 2 of [5], [10], [8], [7]). For instance Watson in [15] presented a semi-incremental
algorithm for constructing minimal acyclic deterministic automata and Sgarbas et
al. in [10] proposed an efficient algorithm to insert a word in a minimal acyclic deter-
ministic automata in order to obtain yet a minimal automaton, but not so efficient
on building the automaton for a set of words. In [8] Daciuk et al. also proposed an al-
gorithm that constructs a minimal automaton for an ordered set of strings, by adding
new strings one by one and minimizing the resulting automaton.

Here we propose an intermediate solution, similar to that one of Revuz, that is to
build a rather small automaton with a light algorithm processing the list of words on-
line in linear time on the length of the list, where the length of a list is the sum of the
lengths of the elements in the list. The aim is not to get the corresponding minimal
automaton but just a small enough structure. However, the minimal automaton can
be later obtained with Revuz’ algorithm [12] that works in linear time on the size of
the acyclic automaton.

Maxime Crochemore, Laura Giambruno: On-line construction of a small automaton for a finite set of words, pp. 15–28.
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The algorithm works on lists satisfying the following condition: words are in right-
to-left lexicographic order. Such hypothesis on the list is not limitative since list
update is standard. Moreover with the light algorithm the automaton can possibly
be built on demand and our solution avoids building a temporary large trie.

The advantages of our algorithm are simplicity, on-line construction and the fact
that resulting automaton seems to be really close to minimal.

In particular, in this paper we show the results of experiments done on the list of
suffixes of a text. For each set we consider the ratio between the number of states of
the constructed automaton and that of the minimal automaton associated with the
set. Such ratios happen to be fairly small. For the suffixes of a text we even propose
a modified construction that results in an almost minimal automaton.

In Section 2, after some standard definitions, we define the iterative construction
of the automaton for a list of words. In Section 3 we describe the on-line algorithm
that builds the automaton and that works in linear time on the length of the list. We
bring some examples of the non minimality of this automaton. In Section 4 we deal
with sets that are suffixes of a given word. We carry out the experimental results and
we show the modified construction. Conclusions are in Section 5.

2 The algorithm for a finite set of words

For definitions on automata we refer to [3] and to [9].
Let A be a finite alphabet. Let x in A∗, then we denote by |x| the length of x, by

x[j] for 0 ≤ j < |x| the letter of index j in x and by x[j . . k] = x[j] · · · x[k]. For any
finite set X of words we will denote by |X| the cardinality of X. Let u be a word in
A∗, we denote by S(u) the set of the proper suffixes of u together with u.

A deterministic automaton over A, A = (Q, i, T, δ) consists of a finite set Q of
states, of the initial state i, of a subset T ⊆ Q of final states and of a transition
function δ : Q × A −→ Q. For each p, q in Q, a in A such that δ(p, a) = q, we call

(p, a, δ(p, a)) an edge of A. An edge e = (p, a, q) is also denoted p
a−→ q. A path is a

sequence of consecutive edges. A path is successful if its ending state is a final state.
Given an automaton A, we denote by L(A) the language recognised by A.

Let X = (x0, . . . , xm) be a list of words in A∗ such that the list obtained reversing
each word in X is sorted according to the lexicographic order. We will build an
automaton recognising X with an algorithm that processes the list of words on-line.
In order to do this we define inductively a sequence of m + 1 automata A0

X , . . . ,Am
X ,

such that, for each k, the automaton Ak
X recognises the language {x0, . . . , xk}. In

particular Am
X will recognises X.

In the following we define A0
X and then, for each k ∈ {1, . . . ,m}, we define the

automaton Ak
X from the automaton Ak−1

X . In these automata we will define a unique
final state without any outgoing transition that we call qfin. For each k, we consider
the following functions over the set of states of Ak

X with values in N defined, for each
state j in Ak

X , as:

– Height: H(j) is the maximal length of paths from j to a final state.
– Indegree: Deg−(j) is the number of edges ending at j.
– Paths toward final states: for j 6= qfin, PF (j) is the number of paths starting at

j and ending at final states and PF (qfin) = 1.
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2.1 Definition of A0
X

Let A0
X = (Q0, i0, T0, δ0) be the deterministic automaton having as states Q0 =

{0, . . . , |x0|}, initial state i0 = 0, final state T0 = {|x0|} and transitions defined, for
each i in Q0 \ {|x0|}, by δ0(i, x0[i]) = i + 1. We will denote by qfin the final state |x0|.
For each k in {0, . . . ,m}, qfin will be the unique final state in Ak

X with no edge going
out from it. It is easy to prove that L(A0

X) = {x0}. In Figure 1 we can see A0
X for

X = (aaa,ba,aab).

2.2 Definition of Ak

X
from A

k−1
X

Assume Ak−1
X = (Qk−1, ik−1, Tk−1, δk−1) has been built and let us define Ak

X =
(Qk, ik, Tk, δk). We define ik = {0}.

Let u be the longest prefix in common between xk and the elements {x0, . . . , xk−1}.
Let s be the longest suffix in common between xk and xk−1. If |s| ≥ |xk| − |u| then
we redefine s as xk[|u|+ 1 . . |xk| − 1]. Let us consider p the end state of the path c in
Ak−1

X starting at 0 with label u. Let q be the state along the path from 0 with label
xk−1 for which the sub-path from q to qfin has label s.

Indegree-Control. The general idea of the construction of Ak
X from Ak−1

X would be to
add a path from p to q. See Figure 1. Anyway in general we cannot do this since we
would add others words other than xk, as we can see in Figure 2. This depends on
the fact that on the path c there are states r with Deg−(r) > 1. Thus, before adding
a path from p to q, we have to do a transformation of the automaton like in Figure 3.

0 1 2 3
a a a

0 1 2 3
a

b

a a

Figure 1. The automata A0
X (left) and A1

X (right) for X = (aaa,ba,aab). Since u,
the prefix in common between aaa and ba, is the empty word and since s, the suffix
in common between aaa and ba is a, the automaton A1

X is obtained from A0
X by

adding the edge (0, b, 2).

0 1 2 3
a

b

a a

b

Figure 2. Incorrect construction of A2
X for X = (aaa,ba,aab): in this case u = aa

and s = ε, but, since Deg−(2) > 1, adding the edge (2, b, 3) leads to an automaton
accepting {aaa,ba,aab,bb}.

More formally we consider separately the case in which there is a state on c with
indegree greater than 1 and the other case.

I CASE: In c there is a state with indegree greater than 1.
Let us call r the first state with Deg−(r) > 1. Let us decompose the path c as

c : 0
u0−→ r0

x[ℓ]−→ r
u1−→ p. We construct the automaton Bk−1

X = (Q′
k−1, 0, T

′
k−1, δ

′
k−1) in

the following way. In order to construct δ′k−1:

– we delete the edge r0
x[ℓ]−→ r,
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0 1 2

4

3
a

b

a a

a
0 1 2

4

3
a

b

a a
b

a

Figure 3. Automata B1
X (left) andA2

X (right) for X = (aaa,ba,aab). The automaton
B1

X is equivalent to A1
X and it is obtained from A1

X by doing a copy of the path from
0 to 4 with label aa. The automaton A2

X is obtained by adding the edge (4, b, 3)

– we construct a path from r0 with label x[ℓ]u1, let us call p′ its ending state,
– we create for each edge going out from p with label a and ending at a state t,

p
a−→ t, the edge from p′, p′

a−→ t.

More formally we define Q′
k−1 = Qk−1 ∪ {|Qk−1|, . . . , |Qk−1|+ |u1|} and





δ′k−1(i, a) = δk−1(i, a), ∀i 6= r0,∀a ∈ A;
δ′k−1(r0, xk[ℓ]) = |Qk−1|,
δ′k−1(|Qk−1|+ i, xk[ℓ + i]) = |Qk−1|+ i + 1, ∀i = 0, . . . |u1| − 1;
δ′k−1(|Qk−1|+ |u1|, a) = δk−1(p, a), ∀a ∈ A.

We denote by p the state |Qk−1|+ |u1|.
II CASE: the other case. We consider Bk−1

X = Ak−1
X .

We consider now the automaton Bk−1
X . If xk is the prefix of a word in {x0, . . . , xk−1}

then we add p to the final states of Bk−1
X , that is T ′

k−1 = Tk−1 ∪ {p} and we define

Ak
X = Bk−1

X .
Otherwise we proceed with the following control. We have the decomposition of

xk as xk = uws, with w ∈ A+.

Paths toward final states control. As before, the general idea is to add a path from
p to q with label w, but there are some other controls that are required. In Figure
4 we see another situation in which we cannot add a path from p to q otherwise we
would add words not in X. In this case, it depends on the fact that the number of
paths from q towards final states is greater than one, that is PF [q] > 1.

0 1 2

4

3
a

b

a a
b

a

b

0 1 2

4

5

3
a

b

a a
b

a

b b

Figure 4. Incorrect construction of A3
X (left) for X = (aaa,ba,aab,abb): adding the

edge (1, b, 4) to A2
X leads to an automaton accepting {aaa,ba,aab,abb,aba}. Right

construction of A3
X (right): it is obtained by adding the path from 1 to 3 with label

bb. In particular 3 is the first state q′ in the path from 4 to 3 with PF [q′] = 1

Thus, if PF (q) > 1 then we consider in the path d from q to qfin with label s the
first state q′ such that PF (q′) = 1, if it exists. In this case we call s1 the label of the
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subpath of d from q to q′ and let s = s1s2. We call w the word ws1, s the word s2

and q the state q′. See Figure 4 for an example.
If there is no q′ with PF [q′] = 1 in the path from q to qfin with label s, then we

define q as qfin and w as ws. Otherwise we proceed with the Height control.

Height-Control. If H(p) ≤ H(q) then in general we cannot add a path from p to q
because if there is a path from q to p then we will have infinitely many words recog-
nised, as we can see in the example in Figure 5. We have to do another transformation
as in Figure 6.

If H(p) ≤ H(q) then we consider in the path d, from q to qfin with label s, the
first state q′ such that H(p) > H(q′). We call s1 the label of the subpath of d from
q to q′. Let s = s1s2. We call w the word ws1, s the word s2 and q the state q′. In
Figure 6 we have an example of the construction.

If H(p) > H(q) then we go further.

0 1 2 3
a b a

0 1 2 3
a b a

b

Figure 5. We have the automaton A0
X (left) for X = (aba,abbba) and the incorrect

construction of A1
X (right): adding the edge (2, b, 1) would lead to an automaton

accepting the infinite language {aba,a(bb)∗a}.

0 1 2 3

4 5

a b a

b

b

a

Figure 6. We have the right construction of A1
X for X = (aba,abbba).

0 1 2

4

5

3
a

b

a a
b

a

b b

b

0 1 2
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5
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3
a

b
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b
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b

b

b

Figure 7. Incorrect construction of A4
X (left) and the right construction of A4

X (right)
for X = (aaa,ba,aab,abb,abbb).

If there exists a word in {x0, . . . , xk−1} that is a prefix of xk then, if p 6= qfin we
add p to the set of final states, that is Tk = T ′

k−1 ∪ {p}.
If p = qfin then, if we add a path from p to qfin with label w then we would

add also infinitely many words to the language recognised by the automaton, as in
the example in Figure 7. In Figure 7 it is also reported the right construction of the
automaton, as explained in the following.
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When p = qfin we consider the following decomposition of c, the path from 0 with

label u, c : 0
u′

−→ p′
a−→ qfin. We delete the edge p′

a−→ qfin. Then we add an edge
from p′ to a new state p′′ with label a and we add p′′ to the set of final states. We
call p the state p′′. More formally we define Qk = Q′

k−1 ∪ {|Q′
k−1|} and





δk(i, a) = δ′k−1(i, a), ∀i 6= p′,∀a ∈ A;
δk(p

′, a) = |Q′
k−1|,

δk(p
′, a) = δ′k−1(p

′, a), ∀b ∈ A, b 6= a;

We call p the state |Q′
k−1|.

Finally in all cases we add a path from p to q with label w, that is Qk = Q′
k−1 ∪

{|Q′
k−1|+ 1, . . . , |Q′

k−1|+ |w| − 3} and





δk(i, a) = δ′k−1(i, a), ∀i 6= p,∀a ∈ A;
δk(p, w[0]) = |Q′

k−1|,
δk(p, a) = δ′k−1(p, a), ∀a ∈ A, a 6= w[0];|
δk(|Q′

k−1|+ i, w[i + 1]) = |Q′
k−1|+ i + 1, ∀i = 0, . . . |w| − 3;

δk(|Q′
k−1|+ |w| − 3, w[|w| − 1]) = q, ∀a ∈ A.

We have proved the following:

Theorem 1. For each k ∈ {0, . . . ,m}, the language recognised by the automaton Ak
X

is L(Ak
X) = {x0, . . . , xk}.

In order to prove it we make use of the following lemma:

Lemma 2. Let k ∈ {0, . . . ,m}. For each state i of Ak
X with Deg−(i) > 1, there exists

a unique path starting from i and ending at the final state qfin.

3 Construction algorithm

Let X = (x0, . . . , xm) be a list of words in A∗ ordered by right-to-left lexicographic
order and let

∑
i=0,m |xi| = n. Let us call AX the automaton Am

X recognising X. In

order to build it on-line we have to go through all the automata Ak
X , 0 ≤ k ≤ m.

For the construction of AX we consider a matrix of n lines and 3 columns where
we will memorize the values of the three functions H, Deg−1 and PF for each state
of the automaton. In the outline, when we write A, we will consider the automaton
A together with this matrix. The outline of the algorithm for computing AX is the
following:

Construction-AX(X)

1. (A, R)← Construction-A0
X (X[0])

⊳ denote by qfin the final state of A, define PF [qfin] = 1
2. for k ← 1 to |X| − 1 do
3. (A, R)← Add-word(A,X[k],X[k − 1], R)
4. Return A

Let us consider now the function Construction-AX . In line 1 we have the
function Construction-A0 that computes the automaton A recognising X[0].
The automaton A is constructed using lists of adjacency. Its states are the inte-
ger {0, . . . , |X[0]|}, 0 is the initial state and |X[0]| is the final state. Moreover the
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function Construction-A0 returns a list R containing the sequence of states of A
taken in the order of the construction.

In lines 2-3, for each k from 1 to |X|, we add to the automaton A the word X[k]
using the procedure Add-word below.

Add-word(A, x, y,R)
1. compute s the suffix in common between x and y
2. (A, j, p)← Indegree-Control (A, x)
3. if |x| = j then
4. p← final(A)
5. redefine PF for the states in the path from 0 with label x
6. define R as the list of states in the path from 0 with label x
7. else
8. if |x| − |s| ≤ j then s← s[j + 1 . . |s| − 1]
9. q ← R[|R| − |s|]
10. (A, q, h)← PF-Control(A, q, s)
11. if PF [q] 6= 1 then qfin ← q
12. else
13. s← s[h . . |s| − 1]
14. (A, q, h)← Height-Control(A, p, q, s)
15. if x[0 . . j − 1] ∈ X then
16. delete the last edge of the path c starting at 0 with label x[0 . . j − 1]
17. add an edge from p1 , ending state of c , to a new state p2

18. p2 ← final(A)
19. (A, R)← Add path(A, x[0 . . j − 1], x[j . . h− 1], q)
20.Return (A, R)

Let us now see more in detail how the procedure Add-word works. It has as input
an automaton A and two words x and y and it returns the automaton obtained from
A, by adding the word x, and R, the sequence of states along the path corresponding
to the added word x. In line 1 it computes s the suffix in common x and y. In line 2
it calls the Indegree-Control function on (A, x).

Indegree-Control(A, x)
1. p← 0, j ← 0, InDegControl ← 0
2. while δ(p, x[j]) 6= NIL and j 6= |x|
3. p1 ← p
4. p← δ(p, x[j])
5. if InDegControl = 0 then
6. if Deg−[p] 6= 1 then
7. create an edge from p1 to a new state p2 with label x[j]
8. define Deg− for p2 and for p
9. InDegControl ← 1
10. else
11. create an edge from p2 to a new state q with label x[j]
12. Deg−[q]← 1
13. p2 ← q
14. j ← j + 1
15.if InDegControl = 1 then
16. for each edge starting at p, with label a and ending state q
17. create an edge from p2 to q with label a
18. Deg−[δ(p2, a)]← Deg−[δ(p2, a)] + 1
19. H[p2]← H[p]
20. p← p2

21.Return (A, j, p)
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Such a function reads the word x in A until it is possible. Let us call u the longest
prefix of x that is the label of an accessible path in A, let p be the ending state of this
path. If, in such a path, there is an edge r1

a−→ r such that r has indegree greater
than 1 then the function creates a path from r1 labelled by the remaining part of u,
let p2 be its ending state. It redefines also the function Deg− for the states in the new
path.

In this case, for each edge starting at p with label a and ending at a state p′, it
creates an edge starting at p2 with label a and ending at p′. It calls p the state p2

and it defines the height of p.

The Indegree-Control function returns A, j and p, where j is the length of
the longest prefix of x which is the label of an accessible path in A and p is the ending
state of this path.

Let us come back to Add-word. In line 3 it controls if x[0 . . j − 1] = x, that is
if x is the prefix of an already seen word. In this case in lines 4-6 it puts p in final
states, it redefines PF for the states on the path labelled x and it defines R as the
list of states in the path from 0 with label x.

If x[0 . . j − 1] 6= x, that is x is not the prefix of an already seen word, then we go
to line 8. If |x| − |s| ≤ j then we redefine s. In line 9 we use R in order to find the
state q such that there is a path from q to the final state qfin with label s.

In line 10 the PF-Control function is called. It takes as argument the automaton
A, q and s. The function reads from q the word s until either it finds a state q′ with
PF [q′] = 1 or it ends reading s. If s′ is the label of the path from q to q′ then it
returns the length of such a path h. In line 11 if PF [q] is greater than 1 then we
define q as qfin. Otherwise we go to line 13 where we redefine s as s[h . . |s|].

In line 14 we have a call to the Height-control function. It takes as argument
the automaton A, p, q and the word s. Such a function reads in A, starting at q, the
word s until it finds a state q′ with H[p] > H[q′]. If s′ is the label of the path from q
to q′ then it returns the length of such a path h.

PF-Control (A, q, s)
1. h← 0
2. while PF [q] 6= 1 and h 6= |s|
3. q ← δ(q, s[h])
4. h← h + 1
5. Return (A, q, h)

Height-Control (A, p, q, s)
1. h← 0
2. while H[p] ≤ H[q] and h 6= |s|
3. q ← δ(q, s[h])
4. h← h + 1
5. Return (A, q, h)

In line 15 it controls if x[0 . . j−1] is in X. In such a case it does the transformation
as written in lines 16, 17 and 18. In line 19 we call the function Add-path on
(A, x[0 . . j − 1], x[j . . h− 1], q).

The function Add-path takes as argument (A, u, w, q) with u and w words and
q state of A. It returns the automaton A obtained by adding a path with label w
from p, final state of the path in A from 0 with label u, to q. The function creates
the path from p to q with label w and defines H, PF and Deg− for the new states. It
redefines H, PF and Deg− for the states of the path from 0 with label u. Finally it



M. Crochemore, L. Giambruno: On-line construction of a small automaton for a finite. . . 23

puts all the states on the path from 0 to qfin with label x in a list R. Then it returns
the automaton A and the list R.

Time complexity
We define A0

X using the list of adjacency. So we compute A0
X with the associated

matrix and R in O(|X[0]|). Let us analyze the time complexity of the other functions.
For each k, let us call u the longest prefix common to X[k] and {X[0], . . . , X[k−

1]}. The Indegree-Control function has time complexity O(|u|). Let us call x
the word X[k] and s the suffix in common between x and X[k − 1]. The Height-

Control function works in O(h). The PF-Control function works in O(h) also.
Since O(h) are O(|s|) then the functions work in time O(|s|). The Add path function
works in time O(|x|).

Since the other instructions in Add-word work in O(1) we get that the running
time for executing Add-word is O(|x|). And we get that the time complexity of
Construction-AX is O(|X|).

3.1 Non minimality of the automaton: example

Given X a finite language, the automaton AX is not necessarily minimal. This can
follow, for example, from the not necessary indegree control done while building an
automaton.

In the example in Figure 1 we see the construction of A0
X and A1

X for X =
(aaa,ba,aab,bb). In order to construct A2

X we have to do the indegree control as in
Figure 3. In Figure 8 we have A3

X that is not minimal since the states 2 and 4 are
equivalent.

The non minimality follows here from the indegree control. In fact, in this case
the indegree control would not be necessary since bb is also in X (see Figure 2). So
the algorithm creates unnecessary states and the automaton A3

X results to be non
minimal.

0 1 2

4

3
a

b

a a
b

a

b

Figure 8. Non minimal automaton A3
X for X = (aaa,ba,aab,bb).

4 The algorithm for the set of suffixes of a given word

Let y in A∗ and let us consider S(y) sorted by decreasing order on the lengths of the
elements in S(y). For each y ∈ A∗, let us denote by Ay the automaton AS(y) and by
My the minimal automaton of S(y). Given an automaton A, let us denote by ♯A the
number of states of A. For each y in A∗, in order to estimate the distance of Ay to

its minimal automaton we consider the ratio D(y) = ♯Ay

♯My
.

We have done some experiments by generating all the words of a fixed length n.
For each fixed length n we have considered Dmax

n the greatest of D(y) with y of length
n.
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n Dmax
n

10 1.83
15 2.41
20 3.04

In general the experimental results are good since Dmax
n is not greater than 4

for words y with |y| ≤ 20. Moreover the experiments done show that bad cases are
linked with words that are powers of a short one with great exponent. So we thought
that such words brought to automata far from being minimal (with great D(y)), or
equivalently, that words with small entropy would have a great ratio D(y).

Thus we have done experiments by generating 2000 words of a fixed length n with
some constraints. For each of this experiment we have considered Dn, the greatest
ratio among the D(y). We report the results for different values of n in the following
table. In the first column we have generated words such that either are not powers
of the same word or that are powers of a word with an exponent less than a fixed
number.

n exp < 3 exp < 2 exp < 1
10 1.75 1.66 1.54
20 2.22 2.16 2.42
30 2.16 2.22 2.24
50 1.96 1.85 2.60
100 1.60 1.71 1.79

The experimental results are good in general even if they do not show clearly our
conjecture. In the following we propose another approach.

4.1 Modified construction

Let y in A∗ and S(y) = [y0 = y, . . . , ym] sorted by decreasing order on the lengths of
the elements in S(y). Let us denote by Ak

y the automaton Ak
S(y).

In case yk is not a prefix of an already seen word, we consider the construction of
the automaton Ak

y taking q in the path from 0 with label y and not in that one with
label yk−1. Let us note that in case of suffixes of a word we have that yk = uas with
a in A and u, s defined as in Section 2. Moreover let us note that if there are two
edges ending at p, state of Ak

y, then they have the same label.

In this section we will propose a modification on the indegree control in order to
avoid equivalent states as in the example in Figure 8. Before doing it we will note,
with the following two propositions, that, in case of suffixes of a word, we do not
have to execute the PF control and the Height control. In particular we prove that
PF (q) = 1 and that H(p) > H(q), with p and q as defined in Section 2.

Proposition 3. Let y in A∗ and yk in S(y) such that yk is not a prefix of a word in
{y0, . . . , yk−1}. Then we have that PF (q) = 1.

Proposition 4. Let y in A∗ and yk in S(y) such that yk is not a prefix of a word in
{y0, . . . , yk−1}. Then we have that H(p) > H(q).

Let us consider the construction of Ak
y. We have the following proposition:
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Proposition 5. Let y in A∗ and yk in S(y). Let yk = uz, with u such that there
exists a path starting at 0 with label u in Ak−1

y , let p its final state. If there exists

a path from 0 to p with label v in Ak−1
y then, if |v| < |u| then vz ∈ {yk+1, . . . , ym},

otherwise vz ∈ {y0, . . . , yk−1}.

Let us associate with each state p of Ak−1
y the list L(p) of the states q such that

there exists an edge from q to p. We construct such list iteratively adding each time
an element to the tail of the list.

With each state q in L(p) we associate V (q) the set of words such that there exists
a path from 0 to q. Let us denote by ph the state L(p)[h].

Proposition 6. Let y in A∗ and let p be a state of Ak
y with Deg−(p) > 1. Let i <

j < |L(p)|. Then, for each u in V (pi) and for each v in V (pj), we have that |u| > |v|.

We propose a new construction of Ak
y with the definition of L(p), for each state

p, and a different indegree control. Let u be the longest prefix in common between yk

and {y0, . . . , yk−1} and p′ the ending state of the path starting at 0 with label u.
The function reads the word yk in Ak−1

y until it is possible. While the function
reads yk, the visiting state is called p and the state visited in the step before is called
p1. In particular we have that p1 is in L(p).

If the function finds a state p with Indegree greater than 1 and if p1 is not equal
to L(p)[0] then, if a is the label of the edge from p1 to p,

– it deletes all the edges starting at states in L(p) that have a position in L(p)
greater or equal to that one of p1.

– it creates a new state p2 and it creates, for each state r in L(p) that has a position
greater or equal to that one of p1, an edge from r to p2 with label a

– it creates a path from p2 with label the resting part of u. Let p be the end state
of this path.

– it creates, for each edge, starting at p′ an edge starting at p with the same ending
state .

Time complexity
For each Ak

y, for each state p in Ak
y we have that Deg−(p) ≤ (k + 1). In the indegree

control, in the worst case, we have to visit completely the list for the state p with
Deg−(p) > 1 and such that p1 6= L(p)[0]. So for each k, in the worst case, the indegree
control takes time O(|u|+ k).

In total the contributions of the visit of the lists L(p) for indegree controls take
time O(

∑
k=0,m k) = O(|S(y)|), so we have that in the worst case the algorithm works

in O(|S(y)|).

5 Conclusion

The algorithm presented in the article builds a small automaton accepting a finite set
of words. It has several advantages. It allows an extremely fast compiling of the set
of words. With little modification, the method can handle efficiently updates of the
automaton, and especially addition of new words. The condition imposed on the list
of words is not a restriction because words can always be maintained sorted according
to lexicographic order.
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One open problem is to find a general upper bound for ratios D (ratio D is the
quotient of the number of states of Ay and of the number of states of its minimal
automaton).

Experiments leads us to conjecture that the ratios are bounded by a fixed number,
after possibly a small change in the algorithm.

For the suffixes of a word y, we expect that an improved version of the algorithm
actually builds the (minimal) suffix automaton of y.

The main open question is whether there exists an on-line construction for the
minimal automaton accepting a finite set of words that runs in linear time on each
word being inserted in the automaton.
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6 Appendix

Proof of Lemma 2
We will prove the lemma by induction on k. For k = 0 it is easily true.
Let us suppose that it is true for k − 1 and let us prove it for k. If i is a state of

Ak
X with Deg−(i) > 1 then i is not contained in the path from 0 to p relative to xk,

by construction. So by the inductive hypothesis there is a unique path from i to qfin.

Proof of Theorem 1
We will prove the theorem by induction on k. For k = 0 it is easily true.
Let us suppose that it is true for k− 1 and let us prove it for k. Let us prove that

the automaton Bk−1
X , obtained after the indegree control, recognises {x0, . . . , xk−1},

that is L(Bk−1
X ) = L(Ak−1

X ). Let us suppose to be in CASE I otherwise it is trivial.
Trivially we have that L(Bk−1

X ) ⊆ L(Ak−1
X ). For the other inclusion, let d be a

successful path in Ak−1
X . If d does not contain the edge r0

x[ℓ]−→ r then the path d will

be also in Bk−1
X . If d contains the edge r0

x[ℓ]−→ r then d contains necessarily as subpath

r0
x[ℓ]−→ r

u1−→ p, in fact, since Deg−(r0) > 1, by Lemma 2, there exists a unique path
starting at r0 and ending at qfin. So there exists in Bk−1

X a successful path with the
same label as d.

Let us prove now that the automaton Ak recognises {x0, . . . , xk}. If x is the
prefix of a word in {x0, . . . , xk−1} then we add p to the set of final states and since
Deg−(p) = 1 we only add xk to L(Ak−1

X ) = {x0, . . . , xk−1}.
Otherwise, if p = qfin then we transform Bk−1

X in an automaton recognising the
same language.

In all cases the automaton Ak is obtained from Bk−1
X by adding a path from p to

q with label w, as defined before.
By the ‘indegree control’, there exists a unique path in Bk−1

X from 0 to p with label
u and, by the ‘paths toward final states control’ there exists a unique path in Bk−1

X

from q to qfin with label s. Moreover, since H(p) > H(q), there are no paths from q
to p, otherwise there would be a path from q to qfin longer than every path from p
to qfin.
Thus we only add to L(Ak−1

X ) the word x = uws, that is the thesis.

Proof of Proposition 3
Let yk = uas, with u and s as defined before. By contradiction, if PF (q) > 1 then,

there exists i < k such that yi = u1bs1 and |s| > |s1|. Since yk is a suffix of yi we
have that s = ts1, for some word t 6= ε. Since yk = uats1 is a suffix of yi = u1bs1 then
there exists z 6= ε such that uz is a suffix of u1.

Since yi = u1bs1 then there exists yh with h < i such that u1 is a prefix of
yh. Let yh = u1cs2, then we have that |s2| > |s1| since |yh| > |yi|. Since uz is a
suffix of u1 there exists a suffix yl of yh with yl = uzcs2. Since |s2| > |s1| we get
|yl| = |uzcs2| > |uzbs1| = |yk|. So uz is a prefix in common between yk and yl, l < k,
that is a contradiction since u was the greatest prefix in common between yk and the
words in {y0, . . . , yk−1}.
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Proof of Proposition 4
Let yk = uas with u and s defined as before. Since p is co-accessible, there exists

a word uz in {y0, . . . , yk−1}. By Prop. 3, there exists only one path from q to qfin

whose label is s.
If H(p) ≤ H(q) then |s| ≥ |z| and so |yk| = |uas| > |uz| that is a contradiction since
uz in in {y0, . . . , yk−1}.

Proof of Proposition 5
The state p is co-accessible and so let z′ be the label of a path from p to a final

state. Then uz′ and vz′ are in {y0, . . . , yk−1}. If |v| < |u| then v is a suffix of u and
so vz is a suffix of uz and vz is in {yk+1, . . . , ym}.

If |v| ≥ |u|, then |vz| ≥ |uz|. Thus uz is a suffix of vz and vz is in {y0, . . . , yk−1}.

Proof of Proposition 6
The list L(p) is iteratively constructed adding each time an element to the tail of

L(p). Then, for each i < j < |L(p)|, and for u in V (pi) and v in V (pj), u is the label
of a path added during the construction of Al

y, v is the label of a path added during

the construction of Ar
y, with l < r. Since p is co-accessible in Al

y, we have that uaz
in S(y) and so vaz in S(y), for some word z and some a in A. Since v is constructed
in Ar

y with r > l we get that |v| < |u|.
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Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy
{cantone | faro | giaquinta}@dmi.unict.it

Abstract. In this paper we propose an efficient approach to the compressed string
matching problem on Huffman encoded texts, based on the Boyer-Moore strategy.
Once a candidate valid shift has been located, a subsequent verification phase checks
whether the shift is codeword aligned by taking advantage of the skeleton tree data
structure. Our approach leads to algorithms with a sublinear behavior on the average,
as shown by extensive experimentation.

Keywords: string matching, compression algorithms, Huffman coding, Boyer-Moore
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1 Introduction

The compressed string matching problem is a variant of the classical string matching
problem. It consists in searching for all the occurrences of a given pattern P in a text
T stored in compressed form.

A straightforward solution is the so-called decompress-and-search strategy, which
consists in decompressing the text and then using any classical string matching al-
gorithm for searching. However, recent results show that in many cases searching
directly in compressed texts can be more efficient.

Here we are interested in the string matching problem on Huffman compressed
texts. The Huffman data compression method [7] is an optimal statistical coding.
More precisely, the Huffman algorithm computes an optimal prefix code, relative to
given frequencies of the alphabet characters. A prefix code is a set of (binary) words
containing no word which is a prefix of another word in the set. Thanks to such a prop-
erty, decoding is particularly simple. Indeed, a binary prefix code can be represented
by an ordered binary tree, whose leaves are labeled with the alphabet characters and
whose edges are labeled by 0 (left edges) and 1 (right edges) in such a way that the
codeword of an alphabet character is the word labeling the branch from the root to
the leaf labeled by the same character.

Prefix code trees, as computed by the Huffman algorithm, are called Huffman
trees. These are not unique, by any means. The usually preferred tree for a given
set of frequencies, out of the various possible Huffman trees, is the one induced by
canonical Huffman codes [14]. This tree has the property that, when scanning its
leaves from left to right, the sequence of depths is nondecreasing.

When performing a search on the bitstream of a Huffman encoded text by a classi-
cal string matching algorithm, one faces the problem of false matches, i.e., occurrences
of the encoded pattern in the encoded text which do not correspond to occurrences of
the pattern in the original text. Indeed, the only valid occurrences of the pattern are
those correctly aligned with codeword boundaries, or, otherwise said, valid matches
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t : 00
e : 01
w : 100
a : 101
n : 110
y : 1110
b : 1111

t e

w a

y b

n

0 1

0 1

0 1

0 1

0 1

0 1

twenty 0̄01̄000̄11̄100̄01̄110

ten 0̄00̄11̄10

ten 0̄00̄11̄10

Figure 1. A Huffman code for the set of symbols {t, e, w, a, n, y, b}. The binary string
0̄01̄000̄11̄100̄01̄110 is the encoding of the string twenty, where a “bar” indicates the
starting bit of each codeword. Two occurrences of the binary string ten start at the
4-th and 10-th bit of the encoded version of the string twenty. Both of them are false
matches.

must start on the first bit of a codeword. Consider, for example, the Huffman code
presented in Figure 1. Note that there are two false occurrences of the string ten

starting at the 4-th and at the 10-th bit, respectively, of the encoded string twenty.
Thus a verification that the occurrences detected by the pattern matching algorithm
are aligned on codeword boundaries is in order.

False matches could be avoided by using codes in which no codeword is a prefix or
a suffix of any other codeword. However, such codes, which are called affix or fix-free,
are extremely infrequent [5].

Klein and Shapira [11] showed that, for long enough patterns, the probability of
finding a false match is often very low, independently of the algorithm. They then
proposed a probabilistic algorithm which works on the assumption that Huffman
codes tend to realign quickly after an error.

More recently, Shapira and Daptardar [15] proposed a modification of the Knuth-

Morris-Pratt algorithm [12], in this paper referred to as Huffman-Kmp, which
makes use of a data structure, called skeleton tree [9], suitably designed for efficient
decoding of Huffman encoded sequences. The resulting algorithm is characterized by
fast search times, if compared with the decompress-and-search method.

Algorithms based on the Boyer-Moore algorithm [2] have been considered un-
suitable for searching Huffman encoded texts because the right to left scan does not
allow one to determine the codeword boundaries in the compressed text, unless the
text is decoded from left to right. In addition, Boyer-Moore-like algorithms are
generally considered unsuitable for binary alphabets.

In this paper we present a new way to exploit skeleton trees for adapting Boyer-

Moore-like algorithms to the compressed string matching problem in Huffman en-
coded texts. Specifically, we use skeleton trees to verify codeword alignments rather
than for decoding. This allows us to skip up to 70% of bits during the processing
of the encoded text. Futhermore, we make use of algorithms based on the Boyer-

Moore strategy, suitably adapted for searching on binary strings by regarding texts
and patterns as sequences of q-grams rather than as sequences of bits.

The paper is organized as follows. In Section 2 we introduce basic definitions and
notations. In Section 3 we describe a strategy based on skeleton trees which is not
specific to any algorithm and then in Section 4 we apply it to two string matching
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algorithms for binary strings. In Section 5 we present some experimental results and
finally we draw our conclusions in Section 6.

2 Some Basic Definitions and Preliminaries

A string P of length |P | = m ≥ 0 is represented as a finite array P [0 ..m − 1] of
characters from a finite alphabet Σ. In particular, for m = 0 we obtain the empty
string ε. By P [i] we denote the (i + 1)-st character of P , for 0 ≤ i < m. Likewise,
by P [i .. j] we denote the substring of P contained between the (i + 1)-st and the
(j + 1)-st characters of P , for 0 ≤ i ≤ j < m. Moreover, for any i, j ∈ Z, we put

P [i .. j] =

{
ε if i > j
P [max(i, 0) .. min(j,m− 1)] if i ≤ j.

A substring of the form P [0 .. i] is called a prefix of P and a substring of the form
P [i ..m−1] is called a suffix of P , for 0 ≤ i ≤ m−1. For any two strings P and Q, we
write Q ⊒ P to indicate that Q is a suffix of P . Similarly, we write Q ⊑ P to indicate
that Q is a prefix of P . In addition, we write Q.P to denote the concatenation of Q
and P . Also, if P is a string of length m and P [i] = b, for i = 0, . . . ,m− 1, then we
write P = bm.

A compression method for a given text T over an alphabet Σ is characterized by
a system (E ,D) of two complementary functions,

– an encoding function E : Σ → {0, 1}+, and
– an inverse decoding function D,

such that D(E(c)) = c, for each c ∈ Σ. The encoding function E is then recursively
extended over strings of characters by putting

E(ε) = ε
E(T [0 .. ℓ]) = E(T [0 .. ℓ− 1]).E(T [ℓ]), for 0 ≤ ℓ < |T |,

so that E(T ) = E(T [0 .. |T |−1]) is just a binary string, i.e., a string over the alphabet
{0, 1}.

For ease of notation, we usually write t in place of E(T ) and, more generally,
denote binary strings by lowercase letters.

Binary strings are conveniently stored in blocks of k bits, typically bytes (k = 8),
half-words (k = 16), or words (k = 32), which can be processed at the cost of a
single operation. If p is any binary string, we denote by Bp the vector of blocks whose
concatenation gives p, for a given block size k, so that

p[i] = Bp[⌊i/k⌋][i mod k], for i = 0, . . . , |p| − 1

(we assume that the last block, if not complete, is padded with 0’s).
Thus, a genuine solution to the compressed string matching problem consists in

finding all occurrences of a pattern P in a text T , over a common alphabet Σ, by
operating directly on the block vectors Bt and Bp, representing respectively the binary
strings t = E(T ) and p = E(P ) (again relative to a fixed block size k).

The algorithms for the compressed string matching problem in Huffman encoded
texts, to be presented in Section 3, are based on a high-level model to process binary
strings, adopted in [10,8,4], which we review next.
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(A) Patt 0 1 2 3
0 11001011 00101100 10110000

1 01100101 10010110 01011000

2 00110010 11001011 00101100

3 00011001 01100101 10010110

4 00001100 10110010 11001011 00000000

5 00000110 01011001 01100101 10000000

6 00000011 00101100 10110010 11000000

7 00000001 10010110 01011001 01100000

(C) Last

2
2
2
2
3
3
3
3

(B) Mask 0 1 2 3
0 11111111 11111111 11111000

1 01111111 11111111 11111100

2 00111111 11111111 11111110

3 00011111 11111111 11111111

4 00001111 11111111 11111111 10000000

5 00000111 11111111 11111111 11000000

6 00000011 11111111 11111111 11100000

7 00000001 11111111 11111111 11110000

Figure 2. Let P =110010110010110010110. (A) The matrix Patt . (B) The matrix
Mask . (C) The array Last . In the tables Patt and Mask , bits belonging to P are
underlined. Blocks containing a factor of P of length 8 have a shaded background.

2.1 A High-Level Model for Matching on Binary Strings

Let us assume that the block size k is fixed, so that all references to both text and
pattern will only be to entire blocks of k bits. We refer to a k-bit block as a byte,
though larger values than k = 8 could be supported as well.

We first define a vector Patt , of size k × (⌈m/k⌉+ 1), consisting in several copies
of the pattern P stored in the form of a matrix Bp of bytes, where p = E(P ) and
m = |p|. More precisely, the i-th row of the matrix Patt , for i = 1, . . . , k, contains a
copy of p shifted by i position to the right, whose length in bytes is mi = ⌈(m+ i)/k⌉.
The i leftmost bits of the first byte remain undefined and are set to 0. Similarly, the
rightmost ((k − ((m + i) mod k)) mod k) bits of the last byte are set to 0.

Observe that each factor of p of length k appears exactly once in the table Patt .
For instance, the factor of length k starting at position j of p is stored in Patt [k −
(j mod k), ⌈j/k⌉].

The vector Patt is paired with a matrix of bytes, Mask , of size k × (⌈m/k⌉+ 1),
containing binary masks of length k, to distinguish between significant and padding
bits in Patt . In particular, a bit in the mask Mask [i, h] is set to 1 if and only if the
corresponding bit of Patt [i, h] belongs to p.

Finally, we define a vector Last , of size k, where Last [i] is the index of the last
byte in the row Patt [i], i.e., Last [i] = mi, for 0 ≤ i < k.

The procedure Preprocess used to precompute the above vectors requires O(k×
⌈m/k⌉) = O(m) time and O(m) extra-space. Figure 2 shows the tables Patt , Mask ,
and Last relative to the pattern P =110010110010110010110, for a block size k = 8.

When the pattern is aligned with the s-th bit of the text, a match is reported if

Patt [i, h] = Bt[j + h] & Mask [i, h] ,

for h = 0, 1, . . . ,Last [i], where

– Bt is the block representation of the text encoding t = E(T ),
– j = ⌊s/k⌋ is the starting byte position in t,
– i = (s mod k), and
– “&” is the bitwise logic AND.
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b : 00

i : 01

d : 1000

t : 1001

a : 1010

r : 1011

l : 1100

c : 1101

g : 11100

k : 11101

u : 11110

e : 11111

b i

d t a r l c

g k u e

0

2 0

4 0

4 5

0 1

0 1

0 1 0 1 0 1 0 1

0 1 0 1

0 1

0 1

0 1

Figure 3. The Huffman tree induced by a Huffman code for the set of symbols Σ =
{a, b, c, d, e, g, i, k, l, r, t, u}. The skeleton tree is identified by bold lines.

3 Skeleton Tree Based Verification

The skeleton tree [9] is a pruned canonical Huffman tree, whose leaves correspond
to minimal depth nodes in the Huffman tree which are roots of complete subtrees. It is
useful to maintain at each leaf of a skeleton tree the common length of the codeword(s)
sharing the prefix which labels the path from the root to it. A fast algorithm for build-
ing skeleton trees is described in [9]. Figure 3 shows a canonical Huffman tree and its
corresponding skeleton tree, for the set of symbols Σ = {a, b, c, d, e, g, i, k, l, r, t, u},
relative to suitable character frequencies.

Skeleton trees allow a faster Huffman decoding because, once the codeword length
has been retrieved at its leaves, it is possible to read a burst of bits to complete
the codeword, or just to skip them, if one is only interested in finding codeword
boundaries.

Our approach consists in searching for the candidate occurrences of Bp in Bt,
where we recall that Bp and Bt are respectively the block vectors associated to given
Huffman encoded pattern and text, using Boyer-Moore-like algorithms and then
taking advantage of the skeleton tree to verify whether the candidate matches are
codeword aligned. In this way we obtain a substantial speedup, especially when the
frequency of the pattern in the text is low or when the length of the pattern increases.

For every candidate valid shift s found by the binary pattern matching algorithm,
one must verify whether s is codeword aligned. For this purpose, we maintain an offset
ρ pointing at the start of the last window where a skeleton tree verification took place.
The offset ρ is then updated, with the aid of the skeleton tree, to a minimal position
ρ∗ ≥ s which is codeword aligned. Only if ρ∗ = s the current window is codeword
aligned and s is a valid shift. Plainly, the performance of the algorithm depends on the
number of skeleton tree verifications and on the relative distance between candidate
valid shifts.

Figure 4 shows the pseudocode for the procedure Sk-Align used to update ρ.
In the pseudocode we assume that the starting value of ρ is codeword aligned and
that a node x in the skeleton tree is a leaf if the corresponding key is nonzero, i.e., if
Key(x) > 0. If Key(x) = ℓ > 0 and cx is the bit code which labels the path from the
root to x, then all codewords c such that cx ⊑ c have a length equal to ℓ. Thus, if
we are interested only in the codeword boundaries, we can skip the ℓ− |cx| following
bits and restore the skeleton-tree verification from the first bit of the next codeword.
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Sk-Align (root , t , ρ, b)
1. x ← root , ℓ ← 0
2. while true do
3. B = Bt[⌊ρ / k⌋] ≪ (ρ mod k)
4. if B < 2k−1 then x ← Left(x) else x ← Right(x)
5. if Key(x) 6= 0 then
6. ρ ← ρ + Key(x) − ℓ, ℓ ← 0, x ← root

7. if ρ ≥ b then break
8. else ρ ← ρ + 1, ℓ ← ℓ + 1
9. return ρ

Figure 4. Procedure Sk-Align(root , t , ρ, b) which computes the next codeword
alignment starting from position ρ, where root is the root of the skeleton tree, t is
the encoded text in binary form, b is a codeword boundary, and k is the block size
(≪ denotes the left shift operator).

Consider as an example the search of the pattern P = “bit” in the text T =
“abigblackbugbitabigblackbear”. Suppose moreover that codewords are defined
by the Huffman tree of Figure 3, so that p = E(P ) =“00011001”.
A first candidate valid shift is encountered at position 12 in t, as shown below

t 101000011110000110010101101111010011110111000001100110100001[· · · ]
p 0̄00̄11̄001

verif. 1̄0--0̄-0̄-1̄11--0̄

The skeleton tree verification starts at position 0 and stops at position 13, skipping 6
bits over 14 (unprocessed bits are represented by the symbol “-”), showing that the
occurrence at position 12 is not codeword aligned.

A second occurrence is found at the 45-th bit of t, as shown below

t [· · · ]000110010101101111010011110111000001100110100001111000[· · · ]
p 0̄00̄11̄001

verif. 0̄-1̄10-1̄0--1̄10-1̄11--0̄-1̄11--1̄11--0̄

The skeleton tree verification restarts from position 14 and finds a codeword alignment
at position 45. Thus the occurrence is codeword aligned and the shift is valid. The
verification skips 12 bits over 32.

Finally, a third candidate valid shift is found at the 65-th bit of t. This time, the
skeleton tree verification skips 10 bits over 22.

t [· · · ]0001100110100001111000011001010110111101001111110101011
p 0̄00̄11̄001

verif. 0̄-0̄-1̄0--1̄0--0̄-0̄-1̄11--0̄

The strategy presented above for verifying codeword alignment is general and not
specific to any algorithm.

4 Adapting Two Boyer-Moore-Like Algorithms for
Searching Huffman Encoded Texts

Next we deal with the problem of searching for all candidate valid shifts. For this
purpose, we present two algorithms which are adaptations to the case of Huffman
encoded texts, along the lines of the high-level model outlined in Section 2.1, of the
Fed algorithm [8] and the Binary-Hash-Matching algorithm [4].
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4.1 The Huffman-Hash-Matching Algorithm

Algorithms in the q-Hash family for exact pattern matching have been introduced
in [13], by adapting the Wu and Manber multiple string matching algorithm [17] to
the single string matching problem. Recently, variants of the q-Hash algorithms have
been proposed for searching on binary strings [4].

The first algorithm which we present, called Huffman-Hash-Matching, asso-
ciates directly each binary substring of length q with its numeric value in the range
[0, 2q − 1], without using any hash function. To exploit the block structure of the
text, the algorithm considers substrings of length q = k.

To begin with, a function Hs : {0, 1, . . . , 2k − 1},→ {0, 1, . . . ,m}, defined by

Hs(B) = min
(
{0 ≤ u < m | p[m− u− k ..m− u− 1] ⊒ B} ∪ {m}

)

for each byte 0 ≤ B < 2k, is computed during the preprocessing phase. Observe that
if B = p[m− k ..m− 1], then Hs [B] = 0.

For example, in the case of the pattern P = 110010110010110010110 presented
in Figure 2, we have Hs [01100101] = 2, Hs [11001011] = 1, and Hs [10010110] = 0.

In contrast with algorithms in the q-Hash family, where the maximum shift is
m − q, in this case maximum shifts can reach the value m. Since we do not use a
hash function but rather map directly the binary substrings of the pattern, the shift
table can be modified by taking into account the prefixes of the patterns Patt[i] of
length k − i, with 1 ≤ i ≤ k − 1. Thus Hs can be conveniently computed by setting
Hs [B] = m−k+ i, where i is the minimum index such that Patt [i][0] ⊒ B, if it exists;
otherwise Hs [B] is set to m.

The code of the Huffman-Hash-Matching algorithm is presented in Figure 5.
The preprocessing phase of the algorithm just consists in computing the function

Hs defined above and requires O(m + k2k+1)-time complexity and O(m + 2k) extra
space.

During the search phase, the algorithm reads, for each shift position s of the
pattern in the text, the block B = Bt[s + m − k .. s + m − 1] of k bits (line 9). If
Hs(B) > 0 then a shift of length Hs(B) takes place (line 21). Otherwise, if Hs(B) =
0, the pattern p is naively checked in the text block by block (lines 11-15). The
verification step is performed using the procedure Sk-Align described before (lines
16-19).

After the test, an advancement of length shift takes place (line 20), where

shift = min
(
{0 < u < m | p[m− u− k ..m− u− 1] ⊐ p[m− k ..m− 1]} ∪ {m}

)
.

Observe that if the block B has its sℓ rightmost bits in the j-th block of t and the
(k − sℓ) leftmost bits in the block Bt[j − 1], then it is computed by performing the
following bitwise operations (line 9)

B =
(
Bt[j]≫ (k − sℓ)

) ∣∣
(
Bt[j − 1]≪ (sℓ + 1)

)

The Huffman-Hash-Matching algorithm has an overallO(⌊m/k⌋n)-time com-
plexity and requires O(m + 2k) extra space.

For blocks of length k, the size of the Hs table is 2k, which seems reasonable for
k = 8 or even 16. For greater values of k it is possible to adapt the algorithm to choose
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Huffman-Hash-Matching (p, m, t, n)

1. root ← Build-Sk-Tree(φ)
2. (Patt , Last , Mask) ← Preprocess (p, m)
3. Hs ← compute-hash(Patt , Last , Mask , m)
4. ρ ← 0
5. i ← (k − (m mod k)) mod k
6. B ← Patt [i][Last [i]]
7. shift ← Hs[B], Hs[B] ← 0
8. gap ← i + 1, j ← m − 1
9. while j < n do
10. s ← j ≫ 3, sℓ ← j & 7
11. B ← (Bt[s] ≫ (k − sℓ))| (Bt[s − 1] ≪ (sℓ + 1))
12. if Hs[B] = 0 then
13. i ← (sℓ + gap) mod k
14. h ← Last [i], q ← s
15. while h ≥ 0 and
16. Patt[i, h] = (Bt[q] & Mask [i, h]) do
17. h ← h − 1, q ← q − 1
18. if h < 0 then
19. b ← (q + 1) × k + i
20. ρ ← Sk-Align(root, t, ρ, b)
21. if ρ = b then Print(b)
22. j ← j + shift

23. else j ← j + Hs[B]

Huffman-Fed (p, m, t, n)

1. root ← Build-Sk-Tree(φ)
2. (Patt , Last , Mask) ← Preprocess (p, m)
3. (δ, λ) ← compute-Fed(Patt ,Last , m)
4. ρ ← 0
5. s = m/8
6. while s < n do
7. for each i in λ[Bt[s]] do
8. h ← Last[i]
9. q ← s + 1

10. while h ≥ 0 and
11. Patt[i][h] = Bt[q] &Mask [i][h] do
12. h ← h − 1
13. q ← q − 1
14. if h < 0 then
15. b ← (q + 1) × 8 + i
16. ρ ← Sk-Align(root, t, ρ, b)
17. if ρ = b then Print(b)
18. do
19. s ← s + δ[Bt[s + 1]]
20. while s < n and δ[Bt[s]] 6= 1

Figure 5. The Huffman-Hash-Matching algorithm and the Huffman-Fed al-
gorithm for the compressed string matching problem on Huffman encoded texts. Pa-
rameters p and t stand for the Huffman compressed version of the pattern and text,
respectively.

the desired time/space tradeoff by introducing a new parameter K ≤ k, representing
the number of bits taken into account for computing the shift advancement. Roughly
speaking, only the K rightmost bits of the current window of the text are taken
into account, reducing the total size of the tables to 2K , at the price of possibly
getting shorter shift advancements of the pattern than the ones that would have been
obtained if the full length of blocks had been taken into consideration.

4.2 The Huffman-Fed Algorithm

The Fed algorithm [8] (Fast matching with Encoded DNA sequences) is a string
matching algorithm specifically designed for matching DNA sequences compressed
with a fixed-length encoding, requiring two bits for each character of the alphabet
{A, C, G, T}. It combines a multi-pattern version of the Quick-Search algorithm [16]
and a simplified version of the Commentz-Walter algorithm [3]. However, its strat-
egy is general enough to be adapted to different encodings, including the Huffman
one.

The resulting algorithm, which we call Huffman-Fed, makes use of a shift table
δ and a hash table λ, both of size 2k.

More specifically, the shift table δ is defined as follows. For 0 ≤ i < k and c ∈ Σ,
we first define the Quick-Search shift table qs[i][c], by putting

qs[i][c] = min
(
{mi− 2 + 1} ∪ {mi− 2 + 1− k | Patt[i][k] = c and 1 ≤ k ≤ mi− 2}

)
.

Then, we put δ[c] = min{qs[i][c], 0 ≤ i < k}, for c ∈ Σ.
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The algorithm maintains also, for each block B ∈ {0 . . . 2k − 1}, a linked list λ
which is used to find candidate patterns. In particular, for each block B ∈ {0, . . . , 2k−
1}, the entry λ[B] is a set of indexes, defined by

λ[B] = {0 ≤ i < k | P [i][Last[i]− 1] = B}.

In practical cases, each set in the table can be implemented as a linked list.
The code of the Huffman-Fed algorithm is presented in Figure 5.
The preprocessing phase of the algorithm consists in computing the shift table

δ and the hash table λ defined above and, as in the Huffman-Hash-Matching

algorithm, it requires O(m + k2k+1)-time complexity and O(m + 2k) extra space.
During the searching phase, the algorithm performs a fast loop using the shift

table δ to locate a candidate alignment of the pattern (lines 18-20). In particular,
the algorithm checks whether δ[Bt[s]] 6= 1 and, if this is the case, it advances the shift
by δ[Bt[s + 1]] positions to the right.

If δ[Bt[s]] = 1 then, by definition of δ, we have Bt[s] = P [i, Last[i]− 1], for some
0 ≤ i < k. In such a case the last byte of the current window is used as an index in the
hash table and all patterns Patt[i], such that i ∈ λ[Bt[s]], are checked naively against
the window (line 7). For each alignment i found, the pattern Patt[i] is compared
block by block with the text.

As in the Huffman-Hash-Matching algorithm, one has also to verify that the
window is codeword aligned (line 14-17).

The Huffman-Fed algorithm has a O(⌈m/k⌉n)-time complexity and requires
O(m + 2k) extra space.

5 Experimental Results

In this section we present experimental results which allow to compare, in terms
of running times and percentage of processed bits, the following algorithms:

– the Huffman-Kmp algorithm (Hkmp) [15];
– the Huffman-Hash-Matching algorithm (Hhm), presented in Section 4.1;
– the Huffman-Fed algorithm (Hfed), presented in Section 4.2.

In addition, we also tested an algorithm based on the decompress-and-search method
(D&S for short) that makes use of the 3-Hash algorithm [13] for classical exact
pattern matching, which is considered among the most efficient algorithms for the
problem.

All algorithms have been implemented in the C programming language and
have been compiled with the GNU C Compiler, using the optimization options -O2

-fno-guess-branch-probability. The tests have been performed on a 1.5 GHz
PowerPC G4 and running times have been measured with a hardware cycle counter,
available on modern CPUs.

We used the following input files:

– the English King James version of the “Bible” (3 Mb),
– the English “CIA World Fact Book” (2 Mb), and
– the Spanish novel “Don Quixote” by Cervantes (2 Mb).
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The first two files are from the Canterbury Corpus [1], whereas the third one is from
the Project Gutenberg [6].

For each input file, we have generated sets of 100 patterns of fixed length m, for
m ranging in the set {4, 8, 16, 32, 64, 128, 256}, randomly extracted from the text.
For each set of patterns we reported the mean over the running times of the 100
runs. The tables also show the minimum (lmin) and maximum (lmax) length in bits of
the compressed patterns. For each set of patterns we have also computed the average
number of processed bits.

In the following tables, running times are expressed in milliseconds whereas the
number of processed bits is expressed as percentage of the total number of bits.

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [17, 31] 188.64 134.79 146.34 502.82
8 [36, 53] 185.77 105.59 112.98 491.87
16 [79, 102] 185.99 76.04 81.25 489.03
32 [164, 204] 184.23 65.78 70.31 487.74
64 [336, 378] 185.36 64.71 68.91 489.27
128 [694, 768] 187.73 72.00 77.11 487.31
256 [1383, 1545] 184.09 61.45 65.77 488.46

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77
16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42
128 0.75 0.34 0.37
256 0.76 0.34 0.36

Experimental results on the Huffman encoded version of the King James version of the Bible

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 29] 96.35 64.13 74.23 296.69
8 [38, 53] 95.50 49.38 56.47 289.82
16 [77, 108] 95.23 39.26 45.03 287.78
32 [162, 207] 94.74 33.55 38.53 287.34
64 [327, 392] 94.99 34.21 39.39 287.85
128 [662, 761] 94.42 28.54 32.92 287.51
256 [1347, 1610] 94.39 29.67 34.18 287.21

Processed bits

m Hkmp Hhm Hfed

4 0.67 0.74 0.98
8 0.66 0.55 0.68
16 0.66 0.43 0.50
32 0.65 0.35 0.40
64 0.65 0.35 0.38
128 0.64 0.29 0.31
256 0.65 0.30 0.32

Experimental results on the Huffman encoded version of the CIA World Fact Book

Running times

m [lmin, lmax] Hkmp Hhm Hfed D&S

4 [18, 35] 122.25 87.44 95.44 308.56
8 [37, 60] 119.33 73.69 79.74 302.38
16 [83, 140] 120.35 45.99 49.67 300.53
32 [171, 216] 120.12 45.97 49.70 299.81
64 [348, 525] 119.20 41.86 45.26 300.90
128 [712, 1068] 117.55 37.80 40.83 299.78
256 [1439, 1773] 124.10 38.43 41.45 300.36

Processed bits

m Hkmp Hhm Hfed

4 0.75 0.81 0.95
8 0.76 0.68 0.77
16 0.75 0.45 0.53
32 0.75 0.42 0.48
64 0.75 0.38 0.42
128 0.75 0.34 0.37
256 0.76 0.34 0.36

Experimental results on the Huffman encoded version of “Don Quixote”

The experimental results show that the Huffman-Hash-Matching and Huff-

man-Fed algorithms always achieve the best running times. In addition, the Huff-

man-Hash-Matching algorithm always obtains better results than the Huffman-

Fed algorithm. In particular the running time of both algorithms decreases as the
length of the pattern increases, since, as is reasonable to expect, the frequency of the
patterns, and thus the number of skeleton tree verifications, is inversely proportional
to m.

As expected, the Huffman-Kmp algorithm maintains the same performance
independently of the pattern frequency. The gain of our algorithms compared to
Huffman-Kmp is at least around 20 % and grows as the pattern frequency decreases
and the pattern length increases.

Observe that, with the exception of very short patterns, the percentage of bits pro-
cessed by our newly presented algorithms is always lower than that of the Huffman-

Kmp algorithm and, in many cases, the gain is almost 50 %.
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6 Conclusions

We have presented a new efficient approach to the compressed string matching prob-
lem on Huffman encoded texts, based on the Boyer-Moore strategy. Codeword
alignment takes advantage of the skeleton tree data structure, which allows to skip
over a significant percentage of the bits. In particular, we have presented adapta-
tions of the Binary-Hash-Matching and Fed algorithms for searching Huffman
encoded texts. The experimental results show that our algorithms exhibit a sublinear
behavior on the average and in most cases are able to skip more than 50 % of the
total number of bits in the encoded text.
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Abstract. Text mining from large scaled data is of great importance in computer sci-
ence. In this paper, we consider fundamental problems on text mining from compressed
strings, i.e., computing a longest repeating substring, longest non-overlapping repeat-
ing substring, most frequent substring, and most frequent non-overlapping substring
from a given compressed string. Also, we tackle the following novel problem: given a
compressed text and compressed pattern, compute the representative of the equiva-
lence class of the pattern w.r.t. the text. We present algorithms that solve the above
problems in time polynomial in the size of input compressed strings. The compression
scheme we consider is straight line program (SLP) which has exponential compres-
sion, and therefore our algorithms are more efficient than any algorithms that work on
uncompressed strings.

1 Introduction

Text mining from large scaled data, e.g. biological and web data, is currently a very
important topic in computer science [2]. The sheer size of the data makes the task
difficult, and hence, it is convenient to store these data in a compressed form. The
question is if it is possible to perform text mining operations on compressed strings.

In this paper, we consider the following fundamental text mining problems from
compressed strings: given a compressed form T of a string T , compute (1) a longest
repeating substring of T , (2) a longest non-overlapping repeating substring of T , (3) a
most frequent substring of T , (4) a most frequent non-overlapping substring of T . We
present algorithms to solve Problem 1 in O(n4 log n) time and O(n3) space, Problem 2
in O(n6 log n) time and O(n3) space, Problem 3 in O(|Σ|2n2) time and O(n2) space,
and Problem 4 in O(n4 log n) time and O(n3) space, where n is the size of T and Σ
is the alphabet. We also consider the following problem: given compressed forms of
two strings T and P , compute the representative of the string equivalence class [1] of
P in T . We present an O(n4 log n)-time O(n3)-space algorithm to solve this problem,
where n denotes the total size of the two compressed representations. By computing
the representative of the equivalence class, we can retrieve the left and right contexts
of P in T . The equivalence class and its representative have played central roles in
the discovery of characteristic expressions in classical Japanese poems [13], and in a
blog spam detection algorithm [10]. To the best of our knowledge, our algorithms are
the first to solve the above problems without decompression.

The text compression scheme we consider in this paper is straight line program
(SLP). SLP is a context-free grammar in the Chomsky normal form and generates a
single string. SLP is an abstract model of many kinds of text compression schemes, as
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the resulting encoding of the LZ-family [14,15], run-length, multi-level pattern match-
ing code [5], Sequitur [11] and so on, can quickly be transformed into SLPs [3,12]1.
The important property of SLP is that it allows exponential compression, i.e., the
original (uncompressed) string length N can be exponentially large w.r.t. the corre-
sponding SLP size n. Therefore, our algorithms are asymptotically faster than any
approaches that treat uncompressed strings.

Related Work. Little is known for text mining from compressed strings. Ga̧sieniec et
al. [3] stated that it is possible to compute a succinct representation of all squares that
appear in a given compressed string of size n in O(n6 log5 N) time. Matsubara et al. [8]
presented an O(n4)-time O(n2)-space algorithm to compute a succinct representation
of all maximal palindromes from a given SLP-compressed string.

2 Preliminaries

2.1 Notations

For any set U of integers and an integer k, we denote U ⊕ k = {i + k | i ∈ U} and
U ⊖ k = {i− k | i ∈ U}.

Let Σ be a finite alphabet. An element of Σ∗ is called a string. The length of a
string T is denoted by |T |. The empty string ε is a string of length 0, namely, |ε| = 0.
For a string T = XY Z, X, Y and Z are called a prefix, substring, and suffix of T ,
respectively. The i-th character of a string T is denoted by T [i] for 1 ≤ i ≤ |T |, and
the substring of a string T that begins at position i and ends at position j is denoted
by T [i : j] for 1 ≤ i ≤ j ≤ |T |. For convenience, let T [i : j] = ε if j < i.

For any strings T and P , let Occ(T, P ) be the set of occurrences of P in T , i.e.,

Occ(T, P ) = {k > 0 | T [k : k + |P | − 1] = P}.
For any two strings T and S, let LCPref (T, S) and LCSuf (T, S) denote the length

of the longest common prefix and suffix of T and S, respectively.
For any string T , let T denote the reversed string of T , i.e., T = T [|T |] · · ·T [2]T [1].
A period of a string T is an integer p (1 ≤ p ≤ |T |) such that T [i] = T [i + p] for

any i = 1, 2, . . . , |T | − p.
For any two strings T and S, we define the set OL(T, S) as follows:

OL(T, S) = {k > 0 | T [|T | − k + 1 : |T |] = S[1 : k]}
Namely, k ∈ OL(T, S) iff the suffix of T of length k (k > 0) matches the prefix of S
of length k.

2.2 Text Compression by Straight Line Programs

In this paper, we treat strings described in terms of straight line programs (SLPs). A
straight line program T is a sequence of assignments such that

X1 = expr1, X2 = expr2, . . . , Xn = exprn,

where each Xi is a variable and each expri is an expression either

– expri = a (a ∈ Σ), or
– expri = XℓXr (ℓ, r < i).

1 An important exception is compression schemes based on the Burrows-Wheeler transform.
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X1 X2

a ba a ab a b a b a a b

X1 X3

X1 X2
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X1
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Figure 1. The derivation tree of an SLP that gener-
ates string aababaababaab.

Denote by T the string de-
rived from the last variable Xn

of the program T . The size of
the program T is the number
n of assignments in T . We re-
mark that |T | = O(2n). Fig-
ure 1 shows the derivation tree
of an SLP which derives string
aababaababaab.

When it is not confusing,
we identify a variable Xi with
the string derived from Xi.
Then, |Xi| denotes the length
of the string derived from Xi.

For any variable Xi of T
with 1 ≤ i ≤ n, we define Xi

as follows:

Xi =

{
a if Xi = a (a ∈ Σ),

Xr Xℓ if Xi = XℓXr (ℓ, r < i).

Let T be the SLP consisting of variables Xi for 1 ≤ i ≤ n. It is shown in [8] that SLP
T derives string T and T can be easily computed from SLP T in O(n) time.

Pattern Matching on SLP-compressed Strings. Here we briefly recall some
existing results on pattern matching for SLP-compressed strings.

Let Yj denote a variable of SLP P of size m that generates string P , for 1 ≤ j ≤ m.
For any SLP variables Xi = XℓXr and Yj, we define the set Occ△(Xi, Yj) of all

occurrences of Yj that cover or touch the boundary between Xℓ and Xr, namely,

Occ△(Xi, Yj) = {s > 0 | Xi[s : s + |Yj| − 1] = Yj, |Xℓ| − |Yj|+ 1 ≤ s ≤ |Xℓ|}.

Lemma 1 ([9]). For any SLP variables Xi and Yj, Occ△(Xi, Yj) forms a single
arithmetic progression. Moreover, if |Occ△(Xi, Yj)| ≥ 3, then the common difference
of the arithmetic progression is the smallest period of Yj.

Lemma 2 ([9]). A membership query to Occ(T, P ) can be answered in O(n) time,
provided that Occ△(Xi, Ym) is already computed for every Xi.

Theorem 3 ([7]). Occ△(Xi, Yj) can be computed in a total of O(n2m) time and
O(nm) space for every 1 ≤ i ≤ n and 1 ≤ j ≤ m, using a DP table App of size n×m
such that App[i, j] stores an arithmetic progression for Occ△(Xi, Yj).

Computing Overlaps of SLP-compressed Strings. The set of overlaps between
two variables can be efficiently computed as follows (assume n > m).

Lemma 4 ([4]). For any SLP variables Xi and Yj, OL(Xi, Yj) can be represented by
O(n) arithmetic progressions.

Theorem 5 ([4]). OL(Xi, Yj) can be computed in total of O(n4 log n) time and O(n3)
space for every 1 ≤ i ≤ n and 1 ≤ j ≤ m.
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2.3 The FM function

For any two SLP variables Xi, Yj and any integer k with 1 ≤ k ≤ |Xi|, we define
function FM (Xi, Yj, k) which returns the length of the longest common prefix of
Xi[k : |Xi|] and Yj, that is,

FM (Xi, Yj, k) = LCPref (Xi[k : |Xi|], Yj).

Lemma 6 ([4]). For any SLP variables Xi, Yj and integer k, FM (Xi, Yj, k) can be
computed in O(n log n) time, provided that OL(Xi′ , Yj′) is already computed for any
1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

3 Computing Repeating Substrings from Compressed Text

3.1 Problems

A string P is said to be a repeating substring of a string T if |Occ(T, P )| ≥ 2. A
longest repeating substring of T is a longest string P of T such that |Occ(T, P )| ≥ 2.
A most frequent substring of T is a string P such that |Occ(T, P )| ≥ |Occ(T,Q)| for
any other string Q.

Any two occurrences k1, k2 ∈ Occ(T, P ) with k1 < k2 are said to overlap if k1 +
|P | ≥ k2. Otherwise, they are said to non-overlap. A longest non-overlapping repeating
substring of T is a longest string P such that there exist at least two non-overlapping
occurrences in Occ(T, P ). A most frequent non-overlapping substring of T is a string
P such that it has the most non-overlapping occurrences in T .

In this section we consider the following problems.

Problem 1 (Computing longest repeating substring from SLP). Given an SLP T that
derives a string T , compute two occurrences of a longest repeating substring P of T
and its length |P |.

Problem 2 (Computing longest non-overlapping repeating substring from SLP). Given
an SLP T that derives a string T , compute two non-overlapping occurrences of a
longest non-overlapping repeating substring P of T and its length |P |.

Problem 3 (Computing most frequent substring from SLP). Given an SLP T that
derives a string T , compute a most frequent substring P of T and a representation
and the cardinality of Occ(T, P ).

Problem 4 (Computing most frequent non-overlapping substring from SLP). Given an
SLP T that derives a string T , compute a most frequent non-overlapping substring
P of T , and a representation and the number of non-overlapping occurrences of P in
T .

By “representation” in Problems 3 and 4 we mean some succinct (polynomial-
sized) representation of the sets. This is due to the fact that the cardinality of the
sets can be exponentially large w.r.t. the input size.

In what follows, let n be the size of SLP T and let Xi denote each variable of T
for 1 ≤ i ≤ n.
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Figure 2. Illustration for Observation 7. The six cases for two distinct occurrences
of a substring Y of Xi.

3.2 Solution to Problem 1

A key observation for solving Problem 1 is the following.

Observation 7. For any SLP variable Xi = XℓXr and any string Y , assume that
|Occ(Xi, Y )| ≥ 2. Any two occurrences k1, k2 ∈ Occ(Xi, Y ) with k1 < k2 fall into one
of the six following cases (see also Figure 2):

1. k1, k2 ∈ Occ(Xℓ, Y ).
2. k1, k2 ∈ Occ(Xr, Y ).
3. k1 ∈ Occ(Xℓ, Y ) and k2 ∈ Occ(Xr, Y ).
4. k1 ∈ Occ(Xℓ, Y ) and k2 ∈ Occ△(Xi, Y ).
5. k1 ∈ Occ△(Xi, Y ) and k2 ∈ Occ(Xr, Y ).
6. k1, k2 ∈ Occ△(Xi, Y ).

Observation 7 implies that a longest repeating substring of T can be obtained
by computing a longest repeating substring for every SLP variable Xi in each case.
Case 1 and Case 2 are symmetric, and these two cases actually belong to one of the
above cases with respect to variables Xℓ and Xr, respectively. Since Case 4 and Case 5
are symmetric, we focus on Case 3, Case 4, and Case 6 in the sequel.

The following lemma is useful to deal with Case 3.

Lemma 8 ([8]). For every pair of SLP variables Xi and Xj, we can compute the
length of a longest common substring of Xi and Xj plus its occurrence position in Xi

and Xj in O(n2 log n) time, provided that OL(Xi′ , Xj′) is already computed for any
1 ≤ i′ ≤ i and 1 ≤ j′ ≤ j.

Now we have the next lemma.

Lemma 9. For every SLP variable Xi, two occurrences and the length of a longest
repeating substring in Case 3 can be computed in O(n2 log n) time.
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Figure 3. Illustration for Observation 10.
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Figure 4. Illustration for Observation 11. The black rectangles of the left and right
diagrams are an element of OL(Xℓ, Xt) and OL(Xs, Xr), respectively.

Proof. Note that a longest repeating substring of Xi = XℓXr in Case 3 is indeed a
longest common substring of Xℓ and Xr. Hence the lemma holds by Lemma 8. ⊓⊔

Next we consider Case 4. A key observation is the following:

Observation 10. For the first occurrence of Y in Case 4 of Observation 7, there
always exists a variable Xj such that Xj is a descendant of Xℓ or Xℓ itself, and the
first occurrence of Y touches or covers the boundary of Xj (see also Figure 3).

For any SLP variables Xi = XℓXr and Xj = XsXt and any non-negative integer
z ∈ OL(Xℓ, Xt)∪{0}, let h1 and h2 be the maximum non-negative integers such that

Xi[|Xℓ| − z − h1 + 1 : |Xℓ|+ h2] = Xj[|Xs| − h1 + 1 : |Xs|+ z + h2].

That is, h1 = LCSuf (Xℓ[1 : |Xℓ| − z], Xs) and h2 = LCPref (Xr, Xt[z + 1 : |Xt|]). Let

ExtXi,Xj
(z) =

{
z + h1 + h2 if Xi = XℓXr and Xj = XsXt,

z if Xi or Xj is constant.

For a set S of integers, we define ExtXi,Xj
(S) = {ExtXi,Xj

(z) | z ∈ S}. ExtXj ,Xi
(z)

and ExtXj ,Xi
(S) are defined similarly.

Observation 11. The length of a longest repeating substring of Case 4 is equal to
the maximum element of

⋃

Xj∈A

(ExtXi,Xj
(OL(Xℓ, Xt)) ∪ ExtXi,Xj

(0) ∪ ExtXj ,Xi
(OL(Xs, Xr))) (1)

where A = {Xj = XsXt | Xj is a descendant of Xℓ or j = ℓ}. (See also Figure 4.)
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Now we have the following lemma.

Lemma 12. For every SLP variable Xi, two occurrences and the length of a longest
repeating substring in Case 4 can be computed in O(n3 log n) time, provided that
OL(Xi′ , Xj′) and Occ△(Xi′ , Xj′) are already computed for any 1 ≤ i′ ≤ n and 1 ≤
j′ ≤ n.

Proof. Let Xi = XℓXr. It was proven by Lemma 4 of [8] that, for any vari-
able Xj = XsXt mentioned in Observation 10, max(ExtXi,Xj

(OL(Xℓ, Xt)) ∪
ExtXi,Xj

(0) ∪ ExtXj ,Xi
(OL(Xs, Xr))) can be computed in O(n2 log n) time, pro-

vided that OL(Xi′ , Xj′) is already computed for any 1 ≤ i′ ≤ n and 1 ≤ j′ ≤ n.
Recall Observation 11. Since the number of distinct descendants of any variable Xi

is at most n − 1, we can compute Equation (1) in O(n3 log n) time. Let Xh be the
variable that gives the maximum value of Equation (1). We can retrieve one position
of Occ(Xℓ, Xh) in O(n2) time from Occ△(X1, Xh), . . . ,Occ△(Xℓ, Xh). Then it is easy
to compute two occurrences of the longest repeating substring in constant time. ⊓⊔

It is not difficult to see that Case 6 can be solved in a similar way to Case 4.
By Lemma 9, Lemma 12, Theorem 3, and Theorem 5, we obtain the main result

of this subsection.

Theorem 13. Problem 1 can be solved in O(n4 log n) time and O(n3) space.

3.3 Solution to Problem 2

Here we show how to find a longest non-overlapping repeating substring from a given
SLP. The algorithm is based on the one proposed in Section 3.2. Below, we give our
strategy to find a maximal non-overlapping repeating substring from the overlapping
repeating substring found by the algorithm of Section 3.2.

An obvious fact is that Case 3 of Observation 7 only deals with a non-overlapping
repeating substring. Hence we focus on Case 4. The other cases are solved similarly.

Lemma 14 ([6]). Let T be any SLP of size n that generates string T . For any
substring Y of T , it takes O(n) time construct a new SLP of size O(n) which generates
the substring Y .

Lemma 15. Let k1 and k2 be any overlapping occurrences of string Y in string X
such that k1 < k2. Let p be the smallest period of Y . Then, a longest non-overlapping
repeating substring in X[k1 : k2 + |Y | − 1] is Y [1 : k2− 1 + pl], where l = ⌊(|Y | − k2 +
k1)/2p⌋.

Proof. The length of the overlap is |Y |−k2+k1. Y [1 : p] appears in ⌊(|Y |−k2+k1)/p⌋
times in the overlap part Y [k2 : |Y |+ k1]. Hence the lemma holds. ⊓⊔

Lemma 16. For every SLP variable Xi, two occurrences and the length of a longest
non-overlapping repeating substring in Case 4 of Observation 7 can be computed in
O(n5 log n) time and O(n3) space, provided that OL(Xi′ , Xj′) is already computed for
any 1 ≤ i′ ≤ n and 1 ≤ j′ ≤ n.

Proof. The proof is based on the proof of Lemma 8 of [8].
We consider ExtXi,Xj

(OL(Xℓ, Xt)) of Observation 11. For each descendant Xj of
Xi, it is sufficient to consider the leftmost occurrence γ of Xj in the derivation tree
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of Xi, since no other occurrences of Xj can correspond to longer non-overlapping
repeating substring than the leftmost occurrence.

Let 〈a, d, q〉 denote any of the O(n) arithmetic progressions in OL(Xℓ, Xt), where
a denotes the minimal element, d does the common difference and q does the number
of elements of the progression. That is, 〈a, d, q〉 = {a + (i− 1)d | 1 ≤ i ≤ q}.

Assume q > 1 and a < d, as the case where q = 1 or a = d is easier to show. Let
u = Xt[1 : a] and v = Xt[a + 1 : d].

Let e1, e2 be the largest integer such that Xi[|Xℓ|−e2 +1 : |Xℓ|+e1] is the longest
substring of Xi that contains Xi[|Xℓ| − d + 1 : |Xℓ|] and has a period d. Similarly,
let e3, e4 be the largest integer such that Xj[|Xs| − e4 + 1 : |Xs| + e3] is the longest
substring of Xj that contains Xj[|Xs|+1 : |Xs|+d] and has a period d. More formally,

e1 = LCPref (Xr, (vu)∗) =

{
FM (Xt, Xr, a+1) if FM (Xt, Xr, a+1)<d,

FM (Xr, Xr, d + 1) + d otherwise,

e2 = LCSuf (Xℓ, (vu)∗) = FM (Xℓ, Xℓ, d + 1) + d,

e3 = LCPref (Xt, (uv)∗) = FM (Xt, Xt, d + 1) + d,

e4 = LCSuf (Xs, (uv)∗) =

{
FM (Xℓ, Xs, a+1) if FM (Xℓ, Xs, a+1)<d,

FM (Xs, Xs, d + 1) + d otherwise,

where (vu)∗ and (uv)∗ denote infinite repetitions of vu and uv, respectively.
Let k ∈ 〈a, d, q〉. We categorize ExtXi,Xj

(k) depending on the value of k, as follows.

(1) When k < min{e3 − e1, e2 − e4}. If k − d ∈ 〈a, d, q〉, then we have ExtXi,Xj
(k) =

ExtXi,Xj
(k − d) + d.

(2) When k > max{e3 − e1, e2 − e4}. If k + d ∈ 〈a, d, q〉, then we have ExtXi,Xj
(k) =

ExtXi,Xj
(k + d) + d.

(3) When min{e3 − e1, e2 − e4} < k < max{e3 − e1, e2 − e4}. In this case we have
ExtXi,Xj

(k) = min{e1 + e2, e3 + e4} for any k with min{e3 − e1, e2 − e4} < k <
max{e3 − e1, e2 − e4}.

(4) When k = e3 − e1. In this case we have

ExtXi,Xj
(k) = k + min{e2 − k, e4}+ LCPref (Xt[k + 1 : |Xt|], Xr)

= k + min{e2 − k, e4}+ FM (Xt, Xr, k + 1).

(5) When k = e2 − e4. In this case we have

ExtXi,Xj
(k) = k + LCSuf (Xℓ[1 : |Xℓ| − k], Xs) + min{e1, e3 − k}

= k + FM (Xℓ, Xs, k + 1) + min{e1, e3 − k}.

(6) When k = e3 − e1 = e2 − e4. In this case we have

ExtXi,Xj
(k) = k + LCSuf (Xℓ[1 : |Xℓ| − k], Xs) + LCPref (Xt[k + 1 : |Xt|], Xr)

= k + FM (Xℓ, Xs, k + 1) + FM (Xt, Xr, k + 1).

Consider Case (1). For any k − d, k ∈ 〈a, d, q〉, if the occurrences of the substring
that corresponds to ExtXi,Xj

(k − d) overlap, then the substring that corresponds
to ExtXi,Xj

(k) also overlap. Note also that these substrings have the same ending
position b in Xi, and have the same beginning position c in Xj. Since a membership
query to the triple 〈a, d, q〉 can be answered in constant time, we can find the largest
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k belonging to Case (1) in constant time. It is not difficult to see that d is the smallest
period of Xi[c + γ − 1 : b]. By Lemma 15, we can compute the length of a longest
non-overlapping repeating substring in Xi[c + γ − 1 : b] in constant time, provided
that e1, e2, e3, e4 are already computed. Similar arguments hold for Cases (2) and (3).

Consider Case (4). Let Z be the unique substring that corresponds to ExtXi,Xj
(k).

Let x and y be the integers such that x < y and Xh[x : x + |Z| − 1] = Xi[y :
y+ |Z|−1] = Z. If x+γ + |Z|−2 ≥ y, then we construct a new SLP P that generates
string P = Xi[x + γ − 1 : y + |Z| − 1] and compute its smallest period. It is clear
that |P | − max(OL(P, P ) − {|P |}) is the smallest period of P . By Theorem 5 and
Lemma 14, the length of a longest non-overlapping repeating substring in P can be
computed in O(n4 log n) time with O(n3) space. Similar arguments hold for Cases (5)
and (6).

The values of e1, e2, e3, e4 can be computed by at most 6 calls of the FM function,
each taking O(n log n) time.

Since there is O(n) descendants of Xi, the total cost is O(n5 log n) time and O(n3)
space. ⊓⊔

The next theorem follows from Lemma 16.

Theorem 17. Problem 2 can be solved in O(n6 log n) time and O(n3) space.

3.4 Solution to Problem 3

Consider Problem 3 of computing a substring that most frequently occurs in T .

Lemma 18. For any non-empty strings T and P , Occ(T, P [1 : i]) ⊇ Occ(T, P ) for
any integer 0 ≤ i ≤ |P |.

The above monotonicity lemma implies that the empty string ε is always the solu-
tion for Problem 3. To make the problem more interesting, we consider the following
version of the problem where the output is a substring of length at least 2.

Problem 5 (Computing most frequent substring of length at least 2 from SLP). Given
an SLP T that derives a string T , compute a string P such that |P | ≥ 2 and
|Occ(T, P )| ≥ |Occ(T,Q)| for any other string Q with |Q| ≥ 2.

Again, by the monotonicity lemma, it is sufficient only to consider a substring of
length 2 as a solution to Problem 5.

The next lemma is fundamental for solving Problem 5.

Lemma 19. For any SLP variables Xi and Yj with |Yj| ≥ 2, |Occ(Xi, Yj)| can be
computed in O(n) time, with O(mn2)-time O(n2)-space preprocessing.

Proof. Let D be a dynamic programming table of size n×n such that D[i, j] represents
how many times Xj appears in the derivation tree of Xi. After initializing all entries
with 0, the value of each D[i, j] is computed by the following recurrence:

D[i, j] =

{
1 if i = j,

D[ℓ, j] + D[r, j] if Xi = XℓXr.

Then we obtain

|Occ(Xi, Yj)| =
i∑

h=1

(D[i, h]× |Occ△(Xh, Yj)− {|XL| − |Yj|+ 1 | Xh = XLXR}|).
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We remove an occurrence of Yj that touches the boundary of Xh from Occ△(Xh, Yj),
since this occurrence covers the boundary of some other variable (recall we have
assumed |Yj| ≥ 2).

In the preprocessing stage, we compute Occ△(Xi, Yj) for each 1 ≤ i ≤ n and
1 ≤ j ≤ m. It takes O(n2m) time and O(nm) space by Theorem 3. Then we compute
the D-table in O(n2) time and space. Hence the preprocessing cost is O(n2m) time
and O(n2) space, assuming n ≥ m.

By Lemma 1, the value of |Occ△(Xi, Ym) − {|Xℓ| − |Ym| + 1}| is computable in
constant time. Thus we can compute |Occ(T, P )| in O(n) time and space. ⊓⊔
Theorem 20. Problem 5 can be solved in O(|Σ|2n2) time and O(n2) space.

Proof. Let n be the size of SLP T and Xi denote its variable for 1 ≤ i ≤ n. For each
pair of variables Xh = a and Xj = b such that a, b ∈ Σ, we construct a new SLP
Sh,j : Yh,j = XhXj, Xh = a,Xj = b. Then for each Sh,j, we compute Occ△(Xi, Yh,j)
for every variable Xi of T . Then a string Yh,j for which |Occ(Xn, Yh,j)| is maximum
is a solution to Problem 5.

Since the size of each new SLP Sh,j is constant, we can compute a DP table App
that correspond to {Occ△(Xi, Yh,j)}ni=1 in O(n2) time and O(n) space for each new
SLP Sh,j by Theorem 3.

Due to Lemma 19, |Occ(Xn, Yh,j)| can be computed in O(n) time with O(n2)
time and space preprocessing. Note that we can use the same D-table of Lemma 19
to compute |Occ(Xn, Yh,j)| for every Yh,j. On the other hand, we can discard the App
table after |Occ(Xn, Yh,j)| has been computed. Hence the total space requirement is
O(n2). Since there are O(|Σ|2) new SLPs, it takes a total of O(|Σ|2n2) time. ⊓⊔

3.5 Solution to Problem 4

Here we consider Problem 4 of computing a substring that has the most non-overlap-
ping occurrences in a string T , when given a corresponding SLP T .

For any string P to overlap itself, P has to be of length at least 2. Again, to make
the problem more interesting, we consider the following problem.

Problem 6 (Computing most frequent non-overlapping substring of length at least 2
from SLP). Given an SLP T that derives a string T , compute a string P such that
|P | ≥ 2 and no other string Q with |Q| ≥ 2 has more non-overlapping occurrences in
T than P does.

The next lemma is a non-overlapping version of Lemma 18.

Lemma 21. For any non-empty strings T and P , if there are two non-overlapping
occurrences of P in T , then there are at least two non-overlapping occurrences of
P [1 : i] in T for any integer 0 ≤ i ≤ |P |.

Hence it suffices to consider a substring of length 2 as a solution to Problem 6.
We are now ready to show the following theorem.

Theorem 22. Problem 6 can be solved in O(n4 log n) time and O(n3) space.

Proof. By Lemma 21, we consider a substring of length 2 as a solution to Problem 6.
For any string P = ab with a 6= b, the set of its non-overlapping occurrences in

T is identical to Occ(T, P ), since P cannot overlap with itself. Thus this case can be
solved in the same way to Theorem 5.
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Now consider any string P = aa. Although we will only show how to com-
pute the number of its non-overlapping occurrences in T , it is easy to extend our
method to computing a representation of its non-overlapping occurrences in T with-
out increasing asymptotic complexities. For any a ∈ Σ and any variable Xi, let
αXi,a = LCPref (Xi, a

∗) and βXi,a = LCSuf (Xi, a
∗) where a∗ denotes an infinite rep-

etition of a. Then, for any variable Xh, the number H(Xh, aa) of non-overlapping
occurrences of aa in Xh can be computed by the following recurrence:

H(Xh, aa) =





|Occ△(Xh, aa)| if |Xh| ≤ 2,

H(Xℓ, aa) + H(Xr, aa)

−⌊βXℓ,a

2
⌋+ ⌊βXℓ,a+βXr,a

2
⌋ − ⌊αXr,a

2
⌋ if Xh = XℓXr and |Xh| > 2.

Consider the case where |Xh| ≤ 2. For each variable Xh, |Occ△(Xh, aa)| can be
computed in total of O(n2) time and space, in the same way as mentioned in the
proof of Theorem 20.

Now consider the other case. For any variable Xi, it holds that

αXi,a =

{
0 if Xi[1] 6= a,

1 + FM (Xi, Xi, 2) if Xi[1] = a.

We can check whether Xi[1] = a or not in O(n) time, since the height of the derivation
tree of Xi is at most n + 1. Therefore, we can compute αXi,a in O(n log n) time by
Lemma 6. Similar arguments hold for computing βXi,a. The number of patterns of
the form P = aa is O(|Σ|). Thus we need O(|Σ|n log n) time for this case.

To compute the FM function in O(n log n) time, we need to compute OL(Xi, Xj)
for any variables Xi and Xj, taking O(n4 log n) time and O(n3) space due to Theo-
rem 5. Overall, it takes O(n4 log n) time and O(n3) space to solve Problem 6. ⊓⊔

4 Computing the Representative of a Given Pattern from
Compressed Text

4.1 Problem

In this subsection, we begin with recalling the equivalence relations on strings intro-
duced by Blumer et al. [1], and then state their properties.

We define two equivalence relations w.r.t. a string T based on Occ as follows. The
equivalence relations ≡L and ≡R w.r.t. a string T ∈ Σ∗ are defined by:

Y ≡L Z ⇔ Occ(T, Y ) = Occ(T, Z), and

Y ≡R Z ⇔ Occ(T, Y )⊕ (|Y | − 1) = Occ(T, Z)⊕ (|Z| − 1),

where Y and Z are any strings in Σ∗. The equivalence classes of a string Y with
respect to ≡L and ≡R are denoted by [Y ]≡L

and [Y ]≡R
, respectively.

For any substring Y of T , let
−→
Y and

←−
Y denote the unique longest member of

[Y ]≡L
and [Y ]≡R

, respectively. Let
←→
Y = αY β such that α, β ∈ Σ∗ are the strings

satisfying
←−
Y = αY and

−→
Y = Y β, respectively. Intuitively,

←→
Y = αY β means that:

– Every time Y occurs in T , it is preceded by α and followed by β.
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– Strings α and β are longest possible.

We define another equivalence relation ≡ w.r.t. T by Y ≡ Z ⇔ ←→Y =
←→
Z , and the

equivalence class of a string Y is denoted by [Y ]≡. String
←→
Y is called the representative

of the equivalence class [Y ]≡.
The problem to be tackled in this section is the following.

Problem 7. Given two SLPs T and P that derive strings T and P respectively, com-

pute an occurrence position and the length of the representative
←→
P w.r.t. T , if

|Occ(T, P )| ≥ 1.

4.2 Solution to Problem 7

Let m be the size of SLP P , and let Yj denote each variable of SLP P for 1 ≤ j ≤ m.
Assume without loss of generality that m ≤ n.

Theorem 23. Problem 7 can be solved in O(n4 log n) time and O(n3) space.

Proof. We only show how to compute the length and an occurrence position of
←−
P ,

since those of
−→
P and

←→
P can be computed similarly.

We first compute Occ△(Xi, Ym) for each Xi according to Theorem 3.

If the length of
←−
P is known, then it is trivial that an occurrence position of

←−
P

can be computed from an occurrence position of P = Ym in T = Xn. An occurrence
position of Ym in Xn can be retrieved in O(n2) time using the m-th column of the App
table that correspond to Occ△(X1, Ym), . . . ,Occ△(Xn, Ym). Hence we concentrate on

how to compute the length of
←−
P in the sequel.

For any variables Xi and Xh, and integers 1 ≤ ki ≤ |Xi| and 1 ≤ kh ≤ |Xh|, let
LEXi,Xh

(ki.kh) be the largest integer p ≥ 1 such that Xi[ki− p : ki− 1] = Xh[kh− p :
kh − 1]. If such p does not exist, then let LEXi,Xh

(ki, kh) = 0.
Depending on the cardinality of Occ△(Xi, Ym), we have the following cases:

1. When |Occ△(Xi, Ym)| = 0 for every variable Xi. Then clearly there is no answer
to Problem 7.

2. When |Occ△(Xi, Ym)| = 1 for some variable Xi and |Occ△(Xi′ , Ym)| = 0 for every
Xi′ 6= Xi. In this case, we have that |Occ(T, P )| = 1. Hence, by definition, we

have |←−P | = k + |P | − 1 where {k} = Occ(T, P ).
3. When 0 ≤ |Occ△(Xi, Ym)| ≤ 1 for any variable Xi and there are at least

two variables such that |Occ△(Xi, Ym)| = 1. For any variable Xi such that
|Occ△(Xi, Ym)| = 1, let {ki} = Occ△(Xi, Ym). Let A and B be the sets of variable
pairs such that

A = {(Xi, Xh) | LEXi,Xh
(ki, kh) < min{ki, kh}},

B = {(Xi, Xh) | LEXi,Xh
(ki, kh) = min{ki, kh}}.

See also Figure 5.

(a) When min{LEXi,Xh
(ki, kh) | (Xi, Xh) ∈ A} ≤ min{LEXi,Xh

(ki, kh) | (Xi, Xh)∈
B}. In this case, we have

|←−P | = |←−Ym| = min{LEXi,Xh
(ki, kh) | (Xi, Xh) ∈ A}+ |Ym|.
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Xi

Ym

Xh

ki

kh

Xl(i) Xr(i)

Xl(h) Xr(h)

Xi

Xl(i) Xr(i)

Ym

Xh

Xl(h) Xr(h)

ki

kh

Figure 5. LEXi,Xh
(ki, kh) < min{ki, kh} (left) and LEXi,Xh

(ki, kh) = min{ki, kh}
(right).

(b) When min{LEXi,Xh
(ki, kh) | (Xi, Xh) ∈ A} > min{LEXi,Xh

(ki, kh) | (Xi, Xh)∈
B}.
For any pair of variables Xi, Xh ∈ B, assume w.l.o.g. that ki ≥ kh. Let Xh =
Xℓ(h)Xr(h).
For any variable Xi such that |Occ△(Xi, Ym)| = 1, we compute

Gi = Occ(Xi, Xℓ(h)) ∩ (Occ△(Xi, Ym)⊖ kh).

Note that |Gi| ≤ 1, since |Occ△(Xi, Ym)| = 1. Let Xi, Xj be any variables
such that Gi = {gi}, Gj = {gj} and gi ≤ gj. We compute LEXi,Xj

(gi, gj) until
LEXi,Xj

(gi, gj) < min{gi, gj} or Xi is a prefix of T (see Figure 6).
i. When min{LEXi,Xh

(Ym, ki, kh) | (Xi, Xh) ∈ A} ≥ LEXi,Xj
(gi, gj). In this

case, LEXi,Xj
(gi, gj) + |Ym| is a new candidate for |←−Ym|.

ii. When min{LEXi,Xh
(Ym, ki, kh) | (Xi, Xh) ∈ A} < LEXi,Xj

(gi, gj). In this

case, LEXi,Xj
(gi, gj) + |Ym| is not a candidate for |←−Ym|.

4. When 0 ≤ |Occ△(Xi, Ym)| ≤ 2 for any 1 ≤ i ≤ n. This case can be solved in a
similar way to Case 3.

5. When |Occ△(Xi, Ym)| ≥ 3 for some 1 ≤ i ≤ n. It follows from Lemma 1 that
Ym = P = udv where |u| is the smallest period of P , d ≥ 2 is a positive integer,

and v is a proper (possibly empty) prefix of u. It now holds that |←−Ym| < |u|+ |Ym|,
since every occurrence of Ym in Occ△(Xi, Ym) except for the first one is always
preceded by u.

The length of
←−
Ym can be computed as follows. See also Figure 7. For all variables

Xi = Xℓ(i)Xr(i) such that |Occ△(Xi, Ym)| ≥ 1, compute FM (Xℓ(i), Xℓ(i), |u| + 1).
Then we have

|←−P | = |←−Ym| = min{FM (Xℓ(i), Xℓ(i), |u|+ 1) mod |u| | |Occ△(Xi, Ym)| ≥ 1}+ |Ym|.
Now we analyze the complexity. By Theorem 3, Occ△(Xi, Ym) can be computed in

O(n3) time with O(n2) space. Moreover, the cardinality, and a membership query to
each Occ△(Xi, Ym) is answered in constant time due to Lemma 1. Therefore, Cases 1
and 2 can be solved in constant time provided that Occ△(Xi, Ym) are pre-computed.
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Xi

Ym

Xj

Xl(h)

Xr(j)

gi

gj

Xl(j)

Xl(i) Xr(i)

Figure 6. Compute LEXi,Xj
(gi, gj) until LEXi,Xj

(gi, gj) < min{gi, gj} or Xi is a prefix
of T .

Xi

Xl(i) Xr(i)

Ym

uu vu

uu vu

uu vu

uu vuuw

uu vu

Xl(i)

uu vuuw

Xl(i)

uu vuuw

|u|

Figure 7. Illustration for Case 5. String w is a proper suffix of u such that every
occurrence of Ym = udv is preceded by w (left). The length of w can be computed as
|w| = FM (Xℓ(i), Xℓ(i), |u|+ 1) mod |u| (right).

Now consider Case 3. We compute the value of LEXi,Xh
(ki, kh) for all pairs of vari-

ables, whose number is O(n2). Since {ki} = Occ△(Xi, Ym) and {kh} = Occ△(Xh, Ym),
it holds that

LEXi,Xh
(ki, kh) = FM (Xi, Xℓ(h), |Xi| − ki − |Xℓ(h)|+ kj + 1)− |Xℓ(h)|+ kh. (2)

It follows from Lemma 6 that Case 3a can be solved in O(n3 log n) time. Now fo-
cus on Case 3b. For any variable Xi, Gi can be computed in O(n) time, since
|Occ△(Xi, Ym)| = 1 and a membership query to Occ(Xi, Xℓ(h)) can be answered
in O(n) time due to Lemma 2. In each step of the loop, we compute the value of
LEXi,Xj

(gi, gj) + |Ym| for O(n2) pairs of variables. During this loop, the value of
LEXi,Xj

(gi, gj) + |Ym| is monotonically non-decreasing, and the size of Gi is mono-
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tonically non-increasing. Hence, the depth of the loop is bounded by n. Moreover, we
have that

LEXi,Xj
(gi, gj) = FM (Xj, Xℓ(i), |Xi| − kj − |Xℓ(i)|+ ki + 1)− |Xℓ(i)|+ gi. (3)

By Equation (3) and Lemma 6, the total time cost for Case 3b is O(n4 log n). There-
fore, Case 3 is solvable in O(n4 log n) time, and so is Case 4.

In Case 5 we call the FM function at most n times, and each call of the FM
function takes O(n log n) time by Lemma 6. Hence Case 5 can be solved in O(n2 log n)
time.

Computing OL(Xi, Xj) for each pair of variables Xi, Xj requires O(n4 log n) time
and O(n3) space due to Theorem 5. Overall, we conclude that Problem 7 can be
solved in O(n4 log n) time with O(n3) space. ⊓⊔

References

1. A. Blumer, J. Blumer, D. Haussler, R. Mcconnell, and A. Ehrenfeucht: Complete
inverted files for efficient text retrieval and analysis. J. ACM 34(3), 1987, pp. 578–595.

2. R. Feldman and J. Sanger: The Text Mining Handbook: Advanced Approaches in Analyzing
Unstructured Data, Cambridge University Press, 2007.

3. L. Ga֒sieniec, M. Karpinski, W. Plandowski, and W. Rytter: Efficient algorithms for
Lempel-Ziv encoding, in Proc. 5th Scandinavian Workshop on Algorithm Theory (SWAT’96),
vol. 1097 of Lecture Notes in Computer Science, Springer-Verlag, 1996, pp. 392–403.

4. M. Karpinski, W. Rytter, and A. Shinohara: An efficient pattern-matching algorithm for
strings with short descriptions. Nordic Journal of Computing, 4 1997, pp. 172–186.

5. J. Kieffer, E. Yang, G. Nelson, and P. Cosman: Universal lossless compression via
multilevel pattern matching. IEEE Transactions on Information Theory, 46(4) 2000, pp. 1227–
1245.

6. Y. Lifshits: Solving classical string problems an compressed texts, in Combinatorial and Al-
gorithmic Foundations of Pattern and Association Discovery, no. 06201 in Dagstuhl Seminar
Proceedings, 2006.

7. Y. Lifshits: Processing compressed texts: A tractability border, in Proc. 18th Annual Sympo-
sium on Combinatorial Pattern Matching (CPM’07), vol. 4580 of Lecture Notes in Computer
Science, Springer-Verlag, 2007, pp. 228–240.

8. W. Matsubara, S. Inenaga, A. Ishino, A. Shinohara, T. Nakamura, and

K. Hashimoto: Efficient algorithms to compute compressed longest common substrings and
compressed palindromes. Theoretical Computer Science, 410(8–10) 2009, pp. 900–913.

9. M. Miyazaki, A. Shinohara, and M. Takeda: An improved pattern matching algorithm for
strings in terms of straight-line programs, in Proc. 8th Annual Symposium on Combinatorial
Pattern Matching (CPM’97), vol. 1264 of Lecture Notes in Computer Science, Springer-Verlag,
1997, pp. 1–11.

10. K. Narisawa, H. Bannai, K. Hatano, and M. Takeda: Unsupervised spam detection
based on string alienness measures, in Proc. 10th International Conference on Discovery Science
(DS’07), vol. 4755 of Lecture Notes in Artificial Intelligence, 2007, pp. 161–172.

11. C. G. Nevill-Manning, I. H. Witten, and D. L. Maulsby: Compression by induction of
hierarchical grammars, in Proc. Data Compression Conference ’94 (DCC’94), IEEE Computer
Society, 1994, pp. 244–253.

12. W. Rytter: Grammar compression, LZ-encodings, and string algorithms with implicit input, in
Proc. 31st International Colloquium on Automata, Languages and Programming (ICALP’04),
vol. 3142 of Lecture Notes in Computer Science, Springer-Verlag, 2004, pp. 15–27.

13. M. Takeda, T. Matsumoto, T. Fukuda, and I. Nanri: Discovering characteristic expres-
sions in literary works. Theoretical Computer Science, 292(2) 2003, pp. 525–546.

14. J. Ziv and A. Lempel: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, IT-23(3) 1977, pp. 337–349.

15. J. Ziv and A. Lempel: Compression of individual sequences via variable-length coding. IEEE
Transactions on Information Theory, 24(5) 1978, pp. 530–536.



Delta Encoding in a Compressed Domain

Shmuel T. Klein and Moti Meir

Department of Computer Science
Bar Ilan University

Ramat Gan 52900, Israel
Tel: (972–3) 531 8865 Fax: (972–3) 736 0498
tomi@cs.biu.ac.il, moti.meir@gmail.com

Abstract. A delta compression algorithm is presented, working on an LZSS com-
pressed reference file and an uncompressed version, and producing a delta file that
can be used to reconstruct the version file directly in its compressed form. This has
applications to accelerate data flow in network environments.

1 Introduction

This paper presents an algorithmic approach to work with highly correlated files in
the compressed domain. The idea is to allow small changes to be reflected upon a
reference file each time a newer file version becomes available. This ability is highly
required by caching, versioning and additive backup systems.

The standard delta compression scheme [3,1,4,9,2] takes two files and outputs the
difference between those files. Such a scheme tries to output a small amount of data
which represents the difference between the two files in their uncompressed state. As
a result, using the standard delta file scheme, one can reconstruct a version file by
using a reference file and the delta file (see Figure 1.a). Our scheme, however, encodes
a delta file that reflects the differences between the files in their compressed state.
That is, using the delta file and the compressed reference file, the decoder outputs the
compressed version file (See Figure 1.b), contrarily to standard delta schemes that
would output a version file in uncompressed form. Our scheme uses an uncompressed
version file and a compressed reference file as the inputs to the encoder, a scenario
defined as semi-compressed delta encoding in [7], in contrast with the fully-compressed
alternative treated in [6].

We provide a conceptual solution considering the fact that textual data is pro-
duced in uncompressed form and also by examination of the entire network route
between the encoding part (usually a server) and the decoding part (usually a client),
which includes intermediate network elements. The scheme considers the fact that
most of the network’s intermediate elements are indifferent to the data content and
only wish to store and forward the most recent copy of the data. For such elements,
having the ability to alter their cached copy without decompressing it first as needed
when a regular delta encoding is used, presents a great advantage. Standard schemes
producing uncompressed version files would require an encoding phase, that is, com-
pressing the file in order to save storage space and network bandwidth. This imposes
a penalty in terms of both CPU utilization and temporary storage space, which can
be saved by directly dealing with a compressed output.

The proposed encoding algorithm has two inputs: the compressed reference file
Rc, and the uncompressed version file V . The output of the encoder is a delta file
∆, which, together with Rc, is the input to the decoding algorithm that outputs the
compressed version file Vc.
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Figure 1. Schematic representation of delta encoding

The efficiency of our scheme is based on several assumptions regarding both ver-
sion and reference files:

1. The files are highly correlated
2. The changes are local and sparse
3. The changes are very small compared to the size of V .

The algorithm is an extension of LZSS [5] encoding and uses an ordered hash
table adapted from [10], to store previous occurrences of substrings. The parameters
which control the encoding are:

– Window size — the length of the sliding window. This attribute defines the maxi-
mum valid size of the jumpbacks and thereby the maximum “memory” size of the
hash table.

– Minimum Match — determines the minimum number of characters required to
match, in order to create a back pointer to the previous text.

– Synch Chunk — the maximum number of characters that are affected by a single
change. That is, the length of all changes are smaller than this number.

The output of the encoder is a set of COPY, ADD, UPDATE and SPLIT commands and
a set of characters stored in ∆, acting as a set of control commands to a decoder for
changing Rc. These commands are described in more detail in Section 4 below. The
decoder uses ∆ and Rc to build an updated compressed file equivalent to Vc. This is
done without decoding Rc but rather by changing it while it is still compressed (see
Figure 1.b)

Let Vcr[i, j] be the substring of Vc with index in the real uncompressed form,
that is, the indices i and j refer to the indices of V in their uncompressed form. For
example, if the 100 first bytes of V are compressed to the first 20 elements of Vc,
then we have Vc[1, 20] = Compress(V [1, 100]) = Vcr[1, 100]. This provides a reverse
mapping between the compressed domain and the uncompressed domain locations.
We shall use the same notation when referring to just one character of V or R, that
is Vcr[50] = i is the location in Vc that corresponds to character V [50].
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2 The Encoding Algorithm

2.1 Overview

The algorithm encodes V and iteratively compares the results to Rc. During the
processing, a sequence of characters and back pointers is generated, and checked
for matches with Rc. If a mismatch is detected — denote the location of this local
mismatch point by LMP — the original LZSS algorithm would output a file that
will greatly differ from Rc. The result would be two encoded files, which were highly
correlated when uncompressed, and when compared in the compressed domain loose
their high resemblance. The current encoding fixes this problem by synchronizing
both files. As a consequence there will be a local synchronization point (LSP) after
which the output will match exactly the reference file, up to the next LMP. We assume
here that the distance from LSP to LMP is at least Synch Chunk, otherwise the two
changes are considered as one.

Several types of mismatches need to be addressed:

– one element is a back pointer while the other is a character;
– both elements are characters, but different ones;
– both elements are back pointers, but their copy length differs;
– both elements are back pointers, but their jump back length differs.

Maintaining a Local Reconstructed Buffer (LRB) in combination with the assump-
tion of a limited change results in the ability to track the change. At each step, the
algorithm checks whether a substitution, insertion or deletion of characters can ex-
plain the change, and continues according to the results by locating the LSPs in
the uncompressed domain. When these points are found, the hash table is updated
accordingly.

For example, consider the case of inserting a line of text into the version file. The
LRB created by the reference instructions and the version data will match at a point
in the version text which is beyond the inserted change. Since the change is assumed
to be relatively small, the number of characters inserted is found by running a loop
up to synch chunk size, trying to find this substring in the version file.

In order to compare the new version with the reference, we must be able to
reconstruct the original substrings which might be represented by pointers in the
reference file. This has led to the need of decoding the reference file in order to
reconstruct the original data in the change area of V [7], which is the string starting
one element prior to the actual change and ending at most Synch Chunk characters
after the end of the change. The idea of running from right to left in Rc from elements
prior to LMP, collecting the needed reference data characters, does not work well in
most cases due to the fact that a back pointer in the encoded file can point to another
back pointer, and so on, creating a chain. In addition to being expensive, this right
to left decoding is not local. Since we want to maintain a local approach which
greatly decreases memory needs, the semi compressed domain is exploited by using
the reference characters and pointers to reconstruct the original data in the change
area.

There is, however, one exception to the above. Since we use elements from Rc to
reconstruct the reference data using the version data, care has to be taken in the
case of self-pointers, i.e., when the copy length is larger than the offset. Indeed, the
possibility of self-pointers is one of the major features of LZ77 schemes like LZSS,
enabling the compression of variable-length repetitive strings; for example, a string



58 Proceedings of the Prague Stringology Conference 2009

of 50 a’s can be compressed as a[offset = 1, length = 49]. The solution is to use the
already reconstructed buffer as a reference for self pointers.

2.2 Substitution

This is the simplest case, e.g., a date field has been updated in the version file. The
following steps are executed, referring to Figure 2:

1. find the actual change size by comparing characters from the LRB and V , bounded
by the Synch Chunk parameter;

2. insert a new quarantine zone [K,K + i] to the mismatch list;
3. output the relevant commands (split and update pointers) to ∆;
4. advance the Rc index to point to the location of the LSP, and also advance the

version index to the same LSP.

Version File


indices


Reference File

indices


1 2 3 4 5 6 7  …  K’… (K+i)’    
 K+i+1… 
N


Mismatch point


Difference


Block

Next Match


1 2 3 4 5 6 7 …  K … (K+i)     
 K+i+1
 ...N


Figure 2. Schematic representation of substitution

The algorithm works because skipping over the change in both files and backwards
updating V to the pre-change state, brings us to a point (LSP) where we just need
to synchronize the hash tables. After this synchronization, the encoding process is
the same, hence the output of the encoder are COPY and UPDATE commands up to the
next mismatch. As we can see in Figure 2, jumping in both files as close as possible
to index K + i + 1 will bring us to the LSP. The reason that one does not always get
exactly to K + i + 1 is that the exact pointers from Rc are used and they are not
split. However, breaking the back pointers to get to the exact spot in V is feasible
and could in certain cases result in better compression.

2.3 Insertion

An inserted string may dramatically change the original LZSS output, as shown in
Figure 3. V is scanned for an occurrence of the content of LRB inside the defined
limited area, defined to start from K − j up to K + i, where i is the Synch Chunk
size and j is the maximum change size. The simplest way to deal with the insertion
is to adjoin the inserted block to ∆ with a single ADD and one ADJUST command. One
could also consider using the hash table to add the newly inserted text as a sequence
of pointers, which might improve compression.

In any case, a set of adjustment commands needs to be added to correct the back
pointers of Rc. Each back pointer which points to the index in V prior to LMP has
to be increased by the length of the insertion. If the increased length exceeds the
maximum defined, the back pointer is split and the exceeding part is inserted as
individual characters.
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Version File

indices


Reference File


indices


1 2 3 4 5 6 7 … (K-j)…(K-1)   K … (K+i) …  N


1 2 3 4 5 6 7 …  K … (K+i) …  N


Mismatch point


Missing


Block

Next Match


Figure 3. Schematic representation of insertion

2.4 Deletion

Deletion is similar to insertion, but here the LRB is scanned for an occurrence of a
substring of V . The steps are, referring to Figure 4:

1. LRB ←− decode(Rc[K,K + i], V )
2. search for V [K + j,K + i] in LRB;
3. output to ∆ a COPY command up to LMP; if LMP lies within a string compressed

by a pointer, this pointer has to be split or some prefix of this string needs to be
inserted by an ADD command;

4. output to ∆ an ADJUST command for [K,K +i] of Rc to reduce the relevant offsets
by the length of the deleted string.

Version File


indices


Reference File

indices


1 2 3 4 5 6 7  …  K+j   ... 
 (K+i)         … 
N


Mismatch point


Difference


Block

Next Match


1 2 3 4 5 6 7 …  K … (K+j-1) (K+j) ...
 (K+i) 
 … N


Figure 4. Schematic representation of deletion

3 The Decoding Algorithm

The descriptive nature of ∆ is used to apply change commands to Rc, thereby trans-
forming it into a file which is equivalent to Vc. The decoding process is linear in time
and storage but is slightly more complex than the original LZSS decoding. This is
due to the fact that pointers need to be adjusted along the way as data is inserted to
or deleted from Vc. Moreover, the chain breaking mechanism might result in pointer
splitting, as discussed above.



60 Proceedings of the Prague Stringology Conference 2009

The algorithm is as follows, with the SPLITTO3 command explained below:

while ∆ commands exist do:
if COPY command

copy substring of Rc to Vc

if ADD command
insert string into Vc

if ADJUST pointers [i, j]
do, up to window size from j + 1

add the change size to the jump value of the pointers that
point to a location preceding i;

if the pointer is invalidated, issue a SPLITTO3 command
end do

end if
end while

As can be seen, the decoder runs in linear time and does not require additional
memory. The algorithm performs a few more passes on parts of the data, but assuming
the input is large relative to the window size, these passes are negligible. Further, if
we consider a worst case scenario of needing to act upon many pointers pointing to
the changed area, the pointers are bounded by the offset bits allocated for the pointer
which bounds the entire procedure to part of the data. We assume that this is a small
part compared to the input size. Again, if the changes are frequent in the input, the
result will be a larger delta file and will require much work in the decoder. In such a
case, it might be better to send the entire compressed version file and start fresh.

4 The Delta File

The delta file encapsulates commands which instruct the decoder how to convert its
old compressed reference into a new compressed version. By applying the commands
of the delta file, the decoding algorithm outputs the compressed version file with
very low computational needs. The delta file is constructed such that the decoding
complexity will be as small as possible and most of the computational effort is done
by the encoder. This policy was chosen in order to be consistent with the hop by hop
scheme to which this new compression suits. Reducing the complexity of the decoder
in both time and storage allows small or computationally weak caching devices to be
one of the hops along the way. Also, since the changes are the result of changes in
the server side, the server can do most of the work for all the hops along the path
to the clients. This will allow better utilization of the network nodes along the path
between the server and the clients including the clients themselves.

Most of the previous work on delta files refers to an uncompressed domain, for
example VCDIFF [8]. In our case, one needs in addition to the ADD, COPY and RUN

commands of VCDIFF also means to split a pointer in order to insert changes. The
new SPLITTO3 command breaks a pointer into three parts: the (possibly empty)
prefix represents the pointer to the data portion which did not change; the middle
part represents the change to be inserted and the (again possibly empty) suffix points
to the representation of the remaining data. This methodology allows us to break the
pointers of the compressed file and perform chain breaking with very little effort by
the decoder.
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In order to maintain this idea of lowering the computational demands of the
decoder, we write all needed commands to ∆ such that the decoder algorithm will
not need to trace the restriction zones. This might lead to a larger delta file, but the
size penalty is reasonable when the complexity needed by the hops is lower by doing
most of the chain breaking at the encoder side.

Summarizing, the complete delta file command set consists of:

– COPY — similar to the copy of VCDIFF, it tells the decoder to copy a substring
from the reference file to the decoded file.

– ADDP — Adds a pointer to Vc. This command is similar to VCDIFF’s ADD command,
but adds a pointer, not characters.

– ADDS — Adds a string. Instructs the decoder to embed the command’s parameter
string into Vc in its current index. This command is similar to other delta file
encoding ADD commands.

– SPLITTO3 — the basic pointer breaking technique when a change which is in the
middle of an area covered by a pointer is encountered. The decoder has to replace
the changed pointer so that the result will be a reflection of the change in the
compressed output. We split the pointer into three parts, the prefix part up to
the change, the inserted part, which can be some string or a pointer to an early
appearance, and a suffix part covering the remainder. The SPLITTO3 command
is also used when the encoder gets to a backpointer which points to a restricted
zone. Since restricted zones need to be ignored as they represent invalid data,
the command is used to break these pointers. The encoding algorithm stores each
restricted zone and detects the first pointers that point to a restricted zone, then
splits them. This way, we apply chain breaking, since, if we have P1 pointing to
a point in a restricted zone, and P2 pointing to P1, then by fixing P1 we also
take care of P2 and the rest of the pointers that are connected to them. Also,
this way we remove the decoder’s need to trace pointers to restricted zones, hence
simplifying the decoding algorithm.

– ADJUSTJP — Instructs the decoder to adjust all the offset sizes of the pointers,
starting from a given start index up to a window size in Rc.

The size of the delta file is a major factor in the proposed scheme. Imagine a case
where the compressed version is similar in size to the delta file. This overabundance
of data is not needed since we could have sent Vc instead of the delta file. Sending Vc

results is consuming less resources since there is no need for decoding along the path
in each hop. Therefore, the rule is that if |∆| ≪ |Vc|, send ∆. Otherwise, it is better
to send Vc.

The following is a small sample of ∆ in its textual form. In practice we used a
binary code in order to encode the commands. Further, when dealing with very large
files, in which the delta file is also large enough, ∆ itself can be compressed in order
to further reduce its size.
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COPY [from = 0, to = 77]
SPLITTO3 [offset = 114, length = 113]

PrefixPointer = [offset = 114, length = 103]
Change = [’2’] // substitute one character
SuffixPointer = [offset = 9, length = 9]

COPY [from = 81, to = 180]

The sample above represents a ∆ of changing a single character in a file V con-
sisting of 2864 1-byte numbers. In this example, a single number 1 has been changed
into the number 2. The original file was compressed using LZSS to become Rc of size
180 bytes. The decoder algorithm manipulates Rc using the above ∆ to output Vc.

5 Experiments

Table 1 summarizes the benefits of using the proposed algorithm. Real life HTML
files have been used, e.g., www.cnn.com, with uncompressed size of 107 KByte, text
files such as RFC’s and a set of synthetic files, including many repetitions. The change
type has been restricted in the tests to substitutions (S) and insertions (I), as dele-
tions behave symmetrically to insertions. The results are compared to the binary
uncompressed delta encoding scheme XDelta, which uses zlib to compress its delta
file that requires a decompression phase before it can be used to reconstruct the
uncompressed version. Our scheme takes into consideration that network elements
are indifferent to the content of the data and thus prefer to maintain cached files
in their compressed form and not to decompress them for running the delta encod-
ing algorithm or recompress them after reconstruction. The results are compared to
re-encoding the new version data, since this scenario represents a reference imple-
mentation of compression based transactions between a client and a server, for both
types of regular recompression and the proposed delta encoding.

File Number of Change Change size GZip CDDelta Xdelta
Changes type (bits) (bits) (bits) (bits)

CNN 0 No change 0 168472 67 1160
CNN 1 S 8 169944 145 1688
CNN 1 I 128 170024 265 1808
CNN 2 S 48 168496 255 1784
CNN 2 I 1608 168744 1912 2408
CNN 3 I 1872 168744 2254 2592
CNN 4 I 2144 168912 2652 2864
CNN 5 I 2408 169088 3042 3032
CNN 6 I 2672 169120 3384 3144

synthetic 1 S 8 1960 201 1712
synthetic 1 I 24 2136 217 1800
synthetic 1 S 72 2016 257 1728

Table 1: Experimental results

The first row of Table 1 describes the case of no change in the version file. Even
though this case looks odd at first, it is a real life case. When considering the network
elements that cache the data from a server, combined with the HTTP cache control
commands, we see that many data objects, including textual HTML files, have an
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expiration time. This expiration time causes the caching element to ask the server if
the data was modified (the if-modified-since HTTP attribute) and in some cases,
depending on both the network element and the server type, it causes the network
element to ask for a new version. In this typical case, our scheme will always output
a 67 bit command which is to copy the entire reference file.

The encoder performance has been tested on an Intel’s core 2 due processor
2.4 GHz, and achieved a throughput of 36 MByte/sec on one CPU. This performance
is similar to our LZSS encoder implementation. A 3 bit field was used to represent
the command, and 32 bits for an index in the file, such as the from field of the COPY

command. When referring to offsets, as in the ADJUSTP command, 16 bits were used,
since the window size was up to 64 Kbytes.
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Figure 5. Size of delta file as function of the number of changes

From Table 1 we can see that on this data, a factor of about 46 is gained when
compared to the compressed size of the file. The Delta file size increases when there
are more changes. However, changes that were tested reflect a change of 7.4 lines
with an average size of 45 characters per line. It must be noted that these results are
without compression of the delta file and with no compression of the changed data
relative to itself or relative to the entire file as a reference.

Figure 5 shows the size increase in bits of the delta file as a function of the number
of changes, where each such change affects a randomly chosen set of 40, 80 and 120
characters. We can see that the size of the delta file increases linearly with the number
of changes.

Figure 6 visualizes the data included in Table 1 concerning the size relation be-
tween a gzip compressed file (CNN) and the Delta file for our insertion tests. The
x-axis gives the number of insertions, and the y -axis the size of the file on a logarith-
mic scale. We can see that the Delta file size increases with the number of inserted
characters, while the insertion has only a negligible effect on the size of the new ver-
sion gzip compressed file. The Delta file consists mostly of the inserted characters
themselves.
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Figure 6. Comparing Gzip and Delta sizes

6 Conclusion

We focused on the semi-compressed delta encoding problem for LZSS encoded files, in
an application in which the reconstructed version file is directly given in compressed
form. This can greatly reduce network traffic and the CPU and storage requirements of
the various network elements. The algorithm is based on a partial local reconstruction
of a previous occurrence of the data, using the compressed reference and the new
version.
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Abstract. The sort transform (ST) is a modification of the Burrows-Wheeler trans-
form (BWT). Both transformations map an arbitrary word of length n to a pair con-
sisting of a word of length n and an index between 1 and n. The BWT sorts all rotation
conjugates of the input word, whereas the ST of order k only uses the first k letters
for sorting all such conjugates. If two conjugates start with the same prefix of length
k, then the indices of the rotations are used for tie-breaking. Both transforms output
the sequence of the last letters of the sorted list and the index of the input within the
sorted list. In this paper, we discuss a bijective variant of the BWT (due to Scott),
proving its correctness and relations to other results due to Gessel and Reutenauer
(1993) and Crochemore, Désarménien, and Perrin (2005). Further, we present a novel
bijective variant of the ST.

1 Introduction

The Burrows-Wheeler transform (BWT) is a widely used preprocessing technique
in lossless data compression [5]. It brings every word into a form which is likely to
be easier to compress [18]. Its compression performance is almost as good as PPM
(prediction by partial matching) schemes [7] while its speed is comparable to that
of Lempel-Ziv algorithms [13,14]. Therefore, BWT based compression schemes are a
very reasonable trade-off between running time and compression ratio.

In the classic setting, the BWT maps a word of length n to a word of length n and
an index (comprising O(log n) bits). Thus, the BWT is not bijective and hence, it
is introducing new redundancies to the data, which is cumbersome and undesired in
applications of data compression or cryptography. Instead of using an index, a very
common technique is to assume that the input has a unique end-of-string symbol
[3,18]. Even though this often simplifies proofs or allows speeding up the algorithms,
the use of an end-of-string symbol introduces new redundancies (again O(log n) bits
are required for coding the end-of-string symbol).

We discuss bijective versions of the BWT which are one-to-one correspondences
between words of length n. In particular, no index and no end-of-string symbol is
needed. Not only does bijectivity save a few bits, for example, it also increases data
security when cryptographic procedures are involved; it is more natural and it can
help us to understand the BWT even better. Moreover, the bijective variants give
us new possibilities for enhancements; for example, in the bijective BWT different
orders on the letters can be used for the two main stages.

Several variants of the BWT have been introduced [2,17]. An overview can be
found in the textbook by Adjeroh, Bell, and Mukherjee [1]. One particularly important
variant for this paper is the sort transform (ST), which is also known under the name
Schindler transform [22]. In the original paper, the inverse of the ST is described only
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very briefly. More precise descriptions and improved algorithms for the inverse of the
ST have been proposed recently [19,20,21]. As for the BWT, the ST also involves an
index or an end-of-string symbol. In particular, the ST is not onto and it introduces
new redundancies.

The bijective BWT was discovered and first described by Scott (2007), but his
exposition of the algorithm was somewhat cryptic, and was not appreciated as such.
In particular, the fact that this transform is based on the Lyndon factorization went
unnoticed by Scott. Gil and Scott [12] provided an accessible description of the algo-
rithm. Here, we give an alternative description, a proof of its correctness, and more
importantly, draw connections between Scott’s algorithm and other results in combi-
natorics on words. Further, this variation of the BWT is used to introduce techniques
which are employed at the bijective sort transform, which makes the main contribu-
tion of this paper. The forward transform of the bijective ST is rather easy, but we
have to be very careful with some details. Compared with the inverse of the bijective
BWT, the inverse of the bijective ST is more involved.

Outline. The paper is organized as follows. In Section 2 we fix some notation
and repeat basic facts about combinatorics on words. On our way to the bijective
sort transform (Section 6) we investigate the BWT (Section 3), the bijective BWT
(Section 4), and the sort transform (Section 5). We give full constructive proofs for
the injectivity of the respective transforms. Each section ends with a running example
which illustrates the respective concepts. Apart from basic combinatorics on words,
the paper is completely self-contained.

2 Preliminaries

Throughout this paper we fix the finite non-empty alphabet Σ and assume that Σ
is equipped with a linear order ≤. A word is a sequence a1 · · · an of letters ai ∈ Σ,
1 ≤ i ≤ n. The set of all such sequences is denoted by Σ∗; it is the free monoid over Σ
with concatenation as composition and with the empty word ε as neutral element.
The set Σ+ = Σ∗ \{ε} consists of all non-empty words. For words u, v we write u ≤ v
if u = v or if u is lexicographically smaller than v with respect to the order ≤ on the
letters. Let w = a1 · · · an ∈ Σ+ be a non-empty word with letters ai ∈ Σ. The length
of w, denoted by |w|, is n. The empty word is the unique word of length 0. We can
think of w as a labeled linear order: position i of w is labeled by ai ∈ Σ and in this
case we write λw(i) = ai, so each word w induces a labeling function λw. The first
letter a1 of w is denoted by first(w) while the last letter an is denoted by last(w).
The reversal of a word w is w = an · · · a1. We say that two words u, v are conjugate
if u = st and v = ts for some words s, t, i.e., u and v are cyclic shifts of one another.
The j-fold concatenation of w with itself is denoted by wj. A word u is a root of w
if w = uj for some j ∈ N. A word w is primitive if w = uj implies j = 1 and hence
u = w, i.e., w has only the trivial root w.

The right-shift of w = a1 · · · an is r(w) = ana1 · · · an−1 and the i-fold right
shift ri(w) is defined inductively by r0(w) = w and ri+1(w) = r(ri(w)). We have
ri(w) = an−i+1 · · · ana1 · · · an−i for 0 ≤ i < n. The word ri(w) is also well-defined
for i ≥ n and then ri(w) = rj(w) where j = i mod n. We define the ordered con-
jugacy class of a word w ∈ Σn as [w] = (w1, . . . , wn) where wi = ri−1(w). It is
convenient to think of [w] as a cycle of length n with a pointer to a distinguished
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starting position. Every position i, 1 ≤ i ≤ n, on this cycle is labeled by ai. In par-
ticular, a1 is a successor of an on this cycle since the position 1 is a successor of the
position n. The mapping r moves the pointer to its predecessor. The (unordered)
conjugacy class of w is the multiset {w1, . . . , wn}. Whenever there is no confusion,
then by abuse of notation we also write [w] to denote the (unordered) conjugacy
class of w. For instance, this is the case if w is in some way distinguished within its
conjugacy class, which is true if w is a Lyndon word. A Lyndon word is a non-empty
word which is the unique lexicographic minimal element within its conjugacy class.
More formally, let [w] = (w,w2, . . . , wn), then w ∈ Σ+ is a Lyndon word if w < wi

for all i ∈ {2, . . . , n}. Lyndon words have a lot of nice properties [15]. For instance,
Lyndon words are primitive. Another interesting fact is the following.

Fact 1 (Chen, Fox, and Lyndon [6]). Every word w ∈ Σ+ has a unique factor-
ization w = vs · · · v1 such that v1 ≤ · · · ≤ vs is a non-decreasing sequence of Lyndon
words.

An alternative formulation of the above fact is that every word w has a unique
factorization w = vns

s · · · vn1
1 where ni ≥ 1 for all i and where v1 < · · · < vs is a

strictly increasing sequence of Lyndon words. The factorization of w as in Fact 1 is
called the Lyndon factorization of w. It can be computed in linear time using Duval’s
algorithm [9].

Suppose we are given a multiset V = {v1, . . . , vs} of Lyndon words enumerated
in non-decreasing order v1 ≤ · · · ≤ vs. Now, V uniquely determines the word w =
vs · · · v1. Therefore, the Lyndon factorization induces a one-to-one correspondence
between arbitrary words of length n and multisets of Lyndon words of total length n.
Of course, by definition of Lyndon words, the multiset {v1, . . . , vs} of Lyndon words
and the multiset {[v1], . . . , [vs]} of conjugacy classes of Lyndon words are also in
one-to-one correspondence.

We extend the order ≤ on Σ as follows to non-empty words. Let wω = www · · ·
be the infinite sequences obtained as the infinite power of w. For u, v ∈ Σ+ we
write u ≤ω v if either uω = vω or uω = paq and vω = pbr for p ∈ Σ∗, a, b ∈ Σ
with a < b, and infinite sequences q, r; phrased differently, u ≤ω v means that the
infinite sequences uω and vω satisfy uω ≤ vω. If u and v have the same length, then
≤ω coincides with the lexicographic order induced by the order on the letters. For
arbitrary words, ≤ω is only a preorder since for example u ≤ω uu and uu ≤ω u. On
the other hand, if u ≤ω v and v ≤ω u then u|v| = v|u|. Hence, by the periodicity
lemma [10], there exists a common root p ∈ Σ+ and g, h ∈ N such that u = pg and
v = ph. Also note that b ≤ ba whereas ba ≤ω b for a < b.

Intuitively, the context of order k of w is the sequence of the first k letters of w.
We want this notion to be well-defined even if |w| < k. To this end let contextk(w)
be the prefix of length k of wω, i.e., contextk(w) consists of the first k letters on the
cycle [w]. Note that our definition of a context of order k is left-right symmetric to the
corresponding notion used in data compression. This is due to the fact that typical
compression schemes are applying the BWT or the ST to the reversal of the input.

An important construction in this paper is the standard permutation πw on the
set of positions {1, . . . , n} induced by a word w = a1 · · · an ∈ Σn [11]. The first step
is to introduce a new order ¹ on the positions of w by sorting the letters within w
such that identical letters preserve their order. More formally, the linear order ¹ on
{1, . . . , n} is defined as follows: i ¹ j if

ai < aj or ai = aj and i ≤ j.
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1 b c b c c b c b c a b b a a b a
2 a b c b c c b c b c a b b a a b
3 b a b c b c c b c b c a b b a a
4 a b a b c b c c b c b c a b b a
5 a a b a b c b c c b c b c a b b
6 b a a b a b c b c c b c b c a b
7 b b a a b a b c b c c b c b c a
8 a b b a a b a b c b c c b c b c
9 c a b b a a b a b c b c c b c b

10 b c a b b a a b a b c b c c b c
11 c b c a b b a a b a b c b c c b
12 b c b c a b b a a b a b c b c c
13 c b c b c a b b a a b a b c b c
14 c c b c b c a b b a a b a b c b
15 b c c b c b c a b b a a b a b c
16 c b c c b c b c a b b a a b a b

(a) Conjugacy class [w]

5 a a b a b c b c c b c b c a b b
4 a b a b c b c c b c b c a b b a
8 a b b a a b a b c b c c b c b c
2 a b c b c c b c b c a b b a a b
6 b a a b a b c b c c b c b c a b
3 b a b c b c c b c b c a b b a a
7 b b a a b a b c b c c b c b c a

10 b c a b b a a b a b c b c c b c
12 b c b c a b b a a b a b c b c c
1 b c b c c b c b c a b b a a b a

15 b c c b c b c a b b a a b a b c
9 c a b b a a b a b c b c c b c b

11 c b c a b b a a b a b c b c c b
13 c b c b c a b b a a b a b c b c
16 c b c c b c b c a b b a a b a b
14 c c b c b c a b b a a b a b c b

(b) Lexicographically sorted

5 a a b a b c b c c b c b c a b b
2 a b c b c c b c b c a b b a a b
4 a b a b c b c c b c b c a b b a
8 a b b a a b a b c b c c b c b c
3 b a b c b c c b c b c a b b a a
6 b a a b a b c b c c b c b c a b
7 b b a a b a b c b c c b c b c a
1 b c b c c b c b c a b b a a b a

10 b c a b b a a b a b c b c c b c
12 b c b c a b b a a b a b c b c c
15 b c c b c b c a b b a a b a b c
9 c a b b a a b a b c b c c b c b

11 c b c a b b a a b a b c b c c b
13 c b c b c a b b a a b a b c b c
16 c b c c b c b c a b b a a b a b
14 c c b c b c a b b a a b a b c b
(c) Sorted by 2-order contexts

Figure 1. Computing the BWT and the ST of the word w = bcbccbcbcabbaaba

Let j1 ≺ · · · ≺ jn be the linearization of {1, . . . , n} according to this new order. Now,
the standard permutation πw is defined by πw(i) = ji.

Example 2. Consider the word w = bcbccbcbcabbaaba over the ordered alphabet a <
b < c. We have |w| = 16. Therefore, the positions in w are {1, . . . , 16}. For instance,
the label of position 6 is λw(6) = b. Its Lyndon factorization is w = bcbcc · bc · bc ·
abb · aab · a. The context of order 7 of the prefix bcbcc of length 5 is bcbccbc and the
context of order 7 of the factor bc is bcbcbcb. For computing the standard permutation
we write w column-wise, add positions, and then sort the pairs lexicographically:

word w w with positions sorted
b (b, 1) (a, 10)
c (c, 2) (a, 13)
b (b, 3) (a, 14)
c (c, 4) (a, 16)
c (c, 5) (b, 1)
b (b, 6) (b, 3)
c (c, 7) (b, 6)
b (b, 8) (b, 8)
c (c, 9) (b, 11)
a (a, 10) (b, 12)
b (b, 11) (b, 15)
b (b, 12) (c, 2)
a (a, 13) (c, 4)
a (a, 14) (c, 5)
b (b, 15) (c, 7)
a (a, 16) (c, 9)

This yields the standard permutation

πw =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
10 13 14 16 1 3 6 8 11 12 15 2 4 5 7 9

)
.

The conjugacy class [w] of w is depicted in Figure 1(a); the i-th word in [w] is written
in the i-th row. The last column of the matrix for [w] is the reversal w of w.

3 The Burrows-Wheeler transform

The Burrows-Wheeler transform (BWT) maps words w of length n to pairs (L, i)
where L is a word of length n and i is an index in {1, . . . , n}. The word L is usually
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referred to as the Burrows-Wheeler transform of w. In particular, the BWT is not
surjective. We will see below how the BWT works and that it is one-to-one. It follows
that only a fraction of 1/n of all possible pairs (L, i) appears as an image under the
BWT. For instance (bacd, 1) where a < b < c < d is not an image under the BWT.

For w ∈ Σ+ we define M(w) = (w1, . . . , wn) where {w1, . . . , wn} = [w] and
w1 ≤ · · · ≤ wn. Now, the Burrows-Wheeler transform of w consists of the word
BWT(w) = last(w1) · · · last(wn) and an index i such that w = wi. Note that in
contrast to the usual definition of the BWT, we are using right shifts; at this point
this makes no difference but it unifies the presentation of succeeding transforms. At
first glance, it is surprising that one can reconstruct M(w) from BWT(w). Moreover,
if we know the index i of w in the sorted list M(w), then we can reconstruct w from
BWT(w). One way of how to reconstruct M(w) is presented in the following lemma.
For later use, we prove a more general statement than needed for computing the
inverse of the BWT.

Lemma 3. Let k ∈ N. Let
⋃s

i=1 [vi] = {w1, . . . , wn} ⊆ Σ+ be a multiset built
from conjugacy classes [vi]. Let M = (w1, . . . , wn) satisfy contextk(w1) ≤ · · · ≤
contextk(wn) and let L = last(w1) · · · last(wn) be the sequence of the last symbols.
Then

contextk(wi) = λLπL(i) · λLπ2
L(i) · · · λLπk

L(i)

where πt
L denotes the t-fold application of πL and λLπt

L(i) = λL

(
πt

L(i)
)
.

Proof. By induction over the context length t, we prove that for all i ∈ {1, . . . , n}
we have contextt(wi) = λLπL(i) · · · λLπt

L(i). For t = 0 we have context0(wi) = ε and
hence, the claim is trivially true. Let now 0 < t ≤ k. By the induction hypothesis,
the (t − 1)-order context of each wi is λLπL(i) · · ·λLπt−1

L (i). By applying one right-
shift, we see that the t-order context of r(wi) is λL(i) · λLπ1

L(i) · · ·λLπt−1
L (i).

The list M meets the sort order induced by k-order contexts. In particular,
(w1, . . . , wn) is sorted by (t− 1)-order contexts. Let (u1, . . . , un) be a stable sort by t-
order contexts of the right-shifts (r(w1), . . . , r(wn)). The construction of (u1, . . . , un)
only requires a sorting of the first letters of (r(w1), . . . , r(wn)) such that identical
letters preserve their order. The sequence of first letters of the words r(w1), . . . , r(wn)
is exactly L. By construction of πL, it follows that (u1, . . . , un) = (wπL(1), . . . , wπL(n)).
Since M is built from conjugacy classes, the multisets of elements occurring in
(w1, . . . , wn) and (r(w1), . . . , r(wn)) are identical. The same holds for the multisets
induced by (w1, . . . , wn) and (u1, . . . , un). Therefore, the sequences of t-order contexts
induced by (w1, . . . wn) and (u1, . . . , un) are identical. Moreover, we conclude

contextt(wi) = contextt(ui) = contextt(wπL(i)) = λLπL(i) · λLπ2
L(i) · · · λLπt

L(i)

which completes the induction. We note that in general ui 6= wi since the sort order
of M beyond k-order contexts is arbitrary. Moreover, for t = k + 1 the property
contextt(wi) = contextt(ui) does not need to hold (even though the multisets of
(k + 1)-order contexts coincide). ⊓⊔

Note that in Lemma 3 we do not require that all vi have the same length. Applying
the BWT to conjugacy classes of words with different lengths has also been used for
the Extended BWT [17].

Corollary 4. The BWT is invertible, i.e., given (BWT(w), i) where i is the index
of w in M(w) one can reconstruct the word w.



70 Proceedings of the Prague Stringology Conference 2009

Proof. We set k = |w|. Let M = M(w) and L = BWT(w). Now, by Lemma 3 we see
that

w = wi = contextk(wi) = λLπ1
L(i) · · ·λLπ

|L|
L (i).

In particular, w = λLπ1
L(i) · · ·λLπ

|L|
L (i) only depends on L and i. ⊓⊔

Remark 5. In the special case of the BWT it is possible to compute the i-th element
wi of M(w) by using the inverse π−1

L of the permutation πL:

wi = λLπ
−|wi|+1
L (i) · · ·λLπ−1

L (i)λL(i).

This justifies the usual way of computing the inverse of (BWT(w), i) from right to left
(by using the restriction of π−1

L to the cycle containing the element i). The motivation
is that the (required cycle of the) inverse π−1

L seems to be easier to compute than the
standard permutation πL.

Example 6. We compute the BWT of w = bcbccbcbcabbaaba from Example 2. The
lexicographically sorted list M(w) can be found in Figure 1(b). This yields the trans-
form (BWT(w), i) = (bacbbaaccacbbcbb, 10) where L = BWT(w) is the last column of
the matrix M(w) and w is the i-th row in M(w). The standard permutation of L is

πL =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
2 6 7 10 1 4 5 12 13 15 16 3 8 9 11 14

)
.

Now, π1
L(10) · · · π16

L (10) gives us the following sequence of positions starting with
πL(10) = 15:

15
πL7→ 11

πL7→ 16
πL7→ 14

πL7→ 9
πL7→ 13

πL7→ 8
πL7→ 12

πL7→ 3
πL7→ 7

πL7→ 5
πL7→ 1

πL7→ 2
πL7→ 6

πL7→ 4
πL7→ 10.

Applying the labeling function λL to this sequence of positions yields

λL(15)λL(11)λL(16)λL(14)λL(9)λL(13)λL(8)λL(12)

· λL(3)λL(7)λL(5)λL(1)λL(2)λL(6)λL(4)λL(10)

= bcbccbcbcabbaaba = w,

i.e., we have successfully reconstructed the input w from (BWT(w), i).

4 The bijective Burrows-Wheeler transform

Now we are ready to give a comprehensive description of Scott’s bijective variant of the
BWT and to prove its correctness. It maps a word of length n to a word of length n—
without any index or end-of-string symbol being involved. The key ingredient is the
Lyndon factorization: Suppose we are computing the BWT of a Lyndon word v, then
we do not need an index since we know that v is the first element of the list M(v).
This leads to the computation of a multi-word BWT of the Lyndon factors of the
input.

The bijective BWT of a word w of length n is defined as follows. Let w = vs · · · v1

with vs ≥ · · · ≥ v1 be the Lyndon factorization of w. Let LM(w) = (u1, . . . , un) where
u1 ≤ω · · · ≤ω un and where the multiset {u1, . . . , un} =

⋃s
i=1[vi]. Then, the bijective

BWT of w is BWTS(w) = last(u1) · · · last(un). The S in BWTS is for Scottified. Note
that if w is a power of a Lyndon word, then BWTS(w) = BWT(w).
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In some sense, the bijective BWT can be thought of as the composition of the
Lyndon factorization [6] with the inverse of the Gessel-Reutenauer transform [11].
In particular, a first step towards a bijective BWT can be found in a 1993 article
by Gessel and Reutenauer [11] (prior to the publication of the BWT [5]). The link
between the Gessel-Reutenauer transform and the BWT was pointed out later by
Crochemore et al. [8]. A similar approach as in the bijective BWT has been employed
by Mantaci et al. [16]; instead of the Lyndon factorization they used a decomposition
of the input into blocks of equal length. The output of this variant is a word and a
sequence of indices (one for each block). In its current form, the bijective BWT has
been proposed by Scott [23] in a newsgroup posting in 2007. Gil and Scott gave an
accessible version of the transform, an independent proof of its correctness, and they
tested its performance in data compression [12]. The outcome of these tests is that
the bijective BWT beats the usual BWT on almost all files of the Calgary Corpus
[4] by at least a few hundred bytes which exceeds the gain of just saving the rotation
index.

Lemma 7. Let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w,
let LM(w) = (u1, . . . , un), and let L = BWTS(w). Consider the cycle C of the
permutation πL which contains the element 1 and let d be the length of C. Then
λLπ1

L(1) · · ·λLπd
L(1) = v1.

Proof. By Lemma 3 we see that
(
λLπ1

L(1) · · ·λLπd
L(1)

)|v1| = vd
1 . Since v1 is primi-

tive it follows λLπ1
L(1) · · ·λLπd

L(1) = vz
1 for some z ∈ N. In particular, the Lyndon

factorization of w ends with vz
1.

Let U be the subsequence of LM(w) which consists of those ui which come from
this last factor vz

1. The sequence U contains each right-shift of v1 exactly z times.
Moreover, the sort-order within U depends only on |v1|-order contexts.

The element v1 = u1 is the first element in U since v1 is a Lyndon word. In
particular, π0

L(1) = 1 is the first occurrence of r0(v1) = v1 within U . Suppose πj
L(1)

is the first occurrence of rj(v1) within U . Let πj
L(1) = i1 < · · · < iz be the indices of

all occurrences of rj(v1) in U . By construction of πL, we have πL(i1) < · · · < πL(iz)
and therefore πj+1

L (1) is the first occurrence of rj+1(v1) within U . Inductively, πj
L(1)

always refers to the first occurrence of rj(v1) within U (for all j ∈ N). In particular

it follows that π
|v1|
L (1) = 1 and z = 1. ⊓⊔

Theorem 8. The bijective BWT is invertible, i.e., given BWTS(w) one can recon-
struct the word w.

Proof. Let L = BWTS(w) and let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon
factorization of w. Each permutation admits a cycle structure. We decompose the
standard permutation πL into cycles C1, . . . , Ct. Let ij be the smallest element of the
cycle Cj and let dj be the length of Cj. We can assume that 1 = i1 < · · · < it.

We claim that t = s, dj = |vj|, and λLπ1
L(ij) · · ·λLπ

dj

L (ij) = vj. By Lemma 7

we have λLπ1
L(i1) · · ·λLπd1

L (i1) = v1. Let π′
L denote the restriction of πL to the set

C = C2 ∪ · · · ∪ Ct, where by abuse of notation C2 ∪ · · · ∪ Ct denotes the set of all
elements occurring in C2, . . . , Ct. Let L′ = BWTS(vs · · · v2). The word L′ can be
obtained from L by removing all positions occurring in the cycle C1. This yields a
monotone bijection

α : C → {1, . . . , |L′|}
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such that λL(i) = λL′α(i) and απL(i) = πL′α(i) for all i ∈ C. In particular, πL′ has
the same cycle structure as π′

L and 1 = α(i2) < · · · < α(it) is the sequence of the
minimal elements within the cycles. By induction on the number of Lyndon factors,

vs · · · v2 = λL′π1
L′α(it) · · ·λL′πdt

L′α(it) · · · λL′π1
L′α(i2) · · ·λL′πd2

L′ (i2)

= λL′απ1
L(it) · · ·λL′απdt

L (it) · · · λL′απ1
L(i2) · · ·λL′απd2

L (i2)

= λLπ1
L(it) · · ·λLπdt

L (it) · · · λLπ1
L(i2) · · ·λLπd2

L (i2).

Appending λLπ1
L(i1) · · ·λLπd1

L (i1) = v1 to the last line allows us to reconstruct w by

w = λLπ1
L(it) · · ·λLπdt

L (it) · · · λLπ1
L(i1) · · ·λLπd1

L (i1).

Moreover, t = s and dj = |vj|. We note that this formula for w only depends on L
and does not require any index to an element in LM(w). ⊓⊔

Example 9. We again consider the word w = bcbccbcbcabbaaba from Example 2 and
its Lyndon factorization w = v6 · · · v1 where v6 = bcbcc, v5 = bc, v4 = bc, v3 = abb,
v2 = aab, and v1 = a. The lists ([v1], . . . , [v6]) and LM(w) are:

([v1], . . . , [v6])
1 a
2 a a b
3 b a a
4 a b a
5 a b b
6 b a b
7 b b a
8 b c
9 c b

10 b c
11 c b
12 b c b c c
13 c b c b c
14 c c b c b
15 b c c b c
16 c b c c b

LM(w)
1 a
2 a a b
4 a b a
5 a b b
3 b a a
6 b a b
7 b b a
8 b c

10 b c
12 b c b c c
15 b c c b c
9 c b

11 c b
13 c b c b c
16 c b c c b
14 c c b c b

Hence, we obtain L = BWTS(w) = abababaccccbbcbb as the sequence of the last
symbols of the words in LM(w). The standard permutation πL induced by L is

πL =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
1 3 5 7 2 4 6 12 13 15 16 8 9 10 11 14

)

The cycles of πL arranged by their smallest elements are C1 = (1), C2 = (2, 3, 5),
C3 = (4, 7, 6), C4 = (8, 12), C5 = (9, 13), and C6 = (10, 15, 11, 16, 14). Applying
the labeling function λL to the cycle Ci (starting with the second element) yields
the Lyndon factor vi. With this procedure, we reconstructed w = v6 · · · v1 from L =
BWTS(w).

5 The sort transform

The sort transform (ST) is a BWT where we only sort the conjugates of the input
up to a given depth k and then we are using the index of the conjugates as a tie-
breaker. Depending on the depth k and the implementation details this can speed up
compression (while at the same time slightly slowing down decompression).
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In contrast to the usual presentation of the ST, we are using right shifts. This
defines a slightly different version of the ST. The effect is that the order of the
symbols occurring in some particular context is reversed. This makes sense, because
in data compression the ST is applied to the reversal of a word. Hence, in the ST
of the reversal of w the order of the symbols in some particular context is the same
as in w. More formally, suppose w = x0ca1x1ca2x2 · · · casxs for c ∈ Σ+ then in the
sort transform of order |c| of w, the order of the occurrences of the letters ai is not
changed. This property can enable better compression ratios on certain data.

While the standard permutation is induced by a sequence of letters (i.e., a word)
we now generalize this concept to sequences of words. For a list of non-empty words
V = (v1, . . . , vn) we now define the k-order standard permutation νk,V induced by V .
As for the standard permutation, the first step is the construction of a new linear
order ¹ on {1, . . . , n}. We define i ¹ j by the condition

contextk(vi) < contextk(vj) or contextk(vi) = contextk(vj) and i ≤ j.

Let j1 ≺ · · · ≺ jn be the linearization of {1, . . . , n} according to this new order. The
idea is that we sort the line numbers of v1, . . . , vn by first considering the k-order
contexts and, if these are equal, then use the line numbers as tie-breaker. As before,
the linearization according to ¹ induces a permutation νk,V by setting νk,V (i) = ji.
Now, νk,V (i) is the position of vi if we are sorting V by k-order context such that
the line numbers serve as tie-breaker. We set Mk(v1, . . . , vn) = (w1, . . . , wn) where
wi = vνk,V (i). Now, we are ready to define the sort transform of order k of a word w:
Let Mk([w]) = (w1, . . . , wn); then STk(w) = last(w1) · · · last(wn), i.e., we first sort
all cyclic right-shifts of w by their k-order contexts (by using a stable sort method)
and then we take the sequence of last symbols according to this new sort order as the
image under STk. Since the tie-breaker relies on right-shifts, we have ST0(w) = w, i.e.,
ST0 is the reversal mapping. The k-order sort transform of w is the pair (STk(w), i)
where i is the index of w in Mk([w]). As for the BWT, we see that the k-order sort
transform is not bijective.

Next, we show that it is possible to reconstruct Mk([w]) from STk(w). Hence,
it is possible to reconstruct w from the pair (STk(w), i) where i is the index of w
in Mk([w]). The presentation of the back transform is as follows. First, we will in-
troduce the k-order context graph Gk and we will show that it is possible to re-
build Mk([w]) from Gk. Then we will show how to construct Gk from STk(w). Again,
the approach will be slightly more general than required at the moment; but we will
be able to reuse it in the presentation of a bijective ST.

Let V = ([u1], . . . , [us]) = (v1, . . . , vn) be a list of words built from conjugacy
classes [ui] of non-empty words ui. Let M = (w1, . . . , wn) be an arbitrary per-
mutation of the elements in V . We are now describing the edge-labeled directed
graph Gk(M) – the k-order context graph of M – which will be used later as a pre-
sentation tool for the inverses of the ST and the bijective ST. The vertices of Gk(M)
consist of all k-order contexts contextk(w) of words w occurring in M . We draw an
edge (c1, i, c2) from context c1 to context c2 labeled by i if c1 = contextk(wi) and
c2 = contextk(r(wi)). Hence, every index i ∈ {1, . . . , n} of M defines a unique edge
in Gk(M). We can also think of last(wi) as an additional implicit label of the edge
(c1, i, c2), since c2 = contextk(last(wi)c1).

A configuration (C, c) of the k-order context graph Gk(M) consists of a subset of
the edges C and a vertex c. The idea is that (starting at context c) we are walking
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along the edges of Gk(M) and whenever an edge is used, it is removed from the set
of edges C. We now define the transition

(C1, c1)
u→ (C2, c2)

from a configuration (C1, c1) to another configuration (C2, c2) with output u ∈ Σ∗

more formally. If there exists an edge in C1 starting at c1 and if (c1, i, c2) ∈ C1 is
the unique edge with the smallest label i starting at c1, then we have the single-step
transition

(C1, c1)
a→ (C1 \ {(c1, i, c2)} , c2) where a = last(wi)

If there is no edge in C1 starting at c1, then the outcome of (C1, c1)→ is undefined.

Inductively, we define (C1, c1)
ε→ (C1, c1) and for a ∈ Σ and u ∈ Σ∗ we have

(C1, c1)
au→ (C2, c2) if (C1, c1)

u→ (C′, c′) and (C′, c′) a→ (C2, c2)

for some configuration (C′, c′). Hence, the reversal au is the label along the path of

length |au| starting at configuration (C1, c1). In particular, if (C1, c1)
u→ (C2, c2) holds,

then it is possible to chase at least |u| transitions starting at (C1, c1); vice versa, if we
are chasing ℓ transitions then we obtain a word of length ℓ as a label. We note that
successively taking the edge with the smallest label comes from the use of right-shifts.
If we had used left-shifts we would have needed to chase largest edges for the following
lemma to hold. The reverse labeling of the big-step transitions is motivated by the
reconstruction procedure which will work from right to left.

Lemma 10. Let k ∈ N, V = ([v1], . . . , [vs]), ci = contextk(vi), and G = Gk(Mk(V )).
Let C1 consist of all edges of G. Then

(C1, c1)
v1→ (C2, c1)

(C2, c2)
v2→ (C3, c2)
...

(Cs, cs)
vs→ (Cs+1, cs).

Proof. Let Mk(V ) = (w1, . . . , wn). Consider some index i, 1 ≤ i ≤ s, and let
(u1, . . . , ut) = ([v1], . . . , [vi−1]). Suppose that Ci consists of all edges of G except
for those with labels νk,V (j) for 1 ≤ j ≤ t. Let q = |vi|. We write vi = a1 · · · aq and
ut+j = rj−1(vi), i.e., [vi] = (ut+1, . . . , ut+q). Starting with (Ci,1, ci,1) = (Ci, ci), we show
that the sequence of transitions

(Ci,1, ci,1)
aq→ (Ci,2, ci,2)

aq−1→ · · · (Ci,q, ci,q)
a1→ (Ci,q+1, ci,q+1)

is defined. More precisely, we will see that the transition (Ci,j, ci,j)
aq+1−j−→ (Ci,j+1, ci,j+1)

walks along the edge
(
ci,j, νk,V (t + j), ci,j+1

)
and hence indeed is labeled with the let-

ter aq+1−j = last(ut+j) = last(wνk,V (t+j)). Consider the context ci,j. By induction, we
have ci,j = contextk(ut+j) and no edge with label νk,V (ℓ) for 1 ≤ ℓ < t + j occurs
in Ci,j while all other labels do occur. In particular, (ci,j, νk,V (t+ j), ci,j+1) for ci,j+1 =
contextk(r(ut+j)) = contextk(ut+j+1) is an edge in Ci,j (where contextk(r(ut+j)) =
contextk(ut+j+1) only holds for j < q; we will consider the case j = q below). Suppose
there were an edge (ci,j, z, c

′) ∈ Ci,j with z < νk,V (t+j). Then contextk(wz) = ci,j and
hence, wz has the same k-order context as wνk,V (t+j). But in this case, in the construc-

tion of Mk(V ) we used the index in V as a tie-breaker. It follows ν−1
k,V (z) < t+1 which
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contradicts the properties of Ci,j. Hence, (ci,j, νk,V (t + j), ci,j+1) is the edge with the
smallest label starting at context ci,j. Therefore, Ci,j+1 = Ci,j\{(ci,j, νk,V (t + j), ci,j+1)}
and (Ci,j, ci,j)

aq+1−j−→ (Ci,j+1, ci,j+1) indeed walks along the edge (ci,j, νk,V (t+ j), ci,j+1).
It remains to verify that ci,1 = ci,q+1, but this is clear since ci,1 = contextk(ut+1) =

contextk(r
q(ut+1)) = ci,q+1. ⊓⊔

Lemma 11. Let k ∈ N, V = ([v1], . . . , [vs]), M = Mk(V ) = (w1, . . . , wn), and L =
last(w1) · · · last(wn). Then it is possible to reconstruct Gk(M) from L.

Proof. By Lemma 3 it is possible to reconstruct the contexts ci = contextk(wi). This
gives the vertices of the graph Gk(M). Write L = a1 · · · an. For each i ∈ {1, . . . , n}
we draw an edge (ci, i, contextk(aici)). This yields the edges of Gk(M). ⊓⊔

Corollary 12. The k-order ST is invertible, i.e., given (STk(w), i) where i is the
index of w in Mk([w]) one can reconstruct the word w.

Proof. The construction of w consists of two phases. First, by Lemma 11 we can com-
pute Gk(Mk([w])). By Lemma 3 we can compute c = contextk(w) from (STk(w), i).
In the second stage, we are using Lemma 10 for reconstructing w by chasing

(C, c) w→ (∅, c)

where C consists of all edges in Gk(Mk([w])). ⊓⊔

Efficient implementations of the inverse transform rely on the fact that the k-
order contexts of Mk([w]) are ordered. This allows the implementation of the k-order
context graph Gk in a vectorized form [1,19,20,21].

Example 13. We compute the sort transform of order 2 of w = bcbccbcbcabbaaba from
Example 2. The list M2([w]) is depicted in Figure 1(c). This yields the transform
(ST2(w), i) = (bbacabaacccbbcbb, 8) where L = ST2(w) is the last column of the ma-
trix M2([w]) and w is the i-th element in M2([w]). Next, we show how to reconstruct
the input w from (L, i). The standard permutation induced by L is

πL =

(
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
3 5 7 8 1 2 6 12 13 15 16 4 9 10 11 14

)
.

Note that πL has four cycles C1 = (1, 3, 7, 6, 2, 5), C2 = (4, 8, 12), C3 = (9, 13),
and C4 = (10, 15, 11, 16, 14). We obtain the context of order 2 of the j-th word by
cj = λLπL(j)λLπ2

L(j). In particular, c1 = aa, c2 = c3 = c4 = ab, c5 = c6 = ba, c7 = bb,
c8 = c9 = c10 = c11 = bc, c12 = ca, c13 = c14 = c15 = cb, and c16 = cc. With L and
these contexts we can construct the graph G = G2(M2([w]). The vertices of G are
the contexts and the edge-labels represent positions in L. The graph G is depicted
below:

ba aa ca cb

bb ab bc cc

1
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3
4
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7 8
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1
0

1
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16
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We are starting at the context ci = c8 = bc and then we are traversing G along
the smallest edge-label amongst the unused edges. The sequence of the edge labels
obtained this way is

(8, 2, 5, 3, 1, 6, 7, 4, 12, 9, 13, 10, 14, 16, 11, 15).

The labeling of this sequence of positions yields w = abaabbacbcbccbcb. Since we are
constructing the input from right to left, we obtain w = bcbccbcbcabbaaba.

6 The bijective sort transform

The bijective sort transform combines the Lyndon factorization with the ST. This
yields a new algorithm which serves as a similar preprocessing step in data com-
pression as the BWT. In a lot of applications, it can be used as a substitute for
the ST. The proof of the bijectivity of the transform is slightly more technical than
the analogous result for the bijective BWT. The main reason is that the bijective
sort transform is less modular than the bijective BWT (which can be grouped into a
‘Lyndon factorization part’ and a ‘Gessel-Reutenauer transform part’ and which for
example allows the use of different orders on the alphabet for the different parts).

For the description of the bijective ST and of its inverse, we rely on notions from
Section 5. The bijective ST of a word w of length n is defined as follows. Let w =
vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w. Let Mk([v1], . . . , [vs]) =
(u1, . . . , un). Then the bijective ST of order k of w is LSTk(w) = last(u1) · · · last(un).
That is, we are sorting the conjugacy classes of the Lyndon factors by k-order contexts
and then take the sequence of the last letters. The letter L in LSTk is for Lyndon.

Theorem 14. The bijective ST of order k is invertible, i.e., given LSTk(w) one can
reconstruct the word w.

Proof. Let w = vs · · · v1 with vs ≥ · · · ≥ v1 be the Lyndon factorization of w, let
ci = contextk(vi), and let L = LSTk(w). By Lemma 11 we can rebuild the k-order
context graph G = Gk(Mk([v1], . . . , [vs])) = (w1, . . . , wn) from L. Let C1 consist of all
edges in G. Then by Lemma 10 we see that

(C1, c1)
v1→ (C2, c1)
...

(Cs, cs)
vs→ (Cs+1, cs).

We cannot use this directly for the reconstruction of w since we do not know the
Lyndon factors vi and the contexts ci.

The word v1 is the first element in the list Mk([v1], . . . , [vs]) because v1 is lexi-
cographically minimal and it appears as the first element in the list ([v1], . . . , [vs]).
Therefore, by Lemma 3 we obtain c1 = contextk(v1) = λLπL(1) · · ·λLπk

L(1).

The reconstruction procedure works from right to left. Suppose we have already
reconstructed w′vj · · · v1 for j ≥ 0 with w′ being a (possibly empty) suffix of vj+1.
Moreover, suppose we have used the correct contexts c1, . . . , cj+1. Consider the con-
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figuration (C′, c′) defined by

(C1, c1)
v1→ (C2, c1)
...

(Cj, cj)
vj→ (Cj+1, cj)

(Cj+1, cj+1)
w′

→ (C′, c′)

We assume that the following invariant holds: Cj+1 contains no edges (c′′, ℓ, c′′′) with
c′′ < cj+1. We want to rebuild the next letter. We have to consider three cases. First,
if |w′| < |vj+1| then

(C′, c′) a→ (C′′, c′′)
yields the next letter a such that aw′ is a suffix of vj+1. Second, let |w′| = |vj+1| and
suppose that there exists an edge (cj+1, ℓ, c

′′′) ∈ C′ starting at c′ = cj+1. Then there
exists a word v′ in [vj+2], . . . , [vs] such that contextk(v

′) = cj+1. If contextk(vj+2) 6=
cj+1 then from the invariant it follows that contextk(vj+2) > cj+1 = contextk(v

′). This
is a contradiction, since vj+2 is minimal among the words in [vj+2], . . . , [vs]. Hence,
contextk(vj+2) = cj+2 = cj+1 and the invariant still holds for Cj+2 = C′. The last
letter a of vj+2 is obtained by

(C′, c′) = (Cj+2, cj+2)
a→ (C′′, c′′).

The third case is |w′| = |vj+1| and there is no edge (cj+1, ℓ, c
′′′) ∈ C′ starting at

c′ = cj+1. As before, vj+2 is minimal among the (remaining) words in [vj+2], . . . , [vs].
By construction of G, the unique edge (c′′, ℓ, c′′′) ∈ C′ with the minimal label ℓ has the
property that wℓ = vj+2. In particular, c′′ = cj+2. Since vj+2 is minimal, the invariant
for Cj+2 = C′ is established. In this case, the last letter a of vj+2 is obtained by

(Cj+2, cj+2)
a→ (C′′, c′′′).

We note that we cannot distinguish between the first and the second case since we do
not know the length of vj+1, but in both cases, the computation of the next symbol is
identical. In particular, in contrast to the bijective BWT we do not implicitly recover
the Lyndon factorization of w. ⊓⊔

We note that the proof of Theorem 14 heavily relies on two design criteria. The first
one is to consider Mk([v1], . . . , [vs]) rather than Mk([vs], . . . , [v1]), and the second is to
use right-shifts rather than left-shifts. The proof of Theorem 14 yields the following
algorithm for reconstructing w from L = LSTk(w):

(1) Compute the k-order context graph G = Gk and the k-order context c1 of the
last Lyndon factor of w.

(2) Start with the configuration (C, c) where C contains all edges of G and c := c1.
(3) If there exists an outgoing edge starting at c in the set C, then

– Let (c, ℓ, c′) be the edge with the minimal label ℓ starting at c.
– Output λL(ℓ).
– Set C := C \ {(c, ℓ, c′)} and c := c′.
– Continue with step (3).

(4) If there is no outgoing edge starting at c in the set C, but C 6= ∅, then
– Let (c′, ℓ, c′′) ∈ C be the edge with the minimal label ℓ.
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– Output λL(ℓ).
– Set C := C \ {(c′, ℓ, c′′)} and c := c′′.
– Continue with step (3).

(5) The algorithm terminates as soon as C = ∅.
The sequence of the outputs is the reversal w of the word w.

Example 15. We consider the word w = bcbccbcbcabbaaba from Example 2 and its
Lyndon factorization w = v6 · · · v1 where v6 = bcbcc, v5 = bc, v4 = bc, v3 = abb, v2 =
aab, and v1 = a. For this particular word w the bijective Burrows-Wheeler transform
and the bijective sort transform of order 2 coincide. From Example 9, we know L =
LST2(w) = BWTS(w) = abababaccccbbcbb and the standard permutation πL. As in
Example 13 we can reconstruct the 2-order contexts c1, . . . , c16 of M2([v1], . . . , [v6]):
c1 = c2 = aa, c3 = c4 = ab, c5 = c6 = ba, c7 = bb, c8 = c9 = c10 = c11 = bc,
c12 = c13 = c14 = c15 = cb, and c16 = cc. With L and the 2-order contexts we can
construct the graph G = Gk(M2([v1], . . . , [v6])):

ba aa cb

bb ab bc cc
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We are starting with the edge with label 1 and then we are traversing G along the
smallest unused edges. If we end in a context with no outgoing unused edges, then
we are continuing with the smallest unused edge. This gives the sequence (1, 2, 5, 3)
after which we end in context aa with no unused edges available. Then we continue
with the sequences (4, 6, 7) and (8, 12, 9, 13, 10, 14, 16, 11, 15). The complete sequence
of edge labels obtained this way is

(1, 2, 5, 3, 4, 6, 7, 8, 12, 9, 13, 10, 14, 16, 11, 15)

and the labeling of this sequence with λL yields w = abaabbacbcbccbcb. As for the
ST, we are reconstructing the input from right to left, and hence we get w =
bcbccbcbcabbaaba.

7 Summary

We discussed two bijective variants of the Burrows-Wheeler transform (BWT). The
first one is due to Scott. Roughly speaking, it is a combination of the Lyndon fac-
torization and the Gessel-Reuternauer transform. The second variant is derived from
the sort transform (ST); it is the main contribution of this paper. We gave full con-
structive proofs for the bijectivity of both transforms. As a by-product, we provided
algorithms for the inverse of the BWT and the inverse of the ST. For the latter,
we introduced an auxiliary graph structure — the k-order context graph. This graph
yields an intermediate step in the computation of the inverse of the ST and the bijec-
tive ST. It can be seen as a generalization of the cycle decomposition of the standard
permutation — which in turn can be used as an intermediate step in the computation
of the inverse of the BWT and the bijective BWT.
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Abstract. The usefulness of a backspace character in various applications of Infor-
mation Retrieval Systems is investigated. While not being a character in the initial
sense of the word, a backspace can be defined as being a part of an extended alphabet,
thereby enabling the enhancement of various algorithms related to the processing of
queries in Information retrieval. We bring examples of three different application areas.

1 Introduction

A large textual database can be made accessible by means of an Information Retrieval
System (IRS), a set of procedures which process the given text to find the most
relevant passages to a specific information request. This request is usually formulated
according to some given rigid query syntax, but in fact the formulation of a query is
an art in which the user has to find the right balance between a choice of query terms
that may be too broad and others that could be too restrictive.

The present work is an extension of an earlier study of the negation operator as it
appears in its various forms in Information Retrieval applications [7]. We restrict at-
tention to the Boolean query model, as in Chang et al. [1], though several alternatives
are available, like the classical vector space model [9], the probabilistic model [11],
and others. The natural approach of most users to query formulation involves the
choice of keywords that best describe their information needs. They often overlook
the possibility, which sometimes could even be a necessity, of choosing also a negative
set, that is, a set of keywords which should not appear in the vicinity of some others,
thereby achieving improved precision. But the use of negation might in certain cases
be tricky and is not always symmetrical to the use of positive terms.

We now turn to the usefulness of an element which is intrinsically negative, namely
a backspace character. A backspace is not really a character in the classical sense, as it
is not explicitly written or used to form any words, but keyboards contain a backspace
key and standard codes like ASCII assign it a codeword, so programmers, rather than
users, consider backspaces just as any other printable character. The purpose of this
paper is to show that in spite of it not representing any concrete entity, a backspace
can be a useful tool in various different applications related to the implementation of
IR systems. The intention is not to present a comprehensive investigation of all the
possible applications of backspaces, but rather to emphasize its usefulness by means
of some specific examples in different areas of Information Retrieval. The next section
deals with the processing of large numbers in an IRS and suggests a solution based
on using backspaces as part of the elements that might be retrieved. In Section 3 we
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Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic



Shmuel T. Klein and Dana Shapira: On the Usefulness of Backspace 81

consider compression aspects of the textual databases within an IRS, and show how
a model including a backspace may lead to improved savings. As a last example, we
show in Section 4 how the use of backspaces may lead to another time/space tradeoff
in an application to the fast decoding of Huffman encoded texts.

2 Dealing with large numbers

2.1 Syntax definition

To enable the subsequent discussion, one has first to define a query language syntax.
Most search engines allow simple queries, consisting just of a set of keywords, such
as

A1 A2 . . . Am, (1)

which should retrieve all the documents in the underlying textual database in which
all the terms Ai occur at least once. Often, some kind of stemming is automatically
performed on all the terms of the text during the construction of the database, as
well as online on the query terms [5]. Negating one or more keywords in the query
means that one is interested in prohibiting the occurrence of the negated terms in
the retrieved documents. A further extension of the query syntax accommodates also
tools for proximity searches. The idea is that a user may wish to limit the location of
possible occurrences of the query terms to be, if not adjacent, then at least quite close
to each other. Many query languages support, in addition to the loose formulations
of (1), also an exact phrase option. This should, however, be used with care, as one
has to guess all possible occurrence patterns of the query terms, and failing to do so
may yield reduced recall.

This leads to the following generalization. Consider a query containing only pos-
itive terms as consisting of m keywords and m − 1 binary distance constraints, as
in

A1 (l1 : u1) A2 (l2 : u2) . . . Am−1 (lm−1 : um−1) Am. (2)

This is a conjunctive query, requiring all the keywords Ai to occur within the given
metrical constraints specified by li, ui, which are integers satisfying −∞ < li ≤ ui <
∞ for 1 ≤ i < m, with the couple (li : ui) imposing a lower and upper limit on the
distance from an occurrence of Ai to one of Ai+1. The distance is measured in words,
and usually restricts, in addition to the specific constraints imposed by the (li : ui)
pairs, all the terms to appear within some predefined textual unit, like the same
sentence. Negative distance means that Ai may follow Ai+1 rather than precede it.
In the presence of negated keywords, association of keywords to metrical constraints
should be to the left, unless there is no such option, that is, all the keywords to the
left of the leftmost non-negated one will be right associated (each query must have at
least one non-negated keyword). An example of left association could be A (1:3) −B
(1:5) C, meaning that we seek an occurrence of C following an occurrence of A by 1 to
5 words, but such that there is no occurrence of B in the range of 1 to 3 words after
A. In the query −D (1:1) E, an occurrence of E should not be preceded immediately
by an occurrence of D.

Such a query language is used for over thirty years at the Responsa Retrieval
Project [4,2]. Even more extended features, mixing Boolean operators with proximity
constraints between certain keywords can be found in the word pattern models for
Boolean Information Retrieval WP and AWP [12].
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2.2 The use of backspace for large numbers

The problem with large numbers in an IRS is that there are potentially too many of
them. If we store 20,000 pages of a running text, including also the page numbers,
at least all the numbers up to 20,000 will appear, which can be an increasingly large
part of the dictionary. A real-life application of this problem is mentioned in [8]. A
possible solution is to break long strings of digits into blocks of at most k digits each.
For k = 4, the number 1234567 would thus be stored as 2 consecutive items: 1234 and
567. We have thus bounded the number of possible numbers by 10k, independently
of the length of the text.

There is however a new problem, namely one of precision. If the query asks for the
location of a number such as 5678, the system would also retrieve certain occurrences
of numbers having 5678 as substring, like 123456789. We therefore need some indi-
cator, telling if the string is surrounded by blanks or not. The two obvious solutions,
of storing indices of all the blanks, or using special treatment on all queries involving
numbers, have to be ruled out, the first because of the increased space requirements,
the second on the basis of the additional processing time that would be required to
check the vicinity of each occurrence of a number.

A possible solution to the problem can be based on the fact that we are not
restricted to deal only with standard tokens such as characters or character strings.
In fact, we need some mechanism to overcome our implicit assumption that all the
words in the text, and therefore also in the query, are separated by blanks. Let us
thus formalize the setup.

We assume that the words stored in the dictionary are full words as they appear in
the text, each followed by a blank. For example, we might find there the words house⊔,
the⊔, etc, where the ⊔ is used to visualize the terminating blank. Of course, these
blanks are not actually stored, but they are conceptually present. A query asking for
House of Lords will thus generate 3 accesses to the dictionary, with items House⊔,
of⊔ and Lords⊔, and one would check if there is an occurrence of these three items
in the same sentence, having consecutive relative indices.

A similar treatment will also be given to numbers of up to k digits in length.
For a longer number, the fact that there are no spaces within it will be stored by
means of a back-space item, BS. For example, the number 1234567890 will be stored
as a sequence of the following items: 1234⊔, BS, 5678⊔, BS, 90⊔. The backspace
will be treated like any other word: it will have a consecutive numbering, and all its
occurrences will be referenced in the concordance. For example, consider the phrase:

I declared an income of 1000000 on my last 10 1040 forms.

When inverting the text to build the dictionary and the concordance, this will be
parsed as I declared an income of 1000 BS 000 on my last 10 1040 forms,
with the words numbered 1 to 14, respectively. In particular, the BS has index 7.
Note the absence of a backspace between 10 and 1040, since these are indeed two
separate numbers, and the space between them is a part of the original text.

Punctuation signs are traditionally attached to the preceding word, which should
therefore loose its trailing blank. This can be implemented by considering each punc-
tuation sign as if it were preceded by BS. The phrase Mr. Jones would thus be
encoded by Mr⊔ BS . Jones.

It is true that having the backspaces numbered just like words may disrupt
proximity searches which do not require adjacency. In the query solve (−10 : 10)
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differential, the request is to find the query terms at a distance from up to 10
words from each other, without caring which term precedes the other. The occur-
rence of a backspace between the occurrences of these terms in the text may lead
to the wrong numbering, and therefore cause retrieval of passages which would not
have complied with the strict original definition of the distances, or it may imply the
non-retrieval of other passages which should have been retrieved. However, the same
is true already if large numbers are split, even when no backspaces are used. The
current proposition is thus only valid if either:

– no proximity searches other than immediate adjacency are supported;
– or the software is adapted to deal with the correct numbering also in the presence

of backspaces and number splits;
– or that strict adherence to the exact metrical constraints is not deemed critical.

In most queries using large distances, one can hardly justify the use of (−10 :
10) rather than (−11 : 11) or (−9 : 9), so even if backspaces or number splits
effectively reduce the range of the query, this does not necessarily lead to a worse
recall/precision tradeoff. In other words, the fact that a text passage does not
strictly obey to the constraints imposed by the query does not yet mean that the
passage is absolutely non-relevant.

Table 1 brings a few examples of queries including large numbers, and how they
can be processed by means of the backspace item.

Searching for Submit query Comments

234 −BS 234 the negated backspace to avoid retrieval of,
e,g, 8888234

2000 1040 −BS 2000 1040 −BS

12345678 −BS 1234 BS 5678 −BS

1234567 −BS 1234 BS 567 Note that since the last part of the number
has less than k = 4 digits, it is not neces-
sary to add the −BS, which was used in the
previous example to prevent the retrieval of
123456789 for example

user@address.com user @ BS
address . BS com

Note the absence of BS preceding @ and the
dot, since these are punctuation signs

Table 1. Examples of the use of a backspace character

3 Compressing the text of an IR System

At the heart of any Information Retrieval system is the raw text, which is usually
stored in some compressed form. A myriad of different text compression schemes has
been suggested, but a full description is beyond the scope of this work, and the reader
is referred to [14] for a description of many of these methods.

One class of compression techniques, often called statistical , uses variable length
codewords to encode the different characters. Compression is achieved by assigning
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shorter codewords to characters occurring at higher frequency, and an optimal as-
signment of codewords lengths, once the character frequencies are known, is given by
Huffman’s algorithm [6].

But a Huffman code, applied on individual characters, does not achieve a good
compression ratio, because adjacent characters are encoded as if they were inde-
pendent, which is not the case for natural language texts. In order to exploit also
inter-character correlations, one may extend the set of elements to be encoded, to
include character pairs, triplets, etc., or even entire words. In the latter case, the
Huffman tree could be huge, with a leaf for each of the different words in the text,
but this overhead may be acceptable as the list of different words, also known as the
dictionary of the Information Retrieval system, is needed anyway. The compression
obtained by the word oriented Huffman code is excellent and competes with that of
the best methods.

A text consists, however, not just of a sequence of juxtaposed words, but these
words are separated by blanks and other punctuation signs, which have also to be
encoded. One possibility is to use two, rather than a single Huffman code [8], one for
the words, and another for the non-words separating them, keeping strict alternation
to avoid having to encode an indicator of which code is being used. This method is
referred to as the Huffword scheme [14].

But the overwhelming majority of the non-words are blanks, so their encoding
would be wasteful. As alternative, one may use the idea of the backspace as above. A
single Huffman code can be used, for which the set of elements to be encoded consists
of:

1. the words including a trailing blank. This is the same idea as in the definition of
the dictionary in the IR application of Section 1, in which the blank following a
word is considered an integral part of the word itself;

2. punctuation signs, also including trailing blanks, but being preceded by a concep-
tual backspace to attach them to the word they follow;

3. the backspace character, to deal also with the exceptions of the attachment rules
for punctuation signs.

Every text can be parsed into a sequence of such elements, and a single Huffman code
can be built on the basis of the frequencies obtained from this parsing.

We tested the approach on two textual databases of different sizes and languages:
the Bible (King James version) in English, and the French version of the European
Union’s JOC corpus, a collection of pairs of questions and answers on various topics
used in the arcade evaluation project [13]. Table 2 reports on the basic statistics
and on the compression results.

File Size Huffword BShuff # exceptions gzip bzip
English 3.1 MB 3.91 3.97 2006 3.28 4.41
French 7.1 MB 3.98 4.03 24430 3.27 4.63

Table 2. Comparing backspace based compression

The values give the compression ratio, which is the size of the original file divided
by the size of the compressed file. We see that in both cases, the approach using a
backspace (BShuff) is slightly better than what can be obtained by Huffword. The
table also contains data for compression by gzip (with parameter -9 for maximal
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compression) and bzip2. Both Huffword and BShuff are preferable to gzip, but bzip is
considerably better. It should however be noted that the comparison to the adaptive
Lempel Ziv based gzip or Burrows-Wheeler based bzip is not necessarily meaningful:
adaptive methods require the whole file to be decompressed sequentially and do not
allow partial decoding of selected sub-parts, as can be obtained by the static Huff-
man based methods. In certain applications, the zip methods are thus not plausible
alternatives to those treated here, even if their compression is better.

4 Blockwise decoding of Huffman codes

We now turn to a last example, also connected to the compression of large texts
in an IRS, but concentrating on the decoding. Indeed, decoding might be of higher
importance than encoding, since the latter is only done once, when the system is
built, while efficient decoding is critical for getting a good response time each time
a query is being submitted. However, the decoding of variable length codes, and in
particular Huffman codes, can be slow, because the end of each codeword has to
be detected by the decoding algorithm itself, and the implied manipulations of the
encoded text at the bit level can have a negative impact on the decoding speed. But
efficient decoding of k bits in every iteration, for k > 1, rather than only a single one,
is made possible by using a set of m auxiliary tables, which are prepared in advance
for every given prefix code. The method has first been mentioned in [3], and has since
been reinvented several times, for example in [10].

4.1 Basic decoding scheme

The basic scheme is as follows. The number of entries in each table is 2k, corresponding
to the 2k possible values of the k-bit patterns. Each entry is of the form (W, j), where
W is a sequence of characters and j (0 ≤ j < m) is the index of the next table to
be used. The idea is that entry i, 0 ≤ i < 2k, of table number 0 contains, first, the
longest possible decoded sequence W of characters from the k-bit block representing
the integer i (W may be empty when there are codewords of more than k bits);
usually some of the last bits of the block will not be decipherable, being the prefix
P of more than one codeword; j will then be the index of the table corresponding to
that prefix (if P = Λ, where Λ denotes the empty string, then j = 0). Table number
j is constructed in a similar way except for the fact that entry i will contain the
analysis of the bit pattern formed by the prefixing of P to the binary representation
of i. We thus need a table for every possible proper prefix of the given codewords;
the number of these prefixes is obviously equal to the number of internal nodes of
the appropriate Huffman-tree (the root corresponding to the empty string and the
leaves corresponding to the codewords), so that m = N − 1, where N is the size of
the alphabet.

More formally, let Pj, 0 ≤ j < N −1, be an enumeration of all the proper prefixes
of the codewords (no special relationship needs to exist between j and Pj, except for
the fact that P0 = Λ). In table j corresponding to Pj, the i-th entry, T (j, i), is defined
as follows: let B be the bit-string composed of the juxtaposition of Pj to the left of
the k-bit binary representation of i. Let W be the (possibly empty) longest sequence
of characters that can be decoded from B, and Pℓ the remaining undecipherable bits
of B; then T (j, i) = (W, ℓ).
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Entry
Pattern Table 0 Table 1 Table 2 Table 3

for Table 0 W ℓ W ℓ W ℓ W ℓ

0 000 AAA 0 D 0 DA 0 DAA 0

1 001 AA 1 E 0 D 1 DA 1

2 010 A 2 CA 0 EA 0 D 2

3 011 AB 0 C 1 E 1 DB 0

4 100 — 3 BAA 0 CAA 0 EAA 0

5 101 C 0 BA 1 CA 1 EA 1

6 110 BA 0 B 2 C 2 E 2

7 111 B 1 BB 0 CB 0 EB 0

Figure 1. Huffman tree and partial decoding tables

As an example, consider the alphabet {A,B,C,D,E}, with codewords {0, 11, 101,
1000, 1001} respectively, and choose k = 3. There are 4 possible proper prefixes:
Λ,1,10,100, hence 4 corresponding tables indexed 0,1,2,3 respectively, and these are
given in Figure 1, along with the corresponding Huffman tree that has its internal
nodes numbered accordingly. The column headed ‘Pattern’ contains for every entry
the binary string which is decoded in Table 0; the binary strings which are decoded
by Tables 1, 2 and 3 are obtained by prefixing ‘1’, ‘10’ or ‘100’, respectively, to the
strings in ‘Pattern’. If the encoded text, which serves as input string to this decoding
routine, consists of 100 101 110 000 101, we access sequentially Table 0 at entry 4,
Table 3 at entry 5, Table 1 at entry 6, Table 2 at entry 0 and Table 0 at entry 5,
yielding the output strings EA B DA C.

The general decoding routine is thus extremely simple. Let M [f ; t] denote the
substring of the encoded string serving as input stream to the decoding, that starts
at bit number f and extends up to and including bit number t; let j be the index of
the currently used table and T (j, ℓ) the ℓ-th entry of table j:

j ← 0
for f ← 1 to length of input do

(output, j)← T (j,M [f ; f + k − 1])
f ← f + k

The larger is k, the greater is the number of characters that can be decoded in
a single iteration, thus transferring a substantial part of the decoding time to the
preprocessing stage. The size of the tables, however, is Ω(N2k), so it grows exponen-
tially with k, and may become prohibitive for large alphabets and even moderately
large k. For example, if N = 30000, k is chosen as 16 and every table entry requires 6
bytes, the tables, which should be stored in RAM, would need about 11 GB! Even if
such amounts of memory were available, the number of cache misses and page faults
would void a significant part of the benefits in time savings incurred by the reduced
number of processing steps.
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4.2 Using backspaces to get another time/space tradeoff

The number of tables, and thus the storage requirements, can be reduced, by con-
ceptually modifying the text with the introduction of backspace characters at certain
locations. Particularly in the case of a large alphabet, the blocksize k could be chosen
smaller than the longest codeword, and tables would be constructed not for all the
internal nodes, but only for those on levels that are multiples of k, that is for the
root (level 0), and all the internal nodes on levels k, 2k, 3k, etc. There is an obvious
gain in the number of tables, which comes at the price of a slower decoding pace: as
before, the table entries consist first of the decoding W of a bit string B obtained
by concatenating some prefix to the binary representation of the entry index. If B
is not completely decipherable, the remainder Pj is used in the previous setting as
index to the next table. For the new variant, if |Pj|, the length of the remainder, is
smaller than k, then no corresponding table has been stored, so these |Pj| bits have
to be reread in the next iteration. This is enforced by adding, after the remainder,
|Pj| backspaces into the text.

Entry
Pattern Table 0 Table 3

for Table 0 W ℓ b W ℓ b

0 000 AAA 0 0 DAA 0 0

1 001 AA 0 1 DA 0 1

2 010 A 0 2 D 0 2

3 011 AB 0 0 DB 0 0

4 100 — 3 0 EAA 0 0

5 101 C 0 0 EA 0 1

6 110 BA 0 0 E 0 2

7 111 B 0 1 EB 0 0

Figure 2. Reduced partial decoding tables

It should however be noted, that the modification of the text is only conceptual,
and will manifest itself only in the modified decoding routine; the encoded text itself
need not to be touched, so there is no loss in compression efficiency, only in decoding
speed. The table entries for the new algorithm are thus extended to include a third
component: a back skip b, indicating how many backspaces should have been intro-
duced at that particular point, which is equivalent to the number of bits the pointer
into the input string should be moved back. Using the above notations, T (j, i) will
consist of the triplet (W, ℓ, b), and the decoding routine is given by

j ← 0 back ← 0
for f ← 1 to length of input do

(output, j, back)← T (j,M [f ; f + k − 1])
f ← f + k − back

As example, consider the same Huffman tree and the same input string as above
with k = 3. Only two tables remain, Table 0 and Table 3, given in Figure 2. Decoding
is now performed by six table accesses rather than only 5 with the original tables,
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using the sequence of blocks 100, 101, BS11, BS00, 001, BS01 to access tables 0, 3, 0,
0, 3, 0, respectively, where the backspace BS indicates that the preceding bit is read
again, resulting in an overlap of the currently decoded block with the preceding one.

Figure 3 shows the input string and above it its parsing into codewords using
the standard Huffman decoding. Below appear first the parsing into consecutive k-
bit blocks using the original tables, then the parsing into partially overlapping k-bit
blocks with the tables relying on the backspaces. Note that for simplicity, we do not
deal here with the case that the last block may be shorter than k bits.

E A B D A C

1 0 0 1 0 1 1 1 0 0 0 0 1 0 1

— EA B DA C

— EA B — DA C

Figure 3. Example using original and reduced tables

To get some experimental results, we used the King James Bible (KJB) as above,
and Wall Street Journal (WSJ) issues that appeared in 1989. Huffman codes were
generated for large “alphabets”, consisting of entire words. Some of the relevant
statistics are given in Table 3, and the results are presented in Table 4. The row
headed Bit corresponds to the regular bit per bit Huffman decoding. The next row
brings the values of the Partial decoding Tables of [3] described in Section 4.1 above,
and the row with title reduced corresponds to the variant with the backspaces.

For each of the test databases, the first column brings the maximal size k of the
block of bits that is decoded as one unit. The next column, headed bpa is in fact the
average value of k used during the decoding. It is the average number of decoded
bits per table access, evaluated as the size of the compressed file in bits divided by
the total number of such accesses. The next column brings timing results, in terms of
the number of MB that can be processed per second on our test machine. The time
for the variant with the full tables for WSJ could not be evaluated, due to exceeding
RAM requirements. The last column, headed RAM, gives the size of the required
auxiliary storage in MB. We see that the Reduced Tables saved 50 to 80 % of the
space required by the partial decoding tables, while using the same k, reducing the
decoding rate only by about 20 %.

full compression number of average
size ratio words word length

KJB 3.1 MB 5.15 MB 11669 8.8 bit
WSJ 36.5 MB 5.05 MB 115136 11.2 bit

Table 3. Statistical data on test files
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KJB WSJ
k bpa MB/sec RAM k bpa MB/sec RAM

Bit 1 1 10.1 0.21 1 1 6,6 2.1
Tables 8 8 0.4 17 8 8 — 197
reduced 8 6.37 13.7 8.7 8 6.35 7.6 34.1

Table 4. Experimental comparison of decoding

5 Conclusion

We presented three examples of applications in various areas of Information Retrieval
Systems, for which the inclusion of a backspace character in the alphabet may lead
to improved performance. The main message we hoped to convey in this study, is
that the definition of alphabets in the broadest sense as used in IR systems, does not
have to be restricted to collections of classical items such as letters, words or strings,
but may be extended to include also conceptual elements such as a backspace, which,
even if not materialized as the other elements, may at times have helpful usages.
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Abstract. The Pattern Matching problem with Swaps consists in finding all occur-
rences of a pattern P in a text T , when disjoint local swaps in the pattern are allowed.
In the Approximate Pattern Matching problem with Swaps one seeks to compute, for
every text location with a swapped match of P , the number of swaps necessary to
obtain a match at the location.
In this paper, we present new efficient algorithms for the Approximate Swap Matching
problem. In particular, we first present aO(nm2) algorithm, where m is the length of the
pattern and n is the length of the text, which is a variation of the Backward-Cross-

Sampling algorithm, a recent solution to the swap matching problem. Subsequently, we
propose an efficient implementation of our algorithm, based on the bit-parallelism tech-
nique. The latter solution achieves a O(mn)-time and O(σ)-space complexity, where σ
is the dimension of the alphabet.
From an extensive comparison with some of the most recent and effective algorithms
for the approximate swap matching problem, it turns out that our algorithms are very
flexible and achieve very good results in practice.

Keywords: approximate pattern matching with swaps, nonstandard pattern match-
ing, combinatorial algorithms on words, design and analysis of algorithms

1 Introduction

The Pattern Matching problem with Swaps (Swap Matching problem, for short) is a
well-studied variant of the classic Pattern Matching problem. It consists in finding all
occurrences, up to character swaps, of a pattern P of length m in a text T of length
n, with P and T sequences of characters drawn from a same finite alphabet Σ of size
σ. More precisely, the pattern is said to swap-match the text at a given location j if
adjacent pattern characters can be swapped, if necessary, so as to make it identical
to the substring of the text ending (or, equivalently, starting) at location j. All swaps
are constrained to be disjoint, i.e., each character can be involved in at most one
swap. Moreover, we make the agreement that identical adjacent characters are not
allowed to be swapped.

This problem is of relevance in practical applications such as text and music retrie-
val, data mining, network security, and many others. Following [6], we also mention a
particularly important application of the swap matching problem in biological com-
puting, specifically in the process of translation in molecular biology, with the genetic
triplets (otherwise called codons). In such application one wants to detect the possible
positions of the start and stop codons of an mRNA in a biological sequence and find
hints as to where the flanking regions are relative to the translated mRNA region.
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The swap matching problem was introduced in 1995 as one of the open problems
in nonstandard string matching [12]. The first nontrivial result was reported by Amir

et al. [1], who provided a O(nm
1
3 log m)-time algorithm in the case of alphabet sets

of size 2, showing also that the case of alphabets of size exceeding 2 can be reduced
to that of size 2 with a O(log2 σ)-time overhead (subsequently reduced to O(log σ) in
the journal version [2]). Amir et al. [4] studied some rather restrictive cases in which a
O(m log2 m)-time algorithm can be obtained. More recently, Amir et al. [3] solved the
swap matching problem in O(n log m log σ)-time. We observe that the above solutions
are all based on the fast Fourier transform (FFT) technique.

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and Rah-
man in [11]. They introduced a new graph-theoretic approach to model the problem
and devised an efficient algorithm, based on the bit-parallelism technique [7], which
runs in O((n + m) log m)-time, provided that the pattern size is comparable to the
word size in the target machine.

More recently, in 2009, Cantone and Faro [9] presented a first approach for solving
the swap matching problem with short patterns in linear time. Their algorithm, named
Cross-Sampling, though characterized by a O(nm) worst-case time complexity,
admits an efficient bit-parallel implementation, named BP-Cross-Sampling, which
achievesO(n) worst-case time andO(σ) space complexity in the case of short patterns
fitting in few machine words.

In a subsequent paper [8] a more efficient algorithm, named Backward-Cross-

Sampling and based on a similar structure as the one of the Cross-Sampling al-
gorithm, has been proposed. The Backward-Cross-Sampling scans the text from
right to left and has a O(nm2)-time complexity, whereas its bit-parallel implemen-
tation, named BP-Backward-Cross-Sampling, works in O(mn)-time and O(σ)-
space complexity. However, despite their higher worst-case running times, in practice
the algorithms Backward-Cross-Sampling and BP-Backward-Cross-Samp-

ling show a better behavior than their predecessors Cross-Sampling and BP-

Cross-Sampling, respectively.

In this paper we are interested in the approximate variant of the swap matching
problem. The Approximate Pattern Matching problem with Swaps seeks to compute,
for each text location j, the number of swaps necessary to convert the pattern to the
substring of length m ending at text location j.

A straightforward solution to the approximate swap matching problem consists in
searching for all occurrences (with swap) of the input pattern P , using any algorithm
for the standard swap matching problem. Once a swap match is found, to get the
number of swaps, it is sufficient to count the number of mismatches between the
pattern and its swap occurrence in the text and then divide it by 2.

In [5] Amir et al. presented an algorithm that counts in time O(log m log σ) the
number of swaps at every location containing a swapped matching, thus solving the
approximate pattern matching problem with swaps in O(n log m log σ)-time.

In [9] Cantone and Faro presented also an extension of the Cross-Sampling algo-
rithm, named Approximate-Cross-Sampling, for the approximate swap matching
problem. However, its bit-parallel implementation has a notably high space overhead,
since it requires (m log(⌊m/2⌋+ 1) + m) bits, with m the length of the pattern.

In this paper we present a variant of the Backward-Cross-Sampling algo-
rithm for the approximate swap matching problem, which works in O(nm2)-time
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and requires O(m)-space. Its bit-parallel implementation, in contrast with the BP-

Approximate-Cross-Sampling algorithm, does not add any space overhead and
maintains a worst-case O(mn)-time and O(σ)-space complexity, when the pattern
size is comparable to the word size in the target machine, and is very fast in practice.

The rest of the paper is organized as follows. In Section 2 we recall some prelimi-
nary definitions. Then in Section 3 we describe the Approximate-Cross-Sampling

algorithm and its bit-parallel variant. In Section 4 we present a variant of the
Backward-Cross-Sampling algorithm for the approximate swap matching prob-
lem and its straightforward bit-parallel implementation. Then we compare, in Sec-
tion 5, our newly proposed algorithms against the most effective algorithms present
in literature and, finally, we briefly draw our conclusions in Section 6.

2 Notions and Basic Definitions

Given a string P of length m ≥ 0, we represent it as a finite array P [0 ..m − 1] and
write length(P ) = m. In particular, for m = 0 we obtain the empty string ε. We
denote by P [i] the (i+1)-st character of P , for 0 ≤ i < length(P ), and by P [i .. j] the
substring of P contained between the (i+1)-st and the (j +1)-st characters of P , for
0 ≤ i ≤ j < length(P ). A k-substring of a string S is a substring of S of length k. For
any two strings P and P ′, we say that P ′ is a suffix of P if P ′ = P [i .. length(P )−1], for
some 0 ≤ i < length(P ). Similarly, we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1],
for some 0 ≤ i ≤ length(P ). We denote by Pi the nonempty prefix P [0 .. i] of P of
length i + 1, for 0 ≤ i < m, whereas, if i < 0, we agree that Pi is the empty string ε.
Moreover, we say that P ′ is a proper prefix (suffix) of P if P ′ is a prefix (suffix) of P
and |P ′| < |P |. Finally, we write P.P ′ to denote the concatenation of P and P ′.

Definition 1. A swap permutation for a string P of length m is a permutation π :
{0, ...,m− 1} → {0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i− 1, i, i + 1} (only adjacent characters are swapped);
(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters can not be swapped).

For a given string P and a swap permutation π for P , we write π(P ) to denote
the swapped version of P , namely π(P ) = P [π(0)] · P [π(1)] · · ·P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of T if
there exists a swap permutation π of P such that π(P ) matches T at location j, i.e.,
π(P ) = T [j −m + 1 .. j]. In such a case we write P ∝ Tj.

As already observed, if a pattern P of length m has a swap match ending at
location j of a text T , then the number k of swaps needed to transform P into its
swapped version π(P ) = T [j −m + 1 .. j] is equal to half the number of mismatches
of P at location j. Thus the value of k lies between 0 and ⌊m/2⌋.

Definition 3. Given a text T of length n and a pattern P of length m, P is said to
swap-match (or to have a swapped occurrence) at location j of T with k swaps if
there exists a swap permutation π of P such that π(P ) matches T at location j and
k = |{i : P [i] 6= P [π(i)]}|/2. In such a case we write P ∝

k
Tj.
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Definition 4 (Pattern Matching Problem with Swaps). Given a text T of
length n and a pattern P of length m, find all locations j ∈ {m− 1, . . . , n− 1} such
that P swap-matches with T at location j, i.e., P ∝ Tj.

Definition 5 (Approximate Pattern Matching Problem with Swaps). Given
a text T of length n and a pattern P of length m, find all pairs (j, k), with j ∈
{m− 1, . . . , n − 1} and 0 ≤ k ≤ ⌊m/2⌋, such that P has a swapped occurrence in T
at location j with k swaps, i.e., P ∝

k
Tj.

The following elementary result will be used later.

Lemma 6 ([9]). Let P and R be strings of length m over an alphabet Σ and suppose
that there exists a swap permutation π such that π(P ) = R. Then π is unique.

Proof. Suppose, by way of contradiction, that there exist two different swap permuta-
tions π and π′ such that π(P ) = π′(P ) = R. Then there must exist an index i such that
π(i) 6= π′(i). Without loss of generality, let us assume that π(i) < π′(i) and suppose
that i be the smallest index such that π(i) 6= π′(i). Since π(i), π′(i) ∈ {i− 1, i, i + 1},
by Definition 1(b), it is enough to consider the following three cases:

Case 1: π(i) = i− 1 and π′(i) = i.
Then, by Definition 1(a), we have π(i − 1) = i, so that P [π(i − 1)] = P [i] =
P [π′(i)] = P [π(i)], thus violating Definition 1(c).

Case 2: π(i) = i and π′(i) = i + 1.
Since by Definition 1(a) we have π′(i+1) = i, then P [π′(i+1)] = P [i] = P [π(i)] =
P [π′(i)], thus again violating Definition 1(c).

Case 3: π(i) = i− 1 and π′(i) = i + 1.
By Definition 1(c) we have π(i− 1) = π′(i + 1) = i. Thus π′(i− 1) 6= i = π(i− 1),
contradicting the minimality of i. ⊓⊔

Corollary 7. Given a text T of length n and a pattern P of length m, if P ∝ Tj, for
a given position j ∈ {m−1, . . . , n−1}, then there exists a unique swapped occurrence
of P in T ending at position j. ⊓⊔

3 The Approximate-Cross-Sampling Algorithm

The Approximate-Cross-Sampling algorithm [9] computes the swap occurrences
of all prefixes of a pattern P (of length m) in continuously increasing prefixes of a
text T (of length n), using a dynamic programming approach. Additionally, for each
occurrence of P in T , the algorithm computes also the number of swaps necessary to
convert the pattern in its swapped occurrence.

In particular, during its (j +1)-st iteration, for j = 0, 1, . . . , n−1, it is established
whether Pi ∝k

Tj, for each i = 0, 1, . . . ,m − 1, by exploiting information gathered
during previous iterations as follows.

Let us put
S̄j =Def {(i, k) | 0 ≤ i ≤ m− 1 and Pi ∝k

Tj}
λ̄j =Def

{
{(0, 0)} if P [0] = T [j]
∅ otherwise ,

for 0 ≤ j ≤ n− 1, and

S̄ ′
j =Def {(i, k) | 0 ≤ i < m− 1 and (Pi−1 ∝k

Tj−1 ∨ i = 0) and P [i] = T [j + 1]} ,
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S̄0 S̄1 S̄2 S̄3 S̄4 S̄5 S̄j S̄j+1

S̄′0 S̄′1 S̄′2 S̄′3 S̄′4 S̄′5 S̄′j S̄′j+1

Figure 1. A graphic representation of the iterative fashion for computing sets S̄j and
S̄ ′

j for increasing values of j.

for 1 ≤ j < n− 1. Then the following recurrences hold:

S̄j+1 = {(i, k) | i ≤ m− 1 and ((i− 1, k) ∈ S̄j and P [i] = T [j + 1]) or
((i− 1, k − 1) ∈ S̄ ′

j and P [i] = T [j]) } ∪ λ̄j+1

S̄ ′
j+1 = {(i, k) | i < m− 1 and (i− 1, k) ∈ S̄j and P [i] = T [j + 2]} ∪ λ̄j+2.

(1)

where the base cases are given by S0 = λ̄0 and S ′
0 = λ̄1.

Such relations allow one to compute the sets S̄j and S̄ ′
j in an iterative fashion,

where S̄j+1 is computed in terms of both S̄j and S̄ ′
j, whereas S̄ ′

j+1 needs only S̄j for its
computation. The resulting dependency graph has a doubly crossed structure, from
which the name of the algorithm in Fig. 2(A), Approximate-Cross-Sampling,
for the swap matching problem. Plainly, the time complexity of the Approximate-

Cross-Sampling algorithm is O(nm).

In [9], a bit-parallel implementation of the Approximate-Cross-Sampling al-
gorithm, called BP-Approximate-Cross-Sampling, has been presented.

The BP-Approximate-Cross-Sampling algorithm1 uses a representation of
the sets S̄j and S̄ ′

j as lists of qm bits, D̄j and D̄′
j respectively, where m is the length

of the pattern and q = log(⌊m/2⌋ + 1) + 1. If (i, k) ∈ S̄j, where 0 ≤ i < m and
0 ≤ k ≤ ⌊m/2⌋, then the rightmost bit of the i-th block of D̄j is set to 1 and the
leftmost q − 1 bits of the i-th block correspond to the value k (we need exactly q
bits to represent a value between 0 and ⌊m/2⌋). The same considerations hold for the
sets S̄ ′

j. Notice that if mq ≤ w, each list fits completely in a single computer word,
whereas if mq > w one needs ⌈mq/w⌉ computer words to represent each of the sets
S̄j and S̄ ′

j.
For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c],

where the rightmost bit of the i-th block is set to 1 if P [i] = c, and a bit mask B[c],
whose i-th block have all its bits set to 1 if P [i] = c.

The algorithm also maintains two bit vectors, D̄ and D̄′, whose configurations
during the computation are respectively denoted by D̄j and D̄′

j, as the location j

advances over the input text. For convenience, we introduce also the bit vectors D̄−1

and D̄′
−1, which are both set to 0qm. While scanning the text from left to right, the

algorithm computes for each position j ≥ 0 the bit vector D̄j in terms of D̄j−1 and
D̄′

j−1, by performing the following bitwise operations (in brackets the corresponding

operations on the set S̄j represented by D̄j):

1 Here we provide some minor corrections to the code of the BP-Approximate-Cross-Sampling

algorithm presented in [9].



M. Campanelli, D. Cantone, S. Faro, E. Giaquinta: An Efficient Algorithm for. . . 95

(A) Approximate-Cross-Sampling (P, m, T, n)

1. S̄0
0 ← S̄1

0 ← ∅
2. if P [0] = T [0] then S̄0

0 ← {(0, 0)}
3. if P [0] = T [1] then S̄1

0 ← {(0, 0)}
4. for j ← 1 to n − 1 do
5. S̄0

j ← S̄1
j ← ∅

6. for (i, k) ∈ S̄0
j−1 do

7. if i < m − 1 then
8. if P [i + 1] = T [j]
9. then S̄0

j ← S̄0
j ∪ {(i + 1, k)}

10. if j < n − 1 and P [i + 1] = T [j + 1]
11. then S̄1

j ← S̄1
j ∪ {(i + 1, k)}

12. else Output((j − 1, k))
13. for (i, k) ∈ S̄1

j−1 do

14. if i < m − 1 and P [i + 1] = T [j − 1]
15. then S̄0

j ← S̄0
j ∪ {(i + 1, k + 1)}

16. if P [0] = T [j] then S̄0
j ← S̄0

j ∪ {(0, 0)}
17. if j < n − 1 and P [0] = T [j + 1]
18. then S̄1

j ← S̄1
j ∪ {(0, 0)}

19. for (i, k) ∈ S̄0
n−1 do

20. if i = m − 1 then Output(n − 1, k)

(B) BP-Approximate-Cross-Sampling (P, m, T, n)

1. q ← log(⌊m/2⌋ + 1) + 1
2. F ← 0qm−11

3. G ← 0q(m−1)1q

4. for c ∈ Σ do
5. M [c] ← 0qm

6. B[c] ← 0qm

7. for i ← 0 to m − 1 do
8. M [P [i]] ← M [P [i]] | F
9. B[P [i]] ← B[P [i]] | G
10. F ← (F ≪ q)
11. G ← (G ≪ q)

12. F ← 0q−110q(m−1)

13. D̄ ← D̄′ ← 0qm

14. for j ← 0 to n − 1 do
15. H0 ← (D̄ ≪ q) | 1
16. H1 ← (D̄′ ≪ q) & B[T [j − 1]
17. H2 ← (D̄′ ≪ q) & M [T [j − 1]
18. D̄ ← (H0 & B[T [j]]) | H1

19. D̄ ← D̄ + (H2 ≪ 1)
20. D̄′ ← (H0 & B[T [j + 1]]) & ∼ D̄
21. if (D̄ & F ) 6= 0qm then
22. k ← (D̄ ≫ (q(m − 1) + 1))
23. Output(j, k)

Figure 2. (A) The Approximate-Cross-Sampling algorithm for the approxim-
ate swap matching problem. (B) Its bit-parallel variant BP-Approximate-Cross-

Sampling.

D̄j ← D̄j−1 ≪ q [ S̄j = {(i, k) : (i− 1, k) ∈ S̄j−1} ]
D̄j ← D̄j | 1 [ S̄j = S̄j ∪ {(0, 0)} ]
D̄j ← D̄j & B[T [j]] [ S̄j = S̄j \ {(i, k) : P [i] 6= T [j]} ]
D̄j ← D̄j | H1 [ S̄j = S̄j ∪K ]
D̄j ← D̄j + (H2 ≪ 1) [∀ (i, k) ∈ K change (i, k) with (i, k + 1) in S̄j ]

where H1 = ((D̄′
j−1 ≪ q) & B[T [j − 1]]), H2 = ((D̄′

j−1 ≪ q) & M [T [j − 1]]), and

K = {(i, k) : (i− 1, k) ∈ S̄ ′
j−1 ∧ P [i] = T [j − 1]}.

Similarly, the bit vector D̄′
j is computed in the j-th iteration of the algorithm

in terms of D̄j−1, by performing the following bitwise operations (in brackets the
corresponding operations on the set S̄ ′

j represented by D̄′
j):

D̄′
j ← D̄j−1 ≪ q [ S̄ ′

j = {(i, k) : (i− 1, k) ∈ S̄j−1} ]
D̄′

j ← D̄′
j | 1 [ S̄ ′

j = S̄ ′
j ∪ {(0, 0)} ]

D̄′
j ← D̄′

j & B[T [j + 1]] [ S̄ ′
j = S̄ ′

j \ {(i, k) : P [i] 6= T [j + 1]} ]
D̄′

j ← D̄′
j & ∼ D̄j [ S̄ ′

j = S̄ ′
j \ {(i, k) : (i, k) ∈ S̄j} ].

During the j-th iteration, if the rightmost bit of the (m− 1)-st block of D̄j is set
to 1, i.e. if (D̄j & 10q(m−1)) 6= 0m, a swap match is reported at position j. The total
number of swaps is contained in the q− 1 leftmost bits of the (m− 1)-st block of D̄j,
which can be retrieved by performing a bitwise shift on D̄j of (q(m−1)+1) positions
to the right.

The code of the BP-Approximate-Cross-Sampling algorithm is shown in
Fig. 2(B). It achieves a O(⌈mn log m/w⌉) worst-case time complexity and requires
O(σ⌈m log m/w⌉) extra space, where σ is the size of the alphabet. If m(log(⌊m/2⌋+
1) + 1) ≤ c1w, where c1 is a small integer constant, then the algorithm requires
O(n)-time and O(σ) extra space.
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4 New Algorithms for the Approximate Swap Matching
Problem

In this section we present a new practical algorithm for solving the swap match-
ing problem, called Approximate-BCS (Approximate Backward Cross Sampling),
which is characterized by a O(mn2)-time and O(m)-space complexity, where m and
n are the length of the pattern and text, respectively.

Our algorithm is an extension of the Backward-Cross-Sampling algorithm [8],
for the standard swap matching problem. It inherits from the Approximate-Cross-

Sampling algorithm the same doubly crossed structure in its iterative computation,
but searches for all occurrences of the pattern in the text by scanning characters
backwards, from right to left.

Later, in Section 4.2, we present an efficient implementation based on bit par-
allelism of the Approximate-BCS algorithm, which achieves a O(mn)-time and
O(σ)-space complexity, when the pattern fits within few computer words, i.e., if
m ≤ c1w, for some small constant c1.

4.1 The Approximate-BCS Algorithm

The Approximate-BCS algorithm searches for all the swap occurrences of a pat-
tern P (of length m) in a text T (of length n) using right-to-left scans in windows of
size m, as in the Backward DAWG Matching (BDM) algorithm for the exact single
pattern matching problem [10]. In addition, for each occurrence of P in T , the algo-
rithm counts the number of swaps necessary to convert the pattern in its swapped
occurrence.

The BDM algorithm processes the pattern by constructing a directed acyclic word
graph (DAWG) of the reversed pattern. The text is processed in windows of size m
which are searched for the longest prefix of the pattern from right to left by means
of the DAWG. At the end of each search phase, either a longest prefix or a match is
found. If no match is found, the window is shifted to the start position of the longest
prefix, otherwise it is shifted to the start position of the second longest prefix.

As in the BDM algorithm, the Approximate-BCS algorithm processes the text
in windows of size m. Each attempt is identified by the last position, j, of the current
window of the text. The window is searched for the longest prefix of the pattern
which has a swapped occurrence ending at position j of the text. At the end of each
attempt, a new value of j is computed by performing a safe shift to the right of the
current window in such a way to left-align it with the longest prefix matched in the
previous attempt.

To this end, if we put

Sh
j =Def {h− 1 ≤ i ≤ m− 1 | P [i− h + 1 .. i] ∝ Tj} ,
Wh

j =Def {h ≤ i < m− 1 | P [i− h + 2 .. i] ∝ Tj and P [i− h + 1] = T [j − h]} ,
for 0 ≤ j < n and 0 ≤ h ≤ m, then the following recurrences hold:

Sh+1
j = {h− 1 ≤ i ≤ m− 1 | (i ∈ Sh

j and P [i− h] = T [j − h]) or
(i ∈ Wh

j and P [i− h] = T [j − h + 1]) }
Wh+1

j = {h ≤ i ≤ m− 1 | i ∈ Sh
j and P [i− h] = T [j − h− 1]} .

(2)

where the base cases are given by

S0
j = {i | 0 ≤ i < m} and W0

j = {0 ≤ i < m− 1 | P [i + 1] = T [j]} .
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u
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u

W0
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u = j + m− ℓ

Figure 3. A graphic representation of the iterative fashion for computing the sets Sh
j

andWh
j for increasing values of h. A first attempt starts at position j of the text and

stops with h = ℓ. The subsequent attempt starts at position u = j + m− l.

Such relations allow one to compute the sets Sh
j and Wh

j in an iterative fashion,

where Sh+1
j is computed in terms of both Sh

j and Wh
j , whereas Wh+1

j needs only Sh
j

for its computation. The resulting dependency graph has a doubly crossed structure
as shown in Figure 3.

Plainly the set Sh
j includes all the values i such that the h-substring of P ending at

position i has a swapped occurrence ending at position j in T . Thus, if (h− 1) ∈ Sh
j ,

then there is a swapped occurrence of the prefix of length h of P . Hence, it follows
that P has a swapped occurrence ending at position j if and only if (m− 1) ∈ Sm

j .
Observe however that the only prefix of length m is the pattern P itself. Thus

(m− 1) ∈ Sm
j if and only if Sm

j 6= ∅.
The following result follows immediately from (2).

Lemma 8. Let P and T be a pattern of length m and a text of length n, respectively.
Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. If i ∈ Sγ

j , then it follows that

i ∈ (Sh
j ∪W h

j ), for 1 ≤ h ≤ γ. ⊓⊔
Lemma 9. Let P and T be a pattern of length m and a text of length n, respectively.
Then, for every m− 1 ≤ j ≤ n− 1 and 0 ≤ i < m such that i ∈ (Sγ

j ∩W γ−1
j ∩ Sγ−1

j ),
we have P [i− γ + 1] = P [i− γ + 2].

Proof. From i ∈ (Sγ
j ∩ Sγ−1

j ) it follows that P [i − γ + 1] = T [j − γ + 1]. Also, from

i ∈ W γ−1
j it follows that P [i−γ+2] = T [j−γ+1]. Thus P [i−γ+1] = P [i−γ+2]. ⊓⊔

The following lemma will be used.

Lemma 10. Let P and T be a pattern of length m and a text of length n, respectively.
Moreover let m − 1 ≤ j ≤ n − 1 and 0 ≤ i < m. Then, if i ∈ Sγ

j , there is a swap

between characters P [i− γ + 1] and P [i− γ + 2] if and only if i ∈ (Sγ
j \ Sγ−1

j ).

Proof. Before entering into details we remember that, by Definition 1, a swap can
take place between characters P [i−γ +1] and P [i−γ +2] if and only if P [i−γ +1] =
T [j − γ + 2], P [i− γ + 2] = T [j − γ + 1] and P [i− γ + 1] 6= P [i− γ + 2].

Now, suppose that i ∈ Sγ
j and that there is a swap between characters P [i−γ +1]

and P [i− γ + 2]. We proceed by contradiction to prove that i /∈ Sγ−1
j . Thus, we have



98 Proceedings of the Prague Stringology Conference 2009

(i) i ∈ Sγ
j (by hypothesis)

(ii) P [i− γ + 2] = T [j − γ + 1] 6= P [i− γ + 1] (by hypothesis)

(iii) i ∈ Sγ−1
j (by contradiction)

(iv) i /∈ W γ−1
j (by (ii), (iii), and Lemma 9)

(v) P [i− γ + 1] = T [j − γ + 1] (by (i) and (iv))
obtaining a contradiction between (ii) and (v).

Next, suppose that i ∈ (Sγ
j \ Sγ−1

j ). We prove that there is a swap between
characters P [i− γ + 1] and P [i− γ + 2]. We have

(i) i ∈ Sγ
j and i /∈ Sγ−1

j (by hypothesis)

(ii) i ∈ W γ−1
j (by (i) and Lemma 8)

(iii) i ∈ Sγ−2
j (by (ii) and (2))

(iv) P [i− γ + 1] = T [j − γ + 2] (by (i) and (ii))
(v) P [i− γ + 2] = T [j − γ + 1] (by (ii))
(vi) P [i− γ + 2] 6= T [j − γ + 2] = P [i− γ + 1] (by (i) and (iii)).

⊓⊔

The following corollary is an immediate consequence of Lemmas 10 and 8.

Corollary 11. Let P and T be strings of length m and n, respectively, over a common
alphabet Σ. Then, for m−1 ≤ j ≤ n−1, P has a swapped occurrence in T at location
j with k swaps, i.e., P ∝

k
Tj, if and only if

(m− 1) ∈ Sm
j and |∆j| = k ,

where ∆j = {1 ≤ h < m : (m− 1) ∈ (Sh+1
j \ Sh

j )}. ⊓⊔

In consideration of the preceding corollary, the Approximate-BCS algorithm
maintains a counter which is incremented every time (m− 1) ∈ (Sh+1

j \ Sh
j ), for any

1 < h ≤ m, in order to count the swaps for an occurrence ending at a given position
j of the text.

For any attempt at position j of the text, let us denote by ℓ the length of the
longest prefix matched in the current attempt. Then the algorithm starts its compu-
tation with j = m − 1 and ℓ = 0. During each attempt, the window of the text is
scanned from right to left, for h = 1, . . . ,m. If, for a given value of h, the algorithm
discovers that (h− 1) ∈ Sh

j , then ℓ is set to the value h.
The algorithm is not able to remember the characters read in previous iterations.

Thus, an attempt ends successfully when h reaches the value m (a match is found),
or unsuccessfully when both sets Sh

j and Wh
j are empty. In any case, at the end of

each attempt, the start position of the window, i.e., position j −m + 1 in the text,
can be shifted to the start position of the longest proper prefix detected during the
backward scan. Thus the window is advanced m − ℓ positions to the right. Observe
that since ℓ < m, we plainly have that m− ℓ > 0.

Moreover, in order to avoid accessing the text character at position j−h+1 = n,
when j = n − 1 and h = 0, the algorithm benefits of the introduction of a sentinel
character at the end of the text.

The code of the Approximate-BCS algorithm is shown in Figure 4(A). Its time
complexity is O(nm2) in the worst case and requires O(m) extra space to represent
the sets Sh

j and Wh
j .
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4.2 The Approximate-BPBCS Algorithm

In [8], an efficient bit-parallel implementation of the Backward-Cross-Sampling

algorithm, called BP-Backward-Cross-Sampling, has also been presented. In this
section we illustrate a practical bit-parallel implementation of the Approximate-

BCS algorithm, named Approximate-BPBCS, along the same lines of the BP-

Backward-Cross-Sampling algorithm.
In the Approximate-BPBCS algorithm, the sets Sh

j andWh
j are represented as

lists of m bits, Dh
j and Ch

j respectively, where m is the length of the pattern.

The (i−h+1)-th bit of Dh
j is set to 1 if i ∈ Sj, i.e., if P [i−h+1 .. i] ∝ Tj, whereas

the (i − h + 1)-th bit of Ch
j is set to 1 if i ∈ Wh

j , i.e., if P [i − h + 2 .. i] ∝ Tj and
P [i − h + 1] = T [j − h]. All remaining bits are set to 0. Notice that if m ≤ w, each
bit vector fits in a single computer word, whereas if m > w we need ⌈m/w⌉ computer
words to represent each of the sets Sh

j and Wh
j .

For each character c of the alphabet Σ, the algorithm maintains a bit mask M [c]
whose i-th bit is set to 1 if P [i] = c.

As in the Approximate-BCS algorithm, the text is processed in windows of size
m, identified by their last position j, and the first attempt starts at position j = m−1.
For any searching attempt at location j of the text, the bit vectors D1

j and C1
j are

initialized to M [T [j]] | (M [T [j + 1]]&(M [T [j]] ≪ 1)) and M [T [j − 1]], respectively,
according to the recurrences (2) and relative base cases. Then the current window
of the text, i.e., T [j −m + 1 .. j], is scanned from right to left, by reading character
T [j − h + 1], for increasing values of h. Namely, for each value of h > 1, the bit
vector Dh+1

j is computed in terms of Dh
j and Ch

j , by performing the following bitwise
operations:

(a) Dh+1
j ← (Dh

j ≪ 1) & M [T [j − h]]

(b) Dh+1
j ← Dh+1

j | ((Ch
j ≪ 1) & M [T [j − h + 1]]) .

Concerning (a), by a left shift of Dh
j , all elements of Sh

j are added to the set Sh+1
j .

Then, by performing a bitwise and with the mask M [T [j − h]], all elements i such
that P [i− h] 6= T [j − h] are removed from Sh+1

j . Similarly, the bit operations in (b)

have the effect to add to Sh+1
j all elements i in Wh

j such that P [i− h] = T [j− h + 1].
Formally, we have:

(a′) Sh+1
j ← Sh

j \ {i ∈ Sh
j : P [i− h] 6= T [j − h]}

(b′) Sh+1
j ← Sh+1

j ∪Wh
j \ {i ∈ Wh

j : P [i− h] 6= T [j − h + 1]} .

Similarly, the bit vector Ch+1
j is computed in terms of Dh

j , by performing the
following bitwise operations

(c) Ch+1
j ← (Dh

j ≪ 1) & M [T [j − h− 1]]

which have the effect to add to the set Wh+1
j all elements of the set Sh

j (by shifting

Dh
j to the left by one position) and to remove all elements i such P [i] 6= T [j − h− 1]

holds (by a bitwise and with the mask M [T [j − h− 1]]), or, more formally:

(c′) Wh+1
j ← Sh

j \ {i ∈ Sh
j : P [i− h] 6= T [j − h− 1]} .

In order to count the number of swaps, observe that the (i− h + 1)-th bit of Dh
j

is set to 1 if i ∈ Sh
j . Thus, the condition (m − 1) ∈ (Sh+1

j \ Sh
j ) can be implemented

by the following bitwise condition:

(d) ((Dh+1 & ∼ (Dh ≪ 1)) & (1≪ h)) 6= 0 .



100 Proceedings of the Prague Stringology Conference 2009

(A) Approximate-BCS (P, m, T, n)

1. T [n] ← P [0]
2. j ← m − 1
3. while j < n do
4. h ← 0
5. S0

j ← {i | 0 ≤ i < m}
6. W0

j ← {0 ≤ i < m − 1 | P [i + 1] = T [j]}
7. c ← 0
8. while h < m and Sh

j ∪Wh
j 6= ∅ do

9. if (h − 1) ∈ Sh
j then ℓ ← h

10. for each i ∈ Sh
j do

11. if i ≥ h and P [i − h] = T [j − h]

12. then Sh+1
j ← Sh+1

j ∪ {i}
13. if i > h and P [i − h] = T [j − h − 1]

14. then Wh+1
j ← Wh+1

j ∪ {i}
15. for each i ∈ Wh

j do

16. if i ≥ h and P [i − h] = T [j − h + 1]

17. then Sh+1
j ← Sh+1

j ∪ {i}
18. if m − 1 ∈ Sh+1

j and m − 1 /∈ Sh
j

19. then c ← c + 1
20. h ← h + 1
21. if (h − 1) ∈ Sh

j then Output(j,c)

22. j ← j + m − ℓ

(B) Approximate-BPBCS (P, m, T, n)

1. F ← 10m−1

2. for c ∈ Σ do M [c] ← 0m

3. for i ← 0 to m − 1 do
4. M [P [i]] ← M [P [i]] | F
5. F ← F ≫ 1
6. T [n] ← P [0]
7. j ← m − 1
8. F ← 10m−1

9. while j < n do
10. h ← 1, ℓ ← 0
11. D ← M [T [j]]
12. D ← D | (M [T [j + 1]]&(M [T [j]] ≪ 1))
13. C ← M [T [j − 1]]
14. c ← 0
15. while h < m and (D | C) 6= 0 do

16. D
′ ← D ≪ 1

17. if F&D 6= 0 then ℓ ← h
18. H ← (C ≪ 1) & M [T [j − h + 1]]

19. C ← D
′

& M [T [j − h − 1]]

20. D ← D
′

& M [T [j − h]]
21. D ← D | H

22. if (D & ∼ D
′

) & (1 ≪ h) 6= 0
23. then c ← c + 1
24. h ← h + 1
25. if D 6= 0 then Output(j,c)
26. j ← j + m − ℓ

Figure 4. (A) The Approximate-BCS algorithm for the approximate swap match-
ing problem. (B) Its bit-parallel variant Approximate-BPBCS.

As in the Approximate-BCS algorithm, an attempt ends when h = m or
(Dh

j |Ch
j ) = 0. If h = m and Dh

j 6= 0, a swap match at position j of the text is

reported. In any case, if h < m is the largest value such that Dh
j 6= 0, then a prefix

of the pattern, of length ℓ = h, which has a swapped occurrence ending at position j
of the text, has been found. Thus, a safe shift of m− ℓ position to the right can take
place.

In practice, two vectors only are enough to implement the sets Dh
j and Ch

j , for

h = 0, 1, . . . ,m, as one can transform the vector Dh
j into the vector Dh+1

j and the

vector Ch
j into the vector Ch+1

j , during the h-th iteration of the algorithm at a given
location j of the text.

The counter for taking note of the number of swaps requires log(⌊m/2⌋+ 1) bits
to be implemented. This compares favorably with the BP-Approximate-Cross-

Sampling algorithm which uses instead m counters of log(⌊m/2⌋ + 1) bits, one for
each prefix of the pattern.

The resulting Approximate-BPBCS algorithm is shown in Fig. 4(B). It achieves
a O(⌈nm2/w⌉) worst-case time complexity and requires O(σ⌈m/w⌉+log(⌊m/2⌋+1))
extra space, where σ is the alphabet size. If the pattern fits in few machine words, then
the algorithm finds all swapped matches and their corresponding counts in O(nm)
time and O(σ) extra space.
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5 Experimental Results

Next we report and comment experimental results relative to an extensive comparison
under various conditions of the following approximate swap matching algorithms:

– Approximate-Cross-Sampling (ACS)

– BP-Approximate-Cross-Sampling (BPACS)

– Approximate-BCS (ABCS)

– Approximate-BPBCS (BPABCS)

– Iliopoulos-Rahman algorithm with a naive check of the swaps (IR&C)

– BP-Backward-Cross-Sampling algorithm with a naive check of the swaps
(BPBCS&C)

We have chosen to include in our comparison also the algorithms IR&C and BP-
BCS&C, since the algorithms IR and BPBCS turned out, in [8], to be the most efficient
solutions for the swap matching problem. Instead, the Naive algorithm and algorithms
based on the FFT technique have not been taken into consideration, as their overhead
is quite high, resulting in poor performances.

All algorithms have been implemented in the C programming language and were
used to search for the same strings in large fixed text buffers on a PC with AMD
Turion 64 X2 processor with mobile technology TL-60 of 2 GHz and a RAM memory
of 4 GB. In particular, all algorithms have been tested on six Randσ problems, for
σ = 4, 8, 16, 32, 64 and 128, on a genome, on a protein sequence, and on a natural
language text buffer, with patterns of length m = 4, 8, 12, 16, 20, 24, 28, 32.

In the following tables, running times are expressed in hundredths of seconds and
the best results have been bold-faced.

Running Times for Random Problems
In the case of random texts, all algorithms have been tested on six Randσ problems.
Each Randσ problem consists in searching a set of 100 random patterns for any given
length value in a 4 Mb random text over a common alphabet of size σ, with a uniform
character distribution.

Running times for a Rand4 problem

m 4 8 12 16 20 24 28 32

ACS 5.916 5.768 5.835 5.860 5.753 5.739 5.571 5.604
ABCS 17.132 10.681 8.504 7.278 6.322 6.096 5.778 5.341
BPACS 0.817 0.794 0.752 0.800 0.784 0.799 0.818 0.747
BPABCS 0.573 0.341 0.255 0.204 0.177 0.159 0.141 0.129
IR&C 0.275 0.275 0.275 0.276 0.275 0.279 0.276 0.282
BPBCS&C 0.614 0.358 0.262 0.212 0.182 0.161 0.145 0.132

Running times for a Rand8 problem

m 4 8 12 16 20 24 28 32

ACS 4.769 4.756 4.762 4.786 4.761 4.808 4.765 4.796
ABCS 11.675 7.273 5.632 4.736 4.167 3.782 3.511 3.305
BPACS 0.832 0.830 0.828 0.831 0.830 0.829 0.827 0.827
BPABCS 0.413 0.229 0.175 0.145 0.127 0.114 0.104 0.096
IR&C 0.282 0.279 0.279 0.277 0.280 0.279 0.283 0.285
BPBCS&C 0.388 0.249 0.193 0.157 0.141 0.121 0.111 0.101
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Running times for a Rand16 problem

m 4 8 12 16 20 24 28 32

ACS 5.210 5.291 5.162 5.282 5.198 5.201 5.202 5.131
ABCS 10.200 6.314 5.297 4.554 3.932 3.511 3.448 3.140
BPACS 0.786 0.807 0.780 0.783 0.812 0.806 0.743 0.721
BPABCS 0.346 0.198 0.144 0.118 0.103 0.093 0.086 0.081
IR&C 0.275 0.274 0.279 0.274 0.275 0.277 0.279 0.274
BPBCS&C 0.330 0.211 0.155 0.126 0.110 0.099 0.091 0.085

Running times for a Rand32 problem

m 4 8 12 16 20 24 28 32

ACS 5.285 5.080 5.228 5.262 5.175 5.190 5.216 5.296
ABCS 9.414 5.831 4.437 3.955 3.521 3.232 2.954 2.890
BPACS 0.776 0.746 0.796 0.775 0.834 0.807 0.791 0.796
BPABCS 0.294 0.184 0.138 0.113 0.097 0.086 0.078 0.073
IR&C 0.275 0.276 0.276 0.276 0.279 0.275 0.275 0.277
BPBCS&C 0.285 0.191 0.146 0.119 0.103 0.091 0.083 0.077

Running times for a Rand64 problem

m 4 8 12 16 20 24 28 32

ACS 5.101 5.108 5.254 5.174 5.155 5.098 5.095 5.262
ABCS 8.857 5.350 4.165 3.502 3.273 2.972 2.717 2.692
BPACS 0.838 0.808 0.769 0.714 0.835 0.806 0.807 0.766
BPABCS 0.267 0.162 0.127 0.108 0.095 0.086 0.078 0.073
IR&C 0.272 0.276 0.275 0.280 0.281 0.283 0.279 0.279
BPBCS&C 0.255 0.165 0.130 0.111 0.098 0.089 0.082 0.076

Running times for a Rand128 problem

m 4 8 12 16 20 24 28 32

ACS 5.070 5.052 5.091 4.996 5.088 4.940 4.968 5.216
ABCS 8.672 5.288 3.994 3.289 2.941 2.778 2.660 2.523
BPACS 0.833 0.836 0.836 0.836 0.835 0.835 0.836 0.833
BPABCS 0.248 0.148 0.115 0.098 0.087 0.080 0.075 0.071
IR&C 0.352 0.354 0.354 0.353 0.353 0.353 0.354 0.333
BPBCS&C 0.230 0.151 0.117 0.099 0.090 0.082 0.077 0.072

The experimental results show that the BPABCS algorithm obtains the best run-
time performance in most cases. In particular, for very short patterns and small
alphabets, our algorithm is second only to the IR&C algorithm. In the case of very
short patterns and large alphabets, our algorithm is second only to the BPBCS&C
algorithm. In addition we notice that the algorithms IR&C, ACS, and BPACS show
a linear behavior, whereas the algorithms ABCS and BPABCS are characterized by a
decreasing trend.

Running Times for Real World Problems
The tests on real world problems have been performed on a genome sequence and
on a natural language text buffer. The genome we used for the tests is a sequence
of 4, 638, 690 base pairs of Escherichia coli taken from the file E.coli of the Large
Canterbury Corpus.1 The tests on the protein sequence have been performed using a
2.4 Mb file containing a protein sequence from the human genome with 22 different
characters. The experiments on the natural language text buffer have been done with
the file world192.txt (The CIA World Fact Book) of the Large Canterbury Corpus. The
file contains 2, 473, 400 characters drawn from an alphabet of 93 different characters.

1 http://www.data-compression.info/Corpora/CanterburyCorpus/
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Running times for a genome segence (σ = 4)

m 4 8 12 16 20 24 28 32

ACS 5.629 5.643 5.654 5.636 5.644 5.640 5.647 6.043
ABCS 18.018 11.261 8.805 7.523 6.700 6.117 5.710 5.359
BPACS 0.950 0.914 0.917 0.766 0.874 0.934 0.935 0.843
BPABCS 0.647 0.318 0.266 0.232 0.195 0.174 0.160 0.147
IR&C 0.262 0.287 0.314 0.311 0.311 0.311 0.310 0.311
BPBCS&C 0.678 0.367 0.290 0.233 0.204 0.176 0.160 0.146

Running times for a protein sequence (σ = 22)

m 4 8 12 16 20 24 28 32

ACS 3.777 3.784 3.671 3.729 3.766 3.703 3.716 3.741
ABCS 7.045 4.557 3.734 3.162 2.806 2.661 2.600 2.351
BPACS 0.565 0.581 0.561 0.563 0.584 0.580 0.534 0.519
BPABCS 0.249 0.142 0.103 0.084 0.074 0.066 0.061 0.058
IR&C 0.388 0.390 0.391 0.389 0.391 0.391 0.396 0.389
BPBCS&C 0.241 0.145 0.107 0.087 0.075 0.068 0.062 0.058

Running times for a natural language text buffer (σ = 93)

m 4 8 12 16 20 24 28 32

ACS 3.170 2.757 2.748 2.756 2.761 2.745 2.746 2.754
ABCS 6.175 4.054 3.164 2.705 2.306 2.288 2.042 1.866
BPACS 0.492 0.497 0.492 0.491 0.492 0.491 0.494 0.493
BPABCS 0.194 0.114 0.086 0.071 0.062 0.056 0.051 0.049
IR&C 0.171 0.165 0.164 0.168 0.165 0.165 0.165 0.167
BPBCS&C 0.164 0.126 0.094 0.076 0.070 0.059 0.056 0.055

From the above experimental results, it turns out that the BPABCS algorithm
obtains in most cases the best results and, in the case of very short patterns, is second
to IR&C (for the genome sequence) and to BPBCS&C (for the protein sequence and
the natual language text buffer).

6 Conclusions

In this paper we have presented new efficient algorithms for the Approximate Swap
Matching problem. In particular, we have devised an extension of the Backward-

Cross-Sampling general algorithm, named Approximate-BCS, and of its bit-
parallel implementation BP-Backward-Cross-Sampling, named Approximate-

BPBCS.

The Approximate-BCS algorithm achieves a O(nm2)-time complexity and re-
quiresO(nm) additional space, whereas the Approximate-BPBCS algorithm achie-
ves a O(⌈nm2/w⌉) worst-case time complexity and, when the pattern fits in few
machine words, finds all swapped matches and their corresponding counts in O(nm)-
time.

In contrast with the BP-Approximate-Cross-Sampling algorithm, the Ap-

proximate-BPBCS algorithm requires O(σ⌈m/w⌉ + log(⌊m/2⌋ + 1)) extra space
and is thus preferable to the former in the case of longer patterns.

From an extensive experimentation, it turns out that the Approximate-BPBCS

algorithm is very fast in practice and obtains the best results in most cases, being
second only to algorithms based on a naive check of the number of swaps in the case
of very short patterns.
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Abstract. The Parikh vector of a string s over a finite ordered alphabet Σ =
{a1, . . . , aσ} is defined as the vector of multiplicities of the characters, i.e. p(s) =
(p1, . . . , pσ), where pi = |{j | sj = ai}|. Parikh vector q occurs in s if s has a substring
t with p(t) = q. The problem of searching for a query q in a text s of length n can be
solved simply and optimally with a sliding window approach in O(n) time. We present
two new algorithms for the case where the text is fixed and many queries arrive over
time. The first algorithm finds all occurrences of a given Parikh vector in a text (over a
fixed alphabet of size σ ≥ 2) and appears to have a sub-linear expected time complexity.
The second algorithm only decides whether a given Parikh vector appears in a binary
text; it iteratively constructs a linear size data structure which then allows answering
queries in constant time, for many queries even during the construction phase.

Keywords: Parikh vectors, permuted strings, pattern matching, string algorithms,
average case analysis

1 Introduction

Parikh vectors of strings count the multiplicity of the characters. They have been
reintroduced many times by many different names (compomer [5], composition [3],
Parikh vector [14], permuted string [7], permuted pattern [9], and others). They are
very natural objects to study, if for nothing else because of the many different appli-
cations they appear in; for instance, in computational biology, they have been applied
for alignment [3], SNP discovery [5], repeated pattern discovery [9], and, most nat-
urally, in interpretation of mass spectrometry data [4]. Parikh vectors can be seen
as a generalization of strings, where we view two strings as equivalent if one can be
turned into the other by permuting its characters; in other words, if the two strings
have the same Parikh vector.

The problem we are interested in here is answering the question whether a query
Parikh vector q appears in a given text s (decision version), or where it occurs (oc-
currence version). An occurrence of q is defined as an occurrence of a substring t
of s with Parikh vector q. The problem can be viewed as an approximate pattern
matching problem: We are looking for an occurrence of a jumbled version of a query
string t, i.e. for the occurrence of a substring t′ which has the same Parikh vector. In
the following, let n be the length of the text s, m the length of the query q (defined
as the length of a string t with Parikh vector q), and σ the size of the alphabet.

The above problem (both decision and occurrence versions) can be solved with
a simple sliding window based algorithm, in O(n) time and O(σ) additional storage
space. This is worst case optimal with respect to the case of one query. However, when
we expect to search for many queries in the same string, the above approach leads
to O(Kn) runtime for K queries. To the best of our knowledge, no faster approach
is known. This is in stark contrast to the classical exact pattern matching problem:
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There, for one query, any naive approach leads to O(nm) runtime, while quite involved
ideas for preprocessing and searching are necessary to achieve an improved runtime of
O(n+m), as do the Knuth-Morris-Pratt [12], Boyer-Moore [6] and Boyer-Moore-type
algorithms (see, e.g., [2,10]). However, when many queries are expected, the text can
be preprocessed to produce a data structure of size linear in n, such as a suffix tree,
suffix array, or suffix automaton, which then allows to answer individual queries in
time linear in the length of the pattern.

In this paper, we present two new algorithms which perform significantly better
than the naive window algorithm, in the case where many queries arrive. In the course
of both algorithms, a data structure of size O(n) is constructed, which is subsequently
used for fast searching.

1. For general alphabets: We present the Jumping algorithm (Sect. 3) which uses
O(n) space to answer occurrence queries in time O

(
σJ log2

(
n
J

+ m
))

, where J
denotes the number of iterations of the main loop of the algorithm. We argue that
the expected value of J for the case of random strings and patterns is O(n/

√
σm),

yielding an expected runtime of O
(√

σ log2 m√
m

n
)
. Our simulations on random strings

and real biological strings indicate that this is indeed the performance of the
algorithm in practice. This is a significant improvement over the naive algorithm
w.r.t. expected runtime, both for a single query and repeated queries over one
string.

2. For binary alphabets: After a data structure of size O(n) has been constructed,
we answer decision queries in O(1) time (Interval Algorithm, Sect. 4).

The Jumping algorithm is reminiscent of the Boyer-Moore-like approaches to the
classical string matching problem [6,2,10]. This analogy is used both in its presen-
tation and in the analysis of the number of iterations performed by the algorithm.
We approximate the behavior of the algorithm with a probabilistic automaton, as
it is done in [15] to estimate the expected running time of Boyer-Moore on random
strings.

A straightforward implementation of the Interval Algorithm requires Θ(n2) time
for the preprocessing. Instead we present it employing lazy computation of the data
structure, and thus the runtime is improved such that a query can be answered
either in O(1) or Θ(n) time, depending on whether the respective entries in the data
structure have already been computed. For K = ω(n) queries, we require Θ(K + n2)
time (with either implementation), thus always outperforming the naive algorithm,
which has Θ(Kn) runtime. We conjecture that there is no algorithm that can answer
any Ω(n) queries in o(n2) time.

Related work: An efficient algorithm for computing all Parikh fingerprints of sub-
strings of a given string was developed in [1]. Parikh fingerprints are Boolean vectors
where the k’th entry is 1 if and only if ak appears in the string. The algorithm in-
volves storing a data point for each Parikh fingerprint, of which there are at most
O(nσ) many. This approach was adapted in [9] for Parikh vectors and applied to
identifying all repeated Parikh vectors within a given length range; using it to search
for queries of arbitrary length would imply using Ω(P (s)) space, where P (s) denotes
the number of different Parikh vectors of substrings of s. This is not desirable, since
there are strings with quadratic P (s) [8].
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The authors of [7] present an algorithm for finding all occurrences of a Parikh
vector in a runlength encoded text. The algorithm’s time complexity is O(n′ + σ),
where n′ is the length of the runlength encoding of s. Obviously, if the string is not
runlength encoded, a preprocessing phase of time O(n) has to be added. However,
this may still be feasible if many queries are expected. To the best of our knowledge,
this is the only algorithm that has been presented for the problem we are treating
here.

2 Notation and Problem Statement

Let Σ = {a1, . . . , aσ} be a finite ordered alphabet. For a string s ∈ Σ∗, s = s1 · · · sn,
we define the Parikh vector p(s) = (p1, . . . , pσ) by pi := |{j | sj = ai}|, for i =
1, . . . , σ. A Parikh vector p occurs in string s if there are positions i ≤ j such that
p(si · · · sj) = p. We refer to the pair (i, j) as an occurrence of p in s. By convention,
we say that the empty string ǫ occurs in each string once. For a Parikh vector p ∈ N

σ,
where N denotes the set of non-negative integers, let |p| := ∑

i pi denote the length
of p, namely the length of any string t with p(t) = p. Further, by s[i, j] = si · · · sj we
denote the substring of s from i to j, for 1 ≤ i ≤ j ≤ n.

For two Parikh vectors p, q ∈ N
σ, we define p ≤ q and p + q component-wise:

p ≤ q if and only if pi ≤ qi for all i = 1, . . . , σ, and p + q = u where ui = pi + qi for
i = 1, . . . , σ. Similarly, for p ≤ q, we set q − p = v where vi = qi − pi for i = 1, . . . , σ.

We want to solve the following problem:

Problem Statement: Let s ∈ Σ∗ be given. For a Parikh vector q ∈ N
σ,

1. Decide whether q occurs in s (decision problem);
2. Find all occurrences of q in s (occurrence problem).

In the following, let |s| = n and |q| = m. Assume that K many queries arrive
over time.

For K = 1, both the decision version and the occurrence version can be solved
optimally with the following simple algorithm: Move a sliding window of size |q| along
string s. This way, we encounter all substrings, and thus all Parikh vectors, of length
|q|. We maintain the Parikh vector c of the current substring and a counter r which
equals the number of indices i such that ci 6= qi. Each sliding step now costs either
0 or 2 update operations of c, depending on whether the new character entering the
window is the same or different from the one that falls out. Whenever we change
the value of an entry ci, we check whether ci = qi and increment or decrement r
accordingly.

This algorithm solves both the decision and occurrence problems and has running
time Θ(n), using additional storage space Θ(σ). In other words, for one query, it is
optimal (save maybe for the additional storage of Θ(σ)).

Obviously, one can precompute all sub-Parikh vectors of s, store them (sorted,
e.g. lexicographically) and do binary search when a query arrives. Preprocessing time
is Θ(n2 log n), because the number of Parikh vectors of s is at most

(
n
2

)
= O(n2),

and there are nontrivial strings with quadratic number of Parikh vectors over arbi-
trary alphabets [8]. (Now and in the following, we denote the binary logarithm by
log, the natural logarithm by ln, and otherwise explicitly state the base.) Moreover,
simulations reported there have shown that protein strings have quadratically many
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sub-Parikh vectors, a result relevant for mass spectrometry applications. Query time
is O(log n) for the decision problem and O(log n+M) for the occurrence problem for
a query with M occurrences. However, the storage space of Θ(n2) is inacceptable in
many applications.

For small queries, the problem can be solved exhaustively with a linear size index-
ing structure such as a suffix tree (size O(n)). We can search up to length m = |q| (of
the substrings); whenever we find a match, we traverse the subtree below and report
the leaf numbers, yielding the occurrences of that substring. Total running time is
O(σm) for searching the tree down to level m, and O(M) total time for the enumer-
ation of the leaves in the individual subtrees, where M is the number of occurrences
of q in s. If m is small, namely m = o(logσ n), then the query time is o(n) + O(M).
The suffix tree can be constructed in a preprocessing step in time O(n), so altogether
we get time O(n), since M = O(n) for any query q.

3 The Jumping Algorithm

In this section, we introduce our algorithm for general alphabets. Let s = s1 · · · sn ∈
Σ∗ be given, and let pr(i) denote the Parikh vector of the prefix of s of length i, for
i = 0, . . . , n, where pr(0) = p(ǫ) = (0, . . . , 0). We make the following observations:

Observation 1. Consider Parikh vector p ∈ N
σ, p 6= (0, . . . , 0).

1. For any 1 ≤ i ≤ j ≤ n, p = pr(j)−pr(i−1) if and only if p occurs in s at position
(i, j).

2. If an occurrence of p ends in position j, then pr(j) ≥ p.

The algorithm moves two pointers L and R along the text, pointing at these
potential positions i− 1 and j. Instead of moving linearly, however, the pointers are
updated in jumps, alternating between updates of R and L, in such a manner that
many positions are skipped. Moreover, because of the way we update the pointers,
after any update it suffices to check whether R−L = |q| to confirm that an occurrence
has been found.

We use the following rules for updating the two pointers, illustrated in Fig. 1:

1. the first fit rule for updating R, and
2. the good suffix rule for updating L.

First fit rule: Assume that the left pointer is pointing at position L, i.e. no un-
reported occurrence starts before L + 1. Notice that, if there is an occurrence of q
ending at any position j > L, it must hold that pr(L) + q ≤ pr(j). In other words,
we must fit both pr(L) and q at position j. We define a function firstfit as the first
potential position where an occurence of a Parikh vector p can end:

firstfit(p) := min{j | pr(j) ≥ p}, (1)

and set firstfit(p) = ∞ if no such j exists. We will update R to the first position
where pr(L) and q can fit:

R← firstfit(pr(L) + q). (2)
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Good suffix rule: Now assume that R has just been updated. Thus, p(s[L+1, R]) =
pr(R)−pr(L) ≥ q. If equality holds, then we have found an occurrence of q in position
(L + 1, R), and L can be incremented by 1. Otherwise pr(R) − pr(L) > q, which
implies that, interspersed between the characters that belong to q, there are some
“superfluous” characters. Now the first position where an occurrence of q can start is
at the beginning of a contiguous sequence of characters ending in R which all belong
to q. In other words, we need the beginning of the longest suffix of s[L + 1, R] with
Parikh vector ≤ q, i.e. the smallest position i such that pr(R) − pr(i) ≤ q. We find
this position by setting

L← firstfit(pr(R)− q). (3)

Note that this rule can also be interpreted as a bad character rule: pr(R) − q =
pr(L) + (pr(R)− pr(L))− q contains all those superfluous characters between L + 1
and R that we have to fit before a possible next occurrence of q. Below we give the
pseudo-code of the algorithm.

Figure 1. The situation after the update of R (above) and after the update of L
(below). R is placed at the first fit of pr(L) + q, thus q′ is a super-Parikh vector of q.
Then L is placed at the beginning of the longest good suffix ending in R, so q′′ is a
sub-Parikh vector of q.

Algorithm Jumping Algorithm
Input: query Parikh vector q

Output: A set Occ containing all beginning positions of occurrences of q in s

1. set m← |q|; Occ← ∅; L← 0;
2. while L < n−m

3. do R← firstfit(pr(L) + q);
4. if R− L = m

5. then add L + 1 to Occ;
6. L← L + 1;
7. else L← firstfit(pr(R)− q);
8. if R − L = m

9. then add L + 1 to Occ;
10. L← L + 1;
11. return Occ;

It remains to see how to compute the firstfit and pr functions.
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3.1 How to compute firstfit and pr

In order to compute firstfit(p) for some Parikh vector p, we need to know the prefix
vectors of s. However, storing all prefix vectors of s would require O(σn) storage space,
which may be too much. Instead, the algorithm uses an “inverted prefix vector table”
I containing the increment positions of the prefix vectors: for each character ak ∈ Σ,
and each value j up to p(s)k, the position in s of the j’th occurrence of character ak.
In other words, I[k][j] = min{i | pr(i)k ≥ j} for j ≥ 1, and I[k][0] = 0. Thus we have

firstfit(p) = max
k=1,...,σ

{I[k][pk]}. (4)

Moreover, we can compute the prefix vectors pr(i) from table I: For k = 1, . . . , σ,

pr(j)k =

{
0 if j < I[k][1]

max{i | I[k][i] ≤ j} otherwise.
(5)

The obvious way to find these values is to do binary search for j in each row of I.
However, this would take time Θ(σ log n); a better way is to use information already
acquired during the run of the algorithm. As we shall see later (Lemma 3), it always
holds that L ≤ R. Thus, for computing pr(R)k, it suffices to search for R between
pr(L)k and pr(L)k + (R − L). This search takes time proportional to log(R − L).
Moreover, after each update of L, we have L ≥ R −m, so when computing pr(L)k,
we can restrict the search for L to between pr(R)k−m and pr(R)k, in time O(log m).
For more details, see Section 3.4.

Example 2. Let Σ = {a, b, c} and s = cabcccaaabccbaacca. The prefix vectors of s are
given below. Note that the algorithm does not actually compute these.

pos. 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
s c a b c c c a a a b c c b a a c c a
# a’s 0 0 1 1 1 1 1 2 3 4 4 4 4 4 5 6 6 6 7
# b’s 0 0 0 1 1 1 1 1 1 1 2 2 2 3 3 3 3 3 3
# c’s 0 1 1 1 2 3 4 4 4 4 4 5 6 6 6 6 7 8 8

The inverted prefix table I:

0 1 2 3 4 5 6 7 8
a 0 2 7 8 9 14 15 18
b 0 3 10 13
c 0 1 4 5 6 11 12 16 17

Query q = (3, 1, 2) has 4 occurrences, beginning in positions 5, 6, 7, 13, since (3, 1, 2) =
pr(10)− pr(4) = pr(11)− pr(5) = pr(12)− pr(6) = pr(18)− pr(12). The values of L
and R are given below:

k, see Sec. 3.3 1 2 3 4 5 6 7
L 0 4 5 6 7 10 12
R 8 10 11 12 14 18 18
occ. found? – yes yes yes – – yes
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3.2 Preprocessing

Table I can be computed in one pass over s (where we take the liberty of identifying
character ak ∈ Σ with its index k). The variables ck count the number of occurrences
of character ak seen so far, and are initialized to 0.

Algorithm Preprocess s

1. for i = 1 to n

2. csi
= csi

+ 1;
3. I[si][csi

] = i;

Table I requires O(n) storage space (with constant 1). Moreover, the string s can
be discarded, so we have zero additional storage.

3.3 Correctness

We have to show that (1) if the algorithm reports an occurrence, then it is correct,
and (2) if there is an occurrence, then the algorithm will find it. We first need the
following lemma:

Lemma 3. The following algorithm invariants hold:

1. After each update of R, we have pr(R)− pr(L) ≥ q.
2. After each update of L, we have pr(R)− pr(L) ≤ q.
3. L ≤ R.

Proof. 1. follows directly from the definition of firstfit and the update rule for R.
For 2., if an occurrence was found at (i, j), then before the update we have L = i− 1
and R = j. Now L is incremented by 1, so L = i and pr(R) − pr(L) = q − esi

< q,
where ek is the k’th unity vector. Otherwise, L ← firstfit(pr(R) − q), and again
the claim follows directly from the definition of firstfit. For 3., if an occurrence
was found, then L is incremented by 1, and R − L = m − 1 ≥ 0. Otherwise, L =
firstfit(pr(R)− q) = min{ℓ | pr(ℓ) ≥ pr(R)− q} ≤ R. ⊓⊔

Proof of (1): If the algorithm reports an index i, then (i, i+m−1) is an occurrence
of q: An index i is added to Occ whenever R−L = m. If the last update was that of
R, then we have pr(R)−pr(L) ≥ q by Lemma 3, and together with R−L = m = |q|,
this implies pr(R) − pr(L) = q, thus (L + 1, R) = (i, i + m − 1) is an occurrence of
q. If the last update was L, then pr(R)− pr(L) ≤ q, and it follows analogously that
pr(R)− pr(L) = q.

Proof of (2): All occurrences of q are reported: Let’s assume otherwise. Then there
is a minimal i and j = i + m− 1 such that p(s[i, j]) = q but i is not reported by the
algorithm. By Observation 1, we have pr(j)− pr(i− 1) = q.

Let’s refer to the values of L and R as two sequences (Lk)k=1,2,... and (Rk)k=1,2,....
So we have L1 = 0, and for all k ≥ 1, Rk = firstfit(pr(Lk) + q), and Lk+1 = Lk + 1
if Rk−Lk = m and Lk+1 = firstfit(pr(Rk)− q) otherwise. In particular, Lk+1 > Lk

for all k.
First observe that if for some k, Lk = i−1, then R will be updated to j in the next

step, and we are done. This is because Rk = firstfit(pr(Lk)+q) = firstfit(pr(i−
1) + q) = firstfit(pr(j)) = j. Similarly, if for some k, Rk = j, then we have
Lk+1 = i− 1.
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So there must be a k such that Lk < i−1 < Lk+1. Now look at Rk. Since there is an
occurrence of q after Lk ending in j, this implies that Rk = firstfit(pr(Lk)+q) ≤ j.
However, we cannot have Rk = j, so it follows that Rk < j. On the other hand,
i − 1 < Lk+1 ≤ Rk by our assumption and by Lemma 3. So Rk is pointing to a
position somewhere between i − 1 and j, i.e. to a position within our occurrence of
q. Denote the remaining part of q to the right of Rk by q′: q′ = pr(j) − pr(Rk).
Since Rk = firstfit(pr(Lk) + q), all characters of q must fit between Lk and Rk,
so the Parikh vector p = pr(i) − pr(Lk) is a super-Parikh vector of q′. If p = q′,
then there is an occurrence of q at (Lk + 1, Rk), and by minimality of (i, j), this
occurrence was correctly identified by the algorithm. Thus, Lk+1 = Lk + 1 ≤ i − 1,
contradicting our choice of k. It follows that p > q′ and we have to find the longest
good suffix of the substring ending in Rk for the next update Lk+1 of L. But s[i, Rk]
is a good suffix because its Parikh vector is a sub-Parikh vector of q, so Lk+1 =
firstfit(pr(Rk)− q) ≤ i− 1, again in contradiction to Lk+1 > i− 1.

We illustrate the proof in Fig. 2.

Figure 2. Illustration for proof of correctness.

3.4 Algorithm Analysis

Let A(s, q) denote the running time of Jumping Algorithm over a text s and a Parikh
vector q. Let J = J(s, q) be the number of iterations performed in the while loop
in line 2, i.e., the number of jumps performed by the algorithm, for the input (s, q).

Further, for each i = 1, . . . , J, let L̂i, R̂i denote the value of L and R, respectively,
after the i’th execution of line 3 of the algorithm1.

In order to calculate the running time of the algorithm on the given input we need
to evaluate the number of iterations it performs, the running time of the functions
firstfit and the time needed to compute the Parikh vectors pr(·) necessary in lines
3 and 7.

It is easy to see that computing firstfit takes O(σ) time.

The computation of pr(L̂i) in line 3 takes O(σ log m): For each k = 1, . . . , σ, the

component pr(L̂i)k can be determined by binary search over the list I[k][pr(R̂i−1)k−
m], I[k][pr(R̂i−1)k −m + 1], . . . , I[k][pr(R̂i−1)k]. By L̂i ≥ R̂i−1−m, the claim follows.

The computation of pr(R̂i) in line 7 takes O(σ log(R̂i − R̂i−1 + m)). Simply

observe that in the prefix ending at position R̂i there can be at most R̂i − L̂i

more occurrences of the k’th character than there are in the prefix ending at po-
sition L̂i. Therefore, as before, we can determine pr(R̂i)k by binary search over the

list I[k][pr(L̂i)k], I[k][pr(L̂i)k + 1], . . . , I[k][pr(L̂i)k + R̂i − L̂i]. Using the fact that

L̂i ≥ R̂i−1 −m, the desired bound follows.

1 The L̂i and R̂i coincide with the Lk and Rk from Section 3.3 almost but not completely: When
an occurrence is found after the update of L, then the corresponding pair Lk, Rk is skipped here.
The reason is that now we are only considering those updates that carry a computational cost.
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The last three observations imply

A(s, q) = O

(
σJ log m + σ

J∑

i=1

log(R̂i − R̂i−1 + m)

)
.

Note that this is an overestimate, since line 7 is only executed if no occurrence was
found after the current update of R (line 4). Standard algebraic manipulations using

Jensen’s inequality (see, e.g. [11]) yield
∑J

i=1 log(R̂i − R̂i−1 + m) ≤ J log
(

n
J

+ m
)
.

Therefore we obtain

A(s, q) = O
(
σJ log

(n

J
+ m

))
. (6)

The worst case running time of the Jumping Algorithm is superlinear, since there
exist strings s and Parikh vectors q such that J = Θ(n): For instance, on the string
s = ababab · · · ab and q = (2, 0), the algorithm will execute n/2 jumps.

This sharply contrasts with the experimental evaluation we present later. The
Jumping Algorithm appears to have in practice a sublinear behavior. In the rest of
this section we sketch an average case analysis of the running time of the Jumping
Algorithm leading to the conclusion that its expected running time is sublinear.

We assume that the string s is given as a sequence of i.i.d. random variables
uniformly distributed over the alphabet Σ. According to Knuth et al. [12] “It might be
argued that the average case taken over random strings is of little interest, since a user
rarely searches for a random string. However, this model is a reasonable approximation
when we consider those pieces of text that do not contain the pattern [. . . ]”. The
experimental results we provide will show that this is indeed the case.

To simplify the presentation, let us fix the Parikh vector q as being perfectly
balanced, i.e., q = (m

σ
, . . . , m

σ
). Let Ei denote the expected number ℓ such that

firstfit(pr(i) + q) = i + ℓ. Because of the assumption on the string, we have that
Ei is independent of i, so we can write Ei = Em,σ. In particular, we have

Em,σ ≈ m +





m2−m
(

m
m/2

)
if σ = 2,√

2mσ ln σ√
2π

otherwise.
(7)

This result can be found in [13] where the author studied a variant of the well
known coupon collector problem in which the collector has to accumulate a certain
number of copies of each coupon. It should not be hard to see that by identifying the
characters with the coupon types, the random string with the sequence of coupons
obtained, and the query Parikh vector with the number of copies we require for each
coupon type, the expected time when the collection is finished is the same as our
Em,σ.

We shall now follow the approach taken by Schaback in the average case analysis of
the Boyer-Moore algorithm [15]. We build a probabilistic automaton which simulates
the behavior of the Jumping Algorithm. We also assume that each new reference to
a position in the string is done by generating the character again. See [15] for how
this assumption does not affect the result.

The automaton A(n,m, σ) moves the pointers L and R along the string as follows:
with probability ζ = ζ(m,σ) the pointer L is moved forward by one position (this
corresponds to the case of a match); with probability (1− ζ) the pointer R is moved
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forward to the closest position to L such that pr(R)− pr(L) ≥ q; in this case also L
is updated and set to R −m (this corresponds to the case of no match; in fact, we
are upper bounding the Jumping Algorithm’s behavior, since it always updates L to
a position at most m away from R).

Let E[A(n,m, σ)] denote the expected number of jumps of A(n,m, σ). We have
E[A(n,m, σ)] = n

ζ+(1−ζ)(Em,σ−m)
. If we take ζ to be the probability that a random

string of size m over an alphabet of size σ has Parikh vector q, we get ζ ≈
√

σσ

(2πm)σ−1 ,

where we use Stirling approximation for the multinomial
(

m
m
σ

,..., m
σ

)
. Note that due to

the magnitude of ζ, for large values of m, we have

E[A(n,m, σ)] ≈ n/(Em,σ −m). (8)

Recalling (6) and using (7) and (8) as an approximation of the number E[J ]
of jumps performed by the Jumping Algorithm, over a random instance, we get
that the average case complexity of the Jumping Algorithm can be estimated as

O
(
n
√

2π
m

log m
)

in the case of a binary alphabet, and O

(
σn

q

2σm ln(σ/
√

2π)
log m

)
, for

σ ≥ 3. Summarizing, according to the above approximations, we would expect the

algorithm’s running time to be O
(

n log m√
m

)
, with the constant in the order of

√
σ

2 ln σ
.

We conclude this section by remarking once more that the above estimate ob-
tained by the approximating probabilistic automaton appears to be confirmed by the
experiments.

3.5 Simulations

We implemented the Jumping Algorithm in C++ in order to study the number of
jumps J . We ran it on random strings of different lengths and over different alphabet
sizes. The underlying probability model is an i.i.d. model with uniform distribution.
We sampled random query vectors with length between log n (= log2 n) and

√
n,

where n is the length of the string. Our queries were of one of two types:

1. Quasi-balanced Parikh vectors: Of the form (q1, . . . , qσ) with qi ∈ (x − ǫ, x + ǫ),
and x running from log n/σ to

√
n/σ. For simplicity, we fixed ǫ = 10 in all our

experiments, and sampled uniformly at random from all quasi-balanced vectors
around each x.

2. Random Parikh vectors with fixed length m. These were sampled uniformly at
random from the space of all Parikh vectors with length m.

The rationale for using quasi-balanced queries is that those are clearly worst-
case for the number of jumps J , since J depends on the shift length, which in turn
depends on firstfit(pr(L) + q). Since we are searching in a random string with
uniform character distribution, we can expect to have minimal firstfit(pr(L) + q)
if q is close to balanced, i.e. if all entries qi are roughly the same. This is confirmed
by our experimental results which show that J decreases dramatically if the queries
are not balanced (Fig. 4, right).

We ran experiments on random strings over different alphabet sizes, and observe
that our average case analysis agrees well with the simulation results for random
strings and random quasi-balanced query vectors. Plots for n = 105 and n = 106 with
alphabet sizes σ = 2, 4, 16 resp. σ = 4, 16 are shown in Fig. 3.
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To see how our algorithm behaves on non-random strings, we downloaded human
DNA sequences from GenBank (http://www.ncbi.nlm.nih.gov/Genbank/) and ran
the Jumping Algorithm with random quasi-balanced queries on them. We found that
the algorithm performs 2 to 10 times fewer jumps on these DNA strings than on
random strings of the same length, with the gain increasing as n increases. We show
the results on a DNA sequence of 1 million bp (from Chromosome 11) in comparison
with the average over 10 random strings of the same length (Fig. 4, left).

Figure 3. Number of jumps for different alphabet sizes for random strings of size
100000 (left) and 1000000 (right). All queries are randomly generated quasi-balanced
Parikh vectors (cf. text). Data averaged over 10 strings and all random queries of same
length.

Figure 4. Number of jumps in random vs. nonrandom strings: Random strings over
an alphabet of size 4 vs. a DNA sequence, all of length 1 000 0000, random quasi-
balanced query vectors. Data averaged over 10 random strings and all queries with
the same length (left). Comparison of quasi-balanced vs. arbitrary query vectors over
random strings, alphabet size 4, length 1 000 000, 10 strings. The data shown are
averaged over all queries with same length m (right).

4 Often Constant Query Time for Binary Alphabets

We now describe our algorithm for binary alphabets. It uses a data structure of size
O(n) which it constructs in a lazy manner, only computing those entries that are
needed for the current query, and storing them for future queries. Once the data
structure has been completely constructed, all queries can be answered in constant
time. During the construction phase, answering queries may take either O(1) or O(n)
time. Only decision queries are answered.
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The algorithm makes use of the following property of binary strings:

Lemma 4. Let s ∈ {a, b}∗ with |s| = n. Fix 1 ≤ m ≤ n. If the Parikh vectors
(x1,m − x1) and (x2,m − x2) both occur in s, then so does (y,m − y) for any x1 ≤
y ≤ x2.

Proof. Consider a sliding window of fixed size m moving along the string and let
(p1, p2) be the Parikh vector of the current substring. When the window is shifted by
one, the Parikh vector either remains unchanged (if the character falling out is the
same as the character coming in), or it becomes (p1 + 1, p2 − 1) resp. (p1 − 1, p2 + 1)
(if they are different). Thus the Parikh vectors of substrings of s of length m build a
set of the form {(x,m − x) | x = min(m), min(m) + 1, . . . , max(m)} for appropriate
min(m) and max(m). In other words, they build an interval. ⊓⊔

So all we need in order to decide whether a query q = (q1, q2) with |q| = m has
an occurrence in s is to check whether min(m) ≤ q1 ≤ max(m). We would like to
have a table with min(m) and max(m) for all 1 ≤ m ≤ n; however, computing the
complete table takes O(n2) time. Notice though that, for any individual query q,
we only need the values for |q|. So when a query q arrives with |q| = m, we look
up whether min(m) and max(m) have already been computed. If so, we answer the
query in constant time. Otherwise, we compute the entries for m by moving a sliding
window of size m over s and collecting the minimum and maximum number of a’s.

Analysis: All queries take time either O(1) or O(n), and after n queries of the latter
kind, the table is completely constructed and all subsequent queries can be answered
in O(1) time. If we assume that the query lengths are uniformly distributed, then we
can view this as another coupon collector problem (see Section 3.4), where the coupon
collector has to collect one copy of each n coupons, namely the different lengths m.
Then the expected number of queries needed before having seen all m and thus before
having completed the table is nHn ≈ n ln n. The algorithm will have taken O(n2) time
to answer these n ln n queries, because it spends linear time only on queries with new
length m, and O(1) on queries with length that it has seen before; now it can answer
all further queries in constant time.

The assumption of the uniform length distribution may not be very realistic;
however, even if it does not hold, we never take more time than O(n2 + K) for K
many queries. Since any one query may take at most O(n) time, our algorithm never
performs worse than the naive algorithm. Moreover, for those queries where the table
entries have to be computed, we can even run the naive algorithm itself and report
all occurrences, as well. For all others, we only give decision answers, but in constant
time.

Finally, the table can of course be computed completely in a preprocessing step
in O(n2) time, thus always guaranteeing constant query time. The overall running
time is Θ(K + n2). As long as the number of queries is K = ω(n), this variant, too,
outperforms the naive algorithm, whose running time is Θ(Kn).

5 Conclusion and Open Problems

Our simulations appear to confirm that in practice the performance of the Jumping

Algorithm is well predicted by the expected O(
√

σ log m√
m

n) time of the probabilistic
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analysis we proposed. A more precise analysis is needed, however. Our approach
seems unlikely to lead to any refined average case analysis since that would imply
improved results for the intricate variant of the coupon collector problem of [13].

Moreover, in order to better simulate DNA or other biological data, more realistic
random string models than uniform i.i.d. should also be analysed, such as first or
higher order Markov chains.

Another open problem is whether the Interval Algorithm can be improved by
constructing in subquadratic time the data structure it uses (in a preprocessing step).
In fact, we conjecture that this is not possible, and that no algorithm can answer
arbitrary Ω(n) many queries in o(n2) time. However, proving such an upper bound
has so far proven elusive.
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Jumping Algorithm with Boyer-Moore. We thank Rosa Caiazzo for generously giv-
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by a Sofja Kovalevskaja grant of the Alexander von Humboldt Foundation and the
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Abstract. SIMD instructions exist in many recent microprocessors supporting parallel
execution of some operations on multiple data simultaneously via a set of special in-
structions working on limited number of special registers. Although the usage of SIMD
is explored deeply in multimedia processing, implementation of encryption/decryption
algorithms, and on some scientific calculations, it has not been much addressed in pat-
tern matching. This study introduces a filter based exact pattern matching algorithm
for searching long strings benefiting from SIMD instructions of Intel’s SSE (streaming
SIMD extensions) technology. The proposed algorithm has worst, best, and average
time complexities of O(n · m), O(n/m), and O(n/m + n · m/216) respectively, while
searching an m bytes pattern on a text of n bytes. Experiments on small, medium, and
large alphabet text files are conducted to compare the performance of the new algo-
rithm with other alternatives, which are known to be very fast on long string search
operations. In all cases the proposed algorithm is the clear winner on the average.
When compared with the nearest successor, the matching speed is improved in orders
of magnitude on small alphabet sequences. The performance is 40 % better on medium
alphabets, and 50 % on natural language text.

Keywords: pattern matching, filtering, SIMD, SSE

1 Introduction

Searching for exact or approximate matches of given pattern(s) on a text file is one
of the fundamental problems in computer science. Numerous algorithms focusing
on some aspects of the general problem have been developed during the last three
decades, some of which can be found in [4,5]. Although the main problem is well
studied, recent advances in genomics research, new developments in processor archi-
tectures, and the accelerated growth of information on the Internet introduces new
challenges in the area.

This study focuses on exact matching of long patterns on random sequences via
a filtering methodology. Instead of checking the occurrence of the pattern(s) on all
over the text, filtering methods first detects the portions of the text, on which the
observation of the pattern is probable with a fast heuristic, and then performs a full
verification on those positions reported by the filtering phase. Thus, a filter based
string matching algorithm is actually composed of two parts, as filtering and the
verification. The first part aims to detect possible match positions on the text without
a deep investigation, and the verification process is checking the real existence of the
pattern on those detected positions.

Some of the previous filter based pattern matching algorithms may be listed as fol-
lows. The algorithm of Wu&Manber [18] combines bit-parallelism with a fast 2-gram
hashing heuristic filter. Later on, their algorithm is implemented as the agrep [17]
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approximate match utility program, which is known to be very powerful especially
on approximate and multiple pattern matching. The average optimal (AOSO) and
fast average optimal (FAOSO) variants of the original shift-or [2] algorithm defined
by Fredriksson&Grabowski [7] may also be viewed from a filtering perspective since
they include a verification procedure.

The bit-parallel algorithms [14,15,9,7] that suffer from the computer word size
limitation1 in general can also be used in a filtering framework for searching patterns
longer than the computers word size. In such cases, the part of the pattern, which is
selected to be less than the word length, is searched on the text by the bit-parallel
algorithms, and rest of the pattern is verified on match positions. Moreover, char-
acter overloading for searching long patterns or multiple patterns with bit-parallel
techniques has been proposed previously [6,15,2] also.

More recently, Lecroq [13] has offered one of the most effective representative of
filtering algorithms. The simplicity and average speed of the Lecroq’s new algorithm
makes it a strong candidate in all practical cases including search on small alphabets.

The power of a filtering algorithm may be measured by two metrics: i) the dis-
tinguishing power of the proposed filtering method, ii) the computation speed of the
filtering function. If the filter is not very selective, then the average number of calls
to the verification procedure grows, which in turn degrades the performance. On the
other side, if the distinguishing power is good, but the computation of the filter is
expensive, then the speed again falls as it will consume more time to calculate the
filter value, although the recall of verification is small. This study aims to benefit
from the intrinsic SIMD instructions of the modern processors for fast calculation of
a distinguishing filter.

SIMD instructions let simultaneous execution of some operands on multiple data
by the help of a limited number of special registers. Figure 1 sketches the operation
on 128 bit SSE registers, x, y, z. In the example, each register is divided into 4 inte-
gers of 32 bit each, and the given operation ⊖ is performed and stored between the
corresponding data. Note that instead of using 4 integer portions, several other type
definitions exist on SSE intrinsics, such as viewing the 128 bit as 16 bytes, or 4 floats
also.

The original idea of SIMD was to speed up multimedia procedures, such as au-
dio/video/image processing issues. It is also used in cryptographic applications and
on some scientific computations. A good review of SIMD may be found in [8]. Despite
the fact that it has not been explored deeply in pattern matching, this study shows
that it serves as a good basis especially for filtering techniques.

x0 ⊖ y0 ⇒ z0

x1 ⊖ y1 ⇒ z1

x2 ⊖ y2 ⇒ z2

x3 ⊖ y3 ⇒ z3

Figure 1. The sketch of a sample SIMD instruction.

The algorithm introduced in this study, which will be referred as SSEF, uses Intel
streaming SIMD extensions (SSE [11]) technology. SSEF finds exact occurrences of
patterns longer than 32 bytes on random sequences. Experimental results indicated

1 Külekci [12] has proposed a bit-parallel algorithm which is not restricted with the computer word
size limitation.
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that on the average it is approximately 6 times faster than Lecroq’s new algorithm,
and 15% better than the backward oracle and suffix oracle methods, which are mainly
the best choices for long patterns until now.

2 Preliminaries and Basics

Let string S of k characters be shown as S = s0s1s2 · · · sk−1. Assuming each character
is represented by a single byte, S[i . . . j] shows the byte array [sisi+1si+2 · · · sj], where
0 ≤ i ≤ j < k. The individual bits of byte si are denoted by si = bi

0b
i
1b

i
2b

i
3b

i
4b

i
5b

i
6b

i
7,

where bi
0 is referred as sign(si). In chunks of 16 bytes, same string is represented

by S = C0C1C2 · · ·C⌊(k−1)/16⌋, where Ci = si·16si·16+1si·16+2 · · · si·16+15, for 0 ≤ i ≤
⌊(k − 1)/16⌋. The last block C⌊(k−1)/16⌋ is not complete if k 6= 0 mod 16. In that case,
the remaining bytes of the block are set to zero as sj = 0 for k − 1 < j.

Given text T and pattern P of lengths n and m bytes, the number of 16-byte
blocks in T and P are denoted by N = ⌈n/16⌉ and M = ⌈m/16⌉ respectively. The
individual bytes of text T are accessed by ti, 0 ≤ i < n, and similarly the 16-byte
blocks are addressed by Di, 0 ≤ i < N . The byte and block symbols for pattern P
are pi, 0 ≤ i < m, and Qi, 0 ≤ i < M respectively. Figure 2 demonstrates the defined
structure.

D0 D1 DN−1

t0t1 . . . t15 t16t17 . . . t31 t(N−1)·16t(N−1)·16+1 . . . tn−1

a) The representation of text T .

Q0 Q1 . . . . . . . . . QM−1

p0p1 . . . p15 p16p17 . . . p31 . . . . . . . . . p(M−1)·16p(M−1)·16+1 . . . pm−1

a) The representation of pattern P .

Figure 2.

The proposed filtering algorithm is designed to be effective on long patterns, where
the lower limit for m is 32 (32 ≤ m). Although it is possible to adapt the algorithm
for lesser lengths, the performance gets worse under 32. The number L is defined
as L = ⌊m/16⌋ − 1, which is the zero-based address of the last 16-byte block of Q
whose individual bytes are totally composed of pattern bytes without any padding.
For example, if m = 42, the 16-byte blocks of the pattern will be Q = Q0Q1Q2, where
the last 6 bytes of Q2 are padded with zero. The L value for m = 42 is L = 1, which
indicates the last whole block of the pattern is Q1. Actually, if length of the pattern is
a multiple of 16, there is no remainder in the last 16-byte block, and thus, L = M−1.
In the other case, L should point to the block preceding the last one as the last one
is not a complete block, making L = M − 2.

The basic idea of the proposed algorithm is to compute a filter on block Dz·L+L,
where 0 ≤ z < ⌊N/L⌋, to explore if it is appropriate to observe pattern P beginning
from any byte inside the prior blocks Dz·L to Dz·L+(L−1). If the filter value indicates
some of the alignments are possible, then those fitting ones are compared with the
text byte by byte.
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Figure 3 demonstrates this basic idea by assuming i = z ·L. Note that as m ≥ 32,
and L = ⌊m/16⌋ − 1, the pattern fills the bytes in Di+L always.

Block No Di Di+1 . . . . . . . . . Di+L−1 Di+L

Bytes of T ti·16 . . . . . . . . . t(i+1)·16 . . . . . . . . . . . . t(i+L−1)·16 . . . t(i+L)·16 . . . t(i+1)·16+15

P aligned to ti·16 p0 . . . . . . . . . p16 . . . . . . . . . . . . p(L−1)·16 . . . pL·16 . . . pL·16+15

P aligned to ti·16+1 p0 . . . . . . p15 . . . . . . . . . . . . p(L−1)·16−1 . . . pL·16−1 . . . pL·16+14

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P aligned to ti·16+15 . . . . . . . . . p0 p1 . . . . . . . . . . . . p(L−1)·16−15 . . . pL·16−15 . . . pL·16

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

P aligned to t(i+L)·16−1 p0 p1 . . . p16

Figure 3. Appropriate alignments of pattern P according to the filter value computed
from Di+L,for any i = z · L

3 The SSEF Exact Pattern Matching Algorithm

3.1 Preprocessing

The preprocessing stage of the algorithm consist of compiling the possible filter values
of the pattern according to the alignments shown in figure 3. Formally, the filter
values for P [(L · 16) . . . (L · 16 + 15)], P [(L · 16− 1) . . . (L · 16 + 14)], . . . , P [1 . . . 16]
are computed and stored in a linked list, which will be referred as FList from now
on. The pseudo-code of the preprocessing procedure is depicted in Algorithm 1.

Algorithm 1 PreProcess(P = p0p1p2 · · · pm−1,K)

1: for i = 0 to 65535 do

2: FList[i] = ∅;
3: end for

4: L = ⌊m/16⌋ − 1
5: for i = 0 to L · 16− 1 do

6: r = L · 16− i;
7: f = sign(pi << K) · 215 + sign(pi+1 << K) · 214 + · · ·+ sign(pi+15 << K)
8: FList[f ] = FList[f ] ∪ i;
9: end for

10: return L;

The corresponding filter of a 16 bytes sequence is the 16 bits formed by concatenat-
ing the sign bits of each byte after shifting by K bits as shown in line 7 of Algorithm 1.
The reason for shifting is to generate a distinguishing filter. For example, when the
search is to be performed on an English text, the sign bits of bytes are generally 0
as in the standard ascii table the printable characters of the language reside in first
128, where the sign bits are always 0. If we do not include a shift operation, then the
filter f value will be 0 in all cases, and while passing over the text verification will be
called at each byte. On the other hand, if the text we are searching on is composed of
uniformly distributed random 256 bytes, then there is obviously no need for shifting.
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Hence, the K value is to be decided depending on the alphabet size and character
distribution of the text. K should be set to a value that the most informative bit of
the byte must become the sign bit after shift operation. Thus, detection of the most
informative bit among the 8 bits of a byte is required for best filtering. This is actually
the position on which the distribution of the bits among the whole text is close to
their expected values. Note that this requires an additional pass over the whole text,
which is not good in practice. A more practical approach may be to consider just the
alphabet, and assume the distribution of characters is uniform on the given text. In
that case, we are left with just the |Σ| bytes, and it is more convenient to decide on
the bit position. As an example, let’s consider pattern matching on an ascii coded
plain DNA sequence, where the alphabet is ’a’,’t’,’c’,’g’ having ascii codes 01100001,
01110100, 01100011, and 01100111 respectively. The first three bits and the fifth bit
are all same. Since the number of 1s and 0s are equal on the sixth and seventh positions
from the remaining bits, one of them, say 6th, may be used as the distinguishing bit.
Thus, while searching on a DNA sequence, setting K = 5 to move this bit to the sign
bit position would be a good choice when only the alphabet is considered.

3.2 Main algorithm

The pseudo code given in Algorithm 2 depicts the skeleton of the SSEF . After the
preprocessing stage, the main loop investigates 16-byte blocks of text T in steps of
L. If the filter f computed on Di, where i = z · L + L, and 0 ≤ z < ⌊N/L⌋, is not
empty, then the appropriate positions listed in FList[f ] are verified accordingly.

Algorithm 2 SSEF(P = p0p1p2 · · · pm−1, T = t0t1t2 · · · tm−1)
1: Set K = a, 0 ≤ a < 8, according to the alphabet;
2: i = L =PreProcess(P,K);
3: while i < N do

4: f = sign(ti·16 << K) · 215 + sign(ti·16+1 << K) · 214 + · · ·+ sign(ti·16+15 << K)
5: for all j ∈ FList[f ] do

6: if P = [t(i−L)·16+j . . . t(i−L)·16+j+m−1] then

7: pattern detected at t(i−L)·16+j ;
8: end if

9: end for

10: i = i + L;
11: end while

Flist[f ] contains a linked list of integers marking the beginning of the pattern.
While investigating the filter on Di, if FList[f ] contains number j, where 0 ≤ j <
16·L, the pattern potentially begins at t(i−L)·16+j. In that case, a complete verification
is to be performed between P and [t(i−L)·16+j . . . t(i−L)·16+j+m−1].

Calculating the corresponding filter of Di via SSE intrinsics The computa-
tion of the filter f of Di in line 4 of pseudo code given in Alg. 2 is performed by 2
SSE2 intrinsic functions as
1: tmp128 = mm slli epi64(Di, K);
2: f = mm movemask epi8(tmp128);

First instruction shifts the corresponding 16 bytes of the text Di by K bits and
stores the result in a temporary 128 bit register aiming not to destruct Di itself.

Second, the instruction mm movemask epi8 returns a 16 bit mask composed of the
sign bits of the individual 16 bytes forming the 128 bit value. Figure 4 demonstrates
this function.



M. O. Külekci: Filter Based Fast Matching of Long Patterns by Using SIMD Instructions 123

Dj

b16·j
0 b16·j

1 . . . b16·j
7 b16·j+1

0 b16·j+1
1 . . . b16·j+1

7 . . . . . . b16·j+15
0 b16·j+15

1 . . . b16·j+15
7

⇓
mm movemask epi8

⇓
b16·j
0 b16·j+1

0 b16·j+2
0 . . . b16·j+15

0

Figure 4. The mm movemask epi8 SSE instruction as the filter.

4 Complexity Analysis

The preprocessing stage of the SSEF algorithm requires an additional space to store
the 65536 items of FList linked list. On a 32 bit machine, assuming each node consist
of an integer and a next pointer, this makes up a total of 512 KB (= 65536× 8 byte)
memory requirement.

The first loop in Algorithm 1 just initializes the FList list, and the second for loop
is run L · 16 times during the preprocessing. Thus, time complexity of preprocessing
is O(L · 16) that approximates to O(m).

SSEF algorithm investigates the N 16-byte block text T in steps of L blocks.
Total number of filtering operations is exactly ⌊N/L⌋. At each attempt, maximum
number of verification requests is L · 16, since the filter gives information about that
number of appropriate alignments of the pattern. This situation can also be viewed
from figure 3. On the other hand, if the computed filter is empty, then there is
obviously no need for verification. The verification cost is assumed to be O(m) with
the brute-force checking of the pattern.

From these facts, the best case complexity is O(⌊N/L⌋), and worst case complexity
is O(⌊N/L⌋ · (L · 16) ·m). Remembering the definitions of N and L as N = ⌈n/16⌉,
and L = ⌊m/16⌋ − 1, the best/worst time complexities approximately converges to
O(n/m) and O(n.m) respectively, which are equivalent to standard Boyer-Moore [3]
algorithm.

There are at most L · 16 distinct filter values for any given pattern among the
possible 65536 values. Hence, the probability that the filter computed on Di+L hits
to a non-empty set is L · 16/65536. This indicates that verification will be requested
for ⌊N/L⌋× (L · 16/65536) times during the whole execution, assuming characters of
the text is randomly uniform distributed. The average case complexity, being sum of
the filter computation time and verification computation time, is then O(⌊N/L⌋ +
⌊N/L⌋ × (L · 16/65536)×m), which converges to O(n/m + n ·m/65536).

5 Implementation and Experimental Results

The SSEF algorithm is implemented on 64 bit Intel Xeon processor with 3 GB of
memory. All of the algorithms included in tests are compiled with GNU C compiler
gcc 4.1.2 with full optimization turned on by -O3 flag.

The SSE instructions used in the study require the source data to be 16-byte
aligned for best performance. The cost of misalignment is very high [16,10,11], and
special attention was paid to make sure that the text is properly aligned. For that
purpose the input text is loaded to the memory ensuring that it is 16-byte aligned by
using union aggregate with m128i data type introduced by SSE intrinsics as shown
in figure 5.
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typedef union{

__m128i* data16;

unsigned char* data;

} TEXT;

Figure 5. The TEXT data type defined for 16-byte alignment of data.

The performance of SSEF algorithm is compared with:

– Lecroq’s q-hash algorithm, which is one of the best filtering algorithms [13], with
ranks q = 3 (3-hash) and q = 8 (8-hash).

– The quick search (QS) of Sunday, which is a fast implementation of standard
Boyer-Moore [3].

– The BLIM of Külekci [12], as this bit-parallel algorithm is not limited with the
computer word size, and thus can be run on long patterns also.

– Fast variants of backward oracle and suffix oracle matching [1]. BOM2 and BSOM2
are especially fast on long patterns.

|Σ| = 256 |Σ| = 128
2-bit encoded DNA sequence English text

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 11,06 10,69 11,05 10,53 9,46 9,47 12,03 10,38 9,44 9,75 10,05 9,65 10,04 10,88
96 12,16 11,11 10,85 11,35 9,03 9,12 9,69 11,24 9,80 9,57 10,36 8,51 8,56 8,74
160 13,20 15,14 14,64 16,06 6,60 6,88 6,64 12,50 13,31 12,85 12,56 8,08 8,03 5,95
224 14,18 14,33 13,94 15,29 5,09 5,28 4,66 13,72 12,29 12,11 12,20 6,30 6,23 4,21
288 15,14 13,87 13,57 14,43 4,12 4,23 3,58 14,89 11,57 11,66 12,03 5,11 5,06 3,21
352 16,16 13,32 13,09 13,95 3,45 3,59 2,91 16,06 11,12 11,26 11,66 4,46 4,41 2,58
416 17,14 12,81 12,66 13,28 2,96 3,05 2,44 17,22 10,43 10,67 11,32 3,82 3,75 2,17
480 18,07 12,30 12,20 12,84 2,56 2,62 2,16 18,43 10,00 10,33 11,19 3,50 3,41 1,80
544 19,14 11,87 11,85 12,55 2,22 2,24 1,90 19,53 9,38 9,85 11,05 3,03 3,02 1,62
608 20,26 11,58 11,53 12,16 1,93 1,96 1,68 20,34 9,07 9,64 10,62 2,85 2,79 1,45
672 21,01 11,33 11,23 11,86 1,69 1,67 1,54 21,26 8,65 9,36 10,39 2,60 2,55 1,34
736 22,06 11,14 11,07 11,72 1,52 1,50 1,36 22,16 8,52 9,16 10,00 2,48 2,36 1,21
800 23,00 11,00 10,89 11,53 1,37 1,41 1,21 23,22 8,28 9,04 9,91 2,28 2,26 1,13
864 23,99 10,78 10,78 11,30 1,31 1,29 1,15 24,01 7,96 8,78 9,51 2,14 2,08 1,06
928 25,07 10,76 10,74 11,40 1,20 1,24 1,09 25,05 7,75 8,67 9,28 2,00 1,99 1,01
992 26,22 10,66 10,67 11,22 1,19 1,20 0,98 25,92 7,46 8,54 8,99 1,94 1,91 0,90
1056 27,41 10,62 10,63 11,08 1,16 1,18 0,96 27,16 7,26 8,54 8,97 1,78 1,81 0,92
1248 30,82 10,48 10,53 10,89 1,10 1,15 0,92 30,44 7,07 8,39 8,37 1,72 1,70 0,84
1440 34,19 10,40 10,51 10,51 1,11 1,16 0,82 33,75 6,75 8,20 7,93 1,60 1,64 0,80
1632 38,05 10,42 10,40 10,64 1,16 1,17 0,84 37,20 6,53 8,21 7,67 1,57 1,60 0,76
1824 41,85 10,49 10,44 10,56 1,22 1,21 0,82 41,35 6,57 8,21 7,72 1,57 1,60 0,75
2000 47,09 10,40 10,46 10,99 1,28 1,25 0,81 45,84 6,26 8,08 7,62 1,57 1,60 0,76
Avg. 27,79 11,27 11,2 11,67 2,33 2,37 2,14 27,4 8,22 9,16 9,36 2,96 2,96 1,94

Table 1. Experimental comparison of algorithms on large alphabets.

Benchmarks are conducted on various text files having small (Σ = {2, 4}), medium
(Σ = {16, 20}), and large (Σ = {128, 256}) alphabets. In practice, small alphabets
mimic the nucleic acid sequences, and middle alphabets correspond to biological se-
quences with larger blocks such as amino acids or proteins. Large alphabets represent
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the case for natural languages, and series of random bytes such as the compressed
files.

The summary of the data sets2 used in the experiments are given in Table 2.
The distribution of characters are randomly uniform on all data sets except the 5th

one, which is a natural language text. Remembering the discussion in section 3, it
is enough to consider the character codings of the alphabet while deciding on the
value of bit shift amount K on test files except the English text. On natural language
text file, the experiment is repeated for all possible K values as K = 0, . . . , 7. It is
observed that the performances are compatible for K ∈ {3, 4, 5, 7}, and significantly
worse on K ∈ {1, 2}. Obviously, selecting K = 0 is the worst since it does not include
any distinguishing power on the set of printable ascii characters.

|Σ| Data set Size K-bit shift
1 2 Uniformly distributed random sequence of two characters (’a’ and ’b’). 30 MB 6
2 4 Plain ASCII coded DNA sequence from Manzini’s DNA corpus 21.6 MB 5
3 16 Uniformly distributed random sequence of 16 characters (’a’ ... ’p’). 30 MB 7
4 20 Uniformly distributed random sequence of 20 characters (’a’ ... ’t’). 30 MB 7
5 128 English text from enwik8 corpus. 20 MB 7
6 256 2-bit encoded DNA sequence from Manzini’s DNA corpus. 22.7 MB 0

Table 2. Test files used in the experiments.

Patterns of length 32 to 2000 are randomly selected from the input text, and
searched via the included algorithms. 100 samples are taken for each length, and
each sample is matched 10 times on the text. The mean user times are recorded by
getrusage function.

Tables 1 and 3 compare the timings of BLIM, 3-hash, 8-hash, QS, BOM2, BSOM2
and SSEF for various pattern lengths in milliseconds. Experimental results indicate
that the SSEF algorithm is the clear winner on all tested alphabet sizes and followed
by the BOM2 and BSOM2 algorithms, which are actually known to be the fastest ones
on long pattern matching. The performance of BOM2 and BSOM2 are quite good,
but with the increasing length of the patterns, the SSEF becomes more dominant.
The performances of BOM2/BSOM2 and SSEF improves with the increased length,
where Lec3 and Lec8 are not very much effected with the length.

Table 4 summarizes the average measured speeds of the algorithms in mega byte
per seconds on tested alphabet sizes. Based on the overall speeds depicted in this table,
the performance gain is maximum on small alphabets. SSEF is 3.62 and 2.47 times
faster than its nearest successor on binary alphabet and plain text DNA sequences
respectively. When medium size alphabets are concerned, it is 40 % faster than the
following best. On natural language text, the performance of the BOM2/BSOM2
degrades a little bit since the underlying data is not uniform now, and thus, SSEF is
50 % more speedy in this case. When timings on 256-byte alphabets are investigated,
10 % improvement is observed according to the next best BOM2 algorithm.

SSEF is approximately more than 5 times faster than the q-hash family, which is
one of the best representative of filter-then-search algorithms. Note that the speed

2 Manzini’s DNA compression benchmark corpus can be downloaded from
http://web.unipmn.it/manzini/dnacorpus.
The enwik8.txt file is the subject of the Hutter Prize compression competition, and can be down-
loaded from http://prize.hutter1.net
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|Σ| = 4 |Σ| = 2
Plain ascii DNA sequence Randomly uniform sequence of 2 characters

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 15,19 10,95 10,54 49,48 16,20 20,56 11,87 37,09 52,06 14,62 212,37 39,52 52,17 16,17
96 12,30 11,04 10,40 50,27 10,72 11,71 9,45 19,12 51,98 14,54 218,18 21,27 25,40 13,06
160 13,44 12,54 14,06 51,37 15,77 16,30 6,53 20,22 51,67 19,46 224,04 31,59 35,95 8,98
224 14,59 12,60 13,42 53,10 12,22 12,53 4,56 21,38 51,88 18,45 223,00 23,60 26,61 6,32
288 15,68 12,69 12,99 50,60 10,06 10,21 3,46 22,51 50,74 18,02 213,45 19,04 21,51 4,87
352 16,84 12,64 12,65 52,89 8,69 8,81 2,85 23,65 52,40 17,47 225,81 16,20 18,06 4,00
416 17,94 12,67 12,03 50,04 7,53 7,66 2,36 24,68 51,86 16,77 218,05 14,13 15,63 3,36
480 19,04 12,74 11,62 49,88 6,75 6,83 2,03 25,92 51,53 16,27 222,09 12,61 13,87 2,91
544 20,24 12,72 11,25 49,96 6,11 6,12 1,82 26,96 51,48 15,90 218,66 11,43 12,47 2,60
608 21,31 12,57 10,92 52,87 5,56 5,65 1,61 28,09 51,17 15,45 221,21 10,50 11,38 2,36
672 22,45 12,56 10,70 51,64 5,12 5,14 1,46 29,18 49,81 15,20 216,25 9,77 10,50 2,21
736 23,50 12,42 10,47 51,07 4,76 4,78 1,35 30,32 51,23 14,90 215,31 9,16 9,75 1,95
800 24,70 12,48 10,16 51,76 4,44 4,45 1,22 31,45 52,17 14,62 220,85 8,59 9,06 1,81
864 25,87 12,21 9,98 51,40 4,13 4,20 1,15 32,46 49,82 14,58 216,94 8,19 8,55 1,62
928 26,87 12,44 9,98 51,37 3,88 3,91 1,11 33,67 50,32 14,42 219,99 7,76 8,08 1,55
992 28,04 12,25 9,80 49,86 3,68 3,70 1,02 34,88 49,84 14,44 204,53 7,38 7,62 1,46
1056 29,42 12,33 9,74 49,15 3,46 3,50 1,00 36,31 50,32 14,32 217,54 7,07 7,31 1,30
1248 33,10 12,22 9,56 49,44 2,95 3,04 0,92 39,67 49,15 14,07 210,31 6,14 6,23 1,19
1440 36,82 12,26 9,35 48,10 2,59 2,68 0,88 43,54 51,81 14,07 215,02 5,41 5,51 1,10
1632 40,67 12,18 9,16 53,39 2,40 2,46 0,83 47,15 50,50 14,15 228,67 4,82 4,89 1,00
1824 44,68 12,18 9,18 51,01 2,27 2,27 0,84 51,21 51,56 14,27 223,11 4,42 4,44 0,96
2000 50,42 12,17 8,96 50,21 2,18 2,37 0,78 57,04 51,08 14,04 214,72 4,16 4,04 0,93
Avg. 29,62 12,27 10,31 50,81 5,23 5,48 2,12 36,80 51,01 15,04 218,52 10,47 11,64 2,89

a) Benchmarks on small alphabet sequences.

|Σ| = 20 |Σ| = 16
Randomly uniform sequence of 20 characters Randomly uniform sequence of 16 characters

Len. BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF
32 14,89 14,40 14,60 15,50 13,28 13,50 15,76 15,00 14,46 14,62 16,75 13,32 13,68 16,40
96 15,87 15,30 14,48 15,12 12,32 12,47 12,79 16,00 15,34 14,48 16,15 12,48 12,71 13,06
160 17,04 19,67 19,37 15,21 10,67 11,10 8,78 17,03 18,89 19,44 15,96 11,79 12,13 9,01
224 18,16 19,23 18,50 15,22 8,33 8,66 6,16 18,16 18,61 18,55 16,12 9,26 9,44 6,32
288 19,29 18,90 18,02 15,22 6,96 7,21 4,76 19,34 18,48 17,96 16,18 7,57 7,74 4,91
352 20,42 18,70 17,38 15,20 6,04 6,21 3,86 20,45 18,30 17,40 16,06 6,39 6,54 3,99
416 21,55 18,55 16,83 15,30 5,30 5,48 3,31 21,54 18,30 16,81 16,13 5,53 5,70 3,40
480 22,64 18,34 16,20 15,26 4,69 4,92 2,89 22,67 18,17 16,28 15,94 4,84 5,05 2,92
544 23,78 18,10 15,78 15,20 4,21 4,40 2,58 23,86 18,02 15,89 16,07 4,34 4,53 2,58
608 24,89 17,96 15,39 15,38 3,83 4,06 2,33 24,95 17,90 15,43 16,11 3,98 4,15 2,33
672 26,04 17,70 15,14 15,20 3,54 3,71 2,13 26,10 17,76 15,11 16,04 3,64 3,80 2,15
736 27,19 17,68 14,86 15,22 3,23 3,43 1,94 27,19 17,54 14,87 15,97 3,38 3,53 1,92
800 28,26 17,50 14,56 15,22 3,01 3,14 1,77 28,22 17,54 14,64 16,14 3,14 3,27 1,74
864 29,45 17,32 14,52 15,18 2,74 2,96 1,64 29,50 17,42 14,48 16,06 2,97 3,06 1,64
928 30,49 17,18 14,49 15,18 2,57 2,98 1,49 30,61 17,29 14,38 16,16 2,84 2,89 1,53
992 31,73 17,14 14,31 15,14 2,41 2,65 1,38 31,80 17,26 14,30 16,16 2,69 2,81 1,47
1056 33,08 17,05 14,23 15,26 2,21 2,37 1,32 33,04 17,23 14,31 16,02 2,54 2,68 1,34
1248 36,59 16,84 14,17 15,18 1,97 2,08 1,11 36,78 16,96 14,13 16,10 2,30 2,35 1,17
1440 40,34 16,70 14,06 15,26 1,82 1,86 1,01 40,50 16,85 13,99 16,23 2,11 2,15 1,08
1632 44,08 16,56 14,04 15,24 1,71 1,81 0,96 44,04 16,86 14,04 16,08 2,00 2,01 1,00
1824 48,05 16,45 14,08 15,26 1,73 1,76 0,92 48,04 16,54 14,05 16,13 1,92 1,94 1,00
2000 53,94 16,39 14,09 15,20 1,68 1,80 0,94 53,16 16,51 14,14 16,20 1,93 2,02 0,92
Avg. 33,22 17,23 15,04 15,27 3,84 4,00 2,81 33,06 17,20 15,00 16,11 4,13 4,24 2,90

b) Benchmarks on medium alphabet sequences.

Table 3. Experimental comparison of algorithms on small and medium alphabets.
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|Σ| BLIM 3-hash 8-hash QS BOM2 BSOM2 SSEF

2 815,24 588,07 1994,18 137,29 2865,06 2577,82 10382,87
4 729,20 1760,55 2094,16 425,14 4126,17 3939,90 10201,31
16 907,38 1744,17 1999,72 1862,76 7269,64 7074,85 10347,06
20 903,09 1741,58 1994,93 1965,23 7809,45 7507,04 10659,09
128 729,85 2433,05 2182,84 2135,84 6750,49 6748,78 10307,95
256 816,72 2015,00 2026,76 1945,14 9749,29 9591,72 10585,84

Table 4. Average speed of the tested algorithms in MB/sec for each |Σ| alphabet
size.

of the proposed algorithm is not much effected with the size or distribution of the
alphabet unlike its nearest competitors BOM2 and BSOM2.

6 Conclusion

This study introduced a filter-then-search type pattern matching algorithm for long
patterns benefiting from computers intrinsic SIMD instructions. Using SIMD intrin-
sics has not been much addressed in pattern matching, and this study is an initial
exploration of designing algorithms according to that technology, which is developing
very fast.

The proposed SSEF algorithm is implemented on Intel’s SSE (version 2) technol-
ogy. Experimental benchmarks showed that on every alphabet sizes it is faster than
all competitors included in this study. Considering the orders of magnitude perfor-
mance gain on small and medium alphabet sizes, SSEF becomes a strong alternative
for exact matching of long patterns on biological sequences.

The best and worst case time complexities being O(n/m) and O(n·m) respectively
are identical with the classical Boyer-Moore type algorithms. The main improvement
comes with the average case complexity of O(n ·m/216). Note that the performance of
the algorithm is independent of the alphabet size (assuming |Σ| > 1), and conducted
experiments proves this empirically also.
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Abstract. A partially occluded image consists of a set of objects where some may be
partially occluded by others. Validating occluded images distinguishes whether a given
image can be covered by the members of a finite set of objects, where both the image
and the object range over identical alphabet. The algorithm presented here validates a
one-dimensional image x of length n, over a given set of objects all of equal length and
each composed of two parts separated by a transparent hole.

Keywords: valid image, approximate valid image, image decomposition

1 Introduction

In recent studies of repetitive structures of strings, generalized notions of periods have
been introduced [2]. Here we present practical methods to study the following type
of regularity: we want to “cover” a string using a set of “objects”.These objects may
“occlude” each other and may be separated by a hole.

Validating partially occluded images is a classical problem in computer vision
and its computational complexity is exponential. An input image is valid, if it can
be composed from a members of a finite set of objects, with some of the appearing
objects being partially occluded by other ones. This problem is also typical in pattern
recognition and computer graphics. There is a great number of artificial intelligence
and neural net solutions to this problem.

Validating occluded one dimensional images has been a well studied problem in
algorithm design. Iliopoulos and Simpson [6] focused on the theoretical aspect of the
problem and produced a sequential on-line algorithm for validating occluded one-
dimensional images. Furthermore, different aspects of this problem have been studied
and solved by Iliopoulos and Reid. In [5], the authors provided a linear time solution
to the problem in the presence of errors, in [4] they presented an optimal O(log log n)-
time algorithm using parallel computation and in [3] solved the problem for discrete
two-dimensional partially occluded images in linear time.

In this paper, we move a step forward, based on the above analyses and we extend
the previous work by considering the validity of a family of images, that we call valid
images with holes. In this context, given a set of objects s1, . . . , sk, each composed of
two parts separated by a small transparent hole, an image x of length n is a valid
image with hole, if x is iteratively obtained from a string z = #n by substituting
substrings of z by some objects si , for some i ∈ {1..k} and a special “background”
symbol #. We focus on designing an on-line algorithm for testing images in one
dimension for validity, with restricted set of objects, e.g., objects of the same length,
that are consisting of two parts separated by a hole of small size.
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The paper is organized as follows. In Section 2, we introduce basic definitions and
notations used in this paper. In Section 3, we present the principles for validating
images in one dimension. In Section 4, the main validating algorithm is presented
with its time complexity analysis. Finally, we state our conclusions in Section 5.

2 Background

An alphabet Σ is a set of elements that are called letters, characters or symbols. A
string x is a sequence of zero or more letters from Σ, that is x[1]x[2] · · · x[n] with
x[i] ∈ Σ, 1 ≤ i ≤ n. The length of x, denoted by |x|, is the total number of letters in
x. The string of length zero is the empty string ε. The string xy is a concatenation
of two strings x and y.

A string y is a substring of x, if and only if, there exist two strings u and v such
that x = uyv. A string u is a prefix (respectively suffix ) of x, if and only if, there
exists a string v over such that x = uv (respectively x = vu). If v 6= ε then u is a
proper prefix (respectively proper suffix ) of x.

Additionally, prefixp(x) denotes the first p letters of x and suffixp(x) denotes the
last p letters of x. Given two strings x = x[1]x[2] · · · x[n] and y = y[1]y[2] · · · y[m],
such that x[n − i + 1] · · · x[n] = y[1] · · · y[i] for some i ≥ 1 (that is such that x has
a suffix equal to a prefix of y), the string x[1] · · · x[n]y[i + 1] · · · y[m] is called a
superposition of x and y with i overlap. A string w of x is called a cover of x if and
only if an extension of x can be constructed by concatenations and superposition of
w.

Valid Image over set of Objects:

Definition 1. Let x be a string of length n over an alphabet Σ and let the dictionary
O = {s1, . . . , sm} be a set of strings called the objects also over Σ. Then x is called
a valid image if and only if x = zi for some i ≥ 0, where

z0 = #n

zi+1 = prefixp(zi) sl suffixq(zi) . (1)

for some sl ∈ O and p, q ∈ {0, . . . , n− 1} such that p + |sm|+ q = n. ⊓⊔
Equation (1) is called the substitution rule and the sequence z0, z1, . . .,zi is called the
generating sequence of x. The number of distinct generating sequences was proved to
be exponential [6].

An example of such generating sequences for a specific string is as follows. Let
O = {s1 = abc, s2 = acde, s3 = ade, s4 = dc, s5 = abd}. Then x = abababacdedcdcade
is a valid image over O with generating sequence:

z0 = #17,

z1 = abc#14,

z2 = abc#11ade,

z3 = ababc#9ade,

z4 = abababc#7ade,

z5 = abababacde#4ade,
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z6 = abababacdedc#2ade,

z7 = abababacdedcdcade.

Note that the generating sequence of x is not unique. The following sequence:

z0 = #17,

z1 = abd#14,

z2 = ababc#12,

z3 = abababc#10,

z4 = abababc#7ade,

z5 = abababc#3dc#2ade,

z6 = abababc#3dcdcade,

z7 = abababacdedcdcade.

also generates x as a valid image over O.

Valid Image over Set of Objects with Hole:
Let x be a string of length n over an alphabet Σ and let the dictionary O = {s1, . . . , sk}
be a set of strings called the objects, where each object si is composed of two strings
sl

i and sr
i separated by a hole of length h. Then x is called a valid image if and only

if x = zi for some 0 ≤ i, where

z0 = #n

zi+1 = prefixp(zi) sm suffixq(zi) . (2)

for some sm ∈ O and p, q ∈ {0, . . . , n− 1} such that p + |sm|+ q = n.

Figure 1, presents the notion of finding the objects comprising an image. If the
image is observed from above, one can see some of the objects are partially occluded
by others but can see some of the covered ones through the hole. We are trying to
decompose what the eye sees to its sources. In this example of Figure 1 the valid
image of the objects is composed of the following elements:
Image = prefix (sl

2) sl
1 suffix (sl

3) substring(sl
4) prefix (sr

2) sr
1 suffix (sr

3) suffix (sr
4)

image x

sl
1

sr
1

sl
2

sr
2

sl
3

sr
3

sl
4

sr
4

Figure 1. Image consisting from objects separated by a hole of same length.
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In this paper, we consider the problem of validation of an image over a set of
objects with holes. Each object si ∈ O consists of a left part (head) and a right
part(tail) separated by a transparent hole of length h. We denote the left part of si as
sl

i and the the right part as sr
i . For simplicity, we require that |sl

i| = |sr
i | and h≪ |sl

i|,
for each si ∈ O.

The definition of a valid image implies that constituent objects are contained
within the image x. That is, there is no si for all i ∈ {1, . . . , k} that is ‘cut’ at x[1]
or x[n].

This leads to the following facts:

If x is a valid image over O = {s1, s2, . . . , sk}, then for some i ∈ {1, . . . , k},
Fact 1: there exists a suffix s̄r

i of sr
i that is also a suffix of x.

Fact 2: there exists a prefix ŝl
i of sl

i that is also a prefix of x.

Fact 3: there is no suffix of a left part sl
i that occurs in x ending at position ℓ, where

ℓ > n− h− |sr
i |.

Fact 4: there is no prefix of a right part sr
i that occurs in x at position ℓ′, where

ℓ′ < |sl
i|+ h.

3 Validation of Images with Objects of Equal Length

In this section, we start by defining what part of a valid image one should expect to
see within the hole i.e. between the left and the right parts of an object. Subsequently,
we proceed and present the main mechanism for validating one-dimensional images
over a set of objects with holes.

Given a set of objects O, a string b of length h is a binding if it is a concatenation
of the following three (possibly empty) parts:

Part 1: is a sequence of suffixes of left/right parts of objects in O,
where the leading (first) suffix is a suffix of a left part of an object.

Part 2: is a substring of a left/right part of an object.

Part 3: is a sequence of prefixes of left/right parts of objects in O,
where the leading (last) prefix is a prefix of a right part of an object.

Note that any substring of a left or a right part of an object is also a binding if
it is of length h. A binding b is satisfied, if and only if, the length of the part of the
valid image following the binding is big enough to insure that each object from O
appears within the hole is totally occluded by the image.

Theorem 2. Let x be a string over Σ. Let O = {s1, s2, . . . , sk} be a set of objects all
of the same length and each composed of left part sl

i and right part sr
i separated by a

hole of length h. The string x is a valid image over O if and only if

x = ŝl
iy with i ∈ {1..k}, (3)
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or

x = ys̄r
i with i ∈ {1..k}, (4)

or

x = ys̃iw with i ∈ {1..k}, (5)

or

x = ys̄l
ibŝ

r
i z with i ∈ {1..k}, (6)

where ŝl
i, s̄r

i and s̃i denote a prefix of the left part sl
i, suffix of the right part sr

i and a
substring of either parts of si respectively, y and w are valid images and b is a satisfied
binding.

The above theorem provides the main mechanism for validating images over a
set of objects with holes and all of equal length. Equations (3) and (4) are restate-
ments of Facts 1 and 2. Equations (5) and (6) state what one should expect at the
decomposition of two valid sub-images.

If an image x is of the form (5), and si = us̃iv for some strings u, v and a non-
empty substring s̃i of either the left or the right part of si, then x is a valid image,
since x can be generated by the sequence:

z0 = #n, z0 = #psi#
q, where p = |y| − |u|,

followed by an application of the generating sequence of y on the first |y| symbols of
z1 and the generating sequence of w on the last |w| symbols of z1.

If an image x is of the form (6), and sl
i, and sr

i are both the left and the right part
of si separated by a hole of length h, then x is a valid image, since x can be generated
as:

zi+1 = prefix (zi)s
l
ibs

r
i suffix (zi),

where b is the part of zi appearing in the hole separating the left and the right
part of si, followed by an application of the generating sequence of y on the first
|y| = |prefix (zi)| + |sl

i| − |s̄l
i| symbols of z1 and the generating sequence of w on the

last |w| symbols of z1.

4 An On-Line Algorithm

Here we present the algorithm for validating an image over a set of objects with holes
and of equal length. Algorithm 1 presents the main commands of the algorithm in
the form of pseudocode.
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Algorithm 1 On-line Image Validation ALgorithm
Input: image x[1. . . . , n], the set of objects O = {s1, s2 . . . sk} all of equal length.
Output: T if and only if x is a valid image, F otherwise.

initialization

1: valid[0, . . . , n]← [T, F, . . . , F]
2: p valid[0]← 1
3: last prefix← last valid← 0
4: begin
5: for i = 1 to N do

6: do
7: p valid[i]← last valid

case study

8: (1) ŝl
j = x[ℓ..i] is the longest prefix of some sl

j

9: if valid[ℓ− 1] = T OR prefix[ℓ − 1] = T then

10: prefix[max{last prefix + 1, ℓ} . . . i]← T

11: end if

12: if x[p valid[ℓ− 1] + 1 . . . ℓ− 1] is a substring of some sj ∈ O then

13: prefix[max{last prefix + 1, ℓ} . . . i]← T

14: end if

15: if p valid[ℓ− 1] ≥ ℓ− |sj | − 1 then

16: Return “Invalid Image”
17: end if

18: last prefix← i
19: (2) ŝr

j = x[ℓ..i] is the longest prefix of some sr
j .

20: if prefix[ℓ− 1] = T and first prefix ≤ ℓ− h + |sr
j | then

21: prefix[max{last prefix + 1, ℓ} . . . i]← T

22: end if

23: if ŝr
j = sr

j then

24: valid[i]← T

25: last valid← i
26: end if

27: if l suffix[j][ℓ − h− 1] = T and x[ℓ− h..ℓ− 1] is a satisfied binding then

28: prefix[max{last prefix + 1, ℓ} . . . i]← T

29: end if

30: if ŝj = sj then

31: valid[i]← T

32: last valid← i
33: end if

34: (3) s̄l
j = x[ℓ..i] is the largest suffix of some sl

j .
35: l suffix[j][i] ← T

36: (4) s̄r
j = x[ℓ..i] is the largest suffix of some sr

j .
37: if p valid[i] ≥ ℓ− 1 then

38: valid[i]← T

39: last valid← i
40: end if

41: end for

The algorithm is based on Facts 1-4 as well as the following principles:

(a) The occurrence of a proper prefix of either a left or a right part of an object in
a valid image must be followed by a prefix (not necessarily proper) of a left or a
right part of an object.

(b) If the occurrence of a proper prefix of either a left or a right part of an object is
followed by an occurrence of a proper suffix of either a left or a right part of an
object, then the image is not valid. In a valid image, the occurrence of a proper
suffix of an object is always preceded by the suffix of either a left or a right part
of an object.

(c) The occurrence of a suffix of either a left or a right part of an object can be
followed by either a prefix or a substring or a suffix.
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(d) If an occurrence of a suffix of a left part of an object is not followed by either
an occurrence of a prefix of its corresponding right part in a distance h or an
occurrence of a prefix of a left part of an object in a distance at most h, then the
image is not valid. In both cases a satisfied binding should separate the two parts.

(e) The occurrence of a substring in a valid image may be preceded by and followed
by valid images.

Preprocessing Stage
In this stage we preprocess the set of objects. We compute the suffix tree of the set
of the left and right parts of all objects in O [7,9,8]. This data structure will allow
us to perform a constant time on-line checks whether a suffix, or a substring of sl

j/s
r
j

occurs in any position of x. We will also build the Aho-Corasick automaton [1] for
the set of the left and right parts of all objects in O that will allow us to compute
the largest prefixes of sl

j/s
r
j occurring in x.

Main Algorithm
At the beginning of step i the algorithm has already determined whether x[1..j] is a
valid image or not, for all j ∈ {1..i − 1}. Moreover, the algorithm should determine
by the end of the current step whether x[1..j] is valid or not for j ∈ {1..i}. This is
achieved by examining the suffixes of x[1..i]. There are six possible cases: A suffix of
x[1..i] can be either a prefix of a left part, a prefix of a right part, a suffix of a left
part, a suffix of a right part, a substring, a binding or a complete part of an object
sj for some j ∈ {1..k}. Otherwise, the string is not a valid image (Theorem 2).

Let ŝl
j = x[ℓ..i] be the longest prefix of a left part of an object in O that is also a

suffix of x[1..i]. A prefix of a left part of an object is preceded by either a valid image,
or a proper prefix of left/right part an object or a substring of an object.

– If valid[ℓ−1] is marked TRUE, then x[1..ℓ−1] is a valid image and position ℓ could
be the beginning of a valid sub-image, thus we mark prefix[i] = TRUE, first-prefix
= ℓ and last-prefix = i.

– If prefix[ℓ − 1] is marked TRUE, then we have a chain of prefixes, thus we mark
prefix[i] = TRUE and last-prefix = i.

– If there is no prefix of a left/right part of an object or a valid image preceding ŝl
j,

then x[1..i] is valid if and only if x[previous-valid[ℓ− 1] + 1..ℓ− 1] is a substring of
left/right part of an object or x[previous-valid[ℓ−1]+1..i] is a prefix of a satisfied
binding. If x[previous-valid[ℓ− 1] + 1..ℓ− 1] is a substring then ℓ is the start of a
valid image.

Let ŝr
j = x[ℓ..i] be the longest prefix of a right part of an object in O that is also

a suffix of x[1..i]. Similarly, a prefix of an object is preceded by either a proper prefix
of left/right part an object or a substring of an object.

– If prefix[ℓ − 1] is marked TRUE and first-prefix ≤ ℓ − h + |sr
j | , then we have a

chain of prefixes thus we mark prefix[i] = TRUE and last-prefix = i. If ŝr
j = sr

j (a
complete left part), then x[1..i] is a valid image and we mark the relevant array
as TRUE.

– If l-suffix[j][ℓ − h − 1] is marked TRUE and x[ℓ − h..ℓ − 1] is a satisfied binding
then we have a prefix of a valid image (Eq. (6)), thus we mark prefix[i] = TRUE
and last-prefix = i. If ŝr

j = sr
j (a complete left part), then x[1..i] is a valid image

and we mark the relevant array as TRUE.
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Let s̄l
j = x[ℓ..i] be the longest suffix of a left part of an object in O that is also a

suffix of x[1..i]. If valid[ℓ− 1] then l-suffix[j][i] is marked TRUE.
Finally, let s̄r

j = x[ℓ..i] be the longest suffix of a right part of an object in O that
is also a suffix of x[1..i]. Note that, in a valid image, a suffix s̄r

j is always preceded by
a valid image.

– If previous-valid[ℓ− 1] ≥ ℓ− 1, then x[1..i] is valid.
– If there is no valid image preceding s̄r

j , then x[1..i] is valid if and only if the length
of i−previous-valid[ℓ− 1] < |sj|.

Theorem 3. Algorithm 1 validates an image x over a set O of objects of equal length
and all and each composed of two parts separated by a hole in linear O(|x|+ |O|) time.

Proof. The construction of the Aho-Corasick automaton and the suffix tree of the
dictionary O both require O(|O)| time.

At Stage i, finding the largest suffix that is a prefix of some part of an object
requires constant time. At Stage i−1, we have traced on the Aho-Corasick automaton
the largest prefix of a part of an object that is a suffix of x[1..i − 1]; on Stage i, we
can either extend this prefix with one symbol, x[i], or we can follow the failure link
that lead to the largest such prefix. Each of the other lines of Algorithm 1 requires
constant time and thus the bound on the running time follows.

5 Conclusions

We have presented an on-line algorithm that determines whether a given image is
valid or not over a given set of objects with holes where each object composed of two
parts separated by a transparent hole. We have solved the problem for a restricted set
of objects. I.e. objects of the same lengths and presented a linear time algorithm. As
future work, the algorithm may be modified in the same way as the original validation
algorithm by [6], in order to deal with a set of objects of different lengths. Another
interesting problem is the computation of the depth of an object in an image, i.e. the
number of rules applied after the placement of an object in an image.
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Abstract. A work-optimal O(log M log n) time parallel implementation of lossless im-
age compression by block matching of bi-level images is shown on a full binary tree
architecture under some realistic assumptions, where n is the size of the image and M
is the maximum size of the match. Decompression on this architecture is also possi-
ble with the same parallel computational complexity. Such implementations have no
scalability issues.

Keywords: lossless compression, sliding dictionary, bi-level image, tree architecture

1 Introduction

Storer suggested that fast encoders are possible for two-dimensional lossless compres-
sion by showing a square greedy matching heuristic for bi-level images, which can
be implemented by a simple hashing scheme [6]. Rectangle matching improves the
compression performance, but it is slower since it requires O(M log M) time for a
single match, where M is the size of the match [7]. Therefore, the sequential time to
compress an image of size n by rectangle matching is Ω(n log M).

The technique is a two-dimensional extension of LZ1 compression [5]. Simple and
practical heuristics exist to implement LZ1 compression by means of hashing tech-
niques [2], [9], [10]. The hashing technique used for the two-dimensional extension is
even simpler.

Among the different ways of reading an image, we assume that the rectangle
matching compression heuristic is scanning an m × m′ image row by row (raster
scan). A 64 K table with one position for each possible 4 × 4 subarray is the only
data structure used. All-zero and all-one rectangles are handled differently. The en-
coding scheme is to precede each item with a flag field indicating whether there is a
monochromatic rectangle, a match, or raw data. When there is a match, the 4 × 4
subarray in the current position is hashed to yield a pointer to a copy. This pointer
is used for the current rectangle greedy match and then replaced in the hash table by
a pointer to the current position. As mentioned above, the procedure for computing
the largest rectangle match with left upper corners in positions (i, j) and (k, h) takes
O(M log M) time, where M is the size of the match. This procedure can be used for
computing the largest monochromatic rectangle in a given position (i, j) as well. If
the 4 × 4 subarray in position (i, j) is monochromatic, then we compute the largest
monochromatic rectangle in that position. Otherwise, we compute the largest rect-
angle match in the position provided by the hash table and update the table with
the current position. If the subarray is not hashed to a pointer, then it is left uncom-
pressed and added to the hash table with its current position. The positions covered
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by matches are skipped in the linear scan of the image and the sequential time to
compress an image of size n by rectangle matching is Ω(n log M). We want to point
out that besides the proper matches we call a match every rectangle of the parsing of
the image produced by the heuristic. We also call pointer the encoding of a match.

The analysis of the running time of these algorithms involve a so called waste
factor, defined as the average number of matches covering the same pixel. In [7], it
is conjectured that the waste factor is less than 2 on realistic image data. Therefore,
the square greedy matching heuristic takes linear time while the rectangle greedy
matching heuristic takes O(n log M) time. On the other hand, the decoding algorithms
are both linear.

Parallel coding and decoding algorithms were shown in [3] requiring O(log M log n)
time and O(n/ log n) processors on the PRAM EREW, mesh of trees, pyramidal, and
multigrid architectures. The parallel encoder and decoder on the pyramid and the
multigrid require some realistic assumptions. Under the same realistic assumptions,
we show in this paper how to implement such encoder/decoder with the same par-
allel complexity on a full binary tree architecture. In section 2, we explain the block
matching heuristic. In section 3, we describe scalable algoritms for coding and de-
coding bi-level images compressed by block matching on an exclusive read, exclusive
write shared memory parallel machine. In section 4, we show how such parallel imple-
mentations can be run on a tree architecture. Conclusions and future work are given
in section 5.

2 The Block Matching Heuristic

The compression heuristic scans an image row by row. We denote with pi,j the pixel in
position (i, j). The procedure for finding the largest rectangle with left upper corner
(i, j) that matches a rectangle with left upper corner (k, h) is described in figure 1.

w = k;

r = i;

width = m;

length = 0;

side1 = side2 = area = 0;

repeat

Let p

r;j

� � � p

r;j+`�1

be the longest mat
h in (w;h) with ` � width;

length = length+ 1;

width = `;

r = r + 1;

w = w + 1;

if (length � width > area) f

area = length � width;

side1 = length;

side2 = width;

g

until area � width � (i� k + 1) or w = i+ 1

Figure 1. Computing the largest rectangle match in (i, j) and (k, h).
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At the first step, the procedure computes the longest possible width for a rectangle
match in (i, j) with respect to the position (k, h). The rectangle 1 × ℓ computed at
the first step is the current rectangle match and the sizes of its sides are stored in
side1 and side2. In order to check whether there is a better match than the current
one, the longest one-dimensional match on the next row and column j, not exceeding
the current width, is computed with respect to the row next to the current copy and
to column h. Its length is stored in the temporary variable width and the temporary
variable length is increased by one. If the rectangle R whose sides have size width
and length is greater than the current match, the current match is replaced by R.
We iterate this operation on each row until the area of the current match is greater
or equal to the area of the longest feasible width-wide rectangle, since no further
improvement would be possible at that point. For example, in figure 2 we apply the
procedure to find the largest rectangle match between position (0, 0) and (6, 6).

0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 step 1

0 0 1 1 1 0 0 1 0 0 0 0 0 1 0 step 2

1 0 1 1 1 0 0 1 0 1 0 0 1 1 1 step 3

0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 step 4

0 1 1 0 1 0 0 1 0 0 0 0 0 0 1 step 5

0 0 0 0 1 1 0 1 1 0 0 0 1 1 1 step 6

0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 step 1

0 0 1 0 1 1 0 0 1 1 0 0 1 1 1 step 2

0 0 1 0 1 1 1 0 0 0 0 0 1 1 1 step 3

0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 step 4

0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 step 5

0 0 1 0 1 1 0 1 0 0 0 0 1 1 1 step 6

0 0 0 0 1 1 0 1 1 0 0 0 1 1 1

Figure 2. The largest match in (0,0) and (6,6) is computed at step 5.

A one-dimensional match of width 6 is found at step 1. Then, at step 2 a better
match is obtained which is 2× 4. At step 3 and step 4 the current match is still 2× 4
since the longest match on row 3 and 9 has width 2. At step 5, another match of
width 2 provides a better rectangle match which is 5 × 2. At step 6, the procedure
stops since the longest match has width 1 and the rectangle match can cover at most
7 rows. It follows that 5× 2 is the greedy match since a rectangle of width 1 cannot
have a larger area. Obviously, this procedure can be used for computing the largest
monochromatic rectangle in a given position (i, j) as well.

As mentioned in the introduction, the procedure for computing the largest rect-
angle match takes O(M log M) time, where M is the size of the match. The positions
covered by matches are skipped in the linear scan of the image and the sequential
time to compress an image of size n by rectangle matching is Ω(n log M). The anal-
ysis of the running time of this algorithm involve a so called waste factor, defined as
the average number of matches covering the same pixel. In [7], it is conjectured that



140 Proceedings of the Prague Stringology Conference 2009

the waste factor is less than 2 on realistic image data. Therefore, the square greedy
matching heuristic takes linear time while the rectangle greedy matching heuristic
takes O(n log M) time. On the other hand, the decoding algorithms are both linear.

3 A Massively Parallel Block Matching Algorithm

Coding and decoding algorithms are shown in [3] on the PRAM EREW, mesh of trees,
pyramidal, and multigrid architectures, requiring O(log M log n) time and O(n/ log n)
processors. The pyramid and multigrid implementations need some realistic assump-
tions. Under the same realistic assumptions, we show in the next section how to
implement such encoder/decoder with the same parallel complexity on a full binary
tree architecture. In this section, we present the PRAM EREW encoder/decoder.
These algorithms can be implemented in O(α log M) time with O(n/α) processors
for any integer square value α ∈ Ω(log n).

To achieve sublinear time we partition an m ×m′ image I in x × y rectangular
areas, where x and y are Θ(α1/2). In parallel for each area, one processor applies the
sequential parsing algorithm so that in O(α log M) time each area will be parsed in
rectangles, some of which are monochromatic. Before encoding we wish to compute
larger monochromatic rectangles.

3.1 Computing the Monochromatic Rectangles

We compute larger monochromatic rectangles by merging adjacent monochromatic
areas without considering those monochromatic rectangles properly contained in some
area. Such limitation has no relevant effect on the compression ratio.

We denote with Ai,j for 1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which
the image is partitioned. In parallel for 1 ≤ i ≤ ⌈m/x⌉, if i is odd, a processor merges
areas A2i−1,j and A2i,j provided they are monochromatic and have the same color. The
same is done horizontally for Ai,2j−1 and Ai,2j. At the k-th step, if areas A(i−1)2k−1+1,j,
A(i−1)2k−1+2,j, . . . , Ai2k−1,j, with i odd, were merged, then they will merge with areas
Ai2k−1+1,j, Ai2k−1+2,j, . . . , A(i+1)2k−1,j, if they are monochromatic with the same color.
The same is done horizontally for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . . , Ai,j2k−1 , with j
odd, and Ai,j2k−1+1, Ai,j2k−1+2, . . . , Ai,(j+1)2k−1 . After O(log M) steps, the procedure is
completed and each step takes O(α) time and O(n/α) processors since there is one
processor for each area. Therefore, the image parsing phase is realized in O(α log M)
time with O(n/α) processors on an exclusive read, exclusive write shared memory
machine.

3.2 The Parallel Encoder

We derive the sequence of pointers from the image parsing computed above. In O(α)
time with O(n/α) processors we can identify every upper left corner of a match
(proper, monochromatic, or raw) by assigning a different segment of length Θ(α)
on a row to each processor. Each processor detects the upper left corners on its
segment. Then, by parallel prefix we obtain a sequence of pointers decodable by the
decompressor paired with the sequential heuristic. However, the decoding of such
sequence seems hard to parallelize. In order to design a parallel decoder, it is more
suitable to produce the sequence of pointers by a raster scan of each of the areas into
which the image was originally partitioned, where the areas are ordered by a raster
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scan themselves. Again we can easily derive the sequence of pointers in O(α) time
with O(n/α) processors by detecting in each area every upper left corner of a match
and producing the sequence of pointers by parallel prefix.

As mentioned in the introduction, the encoding scheme for the pointers uses a flag
field indicating whether there is a monochromatic rectangle (0 for the white ones and
10 for the black ones), a proper match (110), or raw data (111). For the feasibility
of the parallel decoder, we want to indicate the end of the encoding of the sequence
of matches with the upper left corner in a specific area. Therefore, we change the
encoding scheme by associating the flag field 1110 to the raw match so that we can
indicate with 1111 the end of the sequence of pointers corresponding to a given area.
Moreover, since some areas could be entirely covered by a monochromatic match 1111
is followed by the index associated with the next area by the raster scan. The pointer
of a monochromatic match has fields for the width and the length while the pointer
of a proper match also has fields for the coordinates of the left upper corner of the
copy in the window. In order to save bits, the value stored in any of these fields is
the binary value of the field plus 1 (so, we employ the zero value). Also, the range
for these values is determined by α but for the width and length of monochromatic
matches sharing the upper left corner with one of the areas Ai,j (in this case, the
range is determined by the width and length of the image). This coding technique is
more redundant than others previously designed, but its compression effectiveness is
still better than the one of the square greedy matching technique.

3.3 The Parallel Decoder

The parallel decoder has three phases. Observe that at each position of the binary
string encoding the image, we read a substring of bits that is either 1111 (recall that
the k bits following 1111 provide the area index, where k is the number of bits used
to encode it) or can be interpreted as a flag field of a pointer. Then, in the first phase
we reduce the binary string to a doubly-linked structure and apply the Euler tour
technique in order to identify for each area the corresponding pointers. The reduction
works as follows: link each position p of the string to the position next to the end of the
substring starting in position p that either is equal to 1111 followed by k bits or can
be interpreted as a pointer. For those suffixes of the string which can be interpreted
as pointers, their first positions are linked to a special node denoting the end of the
coding. For those suffixes of the string which cannot be interpreted as pointers, their
first positions are not linked to anything. The linked structure is a forest with one
tree rooted in the special node denoting the end of the coding and the other trees
rooted in the first position of a suffix of the encoding string not interpretable as a
pointer. The first position of the binary string is a leaf of the tree rooted in the
special node. The sequence of pointers encoding the image is given by the path from
the first position to the root. In order to compute such path we need the children to
be doubly-linked to the parent. Then, we need to reserve space for each node to store
the links to the children. Each node has at most five children since there are only
four different pointer sizes (white, black, raw, or proper match). So, for each position
p of the binary sequence we set aside five locations [p, 1], . . . , [p, 5], initially set to
zero. When a link is added from position p′ to p, depending on whether the substring
starting in position p′ is 1111 or can be interpreted as a pointer to a raw, white,
black or proper match, the value p′ is overwritten on location [p, 1], [p, 2], [p, 3] [p, 4]
or [p, 5], respectively. The linking for the substrings starting with 1111 is done first,
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since only afterwards we know exactly which substrings can be interpreted as pointers
(recall that encoding the width and length of a monochromatic match sharing the
left upper corner with one of the areas Ai,j depends on the width and length of the
whole image). Then, by means of the well-known Euler technique [8] we can linearize
the linked structure and apply list ranking to obtain the path from the first position
of the sequence to the root of its tree in O(α) time with O(n/α) processors on an
exclusive read, exclusive write shared memory machine [1], [4], since the row image
size is greater than the size of the encoding binary string. Then, still in O(α) time
with O(n/α) processors we can identify the positions on the path corresponding to
1111.

In the second phase of the parallel decoder a different processor decodes the
sequence of pointers corresponding to a different area. As far as the pointers to
monochromatic matches are considered, each processor decompresses either a match
contained in an area or the portion of the match corresponding to the left upper area.
Therefore, after the second phase an area might not be decompressed. Obviously, the
second phase requires O(α) time and O(n/α) processors.

The third phase completes the decoding. In the previous subsection, we denoted
with Ai,j for 1 ≤ i ≤ ⌈m/x⌉ and 1 ≤ j ≤ ⌈m′/y⌉ the areas into which the im-
age was partitioned by the encoder. At the first step of the third phase, one pro-
cessor for each area A2i−1,j decodes A2i,j, if A2i−1,j is the upper left portion of
a monochromatic match and the length field of the corresponding pointer informs
that A2i,j is part of the match. The same is done horizontally for Ai,2j−1 and Ai,2j

(using the width field of its pointer) if it is known already by the decoder that
Ai,2j−1 is part of a monochromatic match. Similarly at the k-th step, one proces-
sor for each of the areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, . . . , Ai2k−1,j, with i odd, de-
codes the areas Ai2k−1+1,j, Ai2k−1+2,j, . . . , A(i+1)2k−1,j, respectively. The same is done
horizontally for Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . . , Ai,j2k−1 , with j odd, and Ai,j2k−1+1,
Ai,j2k−1+2, . . . , Ai,(j+1)2k−1 . After O(log M) steps the image is entirely decompressed.
Each step takes O(α) time and O(n/α) processors since there is one processor for each
area. Therefore, the decoder is realized in O(α log M) time with O(n/α) processors.

4 The Tree Architecture Implementations

We implement the parallel BLOCK MATCHING encoder and decoder on a full binary
tree architecture. We extend the m×m′ image I with dummy rows and columns so
that I is partitioned into x×y areas Ai,j for 1 ≤ i, j ≤ 2h, where x and y are Θ(α1/2),
n = mm′ is the size of the image and h = min{k : 2k ≥ max{m/x,m′/y}}. We
store these areas into the leaves of the tree according to a one-dimensional layout
which allows an easy way of merging the monochromatic ones at the upper levels.
Let µ = 2h. The number of leaves is 22h and the leaves are numbered from 1 to 22h

from left to right. It follows that the tree has height 2h. Therefore, the height of the
tree is O(log n) and the number of nodes is O(n/α). Such layout is described by the
recursive procedure of figure 3. The initial value for i, j and ℓ is 1 and ℓ is a global
variable.

In parallel for each area, each leaf processor applies the sequential parsing algo-
rithm so that in O(α log M) time each area is parsed into rectangles, some of which are
monochromatic. Again, before encoding we wish to compute larger monochromatic
rectangles.
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STORE(I, µ, i, j)

if µ > 1

STORE(I, µ/2, i, j)

STORE(I, µ/2, i + µ/2, j)

STORE(I, µ/2, i, j + µ/2)

STORE(I, µ/2, i + µ/2, j + µ/2)

else store Ai,j into leaf ℓ; ℓ = ℓ + 1

Figure 3. Storing the image into the leaves of the tree.

4.1 Computing the Monochromatic Rectangles

After the compression heuristic has been executed on each area, we have to show
how the procedure to compute larger monochromatic rectangles can be implemented
on a full binary tree architecture with the same number of processors without slow-
ing it down. This is possible by making some realistic assumptions. Let ℓR and wR

be the length and the width of a monochromatic match R, respectively. We define
sR = max{ℓR, wR}. We make a first assumption that the number of monochromatic

matches R with sR ≥ 2k⌈log1/2 n⌉ is O(n/(22k log n)) for 1 ≤ k ≤ h− 1. While com-
puting larger monochromatic rectangles, we store in each leaf the partial results on
the monochromatic rectangles covering the corresponding area (it is enough to store
for each rectangle the indices of the areas at the upper left and lower right corners).
If i is odd, it follows from the procedure of figure 3 that the processors storing areas
A2i−1,j and A2i,j are siblings. Such processors merge A2i−1,j and A2i,j provided they
are monochromatic and have the same color by broadcasting the information through
their parent. It also follows from such procedure that the same can be done horizon-
tally for Ai,2j−1 and Ai,2j by broadcasting the information through the processors at
level 2h − 2. At the k-th step, if areas A(i−1)2k−1+1,j, A(i−1)2k−1+2,j, . . . , Ai2k−1,j, with
i odd, were merged for w1 ≤ j ≤ w2, the processor storing area A(i−1)2k−1+1,w1

will
broadcast to the processors storing the areas Ai2k−1+1,j, Ai2k−1+2,j, . . . , A(i+1)2k−1,j to
merge with the above areas for w1 ≤ j ≤ w2, if they are monochromatic with the
same color. The broadcasting will involve processors up to level 2h−2k+1. The same
is done horizontally, that is, if Ai,(j−1)2k−1+1, Ai,(j−1)2k−1+2, . . . , Ai,j2k−1 , with j odd,
were merged for ℓ1 ≤ i ≤ ℓ2, the processor storing area Aℓ1,(j−1)2k−1+1 will broadcast
to the processors storing the areas Ai,j2k−1+1, Ai,j2k−1+2, . . . , Ai,(j+1)2k−1 to merge with
the above areas for ℓ1 ≤ i ≤ ℓ2, if they are monochromatic with the same color. The
broadcasting will involve processors up to level 2h− 2k.

After O(log M) steps, the procedure is completed. If the waste factor is less than
2, as conjectured in [7], we can make a second assumption that each pixel is covered
by a constant small number of monochromatic matches. It follows from this second
assumption that the information about the monochromatic matches is distributed
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among the processors at the same level in a way very close to uniform. Then, it
follows from the first assumption that the amount of information each processor of
the tree must broadcast is constant. Therefore, each step takes O(α) time and the
image parsing phase is realized with O(α log M) time and O(n/α) processors.

4.2 The Parallel Encoder

The sequence of pointers is trivially produced by the processors which are leaves of the
tree. For the monochromatic rectangles, the pointer is written in the leaf storing the
area at the upper left corner. Differently from the shared memory machine decoder,
the order of the pointers is the one of the leaves. Since some areas could be entirely
covered by a monochromatic match, the subsequence of pointers corresponding to a
given area is ended with 1111 followed by the index of the leaf storing the next area to
decode. We define a variable for each leaf. This variable is set to 1 if the leaf stores at
least a pointer, 0 otherwise. Then, the index of the next area to decode is computed
for each leaf by parallel suffix computation. Moreover, with the possibility of a parallel
output the sequence can be put together by parallel prefix. This is, obviously, realized
in O(α) time with O(n/α) processors.

4.3 The Parallel Decoder

We store each encoding of an area in a leaf of the tree. The storing procedure reads
the encoding binary string from left to right. When it finds the substring 1111, this
denotes the end of the encoding of an area and the next k bits provide the leaf
index of the next area where k is the number of bits used to encode it. At this point,
each processor at the leaf level completes the second phase of the decoder described in
subsection 3.3. Then, the third and last phase of the shared memory machine decoder
has the same parallel computational complexity on the tree architecture with the same
realistic assumptions we made for the coding phase. In conclusion, the decoder takes
O(α log M) time on a full binary tree architecture with O(n/α) processors.

5 Conclusions

Parallel coding and decoding algorithms for lossless image compression by block
matching were shown requiring O(log M log n) time and O(n/ log n) processors on
a full binary tree architecture, where n is the size of the image and M is the size of
the match. The parallel coding algorithm is work-optimal since the sequential time
required by the coding is Ω(n log M). On the other hand, the parallel decoding al-
gorithm is not work-optimal since the sequential decompression time is linear. These
implementations have the same performance of the shared memory machine algo-
rithms under some realistic assumptions and if we do not consider the input/output
process. In [3], with such assumptions these algorithms had been realized on a multi-
grid which is the simplest architecture among the ones with small diameter and large
bisection width. Such realistic assumptions are that each pixel is covered by a small
constant number of monochromatic rectangles of the image parsing and that the
increasing of the dimensions of the monochromatic rectangles is proportional to the
decreasing of the number of monochromatic rectangles with such dimensions. We have
shown in this paper that with the assumptions made for the multigrid we can relax on
the requirement of an architecture with large bisection width and design compression
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and decompression on a two-dimensional architecture such as a full binary tree. The
communication cost might be low enough to realize efficient implementations on one
of the available parallel machines since the algorithms are scalable.

References

1. R. P. Brent: The parallel evaluation of general arithmetic expressions. Journal of the ACM,
21 1974, pp. 201–206.

2. R. P. Brent: A linear algorithm for data compression. Australian Computer Journal, 19 1987,
pp. 64–68.

3. L. Cinque and S. DeAgostino: Lossless image compression by block matching on practical
massively parallel architectures, in Proceedings Prague Stringology Conference, 2008, pp. 26–34.

4. R. Cole and U. Vishkin: Approximate parallel scheduling. Part I: The basic technique with
applications to optimal parallel list ranking in logarithmic time. SIAM Journal on Computing,
17 1988, pp. 148–152.

5. A. Lempel and J. Ziv: A universal algorithm for sequential data compression. IEEE Trans-
actions on Information Theory, 23 1977, pp. 337–343.

6. J. A. Storer: Lossless image compression using generalized LZ1-type methods, in Proceedings
IEEE Data Compression Conference, 1996, pp. 290–299.

7. J. A. Storer and H. Helfgott: Lossless image compression by block matching. The Com-
puter Journal, 40 1997, pp. 137–145.

8. R. E. Tarjan and U. Vishkin: An efficient parallel biconnectivity algorithm. SIAM Journal
on Computing, 14 1985, pp. 862–874.

9. J. R. Waterworth: Data compression system. US Patent 4 701 745, 1987.
10. D. A. Whiting, G. A. George, and G. E. Ivey: Data compression apparatus and method.

US Patent 5016009, 1991.



Taxonomies of Regular Tree Algorithms

Loek Cleophas1 and Kees Hemerik2

1 FASTAR/Espresso Research Group, Department of Computer Science,
University of Pretoria, 0002 Pretoria, Republic of South Africa,

http://www.fastar.org
2 Software Engineering & Technology Group, Department of Mathematics and Computer Science,

Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
http://www.win.tue.nl/set

loek@loekcleophas.com, c.hemerik@tue.nl

Abstract. Algorithms for acceptance, pattern matching and parsing of regular trees
and the tree automata used in these algorithms have many applications, including
instruction selection in compilers, implementation of term rewriting systems, and model
checking. Many such tree algorithms and constructions for such tree automata appear
in the literature, but some deficiencies existed, including: inaccessibility of theory and
algorithms; difficulty of comparing algorithms due to variations in presentation style
and level of formality; and lack of reference to the theory in many publications. An
algorithm taxonomy is an effective means of bringing order to such a field. We report
on two taxonomies of regular tree algorithms that we have constructed to deal with
the deficiencies. The complete work has been presented in the PhD thesis of the first
author.

Keywords: tree acceptance, tree pattern matching, tree automata, algorithm tax-
onomies

1 Introduction

We consider the field of regular tree languages for ordered, ranked trees.1 This field has
a rich theory, with many generalizations from the field of regular string languages,
and many relations between the two [9,10,12,14]. Parts of the theory have broad
applicability in areas as diverse as instruction selection in compilers, implementation
of term rewriting systems, and model checking.

We focus on algorithmic solutions to three related problems in the field, i.e. tree
acceptance, tree pattern matching and tree parsing. Many such algorithms appear in
the literature, but unfortunately some deficiencies exist, including:

1. Inaccessibility of the theory and algorithms, as they are scattered over the litera-
ture and few or no (algorithm oriented) overview publications exist.

2. Difficulty of comparing the algorithms due to differences in presentation style and
level of formality.

3. Lack of reference to the theory and of correctness arguments in publications of
practical algorithms.

A taxonomy—in a technical sense made more precise below—is an effective means
of bringing order to such a subject. A taxonomy is a systematic classification of prob-
lems and solutions in a particular (algorithmic) problem domain. We have constructed
two such taxonomies, one for tree acceptance algorithms and one for tree pattern
matching ones.

1 An example of such a language as defined by a regular tree grammar can be found in Section 4.
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A few more practical deficiencies existed as well: no large and coherent collec-
tion of implementations of the algorithms existed; and for practical applications it
was difficult to choose between algorithms. We therefore designed, implemented, and
benchmarked a highly coherent toolkit of most of these algorithms as well. Taxonomies
also form a good starting point for the construction of such algorithmic toolkits.

In the past, taxonomies and/or toolkits of this kind have been constructed for
e.g. sorting [3,11], garbage collection [17], string pattern matching, finite automata
construction and minimization [21,22].

In this paper we focus on one of our taxonomies, and comment only briefly on
the other one and on the toolkit. The complete work has been presented in the PhD
thesis of the first author [9]. For more details we refer to this thesis and to recent
shorter publications [5,6,18].

Section 2 gives a brief introduction to taxonomies as we consider them. In Section 3
we outline the structure of our taxonomy of algorithms for tree acceptance and briefly
compare it to the one for tree pattern matching. Afterwards we focus on the one for
tree acceptance. Definitions of tree and tree grammar related notions are given in
Section 4. The main branches of the taxonomy for tree acceptance are discussed
in Sections 5–8. Section 9 briefly discusses some other parts of the work, namely the
toolkit and accompanying graphical user interface and the benchmarking experiments
performed with them. We end the paper with some concluding remarks in Section 10.

2 Taxonomies

In our technical sense a taxonomy is a means of ordering a set of algorithmic problems
and their solutions. Each node of the taxonomy graph is a pair consisting of (a
specification of) a problem and an algorithm solving the problem. For each (problem,
algorithm) pair the set of essential details is determined. In general, there are two
kinds of details: problem details, which restrict the problem, and algorithm details,
which restrict the algorithm (e.g. by making it more deterministic). The root of the
taxonomy graph contains a high-level algorithm of which the correctness is easily
shown. A branch in the graph corresponds to addition of a detail in a correctness
preserving way. Hence, the correctness of each algorithm follows from the details on
its root path and the correctness of the root.

Construction of an algorithm taxonomy is a bottom-up process. A literature sur-
vey of the problem domain is performed to gather algorithms. The algorithms are
rephrased in a common presentation style and analyzed to determine their essen-
tial details. When two algorithms differ only in a few details, abstracting over those
details yields a common ancestor. Repeating this abstraction process leads to the
main structure of a taxonomy graph. Considering new combinations of details may
lead to discovery of new algorithms. Eventually the taxonomy may be presented in a
top-down manner.

Several taxonomies of this kind appear in the literature. Broy and Darlington each
constructed one of sorting algorithms [3,11]. Jonkers [17] constructed a taxonomy of
garbage collection algorithms and also developed a general theory about algorithm
taxonomies. Watson [21] applied the method to construct taxonomies for string pat-
tern algorithms and for the construction and minimization of finite automata. Both
in subject and in style our work is closest to Watson’s.
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3 Overview of the Taxonomies of Regular Tree Algorithms

5.3.2

5.3.4

t-acceptor

5.4.2

rf

5.4.4

det

5.5.2

fr

5.5.4

det

5.3.6

match-set

5.7.7

rec

5.7.18

tabulate

5.7.35

filter

5.7.37

tabulate

s-path

S. 5.8

sp-matcher

5.8.1

det

S. 5.8

aca-spm

S. 5.8

drfta-spm

filter

tfilt ifilt sfilt cfilt

Figure 1. Tree acceptance taxonomy. Each node is labeled with its corresponding
algorithm or section (S.) number in [9]. Constructions for tree acceptors used in
algorithms of branch (t-acceptor ) are not depicted. The bottom part of the figure
shows the four possible filters that can be used for detail filter.

The tree acceptance (aka language membership, membership) problem as we con-
sider it is the following: Given a regular tree grammar and a subject tree, determine
whether the tree is an element of the language defined by the grammar. Figure 1
depicts the taxonomy of algorithms we have constructed for this problem. The edge
labels correspond to details, explained in Table 1.

In the taxonomy graph, three main subgraphs can be distinguished. The first sub-
graph (detail t-acceptor and below) contains all algorithms based on the corre-
spondence between regular tree grammars and finite tree automata. For every regular
tree grammar an undirected finite tree automaton can be constructed, which accepts
exactly the trees generated by the grammar. By adding more detail, viz. a direction
(detail fr: frontier-to-root or detail rf: root-to-frontier) or determinacy (detail det)
more specific constructions are obtained. The acceptance algorithms from this part
of the taxonomy are described in more detail in Section 5, while the tree automata
constructions used in them are discussed in Section 6.

The second subgraph (detail match-set and below) contains all algorithms based

on suitably chosen generalizations of the relation S
∗⇒ t (where

∗⇒ indicates derivation
in zero or more steps (see Section 4), S is the start symbol of the grammar and t is
the subject tree). For each subtree of t, they compute a set of items from which t
may be derived, a so-called match set. Tree t is accepted if and only if its match set
contains S. The algorithms in this subgraph of the taxonomy differ in the item set
used and in how the match sets are computed. This part of the taxonomy is described
in more detail in Section 7.
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t-acceptor Use a tree automaton accepting the language of a regular tree grammar to
solve the language membership problem.

rf Consider the transition relations of the tree automaton used in an algorithm
to be directed in a root-to-frontier or top-down direction.

fr Consider the transition relations of the tree automaton used in an algorithm
to be directed in a frontier-to-root or bottom-up direction.

det Use a deterministic version of an automaton.
match-set Use an item set and a match set function to solve the tree accep-

tance/language membership problem. Such an item set is derived from
the productions of the regular tree grammar and the match set function
indicates from which of these items a tree is derivable.

rec Compute match set values recursively, i.e. compute the match set values
for a tree from the match set values computed for its direct subtrees.

filter Use a filtering function in the computation of match set function values.
Before computing the match set for a tree, such a filtering function is applied
to the match sets of its direct subtrees.

tabulate Use a tabulated version of the match set function (and of the filter functions,
if filtering is used), in which a bijection is used to identify match sets by
integers.

s-path Uniquely decompose production right hand sides into stringpaths. Based
on matching stringpaths, production right hand sides and nonterminals
deriving the subject tree can be uniquely determined and tree acceptance
can thus be solved.

sp-matcher Use an automaton as a pattern matcher for a set of stringpaths in a root-
to-frontier or top-down subject tree traversal.

aca-spm Use an (optimal) Aho-Corasick automaton as a stringpath matcher and
define transition and output functions in terms of that automaton.

drfta-spm Use a deterministic root-to-frontier tree automaton as a stringpath matcher
and define transition and output functions in terms of that automaton.

Table 1.

The third subgraph (detail sp-matcher and below) contains algorithms based
on the decomposition of items into so-called stringpaths and subsequent use of string
matching techniques. Based on stringpath matches found, matches of items and hence
essentially the match sets mentioned previously are computed for each subtree of t.
Section 8 gives a brief explanation of this taxonomy part.

As our focus in this paper is on the tree acceptance taxonomy and the algorithms
and constructions included in it, we do not formally define the tree pattern matching
problem. Figure 2 shows the taxonomy of tree pattern matching algorithms. Although
we do not explicitly give the meaning of the details used, it should be clear that the
taxonomies for tree acceptance and tree pattern matching have much in common.
Techniques such as the subset construction, match sets, and stringpaths are used in
both. This is not surprising: the two problems are closely related, and some kinds
of tree acceptors can be turned into tree pattern matchers (or vice versa) with little
effort. The same phenomenon can be observed in acceptors and pattern matchers for
string languages.
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Figure 2. Tree pattern matching taxonomy. Each node is labeled with its correspond-
ing algorithm or section (S.) number in [9]. Constructions for tree pattern matchers
used in algorithms of branch (t-matcher) are not depicted. The bottom part of the
figure shows the four possible filters that can be used for detail filter.

4 Notation and definitions

We use B and N to denote the booleans and the natural numbers. We use notation〈
Set a : R(a) : E(a)

〉
for the set of expressions E(a) for which a satisfies range

predicate R(a).
Many of the other notations and definitions we use are related to regular tree

language theory and to a large extent generalizations of familiar ones from regular
string language theory. To aid readers unfamiliar with this theory, we briefly intro-
duce the concepts needed in the rest of this paper. Readers may want to consult
e.g. [9,10,12,14] for more detail.

Let Σ be an alphabet, and r ∈ Σ 7→ N. Pair (Σ, r) is a ranked alphabet, r is a
ranking function, and for all a ∈ Σ, r(a) is called the rank or arity of a. (The ranking
function indicates the number of child nodes a node labeled by a particular symbol
will have.) We use Σn for 0 ≤ n to indicate the subset of Σ of symbols with arity n.

Given a ranked alphabet (Σ, r), the set of ordered, ranked trees over this alphabet,
set Tr(Σ, r), is the smallest set satisyfing

1. Σ0 ⊆ Tr(Σ, r), and
2. a(t1, . . . , tn) ∈ Tr(Σ, r) for all t1, . . . , tn ∈ Tr(Σ, r), a ∈ Σ such that r(a) = n 6= 0.

As a running example, we assume (Σ, r) to be {(a, 2), (b, 1), (c, 0), (d, 0)}, i.e. con-
sisting of symbols a, b, c and d with rank 2, 1, 0 and 0. Trees in Tr(Σ, r) include for
example c, a(b(c), d) and a(a(b(c), c), d).

A regular tree grammar (rtg) G is a 5-tuple (N,Σ, r ,Prods, S) where N and
Σ are disjoint alphabets (the nonterminals and terminals), (N ∪ Σ, r) is a ranked
alphabet in which all nonterminals have rank 0, Prods ⊆ N × Tr(N ∪ Σ, r) is the
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finite set of productions, and S ∈ N (the start symbol). We use LHS and RHS for left
hand side and right hand side (of a production), and use RHS(Prods) for the set of
production RHSs.

Given a grammar G, we use ⇒ for a derivation step, in which a nonterminal is
replaced by a corresponding production RHS. The reflexive and transitive closure of

⇒ is denoted by
∗⇒. The subset of Tr(Σ, r) derivable from S is denoted L(G). For

technical reasons, we introduce the augmented grammar G′ for a grammar G, defined
by G′ = (N ∪ {S ′}, Σ, r ∪ {(S ′, 0)},Prods∪ {S ′ 7→ S}, S ′) where S ′ is a fresh symbol.

In this paper, we assume an example grammar G1 = (N,Σ, r ,Prods, S) with N =
{S,B}, r and Σ as before, and with Prods defined as {S 7→ a(B, d), S 7→ a(b(c), B),
S 7→ c, B 7→ b(B), B 7→ S, B 7→ d}. We assume G to be the corresponding
augmented grammar.

5 Algorithms based on Tree Automata

The first subgraph of the taxonomy deals with algorithms for tree acceptance that are
based on correspondences between regular tree grammars and finite tree automata.
The theoretical basis for this correspondence is well-known and generalizes a similar
correspondence between regular string grammars and finite string automata. To ease
understanding we briefly outline how the generalization works.

It is well known that the theory of regular tree languages generalizes that of regular
string languages [9,10,12,14]. This is not surprising: any string a0 · · · an−1 can be seen
as a special kind of regular tree, viz. one consisting of n unary nodes, each labeled
with a symbol ai of rank 1, closed by a nullary node marked with a symbol of rank 0.
Notions from finite automata for strings can be generalized to the tree case as well,
although this requires a particular view of such automata. Suppose that a particular
string automaton goes through a state sequence q0, . . . , qn when presented the string
a0 · · · an−1. This means that for each i : 0 ≤ i < n the pair of states (qi, qi+1) must be
in the transition relation of symbol ai. We can summarize the transition sequence by
the following alternation of states and symbols: q0a0 · · · an−1qn. In other words, the
positions in the string have been consistently annotated with states q0, . . . , qn. The
language accepted by the automaton can be defined as the set of strings that can be
consistently annotated in this way, such that q0 and qn are initial and final states.

This view can easily be generalized to ordered, ranked trees: each node is anno-
tated with a state, and for each node labeled with a symbol a of rank n, the state
q0 assigned to that node and the states q1, . . . , qn of the n direct subnodes should be
such that the tuple (q0, (q1, . . . , qn)) is in the transition relation of symbol a. Note
that this simplifies to (q0, ()) for symbols of rank 0. (Hence, taking a frontier-to-root
or bottom-up view on tree automata, no equivalent for a string automaton’s initial
states is needed; no equivalent for a string automaton’s final states is needed when
taking a root-to-frontier or top-down view.) A tree is accepted by a finite tree au-
tomaton if and only if it can be consistently annotated such that the state assigned
to the root is a so-called root accepting state. This motivates the following definition:

Definition 1. A (finite) tree automaton (ta) M is a 5-tuple (Q,Σ, r , R,Qra) such
that Q is a finite set, the state set; (Σ, r) is a ranked alphabet; R = {Ra|a ∈ Σ}∪Rε

is the set of transition relations (where Rε ⊆ Q×Q and Ra ⊆ Q×Qn, for all a ∈ Σ
with r(a) = n); and Qra ⊆ Q is the set of root accepting states.
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Many important theorems carry over from regular string grammars and automata
to the tree case as well. In particular:

Theorem 2. For every regular tree grammar G there exists a tree automaton M such
that L(G) = L(M).

This theorem justifies the following algorithm as a solution for tree acceptance:

Algorithm 3 (t-acceptor)

|[ const G = (N ′, Σ, r ′,Prods′, S ′) : augmented rtg;
t : Tr(Σ, r);

var b : B

| let M = (Q, Σ, r, R, Qra) be a ta such that L(M) = L(G);
b : = t ∈ L(M)
{ b ≡ t ∈ L(G) }

]|

This abstract and rather trivial algorithm forms the root of the part of the tax-
onomy graph containing all algorithms based on tree automata. Note that it does
not specify how t ∈ L(M) is determined. It could consider all state assignments to t
respecting the transition relations R, and determine whether an accepting one exists.

To obtain more specific and more practical algorithms, the automata and hence
the state assignments can be considered as directed ones (detail fr: frontier-to-root
aka bottom-up or detail rf: root-to-frontier aka top-down). This results in (the use
of) an ε-nondeterministic frontier-to-root ta (εnfrta) and ε-nondeterministic root-
to-frontier ta (εnrfta).

Restricting the directed automata to the case without ε-transitions, we obtain the
ε-less ta and (ε-less) nrfta and nfrta. As with string automata, ε-transitions can
be removed by a straightforward transformation. The use of the resulting automata
slightly simplifies the acceptance algorithms.

5.1 fr: Frontier-to-Root Tree Acceptors

For (ε)nfrtas, a recursive acceptance function RSt ∈ Tr(Σ, r) 7→ P(Q) can be
defined. This function yields the states assigned to a tree’s root node based on those
assigned to that node’s child nodes. A subject tree t is then accepted if and only if
at least one accepting state occurs in state set RSt(t).

Restricting the directed Ra of the (ε-less) nfrta to be single-valued functions,
we obtain the deterministic dfrta. A subset construction subsetfr can be given,
similar to that for string automata, to obtain a dfrta for an (ε)nfrta. The use of
a dfrta leads to the straightforward Algorithm 4 given below.
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Algorithm 4 (t-acceptor, fr, det)

|[ const G = (N ′, Σ, r ′,Prods′, S ′) : augmented rtg;
t : Tr(Σ, r);

var b : B

| let M = (Q, Σ, r, R, Qra) be a dfrta such that L(M) = L(G);
b : = Traverse(t) ∈ Qra

{ b ≡ t ∈ L(G) }

func Traverse(st : Tr(Σ, r)) : Q =
|[
| let a = st(ε);
{ st = a(st1, . . . , stn) where n = r(a) }
Traverse : = Ra(Traverse(st1), . . . ,Traverse(stn))

]|{ Post: {Traverse} = RSt(st) }
]|

5.2 rf: Root-to-Frontier Tree Acceptors

For root-to-frontier automata, we can define a root-to-frontier acceptance function
Accept ∈ Tr(Σ, r) × Q 7→ B indicating whether an accepting computation starting
from some state exists for a tree. In the resulting Algorithm (t-acceptor, rf) (not
given here), the value of this function is computed by possibly many root-to-frontier
subject tree traversals (starting from each of the root accepting states).

As with frtas, rftas can be restricted to ε-less ones and further to deterministic
ones. Since drftas are known to be less powerful than other ta kinds, algorithms
using drftas cannot solve the acceptance problem for each input grammar. We refer
the reader to [9] for more information on algorithms using rftas to directly solve the
tree acceptance problem.

In Section 8 we briefly discuss how drftas can be used for so-called stringpath
matching. Since there is a one-to-one correspondence between a tree and its set of
stringpaths, drftas can thus be used to solve the tree acceptance problem, albeit
indirectly.

6 Construction of tree automata

Nowhere in Section 5 did we specify how the tree automata M , which are used
in Algorithm (t-acceptor ) and derived algorithms, are to be constructed. Such
constructions can be considered separately, as we do in this section.

Algorithm (t-acceptor ) and derived ones use tas M such that L(M) = L(G).
Depending on the algorithm, the acceptor may need to be undirected or directed
rf or fr, and directed ones may need to be nondeterministic or deterministic. The
constructions differ in a number of aspects:

– Which item set is used to construct states: one containing all subtrees of produc-
tion RHSs, or one just containing all nonterminals as well as the proper subtrees
among RHSs,

– whether ε-transitions are present or not—the latter indicated by label rem-ε ,
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– whether automata are undirected, root-to-frontier (aka top-down) or frontier-to-
root (aka bottom-up), and

– whether ε-less directed automata are deterministic or not.

By combining choices for these aspects, twenty four constructions for tree acceptors
can be obtained. Roughly half are treated in [9, Chapter 6], seeming most interesting
because they occur in the literature or because they lead to ones that do.

For each construction in our taxonomy, the discussion in [9, Chapter 6] defines
the state set, root accepting state set and transition relation are defined; and usually
gives an example and a discussion of correctness and of related constructions and
literature. Presenting all of the constructions in such a similar, uniform and precise
way facilitates understanding and comparing the different constructions.

To further simplify understanding and comparison, the constructions are identified
by sequences of detail labels. For example, the first construction, Construction (tga-

ta:all-sub), is a basic construction for undirected tas. Its state set corresponds to
all subtrees of production RHSs, while its transitions encode the relations between
(tuples of) such states, based on the relation between a tree and its direct subtrees
and the relation between a production LHS and RHS.

We cannot present the constructions here in detail, but restrict ourselves to de-
scribing them briefly and showing how constructions from the literature are included.
We emphasize that our taxonomy presents all of them together and relates all of them
for the first time.

– The basic Construction (tga-ta:all-sub) described above does not explicitly
appear in the literature, but its fr and rf versions appear in van Dinther’s 1987
work [20].

– Applying rem-ε results in Construction (tga-ta:all-sub:rem-ε) for automata
isomorphic to those constructed by Ferdinand et al. (1994) [13]. This detail makes
states corresponding to certain full RHSs unreachable and therefor useless.

– To prevent such states from occurring, a state set containing only nonterminals and
proper subtrees of RHSs can be used instead. Of the resulting Construction (tga-

ta:proper-n:rem-ε),
• an undirected version appears in Ferdinand, Seidl and Wilhelm’s 1994 pa-

per [13] and later in Wilhelm & Maurer [23]. Somewhat surprisingly, the con-
struction in its general form apparently did not occur in the literature before
1994.

It is well known however that every rtg can easily be transformed into one with
productions of the form A 7→ a(A1, . . . , An) only (by introducing fresh nontermi-
nals and productions). For such rtgs,
• an fr directed version already appeared in Gecseg and Steinby’s [14, Lem-

ma 3.4] in 1984.
It is also straightforward to transform any rtg into one with productions of
the form given above and of the form A 7→ B (i.e. additionally allowing unit
productions). For such rtgs,
• an fr directed version of Construction (tga-ta:proper-n:rem-ε) already

appears in Brainerd’s 1960s work [2] and again in [20], and
• an rf directed version appears in Comon et al. ’s online work [10].

– Constructions (tga-ta:all-sub:rem-ε:rf:subsetrf) and (tga-ta:proper-n:-
rem-ε:rf:subsetrf), which are derived constructions resulting in drftas, do not
appear in the literature, probably due to the restricted power of such automata.
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For a specific subclass of rtgs for which drftas can be constructed, a variant
resulting in tree parsers based on such drftas is presented in [20].

– A construction for dfrtas which uses all RHSs for state set construction—
i.e. Construction (tga-ta:all-sub:rem-ε:fr:subsetfr)—appears in [15]. The
encompassed subset construction constructs the reachable subsets only, with an
explicit sink state for the empty set. The presentation mostly disregards the auto-
mata view and uses the recursive match set view of Section 7. It was inspired by
and gives a more formal version of the initial construction presented in Chase’s
1987 paper [4].

– A construction for dfrtas which uses only nonterminals and proper subtrees of
RHSs—Construction (tga-ta:proper-n:rem-ε:fr:subsetfr)—appears in [13,
Section 6] and in [23, Sections 11.6–11.7].

7 Algorithms based on Match Sets

In this section we consider the second subgraph of the taxonomy. Algorithms in this

part solve the tree acceptance problem, i.e. S
∗⇒ t, by suitably chosen generalizations

of relation
∗⇒. First, from the tree grammar a set of Items is constructed, e.g. the set

of subtrees of right hand sides of productions of the grammar. Then, for the subject
tree t, a so-called match set MS(t) is computed, the set of all p ∈ Items for which

p
∗⇒ t holds. Tree t is accepted if and only if S ∈ MS(t).
Algorithms in this part of the taxonomy differ in the set Items used and in how

function MS is computed. The first algorithm, Algorithm (match-set), does not
specify how to compute function MS .

Function MS can effectively be computed recursively over a subject tree, i.e. by a
scheme of the form MS(a(t1, . . . , tn)) = F(MS(t1), . . . ,MS(tn)). Function F composes
and filters items for MS(a(t1, . . . , tn)) from those in the match sets MS(t1), . . . ,MS(tn)
computed for the n direct subtrees of a(t1, . . . , tn). For symbols a of rank n and trees
t1, . . . , tn, the value of F(MS(t1), . . . ,MS(tn)) is defined to be

Cl(Compa( Filta,1(MS(t1)) , . . . , F ilta,n(MS(tn)) ))

where:

– The Filta,i are filter functions, filtering items from the respective match sets based
e.g. on the values of a and i. Filtering is based on certain elements of children’s
match sets never contributing to the parent’s match set. Such a child match set
element may thus be safely disregarded for the computation of the parent’s match
set. Note that the identity function is among these filter functions.

– The Compa are composition functions, which result in those subtrees of RHSs that
are compositions of the subnodes’ (filtered) match set elements and the symbol a.

– Cl is a closure function, adding e.g. nonterminal LHSs corresponding to complete
RHSs that are in the composite match set.

The resulting algorithms are Algorithm (match-set, rec) (not using filter func-
tions) and Algorithms (match-set, rec, filter) (with different instantiations of
filter functions).

As an example of recursive match set computation, assume that we want to
compute MS(a(b(c), d)) and that we use the identity function as a filter function
(i.e. no filtering is applied). Furthermore, assume that MS(b(c)) = {b(c), b(B), B}
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and MS(d) = {d,B} have already been computed. Based on this, MS(a(b(c), d))
will contain a(b(c), d) and a(B, d) by composition with a, and B and S by the clo-

sure function, since S ⇒ a(b(c), d) and B
∗⇒ S. No other elements are included in

MS(a(b(c), d)).

It is straightforward to show that match sets and relations between them, as
computed by Algorithm (match-set, rec) with particular item sets, correspond to
states and transition relations of dfrtas obtained by particular automata construc-
tions as in Section 6. Recursive match set computation and the use of a dfrta as an
acceptor are simply two views on one approach [9, Chapter 5]. This correspondence
is indicated by the dotted line in Figure 1.

To improve computation efficiency, values of MS cq. the acceptance function of
the dfrta are usually tabulated to prevent recomputation. Such tabulation uses a
bijection between states (elements of P(Items)) and integers for indexing the tables.
The tabulation starts with symbols of rank 0, creating a state for each of them,
and continues by computing the composition of symbols with match sets represented
by existing states, for as long as new states are encountered, i.e. the computation
is performed for the reachable part of state set P(Items) only. Such reachability-
based tabulation is essentially straightforward, but somewhat intricate for trees/n-
ary relations, even more so in the presence of filtering. We therefore do not present
an example here; see e.g [9, Chapter 5] or [15] instead.

In practice, the size of the rtgs used leads to large but usually sparse tables:
e.g for instruction selection, an rtg may well have hundreds of productions and lead
to tables of over 100 MB. Filtering is therefore used to reduce storage space. For
example, given match set MS(b(c)) above, b(B) can be filtered, as it does not occur
as a subtree of any Item in G. Different item categories can be filtered out (and may
lead to different space savings, depending on the grammar):

– Filtering trees not occurring as proper subtrees (such as b(B)); filter tfilt, orig-
inally by Turner [19].

– Filtering trees not occurring as the ith child tree of a node labeled a; filter cfilt,
originally by Chase [4,15].

– One of two new filter functions. Our research in taxonomizing the existing algo-
rithms and filter functions lead us to describe these new ones, which can be seen
as simplifications of Chase’s filter functions yet somewhat surprisingly had not
been described before:

• Filtering trees based on index i only, i.e. not occurring as the ith child tree of
any node; filter ifilt.

• Filtering trees based on symbol a only, i.e. not occurring as a tree of a node
labeled a at any child position; filter sfilt.

Even more surprisingly given their non-appearance in the literature, these two filters
turn out to outperform Chase’s filter on both text book example rtgs and instruction
selection rtgs for e.g. the Intel X86 and Sun SPARC families: the index filter results
in lower memory use, while the symbol filter results in slightly faster tabulation
time than with Chase’s filter. The experimental results have been described in detail
in [5,9,18].
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8 Algorithms using stringpath matching

The third subgraph (detail sp-matcher and below) of the taxonomy in Figure 1
contains algorithms for tree acceptance that are derived from algorithms for tree
pattern matching. We only briefly sketch the main ideas.

The tree pattern matchers that we use in these tree acceptors reduce tree pattern
matching to string pattern matching, using a technique first described in [16]. Each
tree can be fully characterized by a set of stringpaths, and a tree pattern matches at a
certain position in a tree if and only if all its stringpaths do. By traversing the subject
tree and using a multiple string pattern matcher (e.g. [1]), matches of stringpaths can
be detected. In [8] (originally presented at this conference as [7]) and [9] we discuss
such algorithms in more detail and show that a certain drfta construction leads
to drftas—i.e. deterministic rf tree automata—that are also usable for stringpath
matching. With a little extra bookkeeping, a tree pattern matcher of this kind can
be turned into a tree acceptor.

9 Other Parts of the Work

Our work on regular tree algorithms has resulted in two taxonomies and a toolkit
of algorithms. In this paper, we have mainly reported on one of the taxonomies, al-
though it was pointed out in Section 3 how similar the tree pattern matching and tree
acceptance algorithms and taxonomies are. In this section we present some remarks
on the rest of the work. We refer the interested reader to [5,9] for more information.

As mentioned in Section 1, taxonomies form a good starting point for the construc-
tion of highly coherent algorithm toolkits. Based on the taxonomies of tree acceptance
and tree matching algorithms, such an (experimental) toolkit was developed as part of
our research. The toolkit contains most of the concrete algorithms and automata con-
structions from the taxonomies, as well as a number of fundamental algorithms and
data structures—such as alphabets, trees, regular tree grammars, simple grammar
transformations—and some extensions of tree acceptance algorithms to tree pars-
ing and rudimentary instruction selection. The design of the toolkit was guided by
the two taxonomies: the hierarchy of the taxonomies determines the class and inter-
face hierarchies of the toolkit, and the abstract algorithms lead to straightforward
method implementations. The toolkit, called Forest FIRE, is implemented in Java
and accompanied by a graphical user interface (GUI) called FIRE Wood. This GUI
supports input, output, creation and manipulation of data structures from the toolkit
and was used to interactively experiment with and get insight into algorithms. More
details on the toolkit and GUI can be found in [5,18]. The toolkit and GUI, including
source code, example input files and brief manuals, are available for non-commercial
purposes via http://www.fastar.org.

10 Concluding Remarks

The two taxonomies we constructed cover many algorithms and automata construc-
tions for tree acceptance and tree pattern matching, which appeared in the literature
in the past forty years. As for earlier taxonomies, their construction required a lot
of time and effort to study original papers and distill the published algorithms’ es-
sential details (more so than in usual scientific research, which is typically limited to
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studying one or a few existing publications and building on those). Abstraction and
sequentially adding details to obtain algorithms were essential and powerful means
to clearly describe the algorithms and to make their correctness more apparent.

The uniform presentation in the taxonomies improves accessibility and shows al-
gorithm relations: comparing algorithms previously presented in different styles has
become easier and consultation of the original papers is often no longer necessary.

The taxonomies also lead to new and rediscovered algorithms: for example, two
new filters were discovered which, though conceptually simple, are practically rele-
vant. Furthermore, Turner’s filter was more or less rediscovered. Our initial literature
search, although apparently quite extensive, did not find Turner’s paper—likely be-
cause it was not referred to by any other literature in the same field. As a result, we
came up with the rather basic filter independently, before eventually finding it in the
literature.

The uniform presentation simplified and guided the high-level design of our toolkit
of regular tree algorithms, although the choice of representations for basic data struc-
tures still took some time and effort. Experiments with the toolkit provided some
interesting results, including the fact that the new filters outperformed Chase’s more
complex but frequently used filter in many cases.

The results from our research thus are both theoretical and practical, ranging from
formal definitions and algorithm taxonomies to a toolkit and experimental results. A
form of symbiosis occurred between the theoretical and the practical: the taxonomies
were helpful in constructing the toolkit, while the experiments with the toolkit in
turn lead to a better understanding of the theoretical definitions and algorithm de-
scriptions, thus helping to simplify the taxonomies.
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Abstract. String suffix automata accept all suffixes of a given string and belong to the
fundamental stringology principles. Extending their transitions by specific pushdown
operations results in new subtree pushdown automata, which accept all subtrees of a
given subject tree in prefix notation and are analogous to the suffix automata in their
properties. The deterministic subtree pushdown automaton accepts an input subtree
in time linear to the number of nodes of the subtree and its total size is linear to the
number of nodes of the given subject tree.

Keywords: tree, subtree, string suffix automata, tree pattern matching, pushdown
automata

1 Introduction

The theory of formal string (or word) languages [1,10,17] and the theory of formal
tree languages [4,5,9] are important parts of the theory of formal languages [16]. The
most famous models of computation of the theory of tree languages are various kinds
of tree automata [4,5,9]. Trees can also be seen as strings, for example in their prefix
(also called preorder) or postfix (also called postorder) notation. [11] shows that the
deterministic pushdown automaton (PDA) is an appropriate model of computation
for labelled ordered ranked trees in postfix notation and that the trees in postfix
notation acceptable by deterministic PDA form a proper superclass of the class of
regular tree languages, which are accepted by finite tree automata. In the further text
we will omit word “string” when referencing to string languages or string automata.

Tree pattern matching is often declared to be analogous to the problem of string
pattern matching [4]. One of the basic approaches used for string pattern matching
can be represented by finite automata constructed for the text, which means that the
text is preprocessed. Examples of these automata are suffix automata [6]. Given a
text of size n, the suffix automaton can be constructed for the text in time linear in
n. The constructed suffix automaton represents a complete index of the text for all
possible suffixes and can find all occurrences of a string suffix and their positions in
the text. The main advantage of this kind of finite automata is that the deterministic
suffix automaton performs the search phase in time linear in the size of the input
subtree and not depending on n.

This paper presents a new kind of acyclic PDAs for trees in prefix notation, which
is analogous to string suffix automata and their properties: subtree PDAs accept all
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subtrees of the tree. The basic idea of the subtree PDAs has been presented in [13].
This paper deals with the subtree PDAs in more details. [12] contains the detailed
description of the subtree PDAs, related formal theorems, lemmas, and their proofs,
many of which are skipped in this paper. Moreover, [12] describes an extension of the
subtree PDAs – tree pattern PDAs, which accept all tree patterns matching the tree
and are analogous to string factor automata in their basic properties.

By analogy with the string suffix automaton, the subtree PDA represents a com-
plete index of the tree for all possible subtrees. Given a tree of size n, the main
advantage of the deterministic subtree PDA is again that the search phase is per-
formed in time linear in the size of the input subtree and not depending on n. We
note that this cannot be achieved by any standard tree automaton because the stan-
dard deterministic tree automaton runs always on the subject tree, which means the
searching by tree automata can be linear in n at the best.

Moreover, the presented subtree PDAs have the following two other properties.
First, they are input-driven PDAs [20], which means that each pushdown operation is
determined only by the input symbol. Input-driven PDAs can always be determinised
[20]. Second, their pushdown symbol alphabets contain just one pushdown symbol and
therefore their pushdown store can be implemented by a single integer counter. This
means that the presented PDAs can be transformed to counter automata [3,19], which
is a weaker and simpler model of computation than the PDA.

The rest of the paper is organised as follows. Basic definitions are given in section
2. Some properties of subtrees in prefix notation are discussed in the third section.
The fourth section deals with the subtree PDA. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, tree, prefix notation

We define notions on trees similarly as they are defined in [1,4,5,9].
We denote the set of natural numbers by N. A ranked alphabet is a finite nonempty

set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary
(constants), unary, binary, . . ., p-ary symbols. We assume that A contains at least
one constant. In the examples we use numbers at the end of the identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.

Based on concepts from graph theory (see [1]), a labelled, ordered, ranked tree
over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R
is a set of linearly ordered lists of edges such that each element of R is of the form
((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element would
indicate that, for node f , there are n edges leaving f , the first entering node g1, the
second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to
node fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n.
A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for
Directed Acyclic Graph) is an ordered directed graph that has no cycle. A labelling
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of an ordered graph G = (A,R) is a mapping of A into a set of labels. In the examples
we use af for a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where
g ∈ A. By analogy, the in-degree of the node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabetA is an ordered
dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
Prefix notation pref (t) of a labelled, ordered, ranked and rooted tree t is obtained

by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be to node af . If af is a leaf, list a and halt. If af is
not a leaf, let its direct descendants be af1 , af2 , . . . , afn

. Then list a and subsequently
apply Step to af1 , af2 , . . . , afn

in that order.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over A
t1 = ({a21, a22, a03, a14, a05, a16, a07}, R), where R is a set of the following ordered
sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

Tree t1 in prefix notation is string pref (t1) = a2 a2 a0 a1 a0 a1 a0. Trees can be
represented graphically and tree t1 is illustrated in Fig. 1. ⊓⊔

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Figure 1. Tree t1 from Example 1 and its prefix notation

The height of a tree t, denoted by Height(t), is defined as the maximal length of
a path from the root of t to a leaf of t.

2.2 Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are defined
in [1,10].
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Let an alphabet be a finite nonempty set of symbols. A language over an alphabet
A is a set of strings over A. Symbol A∗ denotes the set of all strings over A including
the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly for
string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε.
Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.

A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0, F ),
where Q is a finite set of states, A is an input alphabet, δ is a mapping from Q × A
into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of
final (accepting) states. A finite automaton FM is deterministic (DFA) if δ(q, a) has
no more than one member for any q ∈ Q and a ∈ A. We note that the mapping δ is
often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1,10]. The transformation
constructs the states of the DFA as subsets of states of the NFA and selects only
such accessible states (ie subsets). These subsets are called d-subsets. In spite of the
fact that d-subsets are standard sets, they are often written in square brackets ([ ])
instead of in braces ({ }).

An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is
a seven-tuple M = (Q,A, G, δ, q0, Z0, F ), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q × (A ∪ {ε}) × G∗

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown symbol, and F ⊆ Q is the set of final (accepting) states. Triplet
(q, w, x) ∈ Q×A∗ ×G∗ denotes the configuration of a pushdown automaton. In this
paper we will write the top of the pushdown store x on its right hand side. The initial
configuration of a pushdown automaton is a triplet (q0, w, Z0) for the input string
w ∈ A∗.

The relation ⊢M⊂ (Q×A∗ ×G∗)× (Q×A∗ ×G∗) is a transition of a pushdown
automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-
th power, transitive closure, and transitive and reflexive closure of the relation ⊢M

is denoted ⊢k
M , ⊢+

M , ⊢∗M , respectively. A pushdown automaton M is deterministic
pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not

a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of

α.

A pushdown automaton is input-driven if each of its pushdown operations is de-
termined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) ⊢∗M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢∗M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If PDA accepts the language by empty pushdown store then the set F of final states
is the empty set. The subtree PDAs accept the languages by empty pushdown store.

For more details see [1,10].
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2.3 Example of string suffix automaton

Example 2. Given the prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from
Example 1, the corresponding nondeterministic suffix automaton is
FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7})), where its transition diagram
is illustrated in Fig. 2. (For the construction of the nondeterministic suffix automaton
see [14].)

After the standard transformation of a nondeterministic suffix automaton to a
deterministic one [10], the deterministic suffix automaton for pref(t1) is
FMdsuf (pref(t1)) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},
A, δd, 0, {[7], [3, 5, 7], [5, 7]})), where its transition diagram is illustrated in Fig. 3.

0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

Figure 2. Transition diagram of nondeterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0a0

a1

a0

Figure 3. Transition diagram of deterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

3 Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a tree
and of its subtrees. These properties are important for the construction of subtree
PDA, which is described in the next section.
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Example 3. Consider tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees shown in
Fig. 4.

a0

a0 a1 a0

a2 a1

a2

a2 a2 a0 a1 a0 a1 a0

a0

a0 a1

a2

a2 a0 a1 a0

a0

a1

a1 a0

a0

a0

Figure 4. All subtrees of tree t1 from Example 1, and their prefix notations

Generally, it holds for any tree that each of its subtrees in prefix notation is a
substring of the tree in prefix notation.

Theorem 4. Given a tree t and its prefix notation pref (t), all subtrees of t in prefix
notation are substrings of pref (t).

Proof. In [12]. ⊓⊔

However, not every substring of a tree in prefix notation is a prefix notation of its
subtree. This can be easily seen from the fact that for a given tree with n nodes there
can be O(n2) distinct substrings, but there are just n subtrees – each node of the
tree is the root of just one subtree. Just those substrings which themselves are trees
in prefix notation are those which are the subtrees in prefix notation. This property
is formalised by the following definition and theorem.

Definition 5. Let w = a1a2 · · · am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = arity(a1) + arity(a2) + · · ·+ arity(am)−m + 1=∑m

i=1 arity(ai)−m + 1.

Theorem 6. Let pref (t) and w be a tree t in prefix notation and a substring of
pref (t), respectively. Then, w is the prefix notation of a subtree of t, if and only if
ac(w) = 0, and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.

Proof. In [12]. ⊓⊔

We note that in subtree PDAs the arity checksum is computed by pushdown
operations, where the contents of the pushdown store represents the corresponding
arity checksum. For example, an empty pushdown store means that the corresponding
arity checksum is equal to 0.

4 Subtree pushdown automaton

This section deals with the subtree PDA for trees in prefix notation: algorithms and
theorems are given and the subtree PDA and its construction are demonstrated on
an example.
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Definition 7. Let t and pref (t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref (t) accepts all subtrees of t in prefix notation.

First, we start with a PDA which accepts the whole subject tree in prefix nota-
tion. The construction of the PDA accepting a tree in prefix notation by the empty
pushdown store is described by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref (t).
Input: A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i− 1, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 8. A PDA accepting tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which has been constructed by Alg. 1, is deterministic PDA Mp(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, ∅)), where the mapping δ1 is a set of the following
transitions:

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5. In this
figure for each transition rule δ1(p, a, α) = (q, β) from δ the edge leading from state
p to state q is labelled by the triple of the form a|α 7→ β.

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ εa1|S 7→ Sa0|S 7→ εa1|S 7→ Sa0|S 7→ ε

Figure 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8

Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ⊓⊔

It holds that every input-driven PDA that has the same pushdown operations
as they are defined for the above deterministic PDA Mp(t) for tree t in prefix nota-
tion behaves such that the contents of its pushdown store corresponds to the arity
checksum. This is described by the following theorem. We note that such pushdown
operations correspond to the pushdown operations of the standard top-down parsing
algorithm for a context-free grammar with rules of the form

S → a Sarity(a).

For principles of the standard top–down (LL) parsing algorithm see [1].
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State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S
1 a2 a0 a1 a0 a1 a0 S S
2 a0 a1 a0 a1 a0 S S S
3 a1 a0 a1 a0 S S
4 a0 a1 a0 S S
5 a1 a0 S
6 a0 S
7 ε ε
accept

Figure 6. Trace of deterministic PDA Mp(t1) from Example 8 for tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 9. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which each
transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = arity(a). Then, if
(q3, w, S) ⊢+

M (q4, ε, S
j), then j = ac(w).

Proof. In [12]. ⊓⊔

The correctness of the deterministic PDA constructed by Alg. 1, which accepts
trees in prefix notation, is described by the following lemma.

Lemma 10. Given a tree t and its prefix notation pref (t), the PDA Mp(t) = ({0, 1, 2,
. . . , n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 1 accepts pref (t).

Proof. In [12]. ⊓⊔

We present the construction of the deterministic subtree PDA for trees in prefix
notation. The construction consists of two steps. First, a nondeterministic subtree
PDA is constructed by Alg. 2. This nondeterministic subtree PDA is an extension
of the PDA accepting tree in prefix notation, which is constructed by Alg. 1. Sec-
ond, the constructed nondeterministic subtree PDA is transformed to the equivalent
deterministic subtree PDA. Although a nondeterministic PDA cannot generally be
determinised, the constructed nondeterministic subtree PDA is an input-driven PDA
and therefore can be determinised [20].

Algorithm 2. Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref (t).
Input:A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an, n ≥ 1.
Output:Nondeterministic subtree PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 11. A subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by
Alg. 2, is nondeterministic PDA Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)),
where mapping δ2 is a set of the following transitions:
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δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic PDA Mnps(t1) is illustrated in Fig.
7. Again, in this figure for each transition rule δ2(p, a, α) = (q, β) from δ2 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

A comparison of Figs. 7 and 2 shows that the states and the transitions of non-
deterministic subtree PDA Mnps(t1) correspond to the states and the transitions,
respectively, of the nondeterministic string suffix automaton for pref (t1); the transi-
tions of the subtree PDA are extended by pushdown operations so that it holds that
the number of symbols S in the pushdown store is equal to the corresponding arity
checksum. ⊓⊔

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 7. Transition diagram of nondeterministic subtree PDA Mnps(t1) for tree t1
in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 11

Theorem 12. Given a tree t and its prefix notation pref (t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree PDA for pref (t).

Proof. In [12]. ⊓⊔

It is known that each nondeterministic input-driven PDA can be transformed to
an equivalent deterministic input-driven PDA [20]. To construct deterministic subtree
or tree pattern PDAs from their nondeterministic versions we use the transformation
described by Alg. 3. This transformation is a simple extension of the well known
transformation of a nondeterministic finite automaton to an equivalent deterministic
one [10]. Again, the states of the resulting deterministic PDA correspond to subsets of
the states of the original nondeterministic PDA, and these subsets are again called d-
subsets. Moreover, the original nondeterministic PDA is assumed to be acyclic with a
specific order of states, and Alg. 3 precomputes the possible contents of the pushdown
store in particular states of the deterministic PDA according to pushdown operations
and selects only those transitions and accessible states of the deterministic PDA for
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which the pushdown operations are possible. The assumption that the PDA is acyclic
results in a finite number of possible contents of the pushdown store. Furthermore,
the assumption of the specific order of states allows us to compute these contents of
the pushdown store easily in a one-pass way.

Algorithm 3. Transformation of an input-driven nondeterministic PDA to an equi-
valent deterministic PDA.
Input: Acyclic input-driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A,{S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then p < q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbreviation
cpds stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for
all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create cpds(q′′) = ∅.
Add ω, where δ(q′, a, γ) ⊢Mdx(t) (q′′, ε, ω) and γ ∈ cpds(q′), to cpds(q′′).

(c) Set the state q′ as marked.
4. Repeat step 3 until all states in Q′ are marked. ⊓⊔

The deterministic subtree automaton for a tree in prefix notation is demonstrated
by the following example. The PDA reads an input subtree in prefix notation and
the accepting state corresponds to the rightmost leaves of all occurrences of the input
subtree in the subject tree.

Example 13. The deterministic subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by Alg. 3
from nondeterministic subtree PDA Mnps(t1) from Example 11, is deterministic PDA
Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},A, {S}, δ3, [0], S, ∅)),
where mapping δ3 is a set of the following transitions:

δ3([0], a2, S) = ([1, 2], SS) δ3([0], a0, S) = ([3, 5, 7], ε)
δ3([1, 2], a2, S) = ([2], SS) δ3([0], a1, S) = ([4, 6], S)
δ3([2], a0, S) = ([3], ε) δ3([1, 2], a0, S) = ([3], ε)
δ3([3], a1, S) = ([4], S) δ3([4, 6], a0, S) = ([5, 7], ε)
δ3([4], a0, S) = ([5], ε)
δ3([5], a1, S) = ([6], S)
δ3([6], a0, S) = ([7], ε)

We note that there are no transitions leading from states [3, 5, 7], [5, 7] and [7],
because the pushdown store in these state is always empty and therefore no transition
is possible from these states due to the pushdown operations. This means that the
deterministic subtree PDA Mdps(t1) has fewer transitions than the deterministic string
suffix automaton constructed for pref (t1) [6,14,18], as can be seen by comparing
Figs. 3 and 8.

The transition diagram of deterministic PDA Mdps(t1) is illustrated in Fig. 8.
Again, in this figure for each transition rule δ3(p, a, α) = (q, β) from δ3 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.
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[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 8. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 13

Fig. 9 shows the sequence of transitions (trace) performed by deterministic subtree
PDA Mdps(t1) for an input subtree st in prefix notation pref (st) = a1a0. The accepting
state is [5, 7], which means there are two occurrences of the input subtree st in tree
t1 and their rightmost leaves are nodes a05 and a07. ⊓⊔

State Input Pushdown Store
[0] a1 a0 S
[4, 6] a0 S
[5, 7] ε ε
accept

Figure 9. Trace of deterministic subtree PDA Mdps(t1) from Example 13 for an input
subtree st in prefix notation pref (st) = a1a0

Theorem 14. Given an acyclic input-driven nondeterministic PDA Mnx(t) = (Q,A,
{S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) construc-
ted by Alg. 3 is equivalent to PDA Mnx(t).

Proof. In [12]. ⊓⊔
We note that trees with the structure pref (t) = (a1)n−1a0 represent strings. Such

a tree is illustrated in Fig. 10. It can be simply shown that the deterministic subtree
PDAs for such trees have the same number of states and transitions as the determin-
istic suffix automata constructed for pref (t) and accept the same language.

It is obvious that the number of distinct subtrees in a tree can be at most the
number of nodes of the tree.

Lemma 15. Given a tree t with n nodes, the number of distinct subtrees of tree t is
equal or smaller than n.

Proof. In [12]. ⊓⊔
At the end of this section we discuss the total size of the constructed deterministic

subtree PDA, which cannot be greater than the total size of the deterministic suffix
automaton constructed for pref (t) [6,7]. We recall that the deterministic subtree
PDA can have even fewer states and transitions than the corresponding deterministic
string suffix automaton as certain states and transitions need not be accessible due
to pushdown operations.
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a1

a1

a1

...

a0

pref(t2) = (a1)n−1a0

Figure 10. A tree t2, which represents a string, and its prefix notation

Theorem 16. Given a tree t with n nodes and its prefix notation pref (t), the deter-
ministic subtree PDA Mdps(t) constructed by Algs. 2 and 3 has just one pushdown
symbol, fewer than N ≤ 2n + 1 states and at most N + n− 1 ≤ 3n transitions.

Proof. The deterministic subtree PDA in question may have only states and tran-
sitions which correspond to the states and the transitions, respectively, of the de-
terministic suffix automaton constructed for pref (t). Therefore, the largest possible
numbers of states and transitions of the deterministic subtree PDA are the same as
those of the deterministic suffix automaton. The numbers of states and transitions
of the deterministic suffix automaton are proved in Theorems 6.1 and 6.2 in [7] or in
Theorem 5.3.5 in [18]. We note that these proofs are based on the following principle:
Given a substring u, the d-subset of the state in which the deterministic suffix au-
tomaton is after reading u is called the terminator set of u [18]. It holds for any two
substrings u1 and u2 that their terminator sets cannot overlap; in other words, the
terminator sets of a deterministic suffix automaton correspond to a tree structure. It
has been proved that this tree structure is such that the above-mentioned numbers
of states and transitions hold. ⊓⊔

5 Conclusion

We have described a new kind of pushdown automata: subtree PDAs for trees in
prefix notation. These pushdown automata are in their properties analogous to suffix
automata, which are widely used in stringology. The presented subtree PDAs repre-
sent a complete index of the subject tree with n nodes for all possible subtrees and
the deterministic version allows to find all occurrences of input subtrees of size m in
time linear in m and not depending on n.

Regarding specific tree algorithms whose model of computation is the standard
deterministic pushdown automaton, recently we have introduced principles of other
three new algorithms. First, a new and simple method for constructing subtree pattern
matchers as deterministic pushdown automata directly from given subtrees without
constructing finite tree automata as an intermediate product [8,13]. Second, tree
pattern pushdown automata, which represent a complete index of the tree for all tree
patterns matching the tree and the search phase of all occurrences of a tree pattern
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of size m is performed in time linear in m and not depending on the size of the
tree [12,13]. These automata representing indexes of trees for all tree patterns are
analogous in their properties to the string factor automata [6,7] and are an extension
of the subtree PDA presented in this paper. Third, a method for finding all repeats
of connected subgraphs in trees with the use of subtree or tree pattern PDA [15,13].
More details on these results and related information can also be found on [2].

I would like to thank to Bořivoj Melichar and anonymous referees – their comments
have contributed to improving the text significantly.

References

1. A. V. Aho and J. D. Ullman: The theory of parsing, translation, and compiling, Prentice-Hall
Englewood Cliffs, N.J.,, 1972.

2. Arbology www pages: Available on: http://www.arbology.org, July 2009.
3. J. Berstel: Transductions and Context-Free Languages, Teubner Studienbucher, Stuttgart,

1979.
4. L. Cleophas: Tree Algorithms. Two Taxonomies and a Toolkit., PhD thesis, Technische Uni-

versiteit Eindhoven, Eindhoven, 2008.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,
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Abstract. We present two algorithms for minimizing deterministic frontier-to-root
tree automata (dfrtas) and compare them with their string counterparts. The pre-
sentation is incremental, starting out from definitions of minimality of automata and
state equivalence, in the style of earlier algorithm taxonomies by the authors. The first
algorithm is the classical one, initially presented by Brainerd in the 1960s and pre-
sented (sometimes imprecisely) in standard texts on tree language theory ever since.
The second algorithm is completely new. This algorithm, essentially representing the
generalization to ranked trees of the string algorithm presented by Watson and Daciuk,
incrementally minimizes a dfrta. As a result, intermediate results of the algorithm can
be used to reduce the initial automaton’s size. This makes the algorithm useful in situ-
ations where running time is restricted (for example, in real-time applications). We also
briefly sketch how a concurrent specification of the algorithm in CSP can be obtained
from an existing specification for the dfa case.

Keywords: deterministic frontier-to-root tree automata, deterministic bottom-up tree
automata, minimization, minimality

1 Introduction

Minimization of deterministic finite string automata (dfas) has been studied since
the late 1950s. Many applications of such minimization arose, and as a result many
algorithms were published, often with vastly differing presentation styles and lev-
els of formality [12]. For the case of deterministic frontier-to-root (aka bottom-up)
tree automata (dfrtas), minimization was considered less frequently, likely due to
fewer applications being considered at the time. Minimization for dfrtas was first
discussed in the late 1960s by Brainerd [1,2], who presented a textual procedure for
minimization that is essentially the generalization to trees of a classical dfa mini-
mization approach. Later standard references either do not discuss minimization at
all or present an approach similar to Brainerd’s. Later standard references either do
not discuss minimization at all [8], have a discussion similar to Brainerd’s [9], or give
a somewhat imprecise algorithm [6]. As pointed out by Carrasco, Daciuk and For-
cada [3], discussions of an implementation of such a minimization algorithm are hard
to find. Their paper presents such a discussion for the case of deterministic bottom-
up tree automata over unranked trees. Carrasco et al. also presented an algorithm
for incremental construction of minimal deterministic bottom-up tree automata over
unranked trees [4].

For the string case, Watson presented an extensive taxonomy of minimization
algorithms [12, Chapter 7]. A concurrent specification of an incremental minimization
algorithm for the string case was recently presented by Strauss et al. [11], offering
possibilities for exploiting parallelism on systems or networks of systems with multiple
CPU cores.

Loek Cleophas, Derrick G. Kourie, Tinus Strauss, Bruce W. Watson: On Minimizing Deterministic Tree Automata, pp. 173–182.
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Both in the string and the tree case, minimization is based on the notion of
language equivalence between states; either in the form of that equivalence relation, its
complement (i.e. the distinguishability relation), or of the state set partition induced
by the equivalence relation. In the classical approach, the algorithms start off with
a set of possibly equivalent state pairs. This is then refined iteratively by removing
state pairs that are definitely not equivalent, until the greatest fixed-point is reached.
The resulting set defines a partitioning of the states set into equivalence classes which
correspond to the state set of the minimal automaton equivalent to the original one.
Put differently, the algorithms compute the greatest fixed point from the top i.e. from
the unsafe side [13], meaning that intermediate results of the algorithm cannot be
used to reduce the initial dfa.

Watson in [12] and most recently Watson & Daciuk in [13] present an incremental
approach to dfa minimization. Their approach results in an algorithm that starts
out with a singleton partition for each of the states of the initial dfa and refines
this partition by iteratively merging partitions that are shown to be equivalent. The
greatest fixed-point reached corresponds to the state set of the minimal automaton
equivalent to the original one. Such an algorithm thus computes the greatest fixed
point from below i.e. from the safe side. Clearly, intermediate results from such an
algorithm can already be used to reduce the original dfa.

In this paper, we focus on minimization of dfrtas. We present both an algorithm
using the classical approach and a new algorithm using the incremental approach
to minimization. The latter is the first description of such an algorithm for the tree
case. The former is presented more precisely than in most existing literature (with
the exception of [3], although that work considers the case of unranked deterministic
bottom-up tree automata). Furthermore, its inclusion allows one easily to compare
and contrast the two approaches (as is the case for dfa minimization algorithms in
the taxonomy of such algorithms in [12, Ch. 7]).

We also briefly consider the generalization to the dfrta case of an existing con-
current specification in CSP of the incremental dfa minimization algorithm. This
elegant generalization further increases the parallelism in the specification.

The rest of this paper is structured as follows:

– Section 2 discusses some preliminaries on dfas, trees, and dfrtas needed in the
remainder of the paper.

– Equivalence of states and minimality of dfas and dfrtas are discussed in Sec-
tion 3.

– Section 4 discusses the classical approach to minimization of dfas and dfrtas.
– The incremental approach to minimization and our resulting new incremental

minimization algorithm for dfrtas is discussed in Section 5.
– Section 6 presents a concurrent specification for the new algorithm in CSP, based

on an existing specification of incremental minimization for the string case.
– Finally, Section 7 presents some concluding remarks and suggestions for future

work.

2 Preliminaries

Since our discussion of minimization of tree automata frequently refers to that for
the case of string automata, we recall some definitions related to deterministic finite
(string) automata.
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Definition 1. A dfa M is a 5-tuple (Q,Σ, δ, q0, F ) such that Q is a finite set, the
state set; Σ is an alphabet (a finite set of symbols); δ ∈ Q×Σ 9 Q is the transition
function; q0 ∈ Q is the initial or start state; and F ⊆ Q is the set of final or
accepting states.

We extend transition function δ to its transitive closure δ∗, defined inductively
by δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w). For every state q ∈ Q of a dfa, its

right language (left language) is defined as
→
L= {w ∈ Σ∗|δ∗(q, w) ∈ F} (

←
L= {w ∈

Σ∗|δ∗(q0, w) = q}).
We call a dfa complete if and only if its transition function δ is a total function.

A dfa with a partial transition function can be transformed into a complete one
by adding a single absorption state or sink state, usually denoted ⊥, and having
undefined transitions lead to this state. A state q ∈ Q is called unreachable if and
only if its left language is empty. A dfa without unreachable states is called reduced.
For simplicity, we assume dfas to be both reduced and complete from here on.

Many of the notations and definitions we use are related to regular tree language
theory. To a large extent they are straightforward generalizations of ones familiar
from regular string language theory. Readers may want to consult e.g. [5,6,8,9] for
more detail.

Let Σ be an alphabet, and r ∈ Σ → N. Pair (Σ, r) is a ranked alphabet, r is a
ranking function, and for all a ∈ Σ, r(a) is called the rank or arity of a. We use
Σn for 0 ≤ n to indicate the subset of Σ of symbols with arity n. In algorithms and
predicates, we will use n to indicate the rank or arity of a symbol a.

Given a ranked alphabet (Σ, r), the set of ordered, ranked trees over this alpha-
bet, set Tr(Σ, r), is the smallest set satisfying a ∈ Tr(Σ, r) for all a ∈ Σ0 and
a(t1, . . . , tn) ∈ Tr(Σ, r) for all t1, . . . , tn ∈ Tr(Σ, r), a ∈ Σ such that r(a) = n 6= 0.
Such trees can trivially be presented as rooted, connected, directed, acyclic graphs in
which each node has at most one incoming edge. Nodes labeled by symbols of rank 0
are called leaf nodes or leaves ; the sequence of leafs of a tree is called its frontier.

In one common view on processing of a tree by tree automata (tas), each tree
node is annotated with a state. For each node labeled by a symbol a (of rank n),
state q0 and states q1, · · · , qn may be assigned to that node and its direct subnodes
respectively if the tuple (q0, (q1, · · · qn)) is in the transition relation of symbol a. Note
that this simplifies to (q0, ()) for n = 0. A tree is accepted by a ta if and only if it
can be consistently annotated such that the state assigned to the root is a so-called
root accepting or final state.

By considering transitions of tas to be directed frontier-to-root, we obtain the
nondeterministic εnfrtas; the deterministic dfrtas are obtained by further restrict-
ing the automata to have no ε-transitions and by restricting the transition relations
to be (partial) functions, i.e. for every state tuple and symbol yielding (at most) one
state. This motivates the following definition:

Definition 2. A dfrta is a 5-tuple (Q,Σ, r , R,Qra) such that Q is a finite set,
the state set; (Σ, r) is a ranked alphabet; R = {Ra|a ∈ Σ} is the set of transition
functions (where for all a ∈ Σ with r(a) = n we have Ra ∈ Qn

9 Q); and Qra ⊆ Q
is the set of root accepting or final states.

Compared to dfas on strings, two main differences appear: dfrtas have no start
states, and each transition on a symbol (of rank or arity n) relates an n-tuple of states
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to a state, instead of relating a single state to a state. Note that we will sometimes
refer to Qra as F .

Just as the extension, δ∗, of a dfa’s transition function δ (δ yields the state reached
after processing a single symbol) yields the state reached after processing a string,
for a dfrta we can define a function RSt yielding the state reached after processing
a tree, i.e. the state assigned to the root node of such a tree. It is defined inductively
by RSt(a) = Ra() for a ∈ Σ0 and RSt(a(t1, . . . , tn)) = Ra(RSt(t1), . . . ,RSt(tn)) for
t1, . . . , tn ∈ Tr(Σ, r), a ∈ Σ such that r(a) = n 6= 0.

Using this definition, we can define the language accepted at state q in a dfrta

M as L↓
M(q) = {t ∈ Tr(Σ, r)|RSt(t) = q}. The language accepted by the dfrta

then is simply the language accepted at either of its final or root accepting states:
LM =

⋃
q∈Qra

L↓
M(q). If M is clear from the context, we simply write L instead of

LM . Note that L↓
M(q) is analogous to the left language of a dfa state [7]; for obvious

reasons, we will therefore call it the down language of state q. Likewise, we define
the up language of a state, a notion similar to the right language of a dfa state [7]:

L↑
M(q) = {t ∈ Tr(Σ ′, r ′)|RSt(t ·# s) ∈ F for all s ∈ L↓

M(q)} where t has a single leaf
labeled # (and Σ ′ and r ′ are obtained by extending Σ and r with this symbol of
arity 0) and t ·# s denotes the tree obtained from t by substituting tree s for this leaf.

We call a dfrta complete, similar to the notion of completeness for dfas, if and
only if the Ra are total functions; a dfrta that is not complete can always be made
complete by adding a sink state and transitions to it, as is the case for dfas. A dfrta

state q is unreachable if and only if it can never be assigned to the root of any tree by
a computation of the dfrta—i.e. if and only if its down language L↓

M is empty. Like
dfas, dfrtas are reduced if and only if they contain no unreachable states. From
here on, we assume dfrtas to be both reduced and complete.

Finally, the size of a dfa or dfrta is defined as |Q|, i.e. the size of its state set.

3 Equivalence and minimality

We use Equiv as a predicate on two dfa states, defined for all p, q ∈ Q by

Equiv(p, q) ≡ (
→
L (p) =

→
L (q)).

and as a predicate on two dfrta states, defined for all p, q ∈ Q by

Equiv(p, q) ≡ (L↑(p) = L↑(q)).

Thus dfa (dfrta) states are equivalent if and only if their right languages (up

languages) are the same. Using an inductive definition of
→
L, Equiv(p, q) for dfa states

can easily be defined recursively [13] as

(p ∈ F ≡ q ∈ F ) ∧
〈
∀ a : a ∈ Σ : Equiv(δ(p, a), δ(q, a))

〉
.

Similarly, Equiv(p, q) can be defined recursively for dfrta states. Before doing so, we
introduce two abbreviations:

–
→
ρ i:s is used to abbreviate (ρ1, . . . , ρi−1, s, ρi+1, . . . , ρn) (given

→
ρ= (ρ1, . . . , ρn));

– Predicate P (a, i,
→
ρ) is defined as a ∈ Σ ∧ 1 ≤ i ≤ n ∧ →

ρ∈ Qn.
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Using these abbreviations Equiv(p, q) can be defined recursively for dfrta states
as

(p ∈ Qra ≡ q ∈ Qra) ∧
〈
∀ a, i,

→
ρ : P (a, i,

→
ρ) : Equiv(Ra(

→
ρ i:p), Ra(

→
ρ i:q))

〉

(proof omitted and similar to the string case, albeit slightly more complicated due to
the generalisation from string right languages to tree up languages). In other words,
two dfrta states are equal if and only if they are both final or non-final, and for
each alphabet symbol and each two state tuples that are identical except for the
appearance of p and q in corresponding positions, the transitions from these two
tuples on the symbol lead to equivalent states.

The usual definition of minimality of a finite automaton (whether on strings or
on trees), is that no language equivalent automaton with fewer states exists. Using
the definition of up language for dfrta states (respectively right language for dfa

states), minimality can also be written as a predicate

〈
∀ p, q ∈ Q : p 6= q : ¬Equiv(p, q)

〉
.

For any two states p, q (such that p 6= q), if Equiv(p, q) holds, they can be merged,
i.e. one of them can be eliminated in favor of the other (while redirecting in-transitions
to the eliminated state to the equivalent remaining one). Eventually, the resulting
automaton will be the minimal one recognizing the same language as the original
one. (Note that this minimal dfa or dfrta is unique up to isomorphism). We do not
address this reduction step in this paper, but focus on the computation of Equiv in
two essentially different ways.

4 The classical minimization approach

In the classical approach, the computation of Equiv starts out from two initial par-
titions, corresponding to F and Q\F . This is refined iteratively until the greatest
fixed-point is reached. The resulting partitioning corresponds to the state set of the
minimal automaton equivalent to the original one. Put differently, the algorithms
compute the greatest fixed point from the top i.e. from the unsafe side [13].

Classically, minimization algorithms may in fact be based on computing the dis-
tinguishability relation between states instead of the equivalence relation, or on com-
puting the partition induced on states by the equivalence relation, or some combi-
nation of the three. One variant of the classical minimization approach for the case
of dfas is presented in [12, Algorithm 7.18]. It uses layerwise computation of Equiv
(called E there) and of its negation ¬Equiv (called D there, and not included in our
presentation). We slightly adapt that algorithm to our notation here:
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Algorithm 3 (Layerwise computation of Equiv for dfas)

H := (F × F ) ∪ ((Q\F )× (Q\F ));
Hold := Q×Q;
{ invariant: H ⊇ Equiv }
do H 6= Hold →
{ H 6= Hold }
Hold := H ;
for (p, q) : (p, q) ∈ Hold →

as 〈∃ a : a ∈ Σ : (δ(p, a), δ(q, a)) 6∈ Hold〉 → H := H\(p, q) sa

rof

od{ H = Equiv }

As pointed out by Watson, without the computation of ¬Equiv (i.e. D), this is
essentially Wood’s algorithm for computing minimal dfas [14, p. 132], with Wood
stating it is based on Moore’s 1950s work [10].

A version of this algorithm for the case of dfrtas is presented below. It essentially
corresponds to the approach in [6, Section 1.5].1 The resulting equivalence relation
Equiv (called P there) is then used to determine the induced equivalence classes and
construct the corresponding minimal dfrta.

Algorithm 4 (Layerwise computation of Equiv for dfrtas)

H := (F × F ) ∪ ((Q\F )× (Q\F ));
Hold := Q×Q;
{ invariant: H ⊇ Equiv }
do H 6= Hold →
{ H 6= Hold }
Hold := H ;
for (p, q) : (p, q) ∈ Hold →

as
〈
∃ a, i,

→
ρ : P (a, i,

→
ρ) : (Ra(

→
ρ i:p), Ra(

→
ρ i:q)) 6∈ Hold

〉
→ H := H\(p, q) sa

rof

od{ H = Equiv }

Even though this algorithm may look rather complicated compared to the one for
dfas, there is only one essential difference: instead of considering for each symbol a
and state p and q where their out-transition on this symbol leads, one has to consider
this for states p and q within contexts: their occurrence at the same position in two
otherwise equal state tuples (cf. the definition of Equiv for dfrta states as given at
the end of Section 3).

The classical minimization approach for dfrtas has been known for decades, with
its first description appearing in Brainerd’s 1967 PhD thesis [1]. That description is
not as explicitly algorithmic as the one given here or in [6, Section 1.5], and in fact,
an algorithmic presentation worked out in detail to an implementation level—albeit
for the case of dfrtas on unranked trees—did not appear until 2007 [3].

1 Note however, that the quantification used in [6, Section 1.5] is somewhat imprecise, as it leaves
i unbounded.
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5 An incremental minimization algorithm

Watson in [12] and most recently Watson & Daciuk in [13] presented an incremental
approach to dfa minimization. Their approach results in an algorithm that starts
out with a singleton partition for each of the states of the initial dfa and refines
this partition by iteratively merging partitions that are shown to be equivalent. The
greatest fixed-point reached corresponds to the state set of the minimal automaton
equivalent to the original one. Such an algorithm thus computes the fixed point from
below i.e. from the safe side. Clearly, intermediate results from such an algorithm
can already be used to reduce the original dfa. We provide a first version of this
incremental approach for dfrtas.

From the problem of deciding the structural equivalence of two types, it is known
that equivalence of two states can be computed recursively by turning the mutually re-
cursive set of equivalences Equiv into a functional program. For cyclic automata, a di-
rect translation from definition to functional program might lead to non-termination.
Thus, in addition to two states, the functional program for compute equivalence also
takes a third parameter. An invocation equiv(p, q, ∅) returns, via the local variable
eq, the truth value of Equiv(p, q). The third parameter, S, is used during recursion
to capture pairs of states that are assumed to be equivalent until shown otherwise.

The recursion depth can be bounded by the larger of |Q| − 2 and 0 without
affecting the result [12, Section 7.3.3], and we add a parameter k to function equiv to
do so. For efficiency reasons, parameter S is made a global variable. We assume that
it is initialized to ∅. When S = ∅, an invocation equiv(p, q, (|Q| − 2) max 0) returns
Equiv(p, q); after such an invocation returns, S = ∅.

Algorithm 5 (Pointwise computation of Equiv(p, q) for dfas)

func equiv(p, q, k) =
|[ if k = 0→ eq := (p ∈ F ≡ q ∈ F )

[] k 6= 0 ∧ {p, q} ∈ S → eq := true

[] k 6= 0 ∧ {p, q} 6∈ S →
eq := (p ∈ F ≡ q ∈ F );
S := S ∪ {{p, q}};
for a : a ∈ Σ →

eq := eq ∧ equiv(δ(p, a), δ(q, a), k − 1)
rof ;
S := S\{{p, q}}

fi;
return eq

]|{ equiv(p, q, k) ≡ Equiv(p, q) }

Function equiv can be used to compute relation Equiv. To do so, we maintain
set G (H) consisting of pairs of states known to be distinguishable i.e. belonging to
¬Equiv (equivalent i.e. belonging to Equiv). To initialize both sets, we note that final
states are never equivalent to non-final ones, and that a state is always equivalent to
itself. Since Equiv is an equivalence relation, we ensure that H is transitive at each
step of the algorithm. Finally, we have a global variable S as used by function equiv :
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Algorithm 6 (Incremental computation of Equiv)

S, G, H := ∅, ((Q\F )× F ) ∪ (F × (Q\F )), {(q, q)|q ∈ Q};
{ invariant: G ⊆ ¬Equiv ∧H ⊆ Equiv }
do (G ∪H) 6= Q×Q→

let p, q : (p, q) ∈ ((Q×Q)\(G ∪H));
if equiv(p, q, (|Q| − 2) max 0)→

H := H ∪ {(p, q), (q, p)};
H := H+

[] ¬equiv(p, q, (|Q| − 2) max 0)→
G := G ∪ {(p, q), (q, p)};

fi

od{ H = Equiv }

The repetition in this algorithm can be interrupted and the partially computed H
can be safely used to merge states, leading to a not necessarily minimal but potentially
smaller automaton than the original one.

The algorithm is not dfa-specific and as a result can be applied for the dfrta-
case, provided function equiv is suitably chosen. Looking at function equiv for the dfa

case, we see that the update to eq in the loop is performed for every out-transition of
p and q. For the dfrta case, the equivalent is to perform the update for every out-
transition involving p and q, with such out-transitions involving tuples of states that
are identical except for an appearance of p and q respectively at the same position:

Algorithm 7 (Pointwise computation of Equiv(p, q) for dfrtas)

func equiv(p, q, k) =
|[ if k = 0→ eq := (p ∈ F ≡ q ∈ F )

[] k 6= 0 ∧ {p, q} ∈ S → eq := true

[] k 6= 0 ∧ {p, q} 6∈ S →
eq := (p ∈ F ≡ q ∈ F );
S := S ∪ {{p, q}};
for a, i,

→
ρ : P (a, i,

→
ρ)→

eq := eq ∧ equiv(Ra(
→
ρ i:p), Ra(

→
ρ i:q), k − 1)

rof ;
S := S\{{p, q}}

fi;
return eq

]|{ equiv(p, q, k) ≡ Equiv(p, q) }

Watson and Daciuk in [13] considered different ways to improve both the theoret-
ical and the practical running time of the algorithm for the dfa case. Furthermore,
they showed the resulting efficient implementation to be competitive to implemen-
tations of classical minimization algorithms, even though the basic incremental al-
gorithm is known to have a worse theoretical running time complexity. We expect
similar results to hold for the dfrta case and plan to consider these as future work.
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6 A CSP specification for incremental DFRTA minimization

In [11, Section 5], Strauss et al. presented a concurrent version of the incremental
minimization algorithm for dfas in the form of a CSP specification. The crucial
part of that specification w.r.t. the difference between dfas and dfrtas is presented
below.2 It corresponds to the for-loop in function equiv of Algorithm 5.

FanOutpq(S, k) = |‖a∈Σ

(if ({δ(p, a), δ(q, a)} /∈ S) then

( Equiv δ(p,a),δ(q,a)(S ∪ {(p, q)}, k − 1) △ (1)

(toδ(p,a),δ(q,a)?eqa → (EqSet := EqSet ∪ {eqa}) )

else (EqSet := EqSet ∪ {true}) ) (2)

We refer to [11, Section 5] for details on this and other parts of the specification.
Here, we focus on adapting this particular part to the case of dfrtas. All the other
parts of the specification stay the same, just as all the other parts of the sequential al-
gorithm stay the same when generalizing from dfas to dfrtas (compare Algorithm 5
to Algorithm 7).

To generalize the specification of FanOutpq(S, k), we merely need to generalize the

range of the interleaving operator |‖ from a ∈ Σ to P (a, i,
→
ρ) and replace the δ(p, a)

and δ(q, a) by Ra(
→
ρ i:p) and Ra(

→
ρ i:q).

The generalization of the CSP specification from dfas to dfrtas is thus rather
elegant. As hinted at in [11], a significant advantage of a CSP specification such as
the foregoing, is maximally to expose opportunities for parallelization. Expressing
the dfrta minimization algorithm in the suggested CSP format indicates that these
opportunities will increase drastically if there are a large number of state tuples
(which in turn depends on the ranks of the symbols and the number of states).
How one exploits these opportunities will clearly depend on the available hardware
configuration. The CSP specification is provided in anticipation of a continuation in
the current surge in the chip industry towards increasingly large multi-core processors.
Thus, while in some senses the CSP specification is a theoretical result, we believe
that it is sufficiently generic to serve as a useful reference point in experimenting with
parallel implementations of the dfrta minimization algorithm.

7 Conclusion

This paper has high-lighted once again that many results from the field of regular
string languages generalize to that of regular tree languages. It showed, by way of
three minimization algorithms, how this generalization becomes quite transparent
and elegant if suitable notation is used.

The first algorithm that was generalized to the dfrta case was already known,
but has been presented here in a style which highlights how the generalization occurs.

The second algorithm generalized to the dfrta case gives a completely new result,
being namely a generalization to ranked trees of the string algorithm presented by
Watson and Daciuk, incrementally minimizing a dfrta. As a result, intermediate
results of the algorithm can be used to reduce the initial automaton’s size. This makes

2 The specification has been slightly adapted to the notation used in the current paper.
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the algorithm useful in situations where running time is restricted (for example, in
real-time applications). The new incremental minimization algorithm for dfrtas can
be further improved, similar to the improvements made for the dfa case in [13,
Section 6]. We expect such improvements to lead to better performance in practice,
similar to the dfa case. To verify this and to be able to compare the (improved) new
algorithm and the one using a classical approach to minimization, both need to be
implemented and benchmarked.

In the third instance, we also briefly described how an existing concurrent speci-
fication of the incremental dfa minimization algorithm in CSP gives rise to one for
the dfrta case. Once again, the generalization was facilitated by relying on suit-
ably defined notation. While implementations of the concurrent specification could
be investigated to see whether the parallelization is efficient in practice on currently
available hardware, we consider that its principal value lies in serving as a refer-
ence point in deriving parallel implementations on the anticipated massively parallel
machines of the future.
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Abstract. The shapes of binary trees can be encoded as permutations having a very
special property. These permutations are tree permutations, or equivalently they avoid
subwords of the type 231. The generation of binary trees in natural order corresponds
to the generation of these special permutations in the lexicographic order. In this pa-
per we use a stringologic approach to the generation of these special permutations:
decompositions of essential parts into the subwords having staircase shapes. A given
permutation differs from the next one with respect to its tail called here the working
suffix. Some new properties of such working suffixes are discovered in the paper and
used to design effective algorithms transforming one tree permutation into its succes-
sor or predecessor in the lexicographic order. The algorithms use a constant amount
of additional memory and they look only at those elements of the permutation which
belong to the working suffix. The best-case, average-case and worst-case time complex-
ities of the algorithms are O(1), O(1), and O(n) respectively. The advantages of our
stringologic approach are constant time and iterative generation, while other known
algorithms are usually recursive or not constant-memory ones.

Keywords: tree permutations, stack-sortable permutations, 231-avoiding permuta-
tions, enumeration of binary trees

1 Introduction

The generation in natural order of the shapes of binary trees with n nodes corresponds
to the lexicographic generation of all special permutations of elements 1, 2, . . . , n. This
is easy when done recursively and more technical when done iteratively. Our goal is
to do it iteratively and at the same time with small time and small space (constant-
memory). The natural order of trees as well as its corresponding tree permutations
are defined in [3]. It’s worth mentioning that the natural order of binary trees is also
called an A-order of binary trees [6] and tree permutations are often referred to as
stack-sortable permutations or 231-avoiding permutations [13].

In this paper we explore stringologic approach and consider carefully the structure
of subwords of special permutations. We introduce the notion of the working suffix of
the permutation and reveal its staircase structure. The working suffix is a concatena-
tion of descending staircases, with bottom points of staircases strictly increasing.

We say that the permutation p = (p1, p2, . . . , pn) of the integer numbers 1, 2, . . . , n
is 231-avoiding (or that p avoids the pattern 231) if there are no such indices 1 ≤
i2 < i3 < i1 ≤ n such that pi1 < pi2 < pi3 .

In other words the subsequence (a, b, c) matches the pattern 231 iff

a < b > c < a.

A permutation p avoids the pattern 231 if there is no subsequence of p which matches
pattern 231 (see Figure 1).
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pi

pj

pk

Figure 1. Subsequence (pi, pj, pk) matching the pattern 231. Permutation p is 231-
avoiding if there is no subsequence of p matching the pattern 231.

Example 1. The permutation
(4, 1, 2, 5, 3, 6, 7)

is not a 231-avoiding since the subsequence 4, 5, 3 matches (in the sense of order)
pattern 231, while the permutation

(4, 1, 2, 3, 5, 6, 7)

avoids the pattern 231.

A binary tree T is either a null tree or it consists of a node called the root and
two binary trees denoted left(T ) and right(T ). Let |T | denote the size of T . In the
former case, the size of T is zero; in the latter case, |T | = 1 + |left(T )|+ |right(T )|.
The natural order [3] of binary trees follows the recursive definition:
We say that T1 ≺ T2 if

1. |T1| < |T2|, or
2. |T1| = |T2| and left(T1) ≺ left(T2), or
3. |T1| = |T2| and left(T1) = left(T2) and right(T1) ≺ right(T2),

This order is related to the order relation given by D. E. Knuth in [4, Sec. 2.3.1,
excercise 25] specialized to unlabeled binary trees, and is also known as A-order of
binary trees [6].

Let T be a binary tree on n nodes. We can represent the tree T as a sequence of
the integer numbers 1, 2, . . . , n first labeling the nodes with their position’s number
as they appear in the inorder traversal of the tree and then listing those labels as
they appear in the preorder traversal of the tree. We shall call such a representation
preorder-inorder representation and the corresponding sequence tree permutation.

5

2

1 3

4

7

6

Figure 2. A binary tree T and the string (5, 2, 1, 3, 4, 7, 6) = preorder(inorder(T ))
representing its shape. (5, 2, 1, 3, 4, 7, 6) is the tree permutation of T .
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Interestingly, the natural order of binary trees is preserved by the lexicographic
order on their preorder-inorder representation [1] (see Figure 3).

Lemma 2. For the binary trees T1 ≺ T2 iff the tree permutation of T1 is lexicograph-
ically smaller than tree permutation of T2.

1 2 3 4 1 2 4 3 1 3 2 4 1 4 2 3 1 4 3 2 2 1 3 4 2 1 4 3

3 1 2 4 3 2 1 4 4 1 2 3 4 1 3 2 4 2 1 3 4 3 1 2 4 3 2 1

Figure 3. Binary trees for n = 4 listed in the lexicographic order on their preorder-
inorder representation

The most important property of tree permutations which is employed in this paper
is their equivalence with 231-avoiding permutations [1].

Lemma 3. A permutation p is a tree permutation iff it is 231-avoiding.

Further on we will refer to this property as the basic property.

Let p = (p1, p2, . . . , pn) be a tree permutation. The suffix of p which makes p
different from its successor in the lexicographic order is called working suffix.

Example 4. For tree permutations for n = 4 the working suffixes are underlined as
follows:

1 2 3 4 1 2 4 3 1 3 2 4 1 4 2 3 1 4 3 2 2 1 3 4 2 1 4 3
3 1 2 4 3 2 1 4 4 1 2 3 4 1 3 2 4 2 1 3 4 3 1 2 4 3 2 1

The working suffix for permutation 1234 is 34 since the next permutation is 1243.
The working suffix for 4321 is empty, since there is no successor for 4321.

We shall call a decreasing sequence of consecutive numbers a descending stairs
sequence and refer to its first (largest) element as the top of the sequence and last
(smallest) element as the bottom of the sequence. A single number always forms trivial
descending stairs sequence.

2 Working Suffix Properties

In this section we elaborate on the basic property of tree permutations and present
a few properties of the working suffix. Those properties in consequence let us con-
struct effective algorithms transforming a given tree permutation into its successor
or predecessor in the lexicographic order.

Lemma 5. Let p be a tree permutation and let i be the index of the first position
of its working suffix. If tree permutation q is the successor of p in the lexicographic
order, then qi = pi + 1.
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Proof. Since the suffix qi, qi+1, . . . , qn is a permutation of the working suffix
pi, pi+1, . . . , pn then there exists an index k > i such that qk = pi.

Suppose for the sake of contradiction that qi > pi + 1. There exists an index j
such that pj = pi + 1. Due to the basic property j > i since otherwise we would have
three indices j < i < k for which qk = pi < qj = pi + 1 < qi.

Having such an index j > i for which pj = pi+1 we can construct a permutation r
by exchanging elements pj and pi and then sorting the suffix starting at index i+1 in
ascending order. The permutation r = (p1, p2, . . . , pi−1, pi + 1, ri+1, . . . , rn) is a valid
tree permutation with ri = pi + 1 > pi and ri+1 < ri+2 < · · · < rn. Hence p ≺ r and
r ≺ q which contradicts with q being the successor of p. ⊓⊔

Lemma 6. Let p be a tree permutation and let i be the index of the first position
of its working suffix, then there exist no such indices j, k such that i < j < k and
pk = pj + 1.

Proof. The proof is similar to that of Lemma 5.
Let q = (q1, q2, . . . , qi−1, qi, qi+1, . . . , qn) be the successor of p. Since the working

suffix of p starts at index i therefore q = (p1, p2, . . . , pi−1, qi, qi+1, . . . , qn), with qi =
pi + 1.

Suppose for the sake of contradiction that there exist indices i < j < k such
that pk = pj + 1. Then we can construct a new permutation r from p by exchanging
elements pj with pk and sorting the suffix starting at index j + 1 in ascending order.
The permutation r = (p1, p2, . . . , pj−1, pk, rk+1, rk+2, . . . , rn) with rj = pk > pj and
rk+1 < rk+2 < · · · < rn is a valid tree permutation. Hence we have p ≺ r and also
r ≺ q which contradicts with q being the successor of p. ⊓⊔

Lemma 7. Let p = (p1, p2, . . . , pn) be a tree permutation and i be the starting index
of its working suffix. For any index i ≤ k < n, pk > pk+1 implies that pk = pk+1 + 1.

Proof. Let q = (q1, q2, . . . , qi−1, qi, qi+1, . . . , qn) be the successor of p. Since the working
suffix of p starts at index i, therefore q = (p1, p2, . . . , pi−1, qi, qi+1, . . . , qn), with qi =
pi + 1.

Assume that there exists an index k such that i ≤ k < n and pk > pk+1. Suppose
for the sake of contradiction that pk > pk+1 + 1. Let j be an index for which pj =
pk+1 + 1. Due to the basic property j > k + 1. We obtain a contradiction since we
have indices i < k + 1 < j for which pj = pk+1 + 1 which is impossible with respect
to Lemma 6. ⊓⊔

Theorem 8. For any tree permutation p = (p1, p2, . . . , pn) its (not empty) working
suffix starting at index i forms a staircase of descending stairs sequences (possibly of
length 1) for which the top element pi of the first descending stairs sequence is equal
to pj − 1, where j is the index of the bottom step of the following second descending
stairs sequence. Furthermore for no other indices i < k < l, pk = pl − 1.

This theorem is the direct consequence of the previously proven lemmas 5,6,7. See
Figure 4 for graphic interpretation of this theorem.
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p = (9, 6, 3, 2, 1, 5, 4, 7, 8, 11, 10, 22, 19, 17,13, 12, 16, 15,14, 18, 21, 20, 25, 24, 23)

Figure 4. The tree permutation p represented in a graphic form with shaded parts
corresponding to the special staircase structure of the working suffix. The black dot
appears above the top of the first sequence of descending stairs and the gray one at
the bottom of the following sequence of descending stairs.
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q = (9, 6, 3, 2, 1, 5, 4, 7, 8, 11, 10, 22, 19, 17,14, 12,13, 15, 16, 18, 20, 21, 23, 24, 25)

Figure 5. Graphic representation of the tree permutation q, which is the successor
of the tree permutation p from Figure 4.

3 The Algorithm

The lemmas 5, 6 presented in the previous section provide us enough information
about the structure of the working suffix to design the algorithm transforming given
tree permutation p into its successor. The algorithm consists of two steps:

1. Finding the first pair of indices i < j starting from the end of p such that pj =
pi + 1. From lemmas 5 and 6 we know that index i must be then the starting
position of the working suffix of p.
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2. Transforming the found working suffix by exchanging the elements pi and pj and
then sorting the suffix starting from position i + 1 in ascending order.

The theorem 8 on the other hand gives us an exact way how to implement the above
mentioned steps effectively by exploiting the staircase structure of the working suffix.

The algorithm Next(p) presented in this section is in fact a direct implementation
of the theorem 8.

Algorithm 1: Next(P )

Step 1. Find the working suffix.

Let lbs, cbs and cs denote respectively the index of the bottom of the last seen
descending stairs sequence, the index of the bottom of the current descending
stairs sequence, and the current step index.

lbs := n; cbs := n; cs := n;
repeat

cs := cs− 1;
If we processed the whole permutation then there is no next one
if cs < 1 then

return false;
end

Check if we reach the bottom of the previous descending stairs sequence
if P [cs] < P [cs + 1] then

lbs := cbs;
cbs := cs;

end

until P [lbs] = P [cs] + 1 ;

Step 2. Changing the working suffix to form the successor of P . The cs points
at the first element of the working suffix with P [lbs] = P [cs] + 1.

Exchange the elements P [cs] and P [lbs], and then sort the suffix starting at
position cs + 1 in ascending order (by reversing the stairs).

swap(P [cs], P [lbs]);
cs := cs + 1;
while cs < n do

Let es denote the end of the current descending stairs sequence
es = cs + 1;
while es ≤ n and P [es] < P [cs] do

es := es + 1;
end

Change the current descending stairs sequence into increasing sequence
reverse(P , cs, es− 1);
cs := es;

end

return true; The permutation P has been transformed to its successor.
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The work done by the algorithm Next(p) can simply be reverted. During the
execution of the algorithm Next(p) the staircase of descending stairs sequences is
changed into a staircase of ascending stairs sequences. The element which was at
the starting position of the working suffix is the top of the first of ascending stairs
sequences, and the element which is placed at the starting position of the working
suffix after the execution of the algorithm delimits the new staircase of ascending
stairs sequences and simply allows us to find the starting index of the working suffix.

The algorithm Prev(p) transforms the given tree permutation p into its predeces-
sor in the lexicographic order.

Algorithm 2: Prev(P )

Step 1. Find the working suffix of P predecessor.

Let cts and cs denote respectively the index of the top of the current ascending
stairs sequence, and the current step index.

cts := n; cs := n;
repeat

cs := cs− 1;
If we processed whole permutation then there is no previous one
if cs < 1 then

return false;
end

Check if we reach the top of the preceding ascending stairs sequence
if P [cs] < P [cs + 1]− 1 then

cts := cs;
end

until P [cs] = P [cts] + 1 ;

Step 2. Changing the working suffix to form the predecessor of P . The cs

points at the first element of the working suffix with P [cs] = P [cts] + 1.

Exchange the elements P [cs] and P [cts], and then reverse each ascending
stairs sequence in the rest of the working suffix starting at position cs + 1.

swap(P [cs], P [cts]);
cs := cs + 1;
while cs < n do

Let es denote the end of the current ascending stairs sequence
es = cs + 1;
while es ≤ n and P [es] = P [es− 1] + 1 do

es := es + 1;
end

Change the current ascending stairs sequence into descending sequence
reverse(P , cs, es− 1);
cs := es;

end

return true; The permutation P has been transformed to its predecessor.
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4 Time Complexity

Let us recall that the number of binary trees with n nodes or equivalently the number
of the tree permutations of length n is given by the Catalan number [4]

Cn =

(
2n

n

)
/(n + 1).

Let Wn be the sum of lengths of the working suffixes for all tree permutations.
Since the algorithm Next(p) performs work proportional to the length of the work-
ing suffix of the given permutation p, therefore its average-case time-complexity in
enumerating all Cn tree permutations is O(Wn

Cn
).

Each tree permutation p can be represented as p = p1p
′p′′ where p′ is itself a tree

permutation of length p1− 1 and p′′ is a tree permutation of length n− p1 translated
by having p1 added to each element [3] (see Figure 6).

p = 8

p′

︷ ︸︸ ︷
4 1 3 2 6 5 7

p
′′

︷ ︸︸ ︷
4 3 1 2⊕8︷ ︸︸ ︷
12 11 9 10

Figure 6. Example of the decomposition of tree permutation
(8, 4, 1, 3, 2, 6, 5, 7, 12, 11, 9, 10).

Using this recursive property of the tree permutations we can formulate the re-
currence formula for Wn. If we fix p1 then p′′ is a tree permutation of length n − p1

and p′ of length p1 − 1. There are exactly Cp1−1 permutations of length p1 − 1. So
each working suffix of p′′ appears in p exactly Cp1−1 times. Therefore the summarized
length of all working suffixes of p starting in p′′ is equal to Cp1−1Wn−p1 .

When the working suffix of p starts in p′ then its length is equal to the length of the
working suffix of p′ plus length of p′′ which is equal to n−p1. Since the working suffix
of p starts in p′ each time this permutation is going to be changed (except the last
change which will be connected with changing the value of p1) then the summarized
length of working suffixes starting at p′ is equal to Wp1−1 + (n− p1)(Ci−1 − 1).

Now summarizing those values for each possible value of p1 and adding n(n− 1)
for the summarized length of all working suffixes which changes the whole string, we
obtain the following recurrence equation:

Wn =
n∑

i=1

(
Ci−1Wn−i + Wi−1 + (n− i)(Ci−1 − 1)

)
+ n(n− 1)

Solving this recurrence we obtain Wn = Cn+1 − n− 1.

Since the Catalan numbers satisfy the recursive relation C1 = 1, Cn+1 = 2(2n+1)
n+2

Cn,
we may conclude that the average-case time-complexity of the algorithm Next(p) is
constant since O(Wn

Cn
) = O(1).

This proves the following theorem:

Theorem 9. (Main Result) For a tree permutation p we can compute the next tree
permutation in the lexicographic order in constant amortized time using only a con-
stant amount of additional memory.
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The algorithm Prev(p) presented in the previous section was obtained by a simple
modification of the Next(p) algorithm and similarly performs work proportional to
the length of the working suffix of the given permutation p, therefore we obtain a
similar result:

Theorem 10. For a tree permutation p we can compute the previous tree permutation
in the lexicographic order in constant amortized time using only a constant amount
of additional memory.
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Department of Computer and Information Sciences, University of Tampere, Finland.
heikki.hyyro@cs.uta.fi

Abstract. We consider the classic problem of computing (the length of) the longest
common subsequence (LCS) between two strings A and B with lengths m and n,
respectively. There are several input sensitive algorithms for this problem, such as the
O(σn+min{Lm,L(n−L)}) algorithms by Rick [15] and Goeman and Clausen [5] and
the O(σn + min{σd, Lm}) algorithms by Chin and Poon [4] and Rick [15]. Here L is
the length of the LCS and d is the number of dominant matches between A and B, and
σ is the alphabet size. These algorithms require O(σn) time preprocessing for both A
and B. We propose a new fairly simple O(σm + min{Lm,L(n − L)}) time algorithm
that works in online manner: It needs to preprocess only A, and it can process B one
character at a time, without knowing the whole string B beforehand. The algorithm
also adapts well to the linear space1 scheme of Hirschberg [6] for recovering the LCS,
which was not as easy with the above-mentioned algorithms. In addition, our scheme fits
well into the context of incremental string comparison [12,10]. The original algorithm
of Landau et al. [12] for this problem uses O(σm + Lm) space. By using our scheme
instead, the space usage becomes O(σm + min{Lm,L(n− L)}).

Keywords: string algorithms, longest common subsequences, incremental string com-
parison

1 Introduction

We use the following conventions and notation in this paper. Σ is a finite alphabet of
size σ. Strings are composed of a finite (possibly length-zero) sequence of characters
from Σ. The length of a string A is denoted by |A|. When 1 ≤ i ≤ |A|, Ai denotes
the ith character of A. The notation Ai..h, where i ≤ h, denotes the substring of A
that begins at character Ai and ends at character Ah. Hence A = A1..|A|. String A is
a subsequence of string B if B can be transformed into A by deleting zero or more
characters from it. That is, the characters of A must appear in B in the same order
as in A, but they do not need to appear consecutively.

The length of a longest common subsequence (LCS) between two strings is a
classic measure of string similarity. Given two strings A and B, we denote the set
of their longest common subsequences by LCS(A,B). The length of each longest
common subsequence is denoted by LLCS(A,B). For example if A = “string” and B
= “writing”, then LCS(A,B) = {“ring”, “ting”} and LLCS(A,B) = 4. Throughout
this paper we use the traditional conventions that m denotes the length of string A,
n denotes the length of string B, and m ≤ n.

The problem of LCS/LLCS computation has been studied extensively (see e.g.
[3]). Wagner and Fischer [17] have given a basic O(mn) time LCS algorithm based
on dynamic programming. In terms of theoretical results, it has been proven that the
time complexity of the LCS problem has a general lower bound of Ω(n log m) [8], and

1 Here, as well as in [5] and [16], the alphabet size σ is assumed to be a constant.
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that the quadratic O(mn) worst case time complexity of the basic dynamic program-
ming algorithm cannot be improved by any algorithm that is based on individual
“equal/nonequal” comparisons between characters [1]. Currently the theoretically
fastest algorithm in the worst case is the O(mn/ log n) “Four Russians” algorithm of
Masek and Paterson [13].

There are several input sensitive algorithms for the LCS problem whose running
times depend on the properties of the input strings. For example the algorithm of Hunt
and Szymanski [9] has a running time O(r log n), where r is the number of matches
Ai = Bj over all i = 1, . . . ,m and j = 1, . . . , n. In similar fashion both Chin and
Poon [4] and Rick [15] have proposed O(σn + min{σd, Lm}) time algorithms, where
d is the number of so-called dominant matches and L = LLCS(A,B). Algorithms
whose running time depends on L are typically more efficient than basic dynamic
programming either when L is low, like for example the O(Ln + n log n) algorithm
of Hirschberg [7], or when L is high, like for example the O(n(m− L)) algorithm of
Wu et al. [18], but not in both cases simultaneously. Exceptions to this rule are the
O(σn+min{Lm,L(n−L)}) algorithms by Rick [15] and later by [5]. Rick’s algorithm
was the first algorithm that is efficient with both low and high values of L, and it has
also been found to be very efficient in practice [3].

The input sensitive algorithms typically rely on a preprocessing phase that is
possibly costly. For example the term σn in the two algorithms of Rick [15] and
the algorihms of Goeman and Clausen [5] and Chin and Poon [4] comes from the
preprocessing phase. It is furher often the case that the preprocessing needs to be
done for both A and B before the actual computation. This is true for example in
the case of each of the four above mentioned algorithms. This may be significant
for example within the setting of one-against-many type of comparison, e.g. when
comparing a single pattern string A against each string B in some string database. In
such a setting it would be desirable that the preprocessing phase would not need to be
repeated for each different string B, that is, if it would be enough to only preprocess
the string A once before the comparisons.

In addition to preprocessing only A, a further sometimes desirable property is that
the LCS algorithm should work in online manner. By this we mean that the algorithm
is able to process the string B one character at a time, without relying on knowledge
about the yet unprocessed characters. That is, the algorithm can first read B1 and
compute LLCS(A,B1), then read B2 and update the previous solution to correspond
to LLCS(A,B1..2), and so on until LLCS(A,B1..n). This is useful for example if we
wish to generate the set of all strings B for which it is true that LLCS(A,B) ≥ α,
where α is some threshold. Such a setting is feasible for example within the context of
indexed approximate matching, as proposed by Myers [14]2. For a pattern (piece) A,
the method of Myers generates a set of interesting strings by performing a depth-first
search (DFS) over a conceptional trie that contains all possible strings. During the
DFS, A is always compared to B1..j, the string that corresponds to the current node
in the trie. Maintaining this information in an efficient manner essentially requires
an online algorithm: when stepping from the node of B1..j to one of its child nodes,
which corresponds to some B1..j+1, the comparison information about LLCS(A,B1..j)
should be updated to correspond to LLCS(A,B1..j+1).

2 Myers considered edit distance, but a similar scheme can be used with LCS.
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Typically the space complexities of LCS algorithms coincide with their time com-
plexities if we wish to construct a string from the set LCS(A,B)3. The divide-
and-conquer scheme of Hirschberg [6] is a classic method to save space. It can be
used with several LCS algorithms in such manner that the value LLCS(A,B) and
a string from LCS(A,B) can be computed in linear space while the original asymp-
totic time complexity of the LCS algorithm is preserved. This space saving scheme
is not simple to use with Rick’s algorithm. Goeman and Clausen [5] proposed their
own O(σn + min{Lm,L(n − L)}) variant of Rick’s algorithm and showed how to
modify the algorithm to use O(σn) space, ie. linear space when the alphabet size
σ is constant. Their linear space scheme, however, changed the time complexity to
O(σn+min{Lm,m log m+L(n−L)}). Finally, Rick [16] proposed another linear space
variant that was able to maintain the O(σn + min{Lm,L(n− L)}) time complexity
of his original algorithm.

In this paper we propose an LCS algorithm that has O(σm+min{Lm,L(n−L)})
time complexity, same as the algorithms by Rick [15] and Goeman and Clausen [5].
Our algorithm, however, has some advantages. First of all we find it a bit more
simple than the previous two, which may be an important consideration in practice.
Perhaps the most significant difference is that our algorithm needs to preprocess
only the string A, and it furhermore works in online manner. As discussed above,
there are situations where these properties are important. The proposed algorithm
is also straight-forward to use within the linear-space divide-and-conquer scheme of
Hirschberg while preserving the O(σm + min{Lm,L(n− L)}) time complexity. And
as last we mention that the underlying principle behind our algorithm can also be
used quite directly within the setting of incremental string comparison [12,10].

2 Preliminaries

2.1 Dynamic programming

The basic O(mn) dynamic programming solution for the LCS problem is based on
filling an (m + 1) × (n + 1) dynamic programming matrix D in such manner, that
eventually each cell D[i, j] holds the value D[i, j] = LLCS(A1..i, B1..j). This can be
done using the well-known rules that are shown in Recurrence 1.

Recurrence 1.

When 0 ≤ i ≤ m and 0 ≤ j ≤ n :

D[i, j] =





0, if i = 0 or j = 0,
D[i− 1, j − 1] + 1, if Ai = Bj, and otherwise
max{D[i− 1, j], D[i, j − 1]}.

In the end, the desired LCS length LLCS(A,B) is found in the cell D[m,n]. The
matrix D is usually filled either in column- or rowwise order. If we are interested only
in the value LLCS(A,B) = D[m,n], for example a rowwise filling process needs to
store only the currently filled row i and the previous row i−1, which means that only
linear space is needed. A string in LCS(A,B) can be constructed by backtracking
along legal values from the cell D[m,n] to the cell D[0, 0] in the filled matrix D.
Any such legal path from D[m,n] to D[0, 0] represents a string in LCS(A,B). The

3 If only the value LLCS(A,B) is required, most algorithms can be modified to use much less space.
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characters of the string are determined in reverse order by the diagonal steps along
the path from D[i, j] to D[i − 1, j − 1] (meaning that Ai = Bj is included in the
subsequence). This backtracking process needs O(mn) space to recover a string in
LCS(A,B) as it needs to store the whole matrix D.

2.2 Linear space construction of a longest common subsequence

Hirschberg [6] proposed a divide-and-conquer scheme that can construct a string in

LCS(A,B) in linear space. Let
←−
A and

←−
B denote the reverse strings of A and B. That

is,
←−
A i = Am−i+1 and

←−
B j = Bn−j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Also let

←−
D denote

dynamic programming matrix that has been filled using strings
←−
A and

←−
B instead of A

and B. The method finds the middle point of a backtracking path, and then proceeds

recursively. The first step is to compute the the values D[⌊m
2
⌋, j] and

←−
D [⌈m

2
⌉, j] for

j = 1, . . . , n, where ⌊m
2
⌋ is a chosen middle row. This information can be computed in

O(m + n) space with rowwise filling order. It can be shown that a backtracking path

goes through those cells D[⌊m
2
⌋, k] for which the sum D[⌊m

2
⌋, k]+

←−
D [⌈m

2
⌉, n−k +1] is

maximal. Finding one such k takes linear time. After that the recursion proceeds to
find the midpoints in the two submatrices that correspond to comparing the string
A1..⌊m

2
⌋ with B1..k and the string A⌊m

2
⌋+1..m with Bk+1..n, respectively. The subsequence

can be constructed during this process (see [6]). The total work is directly proportional
to the total number of cells filled in the dynamic programming matrices. And this

number is ≈ Σ
log2 m
h=0

1
2h mn < 2mn = O(mn), ie. the total work is at most roughly

twice as much as in the basic dynamic programming algorithm.

2.3 Incremental encoding of the dynamic programming matrix

Lemma 1 states well-known properties of adjacent values in D.

Lemma 1. Let D be a dynamic programming matrix that contains the values D[i, j]=
LLCS(A1..i, B1..j) for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then the following three properties
hold for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

1. D[i,j] = D[i-1,j] or D[i,j] = D[i-1,j] + 1
2. D[i,j] = D[i,j-1] or D[i,j] = D[i,j-1] + 1
3. D[i,j] = D[i-1,j-1] or D[i,j] = D[i-1,j-1] + 1

Hunt and Szymanski [9] gave an O(M log L + n log σ) algorithm that uses these
properties. Here M denotes the number of match points between A and B, ie. M =
|{(i, j) | Ai = Bj, 1 ≤ i ≤ m, 1 ≤ j ≤ n}|. Two relevant variants of the algorithm of
Hunt And Szymanski are the O(σn + Lm) algorithm of Apostolico and Guerra [2]
and the O(M + Lm + n log σ) algorithm of Kuo and Cross [11].

All these algorithms represent the dynamic programming matrix D in an incre-
mental manner. When we move from the cell D[i, j − 1] to the cell D[i, j], Lemma 1
states that the value of the current cell either remains the same or grows by one. Let
us define Ri[k] as the smallest column j where D[i, j] = k. Such a column j exists for
k = 0, . . . , D[i, n]. It is convenient to define also special sentinel values Ri[k] = n + 1
for k > D[i, n]. Now when 0 ≤ k ≤ D[i, n], the values Ri[k] represent the values D[i, j]
according to the relationship D[i, j] = k for j = Ri[k], . . . , Ri[k + 1]− 1. In addition,
the equality D[i, Ri[k]] = k = D[i, Ri[k]− 1] + 1 holds when 1 ≤ k ≤ D[i, n]. Due to
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this latter rule, we may view the values Ri[k] as increment points, although this is
awkward in the case of the first point Ri[0] = 0, which does not have a previous value
“D[i,−1] = −1” to increment. The left side of Fig. 1 shows an example of increment
points.

The values Ri[k] may be computed according to Recurrence 2.

Recurrence 2. (Based on Hunt and Szymanski [9])

When 0 ≤ i ≤ m :

Ri[k] =





0, if k = 0,
n + 1, if i = 0 and k > 0, and otherwise
min{ j | (Ai = Bj and Ri−1[k − 1] < j < Ri−1[k]) or j = Ri−1[k]}.

Several LCS algorithms use either a MatchList or a NextMatch4 auxiliary data
structure (see e.g. [12]).

MatchList is a vector of length m, where the entry MatchList [i] points to a linked
list that contains in sorted order indices j where Ai = Bj. This data structure takes
overall O(m + n) space and can be constructed in O(m log σ) time.

NextMatch is an n × σ matrix. For a given character a ∈ Σ, the entry
NextMatch[i, a] gives smallest k that is larger than i and where Bk = a. It is
convenient to use n + 1 as a sentinel value if such k does not exist. So more formally
NextMatch[i, a] = min{k | (k > i and Bk = a) or k = n + 1}. NextMatch can be
constructed in O(σn) time and space.

The algorithm of Hunt and Szymanski [9] uses the MatchList data structure and
stores the increment points Ri[k] of row i consecutively and in sorted order in an
array. Note that one row has at most O(L) increment points. The algorithm processes
row i after row i − 1. In order to compute the values Ri[k], the list MatchList [i] is
processed sequentially. At each match column j ∈ MatchList [i], the algorithm uses
an O(log L) binary search in the array of the values Ri−1[k] to check if the condition
Ri−1[k − 1] < j ≤ Ri−1[k] of Recurrence 2 holds for some k, and then updates the
increment points accordingly. This process takes overall O(M log L + n log σ) time,
which includes preprocessing the MatchList data structure.

The algorithm of Kuo and Cross [11] is quite similar to the algorithm of Hunt
and Szymanski. The difference is that the condition Ri−1[k − 1] < j ≤ Ri−1[k] of
Recurrence 2 is checked at each step while going through the list MatchList [i] and a
sorted list of values Ri−1[k] in parallel. The overall number of steps in this process is
limited by the total number of match points and increment points. Since the former
number equals M and the latter number is at most Lm, the overall time is O(M +
Lm + n log σ) when also preprocessing MatchList is included.

The algorithm of Apostolico and Guerra [2] uses the NextMatch matrix. When
processing row i, the values Ri−1[k] are considered in increasing order. For given
Ri−1[k − 1] and Ri−1[k], the existence of j that fulfills the conditions Ai = Bj and
Ri−1[k− 1] < j ≤ Ri−1[k] of Recurrence 2 can be checked in O(1) time by consulting
the value NextMatch[Ri−1[k−1], Ai]

5. Now the number of steps is limited only by the
number of increment points, and the overall time, including constructing NextMatch,
is O(σn + Lm).

4 The NextMatch data structure is sometimes called Closest .
5 It can be seen from Recurrence 2 that the condition Ri−1[k−1] < j ≤ Ri−1[k] needs to be checked

only once for each pair Ri−1[k − 1] and Ri−1[k].



Heikki Hyyrö: An input sensitive online algorithm for LCS computation 197

3 An algorithm using block encoding of the increment
points
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Figure 1. An example with A = “arabic” and B = “aerobic”. The left side shows
each cell D[i, j], which has an increment point Ri[k], in bold. The right side shows
the cells D[i, j] within a block βi enclosed in a bold rectangle.

We propose to store the increment points Ri[k] using a kind of block encoding.
The idea is in some sense similar to the well-known run-length encoding used in data
compression. We will define βi as a list that stores the values Ri[k] of row i using block
encoding. Each block item in βi is a pair of integers (s, e). This value tells that there
exists some k for which Ri[k] = s and Ri[k + h] = s + h for h = 0, . . . , e− s. That is,
there is a block of consecutive increment points starting from column s = Ri[k] and
ending at column e = Ri[k + e− s]. We also require that each block (s, e) is maximal:
if k > 0, then Ri[k− 1] < s− 1, and if k + e− s < D[i, n], then Ri[k + e− s + 1] > e.
The right side of Fig. 1 shows an example.

It is convenient to define that each list βi has in its end a special sentinel block
(n + 1, n + 1). The sentinel delimits the end of row i and does not correspond to any
real increment point. The sentinel blocks also never change, and they for example
cannot be merged with another block if column n contains an increment point. A
constructive definition of the list βi is as follows:

1. The initial case k = 0: Set the pair (Ri[0], 0) = (0, 0) as the first item in βi.
2. The general case 1 ≤ k ≤ D[i, n]: Let (s, e) be the last item in the list βi before

processing Ri[k].
a) If Ri[k] = e + 1, replace the item (s, e) with (s, e + 1) in the list βi.
b) If Ri[k] > e + 1, insert the new item (Ri[k], Ri[k]) to the end of the list βi.

3. The sentinel corresponding to k = D[i, n] + 1: Insert the pair (n + 1, n + 1) to the
end of the list βi.

From here on we will use the notation (si
q, e

i
q) to denote the qth item in the list βi. Us-

ing this notation, a list βi with r items may be expressed as βi = ((si
1, e

i
1), . . . , (s

i
r, e

i
r)).

Note that a complete list βi always has at least two blocks. In addition we will use
the notation (si

ℓ, e
i
ℓ) to denote the last block in the current, possibly only partially

completed list βi.
Initially at row 0 we know that β0 = ((0, 0), (n + 1, n + 1)). Algorithm 1 describes

how the list βi can be constructed from the list βi−1.
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Algorithm 1. Assume that we are given the list βi−1 = ((si−1
1 , ei−1

1 ), . . . , (si−1
r , ei−1

r ))
that contains r items and represents all increment points Ri−1[k] of row i− 1. Then
the list βi that represents all increment points Ri[k] of row i can be formed correctly
by using the following steps:

1. Initially set the list βi to be empty.
2. The first case q = 1:

Insert the item (si−1
1 , ei−1

1 ) = (0, ei−1
1 ) to βi.

3. For q = 2, . . . , r:
Set j = NextMatch[ei−1

q−1, Ai]. There are the following subcases:

a) If ei−1
q−1 < j < si−1

q , then:
i) If j > ei

ℓ, insert the block (j, j) to the end of βi.
ii) If j = ei

ℓ + 1, replace (si
ℓ, e

i
ℓ) with (si

ℓ, e
i
ℓ + 1) in the list βi.

iii) After processing case i or ii, insert the block
(min{n + 1, si−1

q + 1}, ei−1
q ) to the end of βi if min{n + 1, si−1

q + 1} ≤ ei−1
q .

b) If j ≥ si−1
q and q < r, insert the block (si−1

q , ei−1
q ) to the end of βi.

Theorem 2. Algorithm 1 builds the list βi correctly.

Proof. It is not difficult to show that Algorithm 1 follows the principles of Recurrence
2. Fig. 2 illustrates the process.

The case q = 1 can be seen to be correct. When q > 1 and Algorithm 1 begins
processing the block (si−1

q , ei−1
q ), it can be shown that within the column interval

(ei
ℓ, . . . , e

i−1
q−1) and (si−1

q , ei−1
q ), βi should contain increment points in the column j =

NextMatch[ei−1
q−1, Ai] and in the columns j = si−1

q + 1, . . . , ei−1
q (if si−1

q + 1 ≤ ei−1
q ).

Figs. 2b, 2c and 2d, correspond, respectively, to the case 3b, the subcase i of the case
3a, and the subcase ii of the case 3a in Algorithm 1.

Note that when processing the next q, the newly created block (si
ℓ, e

i
ℓ) may be

appended to contain one more increment point in the subcase ii of the case 3a in
Algorithm 1. This is reflected in Figs. 2b - 2d in how the value in column ei−1

q−1 + 1
remains undecided.

We omit a more detailed proof from this version of the paper. ⊓⊔

Theorem 3. The time complexity of Algorithm 1 is O(min{Lm,L(n− L)}).
Proof. Fig. 3 illustrates the proof. Since the time complexity of Algorithm 1 is directly
proportional to the total number of blocks that it processes, we will find an upper
bound for the number of the blocks.

We begin by considering some column interval j = u, . . . , v on row i, where
0 ≤ u ≤ v ≤ n. Let #i(u, v) denote the number of increment points and #i(u, v)
denote the number of non-increment points within these columns. Clearly #i(u, v) +
#i(u, v) = v−u+1, since each column j either does or does not contain an increment
point Ri[k] for some k.

Since each maximal block of consecutive increment points contains at least one
increment point, the number of blocks that appear, even partially, within columns
j = u, . . . , v is bounded by #i(u, v). On the other hand, each maximal block is
followed by a non-increment point or the end of the considered region. Hence the
number of blocks within columns j = u, . . . , v is bounded also by #i(u, v) + 1.

Let us first analyse the first z = m−L rows. Row i has #i(0, n) = D[i, n] increment
points, and from Lemma 1 we know that D[i, n] ≤ i. Hence βi contains at most i
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Figure 2. Figures a) - d) illustrate processing the block (si−1
q , ei−1

q ). Here x denotes

the value D[i−1, si−1
q ], and the bold rectangles enclose blocks of consecutive increment

points. The solid arrows show increment blocks that must be inherited to row i in
columns si−1

q +1, . . . , ei−1
q . The dashed arrow shows where the increment point at si−1

q

moves.
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Figure 3. The figure illustrates the time complexity analysis of Algorithm 1.
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blocks. This means that the lists βi for rows i = 0, . . . , z contain at most a total of

Σz
i=0i = z(z+1)

2
blocks.

Let us then consider the rows z+i for i = 1, . . . , L. Each such row contains at most
#z+i(0, n) ≤ z + i increment points. On the other hand, at least i of the increment
points must be located within the first n−L+i columns, ie. #i(0, n−L+i) ≥ i. This is
because the condition LLCS(A,B) = L requires that LLCS(A1..m−L+i, B1..n−L+i) =
D[z + i, n − L + i] ≥ i (this is not difficult to prove by using Lemma 1). Now
#i(0, n − L + i) = n − L + i + 1 − #i(0, n − L + i) ≤ n − L + 1, so columns
j = 0, . . . , n−L+i of row z+i contain at most n−L+1 blocks. If i < L, the remaining
columns j = n − L + i + 1, . . . , n of row i contain at most #z+i(n − L + i + 1, n) =
#z+i(0, n)−#z+i(0, n− L + i) ≤ z blocks. Hence the total number of blocks on row
z + i is bounded by n− L + 1 + z.

Based on the preceding discussion, the total number of blocks on all rows i =

0, . . . ,m is at most z(z+1)
2

+ L(n − L + 1 + z). We note that z(z+1)
2
≤ m(m − L) =

O(m(n−L)), and that L(n−L+1+ z) = L(n−L+1+m−L) ≤ L(2n− 2L+1) =
O(L(n− L)) = O(m(n− L)).

On the other hand #i(0, n) ≤ L for all i = 0, . . . ,m, and so the total number of
blocks has also the bound O(Lm).

By combining the previous two bounds, we have that the total number of blocks
is bounded by O(min{Lm,m(n−L)}. If n−L < L, then m

2
≤ n

2
< L, ie. m = O(L).

This implies that O(min{Lm,m(n − L)} = O(min{Lm,L(n − L)}, since the choice
m(n− L) is smaller than Lm only when m = O(L).

Hence we have reached the conclusion that the asymptotic time complexity of
Algorithm 1 may be stated in the form O(min{Lm,L(n − L)}. When also prepro-
cessing of NextMatch is taken into account, the time complexity becomes O(σn +
min{Lm,L(n− L)}. ⊓⊔

3.1 Constructing a longest common subsequence in O(σn) space

We briefly sketch how to use Algorithm 1 in the divide-and-conquer scheme discussed
in Section 2.2 in order to construct a string from the set LCS(A,B) using O(σn +
min{Lm,L(n − L)} time and O(σn) space. The required space is determined by
NextMatch and is linear for constant σ.

Let
←−
β i denote the block list for row i of

←−
D that corresponds to the reverse

strings
←−
A and

←−
B . Algorithm 1 can produce both middle-row lists β⌊m

2
⌋ and

←−
β ⌈m

2
⌉ in

O(min{Lm,m(n−L)} time. A column k where the sum D[⌊m
2
⌋, k]+

←−
D [⌈m

2
⌉, n−k+1]

is maximal can be found in O(L) time by merging the size-O(L) lists β⌊m
2
⌋ and

←−
β ⌈m

2
⌉

in such manner that the other list is processed in reverse order. Overall we may state
that the process has an upper bound of c min{Lm,m(n − L)} operations for some
constant c.

Then the divide and conquer scheme does the same process for the string-
pairs (A1..⌊m

2
⌋, B1..k) and (A⌊m

2
⌋+1..m, Bk+1..n). Handling these takes at most

c(min{L1
m
2
, m

2
(k − 1 − L1)} + c(min{L2

m
2
, m

2
(n − k + 1 − L2)} operations, where

L1 = LLCS((A1..⌈m
2
⌉−1, B1..k−1), L2 = LLCS(A⌈m

2
⌉+1..m, Bk+1..n), and L1 + L2 = L.

The sum of minimal choices in these two min-clauses is obviously never larger than
a sum of two arbitrary choices. Therefore the overall value is limited above by both
c(L1

m
2

+ L2
m
2
) = cLm

2
= 1

2
cLm and c(m

2
(k − 1 − L1) + m

2
(n − k + 1 − L2)) =

c(m
2
(k − 1− L1 + n− k + 1− L2)) = 1

2
cm(n− L), which results in the upper bound
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1
2
c min{Lm,m(n − L)} for the operations done in the second stage. By continuing

the same analysis, the result is that the overall number of operations done during the

divide-and-conquer scheme has an asymptotic limit Σ
log2 m
h=0

1
2h c min{Lm,m(n−L)} <

2c min{Lm,m(n − L)} = O(min{Lm,m(n − L)}) = O(min{Lm,L(n − L)}. By
employing simple index-readjustments, each stage can use the same NextMatch built

for the complete strings A and B (and a sorresponding
←−−−−−−−
NextMatch for

←−
A and

←−
B ).

Hence the preprocessing needs to be done only once, using O(σn) time and space.

3.2 A remark on incremental string comparison

Landau et al. [12] proposed an algorithm (that Ishida et al. [10] later extended), which
can handle an incremental version of the LCS problem: After computing LLCS(A,B),
we should next be able to compute either LLCS(A,Bb) or LLCS(A, bB), ie. a charac-
ter b may be added to either end of B. The algorithm uses NextMatch and maintains
all increment points of D that corresponds to comparing the current A and B. We
do not go into more details in this paper but just briefly note that our block encod-
ing can be used also in this setting with very few modifications. Then the overall
space usage becomes O(σn + min{Lm,L(n− L)}) instead of O(σn + Lm), the time
for computing LLCS(A, bB) after LLCS(A,B) remains the same, and the time for
computing LLCS(A,Bb) after LLCS(A,B) becomes O(min{L, (n− L)}) instead of
the O(L) time of the original scheme [10].
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Abstract. We present three bit-parallel algorithms for computing all the runs in a
string. The algorithms are very efficient especially for computing all runs of short
binary strings, allowing us to run the algorithm for all binary strings of length up to
47 in a few days, using a PC with the help of GPGPU. We also present some related
statistics found from the results.

1 Introduction

Repetitions in strings is an important element in the analysis and processing of strings.
It was shown in [8] that when considering maximal repetitions, or runs, the maximum
number of runs ρ(n) in a string of length n is O(n). The result leads to a linear time
algorithm for computing all the runs in a string. Although no bounds for the constant
factor was given, it was conjectured that ρ(n) < n.

Recently, there has been steady progress towards proving this conjecture [12,13,3].
The currently known best upper bound1 is ρ(n) ≤ 1.029n, obtained by calculations
based on the proof technique of [3]. On the other hand, it was shown in [6] that
the value α = limn→∞ ρ(n)/n exists, but is never reached. A lower bound on α was
first presented in [5], where it was shown that α ≥ 3

1+
√

5
≈ 0.927. Although it was

conjectured that this bound is optimal [4], a counter example was shown in [10],
giving a new lower bound of 0.944565. The currently known best lower bound is
(11z2 +7z−6)/(11z2 +8z−6) ≈ 0.94457571235, where z is the real root of z3 = z+1.
This bound was conjectured for a new series of words in [9], and proved independently
for a different series of words in [14]. Whether or not the original conjecture ρ(n) < n
of [8] holds, or more importantly, the exact constant limn→∞ ρ(n)/n is still not known.
On a related note, the average number of runs in a word of a given length has been
completely characterized in [11].

In order to better understand the combinatorial properties of runs in strings,
an exhaustive calculation of runs in short strings could be very useful. In previous
work [7], the maximum number of runs function was shown for binary strings of length
up to 31, together with an example of a string which achieves the maximum number
of runs for each length. In this paper, we present several algorithms for computing
all the runs in short binary strings using bit-parallel techniques.

1 Presented on a website http://www.csd.uwo.ca/faculty/ilie/runs.html
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In [2], a fast suffix array based algorithm for calculating all the runs in a string was
presented. However, as the algorithm relies on a Lempel-Ziv factorization, our algo-
rithm is much simpler and efficient for binary strings whose length fits in a computer
word. The simple algorithm also allows us to implement a very efficient massively
parallelized version using General Purpose Graphics Processor Unit Programming
(GPGPU). We successfully compute the maximal number of runs, as well as several
other related statistics, for binary strings of length up to 47.

2 Preliminaries

Let Σ be a finite set of symbols, called an alphabet. Strings x, y and z are said to
be a prefix, substring, and suffix of the string w = xyz, respectively. The length of
a string w is denoted by |w|. The i-th symbol of a string w is denoted by w[i] for
1 ≤ i ≤ |w|, and the substring of w that begins at position i and ends at position j
is denoted by w[i : j] for 1 ≤ i ≤ j ≤ |w|. A string w has period p if w[i] = w[i + p]
for 1 ≤ i ≤ |w| − p.

A string u is a run of period p if it has period p ≤ |u|/2. A substring u = w[i : j]
of w is a run in w if it is a run of some period p and neither w[i−1 : j] nor w[i : j +1]
is a run of period p, that means the run is maximal. We denote the run u = w[i : j]
in w by the pair 〈i, j〉 of its begin position i and end position j.

For example, the string aabaabaaaacaacac contains the following 7 runs: 〈1, 2〉 =

a2, 〈4, 5〉 = a2, 〈7, 10〉 = a4, 〈12, 13〉 = a2, 〈13, 16〉 = (ac)2, 〈1, 8〉 = (aab)
8
3 , and

〈9, 15〉 = (aac)
7
3 . A run in w is called a prefix run if it is also a prefix of w. Among

the above 7 runs, the prefix runs are 〈1, 2〉 and 〈1, 8〉.

3 Algorithms

From the definition of run in a string, we have only to consider the periods of length
at most |w|/2 in order to count all runs in w. In the next subsections, we introduce
3 bit-parallel algorithms for counting all runs in w.

We will use the bitwise operations AND, OR, NOT, XOR, SHIFT RIGHT, and
SHIFT LEFT, denoted by &, |, ∼, ^, >>, and <<, respectively, as in the C language.

3.1 Counting prefix runs

Let us begin by counting all prefix runs in a given string. Table 1 shows the contin-
uations of each period in the string w = aabaabaaaacaacac, which has two prefix
runs 〈1, 2〉 and 〈1, 8〉. In the table, the value at row p and column j is 1 if and only
if p is a period of prefix w[1 : j]. The cell (p, j) is shadowed if 2p < j, and is said
to be in the active area. In each row, the first (leftmost) position where the period
discontinued is emphasized by displaying 0 in bold face. If its position (p, j) is in the
active area, it implies that the prefix u = w[1 : j− 1] becomes a run of period p since
p ≤ |u|/2. Moreover, if any period continues to the end (rightmost), it means that
the whole string w itself is a (prefix) run. In the example, 〈1, 16〉 is not a prefix run
since no period continues to the end.

We will efficiently compute the table by representing a column as a bit vector
named alive, and keep tracking it by clever bit operations in the spirit of bit paral-
lelism [1,16]. We first represent the occurrences of each character in the string w as



Hirashima et al.: Bit-parallel algorithms for computing all the runs in a string 205

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
period a a b a a b a a a a c a a c a c

1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
2 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
3 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
4 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
5 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0
6 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0
7 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0
8 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

Table 1. Continuations of each period in the string aabaabaaaacaacac.

w[1] = a

1 1 1 1 1 1 1 1 alive
w[2] = a & 1 1 1 1 1 1 1 1 bitmask2

1 1 1 1 1 1 1 1 alive
w[3] = b & 1 1 1 1 1 1 0 0 bitmask3

1 1 1 1 1 1 0 0 alive
w[4] = a & 1 1 1 1 1 1 1 0 bitmask4

1 1 1 1 1 1 0 0 alive
w[5] = a & 1 1 1 1 1 1 0 1 bitmask5

1 1 1 1 1 1 0 0 alive
w[6] = b & 1 1 1 0 0 1 0 0 bitmask6

1 1 1 0 0 1 0 0 alive...
...

...

Occurrences of each character in w.

1 2 3 4 5 6 7 8 910111213141516
occ a a b a a b a a a a c a a c a c

occ[a] 1 1 0 1 1 0 1 1 1 1 0 1 1 0 1 0
occ[b] 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
occ[c] 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 1

Figure 1. Bit operations to compute the period continuations, for the string w =
aabaabaaaacaacac (left). The representation here is rotated 90◦ compared with Ta-
ble 1 to show the bit representation horizontally. The active area is shadowed in the
same way. The italic 1 ’s in the prefix part of the bitmasks are always 1 regardless of
the string w. Remark that the essential part of the bitmask can be directly derived
from the occurrence table (right) of each character in w. For example, in bitmask 5,
the essential part 1101 equals to occ[a][1 :4] since w[5] = a, and 00100 in bitmask 6 is
equal to occ[b][1 :5] since w[6] = b.

a bit vector occ[], as shown in Fig. 1 (right), where occ[c][i] = 1 if w[i] = c, and 0
otherwise, for any c ∈ Σ. The bit vector will be used to generate bitmasks to com-
pute the next alive by a logical AND operation demonstrated in Fig. 1 (left). The
desired bitmaski for i ≥ 2 is obtained by occ[c][1 : i − 1] where c = w[i], and filling
sufficient numbers of preceding 1’s. The initial value of alive is ∼0 = 11 . . . 1. When
the length of w is at most twice the word size of the computer, each bit vectors alive
and bitmask fit in a single register, and can be processed very efficiently. Whenever
the value of alive becomes 0, (in the current example, at w[11]) we can immediately
quit the computation since no bit in alive can turn from 0 into 1 by AND operations.

We now turn our attention to count other runs that are not a prefix of the given
string w. In principle, we would use the above procedure at each starting positions for
2 ≤ i ≤ |w|−1. However, a little care must be taken to avoid duplicated counting. Let
us consider the string v = w[3 :16] = baabaaaacaacac which is a suffix of w starting
at position 3. Although 〈1, 6〉 is a prefix run in v, it does not immediately imply that
〈3, 8〉 is a run in w, since it is properly included in the run 〈1, 8〉 in w. How to avoid
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duplicated counting of runs effectively is the main subject of this algorithm, as well
as the subsequent two algorithms. To solve this problem, we focus on the fact that
the character a = w[2], that is the left neighbor of the starting position 3, appears
in v = w[3 : 16] at 2, 3, 5, 6, 7, and 8. (The occurrences at 10, 11 and 13 are not
important for the purpose.) Even if v has a prefix run of period either p = 2, 3, 5, 6, 7,
or 8, it never becomes a run in w since it continues to the left at least one position.
Therefore we have only to consider the periods either 1 or 4 (up to 8). In our bit
vector implementation, we have only to initialize alive = 00001001. The bit vector
can be easily obtained by the complement of reversal of occ[a][3 : 10] = 01101111.
Since the reversal operation is required at each starting positions, we compute the bit
vectors both occ[c] and its reversal occ reversal[c] for each c ∈ Σ in the pre-processing
phase, given string w.

Algorithm 1: counting prefix runs at each starting position
Input: w, length: string to count runs, and its length.
Result: number of runs in w.
// construct bit vectors representing the occurrences of each character
foreach c ∈ Σ do1

occ[c] := 0 ; // occurrence bit vector2

occ reversal[c] := 0 ; // reversal of occurrence bit vector3

end4

for i := 1 to length do5

c := w[i];6

occ[c] := occ[c] | (1 << length− i− 1);7

occ reversal[c] := occ reversal[c] | (1 << i);8

end9

// now count all prefix runs at each beginning position
count := 0;10

for begPos := 1 to length− 1 do11

activeArea := 0;12

restLength := length− begPos;13

alive := (1 << (restLength/2)) − 1;14

if begPos > 0 then15

leftChar := w[begPos− 1];16

alive := alive & ((∼occ reversal[leftChar]) >> begPos);17

end18

for i := 1 to restLength do19

nextChar := w[begPos + i];20

bitmask := ((occ[nextChar] >> (restLength− i)) | (∼0) << i);21

lastAlive := alive;22

alive := alive & bitmask;23

if (lastAlive ^ alive) & activeArea 6= 0 then24

count++ ; // some bit in alive is changed in active area25

end26

if alive = 0 then break ; // all runs ended27

if i mod 2 = 1 then28

activeArea := (activeArea << 1) | 1 ; // widen active area by one29

end30

end31

if alive 6= 0 then32

count++ ; // the run is continued to the rightmost position33

end34

end35

return count36

The full description of the algorithm is in Algorithm 1. The correctness of the
algorithm can be verified based on the above mentioned facts. If the length n of the
given string is at most the word size, the running time is O(n2) with O(|Σ|) space.
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The time complexity for general n is O(n3/m), where m is the length of the machine
word.

3.2 Efficient algorithms for binary strings

In this section, we take another approach to efficiently count the number of runs for
binary strings, given as bit vectors.

We assume that the length of the string does not exceed the word size. For a
binary string w ∈ {0, 1}+ of length n and an integer p ≤ n/2, we denote by α(w, p)
the bit vector whose i-th bit is defined by

α(w, p)[i] =

{
1 (w[i− p] = w[i]),
0 (i ≤ p or w[i− p] 6= w[i]).

For instance, Table 2 shows α(w, p) for w = 1111010101001001, who has 5 runs
〈1, 4〉, 〈11, 12〉, 〈14, 15〉, 〈4, 11〉, and 〈9, 16〉.

w

p

1 1 1 1 0 1 0 1 0 1 0 0 1 0 0 1
1 0 1 1 1 0 0 0 0 0 0 0 1 0 0 1 0
2 0 0 1 1 0 1 1 1 1 1 1 0 0 1 0 0
3 0 0 0 1 0 1 0 0 0 0 0 1 1 1 1 1
4 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 0
5 0 0 0 0 0 1 0 1 0 0 0 1 1 1 0 0
6 0 0 0 0 0 0 0 1 0 1 1 0 0 0 1 1
7 0 0 0 0 0 0 0 1 0 1 0 1 1 1 0 0
8 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 1

Table 2. α(w, p) for w = 1111010101001001. In each p-th row, consecutive 1’s of
length at least p is shadowed. The leading p elements at each p-th row are always 0
regardless of w, and shown in italic form.

We note that α(w, p) can be implemented efficiently by the bit operations

(w^((∼w) >> p)) & (1n >> p)

Notice that for any bit vector x, x & (1n >> p) sets the p leading bits of x to 0. It is
easy to see that the following property holds.

Lemma 1. For any binary string w of length n, the following two conditions are
equivalent.

1. 〈s, t〉 is a run of period p in w.
2. s+2p ≤ t+1, and α(w, p)[i] = 1 for every s+p ≤ i ≤ t, and α(w, p)[s+p−1] = 0.

Moreover, if t < n then α(w, p)[t + 1] = 0.

Since a run must be at least as long as twice its period, s + 2p ≤ t + 1 holds for any
run 〈s, t〉. Therefore, the lemma states that each run of period p in w corresponds to
a stretch of consecutive 1’s with length at least p in α(w, p). The problem now is how
this can be counted efficiently for each period.

Notice that for any bit vector x, the operation x & (x >> 1) reduces the length
of each stretch of consecutive 1’s in x by one. Therefore, we can detect stretches of
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consecutive 1’s of length at least p in α(w, p) by counting the number of stretches of
1’s in x = α(w, p) & (α(w, p) >> 1) & · · · & (α(w, p) >> (p − 1)). It is not difficult
to see that calculating x can be done with O(log p) operations, as shown by selfAND

in Algorithm 2. Further, the number c of stretches of 1’s in a bit vector can be
computed in O(c) steps as shown by oneRuns in Algorithm 2. Details and alternate
implementations for these operations can be found in [15].

However, as with counting prefix runs, we must be careful not to count the same
run multiple times. This could happen, for example, when a run is longer than 4 times
its minimal period p, and a run would be detected for period p and period 2p. For
example, a run abababab with period 2 (ab) will also be counted as a run at period 4
(abab). Below, we consider two methods for removing such duplicates in the process.

Algorithm 2: Common subroutines
selfAND(v,k): calculate v = v&(v>>1)& · · · &(v>>(k− 1)) (with fewer steps)1

begin2

while k > 1 do s = k >> 1; v & = (v >> s); k −= s;3

return v;4

end5

oneRuns(v): count the number of stretch of 1’s in v6

begin7

c:= 0;8

while v do9

v & = (v | (v− 1)) + 1 ; // remove rightmost stretch of consecutive 1’s10

c ++;11

end12

return c;13

end14

Removing duplicate runs by position The first approach utilizes the fact that
runs with different minimal periods cannot begin and end at the same positions.
Therefore, for each beginning position of a run, we use a bit vector to mark its end
position. This way, we can check if we have already considered the run via a different
period. This can be implemented efficiently using bit operations as shown in Algo-
rithm 3. The time complexity is O(n3/m), where m is the length of the machine word.
Note that lsb(x) computes the least significant set bit of x, and can be computed
in O(1) for a machine word, or O(n/m) time for general bit strings.

Removing duplicate runs by sieve The second approach to eliminate duplicate
counting is based on the following observation.

Lemma 2. Let 〈s, t〉 be a run of period p in w. For any k with 2kp ≤ t− s + 1, the
run 〈s, t〉 is also a run of period kp in w.

For example, consider again the runs in w = 1111010101001001 (see Table 2).
The run 〈1, 4〉 = 1111 is a run of period both 1 and 2. The run 〈4, 11〉 = 10101010

is a run of period both 2 and 4.
Therefore, if we count each run only at its minimum period, we can avoid dupli-

cations. Our strategy is somewhat similar to the Sieve of Eratosthenes to generate
prime numbers. From the smallest period p = 1 to the maximum possible period
p = |w|/2 in this order, if a run of period p is found in x, we will sieve out all runs of
period kp satisfying the length condition in Lemma 2. The sieving procedure can be
implemented by tricky bit operations, shown in Algorithm 4. The time complexity is
O(n3/m), where m is the length of the machine word.
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Algorithm 3: Removing duplicate runs by position
Input: w, length: bit vector to count runs, and its length.
Result: number of runs in w.
runEndsByBegPos[length − 1] ; // array of bitvectors (initialized to 0)1

for period := 1 to length/2 do2

v:= (w ^ ((∼w) >> period)) & (1length >> period) ; // calculate α(w, period)3

x:= selfAND(v, period) ;4

while x 6= 0 do5

begPos:= lsb(x) ; // position index of rightmost 16

y:= x + (1 << begPos) ; // if x =...0111100 then y = ...10000007

x:= x & y ; // clear rightmost consecutive 1’s in x8

y:= y & (−y) ; // clear all but rightmost 1 in y9

y:= y << ((period − 1) << 1) ; // convert to actual position in w10

if (runEndsByBegPos[begPos] & y) = 0 then11

// a run starting at begPos doesn’t already end here
count ++;12

runEndsByBegPos[begPos] = runEndsByBegPos[begPos] | y;13

end14

end15

end16

return count17

Algorithm 4: Removing duplicates by Sieve
Input: w, length: bit vector to count runs, and its length.
Result: number of runs in w.
pvec[length/2 + 1] ; // array to store bitvectors1

for period := 1 to length/2 do2

pvec[period] := (w^((∼w) >> period)) & (1length
>> period) ; // calculate α(w, period)3

end4

for period := 1 to length/2 do5

x := selfAND(pvec[period], period);6

count := count + oneRuns(x) ; // number of runs of this period.7

for p := 2 ∗ period to length/2 step period do8

x := x & (x >> period);9

if x = 0 then break;10

pvec[p] := pvec[p]^x;11

end12

end13

return count14

4 Computational Experiments

4.1 Running time

Table 3 compares the running times of the three algorithms. All experiments were
conducted on an Apple Mac Pro (Early 2008) with 3.2 GHz dual core Xeons and
18 GB of memory, running MacOSX 10.5 Leopard, using only one thread. Programs
were compiled with the Intel C++ compiler 11.0. The algorithms were run on all
binary strings of length n for n = 20, . . . , 30. However, only strings ending with 0 are
considered, since a complementary binary string will always have runs in the same
position. That is, all runs for 2n−1 strings are calculated for each n.

For the sieve approach, we further developed a GPGPU version and measured its
performance on the same computer. The video card used for GPGPU was NVIDIA
GeForce 8800 GT, and the GPGPU environment used was CUDA2. Although GPUs

2 http://www.nvidia.com/object/cuda_home.html
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contain many processing units, there are very strict limitations to the resources that
each processing unit may use. The simple bit-parallel algorithm presented in this
paper only requires a small amount of resources, and is an ideal example for efficient
processing on GPUs. We note that the sieve approach using GPGPU was developed to
deal with 64 bits, and requires some overhead compared to the other three algorithms
that were developed for only 32 bits.

n 20 21 22 23 24 25 26 27 28 29 30
prefix 0.32 0.69 1.49 3.13 8.02 15.6 32.4 66.4 150.2 296.5 625.4
position 0.09 0.18 0.36 0.73 1.49 3.0 6.2 12.6 25.6 52.1 106.0
sieve 0.10 0.18 0.37 0.75 1.50 3.0 6.0 11.9 23.9 48.1 96.7
GPGPU 0.01 0.02 0.04 0.08 0.18 0.4 0.7 1.4 3.0 5.9 12.2

Table 3. Running times in seconds of each algorithm for calculating the runs in all
binary strings (excepting complementary strings) of length n.

4.2 Results

Using the GPGPU implementation, we computed the maximum number of runs func-
tion ρ(n) for binary strings of length up to n = 47, as shown in Table 4. It has been
known that ρ(14) = ρ(13) + 2. However, as noted in [5], it is not known whether
this is an asymptotic property of ρ(n), that is, if there exists infinitely many n for
which ρ(n + 1) = ρ(n) + 2. To the best of our knowledge this is the second example
satisfying this property, namely, ρ(42) = ρ(41) + 2, provided that ρ(n) is achieved by
binary words.

n 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
ρ(n) 1 1 2 2 3 4 5 5 6 7 8 8 10 10 11 12 13 14 15 15 16 17 18 19 20 21 22

n 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47
ρ(n) 23 24 25 26 27 27 28 29 30 30 31 32 33 35 35 36 37 38 38

Table 4. The maximum number of runs function ρ(n) for binary strings calculated
for n up to 47.

Figure 2 plots the maximum number of runs function obtained by our exhaustive
computation, the conjectured upper bound (y = x) and the current best asymptotic
lower bound (y = 0.94457571235x).

Although the problem of finding the maximum number of runs function is still
difficult, we have found the following empirical characteristics in the distribution of
the number of runs in binary strings, which could give insight in further analyses. Let
f(n, r) denote the number of binary strings of length n with r runs. Table 5 shows
the values of f(n, r) for n = 2, . . . , 42 and r = 1, . . . , 4.

– f(n, 1) = 20 for n ≥ 7.
– for n ≥ 7,

f(n, 2) =

{
36n− 190 if n is even,
36n− 186 if n is odd.

Furthermore, f(n, 2) = f(n− 2, 2) + 72 for n ≥ 9.
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n f(n, 1) f(n, 2) f(n, 3) f(n, 4)
2 2 0 0 0
3 6 0 0 0
4 14 2 0 0
5 18 14 0 0
6 18 38 8 0
7 20 66 38 4
8 20 98 102 34
9 20 138 202 130

10 20 170 376 306
11 20 210 596 682
12 20 242 880 1314
13 20 282 1220 2296
14 20 314 1622 3736
15 20 354 2080 5686
16 20 386 2598 8260
17 20 426 3174 11562
18 20 458 3808 15642
19 20 498 4502 20626
20 20 530 5252 26574
21 20 570 6064 33590
22 20 602 6930 41754
23 20 642 7860 51184
24 20 674 8842 61898
25 20 714 9890 74070
26 20 746 10988 87732
27 20 786 12154 103000
28 20 818 13368 119922
29 20 858 14652 138664
30 20 890 15982 159216
31 20 930 17384 181764
32 20 962 18830 206308
33 20 1002 20350 233012
34 20 1034 21912 261896
35 20 1074 23550 293138
36 20 1106 25228 326696
37 20 1146 26984 362804
38 20 1178 28778 401434
39 20 1218 30652 442762
40 20 1250 32562 486776
41 20 1290 34554 533702
42 20 1322 36580 583470

Table 5. Number of binary strings of length n with r runs.
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Figure 2. The maximum number of runs in a binary string obtained from exhaustive
calculations.

– for n ≥ 12,

f(n, 3) =

{
(117n2 − 1558n + 5368)/4 if n is even,
(117n2 − 1556n + 5335)/4 if n is odd.

Furthermore, f(n, 3) = 2f(n− 2, 3)− f(n− 4, 3) + 234 for n ≥ 16.

We can see that f(n, 1) = 20 will hold for any n > 7, since a binary string with
only one run can only be one of (01)n/2, x0n−4y for x, y ∈ {00, 01, 10}, or their bitwise
complements.

5 Discussion and Conclusion

We presented 3 bit-parallel algorithms for computing all the runs in short strings.
The two latter algorithms specialized for binary strings are very efficient, while the
first algorithm can be used for strings with larger alphabet size at the cost of some ef-
ficiency. Through exhaustive computations, the algorithms have enabled us to obtain
various statistics concerning runs in strings up to a certain length.

Although it seems that many researchers believe it to be true, it is still unknown
whether ρ(n) can always be achieved by a binary string.
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Abstract. Crochemore’s repetitions algorithm introduced in 1981 was the first
O(n log n) algorithm for computing repetitions. Since then, several linear-time worst-
case algorithms for computing runs have been introduced. They all follow a similar
strategy: first compute the suffix tree or array, then use the suffix tree or array to com-
pute the Lempel-Ziv factorization, then using the Lempel-Ziv factorization compute
all the runs. It is conceivable that in practice an extension of Crochemore’s repetitions
algorithm may outperform the linear-time algorithms, or at least for certain classes of
strings. The nature of Crochemore’s algorithm lends itself naturally to parallelization,
while the linear-time algorithms are not easily conducive to parallelization. For all
these reasons it is interesting to explore ways to extend the original Crochemore’s
repetitions algorithm to compute runs. We present three variants of extending the
repetitions algorithm to compute runs: two with a worsen complexity of O(n(log n)2),
and one with the same complexity as the original algorithm. The three variants are
tested for speed of performance and their memory requirements are analyzed. The third
variant is tested and analyzed for various memory-saving alterations. The purpose of
this research is to identify the best extension of Crochemore’s algorithm for further
study, comparison with other algorithms, and parallel implementation.

Keywords: repetition, run, string, periodicity, suffix tree, suffix array

1 Introduction

An important structural characteristic of a string over an alphabet is its periodicity.
Repetitions (tandem repeats) have always been in the focus of the research into
periodicities. The concept of runs that captures maximal fractional repetitions which
themselves are not repetitions was introduced by Main [12] as a more succinct notion
in comparison to repetitions. The term run was coined by Iliopoulos et al. [8]. It was
shown by Crochemore in 1981 that there could be O(n log n) repetitions in a string
of length n and an O(n log n) time worst-case algorithm was presented [3] (a variant
is also described in Chapter 9 of [4]), while Kolpakov and Kucherov proved in 2000
that the number of runs was O(n) [9].

Since then, several linear-time worst-case algorithms have been introduced, all
based on linear algorithms for computing suffix trees or suffix arrays. Main [12] showed
how to compute the leftmost occurrences of runs from the Lempel-Ziv factorization
in linear time, Weiner [14] showed how to compute Lempel-Ziv factorization from a
suffix tree in linear time. Finally, in 1997 Farach [6] demonstrated a linear construction
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of suffix tree. In 2000, Kolpakov and Kucherov [9] showed how to compute all the
runs from the leftmost occurrences in linear time. Suffix trees are complicated data
structures and Farach construction was not practical to implement for sufficiently
large n, so such a linear algorithm for computing runs was more of a theoretical
result than a practical algorithm.

In 1993, Manber and Myers [13] introduced suffix arrays as a simpler data struc-
ture than suffix trees, but with many similar capabilities. Since then, many researchers
showed how to use suffix arrays for most of the tasks suffix trees were used with-
out worsening the time complexity. In 2004, Abouelhoda et al. [1] showed how to
compute in linear time the Lempel-Ziv factorization from the extended suffix array.
In 2003, several linear time algorithms for computing suffix arrays were introduced
(e.g. [10,11]). This paved the way for practical linear-time algorithms to compute
runs. Currently,there are several implementations(e.g. Johannes Fischer’s, Univer-
sität Tübingen, or Kucherov’s, CNRS Lille) and the latest, CPS, is described and
analyzed in [2].

Though suffix arrays are much simpler data structures than suffix trees, these
linear time algorithms for computing runs are rather involved and complex. In com-
parison, Crochemore’s algorithm is simpler and mathematically elegant. It is thus
natural to compare their performances. The strategy of Crochemore’s algorithm re-
lies on repeated reffinements of classes of equivalence, a process that can be easily
parallelized, as each reffinement of a class is independent of the other classes and
their reffinements, and so can be performed simultaneously by different processors.
The linear algorithms for computing runs are on the other hand not very conducive
to parallelization (the major reason is that all linear suffix array constructions rely
on recursion). For these reasons we decided to extend the original Crochemore’s algo-
rithm based on the most memory efficient implementation by Franek et.al. [4]. In this
report we discuss and analyze three possible extensions of [4] for computing runs and
their performance testing: two variants with time-complexity of O(n(log n)2) and one
variant with time-complexity of O(n log n). Two diffierent menthods to save mem-
ory for the third variant are tested and analyzed. The purpose of this study was to
identify the best extension of Crochemore’s repetitions algorithm to compute runs
for comaprison with other runs algorithm and for parallel implementation.

2 Basic notions

Repeat is a collection of repeating substrings of a given string. Repetition, or tandem
repeat, consists of two or more adjacent identical substrings. It is natural to code
repetitions as a triple (s, p, e), where s is the start or starting position of the repetition,
p is its period , i.e. the length of the repeating substring, and e is its exponent (or
power) indicating how many times the repeating substring is repeated. The repeating
substring is referred to as the generator of the repetition. More precisely:

Definition 1. (s, p, e) is a repetition in a string x[0..n−1] if
x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)].
A repetition (s, p, e) is maximal if it cannot be extended to the left nor to the right,
i.e. (s, p, e) is a repetition in x and x[(s−p+1)..(s−1)] = x[s..(s+p−1)] and
x[(s+(e−1)p)..(s+ep−1)] = x[(s+ep)..(s+(e+1)p−1)].

In order to make the coding of repetitions more space efficient, the repetitions with
generators that are themselves repetitions are not listed; for instance, aaaa should be
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reported as (0,1,4) just once, there is no need to report (1,2,2) as it is subsumed in
(0,1,4).
Thus we require that generator of a repetition be irreducible, i.e. not a repetition.

Consider a string abababa, there are maximal repetitions (0,2,3) and (1,2,3). But,
in fact, it can be viewed as a fractional repetition (0,2,3+1

2
). This is an idea of a run

coded into a quadruple (s, p, e, t), where s, p, and e are the same as for repetitions,
while t is the tail indicating the length of the last incomplete repeat. For instance,
for the above string we can only report one run (0,2,3,1) and it characterizes all
the repetitions implicitly. The notion of runs is thus more succinct and more space
efficient in comparison with the notion of repetitions. More precisely:

Definition 2. x[s..(s+ep+t)] is a run in a string x[0..n−1] if
x[s..(s+p−1)] = x[(s+p)..(s+2p−1)] = · · · = x[(s+(e−1)p)..(s+ep−1)] and
x[(s+(e−1)p)..(s+(e−1)p+t)] = x[(s+ep)..(s+ep+t)], where 0 ≤ s < n is the start
or the starting position of the run, 1 ≤ p < n is the period of the run, e ≥ 2 is the
exponent (or power) of the run, and 0 ≤ t < p is the tail of the run. Moreover, it
is required that either s = 0 or that x[s−1] 6= x[s+2p−1] (in simple terms it means
that it cannot be extended to the left) and that x[s+(ep)+t+1] 6= x[s+(e+1)p+t+1]
(in simple terms it means that the tail cannot be extended to the right). It is also
required, that the generator be irreducible.

3 A brief description of Crochemore’s algorithm

Let x[0..n−1] be a string. We deffine an equivalence ≈p on positions {0, . . . , n−1}
by i ≈p j if x[i..i+p−1] = x[j..j+p−1]. In Fig. 1, the classes of ≈p, p = 1..8 are
illustrated. For technical reasons, a sentinel symbol $ is used to denote the end of the
input string; it is considered to be the lexicographically smallest character. If i, i+p
are in the same class of ≈p (as illustrated by 5,8 in the class {0, 3, 5, 8, 11} on level 3,
or 0,5 in class {0, 5, 8} on level 5, in Fig. 1) then there is a tandem repeat of period p
(thus x[5..7] = x[8..10] =aba and x[0..4] = x[5..9] =abaab). Thus the computation of
the classes and identiffication of repeats of the same “gap” as the level (period) being
computed lay in the heart of Crochemore’s algorithm. A naive approach following
the scheme of Fig. 1 would lead to an O(n2) algorithm, as there are potentially ≤ n
classes on each level and there can be potentially ≤ n

2
levels.

The first level is computed directly by a simple left-to-right scan of the input
string - of course we are assuming that the input alphabet is {0, . . . , n−1}, if it is
not, in O(n log n) the alphabet of the input string can be transformed to it.

Each follow-up level is computed from the previous level by refinement of the
classes of the previous level (in Fig. 1 indicated by arrows). Once a class decreases to
a singleton (as {15} on level 1 , or {14} on level 2), it is not refined any further. After
a level p is computed, the equivalent positions with “gap” are identified, extended to
maximum, and reported. Note that the levels do not need to be saved, all we need
is a previous level to compute the new level (which will become the previous level
in the next round). When all classes reach its final singleton stage, the algorithm
terminates.

How to compute next level from the previous level – refinement of a class by
class. Consider a refinement of a class C on level L by a class D on level L: take
i, j ∈ C, if i+1, j+1 ∈ D, then we leave them together, otherwise we must separate
them. For instance, let us refine a class C = {0, 2, 3, 5, 7, 8, 10, 11, 13} by a class
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Figure 1. Classes of equivalence and their refinements for a string abaababaabaabab

D = {1, 4, 6, 9, 12, 14} on level 1. 0 and 2 must be separated as 1,3 are not both in D,
0 and 3 will be in the same class, since 1,4 are both in D. In fact C will be refined into
two classes, one consisting of D shifted one position to the left ({0, 3, 5, 8, 11, 13}),
and the ones that were separated ({2, 7, 10}). If we use all classes for refinement, we
end up with the next level.

A major trick is not to use all classes for refinement. For each “family” of classes
(classes that were formed as a refinementof a class on the previous level – for instance
classes {2, 7, 10} and {0, 3, 5, 8, 11, 13} on level 2 form a family as they are a refine-
ment of the class {0, 2, 3, 5, 7, 8, 10, 11, 13} on level 1). In each family we identify the
largest class and call all the others small. By using only small classes for refinement,
O(n log n) complexity is achieved as each element belongs only to O(log n) small
classes.

Many linked lists are needed to be maintained to keep track of classes, families,
the largest classes in families, and gaps. Care must be taken to avoid traversing any
of these structure lest the O(n log n) complexity be compromised. It was estimated
that an implementation of Crochemore’s algorithm requires about 20 ∗ n machine
words. FSX03 [4] managed to trim it down to 14 ∗ n using memory multiplexing and
virtualization without sacrificing either the complexity or much of the performance.

4 Extending Crochemore’s algorithm to compute runs

One of the features of Crochemore’s algorithm is that

(a) repetitions are reported level by level, i.e. all repetitions of the same period are
reported together, and

(b) there is no order of repetition reporting with respect to the starting positions of
the repetitions (this is a byproduct of the process of refinement),
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Figure 2. Reporting repetitions for string abaababaabaabab

and thus the repetitions must be “collected” and “joined” into runs. For instance, for
a string x =abaababaabaabab, the order of repetitions as reported by the algorithm
FSX03 ([4]) is shown in Fig. 2; it also shows some of the repetitions that have to be
joined into runs.

The first aspect of Crochemore’s algorithm (see (a) above) is good for computing
runs, for all candidates of joining must have the same period. The second aspect (see
(b) above) is detrimental, for it is needed to check for joining two repetitions with
“neigbouring” starts.

4.1 Variant A

In this variant all repetitions for a level are collected, joined into runs, and reported.
The high level logic:

1. Collect the runs in a binary search tree based on the starting position. There is
no need to record the period, as all the repetitions and all the runs dealt with are
of the same period.

2. When a new repetition is reported, find if it should be inserted in the tree as a
new run, or if it should be joined with an existing run.

3. When all repetitions of the period had been reported, traverse the tree and report
all runs (if depth first traversal is used, the runs will be reported in order of their
starting positions).

The rules for joining:

1. Descend the tree as if searching for a place to insert the newly reported repetition.
2. For every run encountered, check if the repetition should be joined with it.

(a) If the repetition is a substring of the run, ignore the repetition and terminate
the search.

(b) If the run is a substring of the repetition, replace the run with the repetition
and terminate the search.

(c) If the run’s starting position is to the left of the starting position of the repe-
tition, if the run and the repetition have an overlap of size ≥ p, the run’s tail
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must be updated to accommodate the repetition (i.e. the run is extended to
the right). On the other hand, if the overlap is of size < p or empty, continue
search.

(d) If the run’s starting position is to the right of the starting position of the
repetition, if the repetition and the run have an overlap of size ≥ p, the run’s
starting position must be updated to accommodate the repetition (i.e. the run
is extended to the left). On the other hand, if the overlap is of size < p or
empty, continue search.

Figure 3. Data structures for Variant A

For technical reasons and to lower memory requirements, the runs are recorded
in the search tree as pairs (s, d) where s is the starting position of the run, while d
is the end position of the run (let us remark again that we do not need to store the
period p). Note that we can easily compute the exponent: e = (d−s+1) / p, and the
tail t = (d−s+1) % p.

To avoid dynamic memory allocation and the corresponding deterioration of per-
formance, the search tree is emulated by 4 integer arrays of size n, named RunLeft[]

(emulating pointers to the left children), RunRight[] (emulating pointers to the
right children), Run_s[] (emulating storing of the starting position in the node),
and Run_d[] (emulating storing of the endposition in the node), see Fig. 3. Since the
four arrays, FNext[], FPrev[], FMember[], and FStart[], are used in the underly-
ing Crochemore’s algorithm only for class refinement, and at the time of repetition
reporting they can be used safely (as long as they are properly “cleaned” after the
use), we do not need any extra memory.

Thus the variant A does not need any extra memory as each search tree is “de-
stroyed” after the runs have been reported, however there is an extra penalty of
traversing a branch of the search tree for each repetition reporting, i.e. extra O(log n)
steps, leading to the complexity of O(n(log n)2).

4.2 Variant B

In this variant all repetitions for all levels are collected, joined into runs, and reported
together at the end.

The basic principles are the same as for variant A. However, for each level we
build a separate search tree and keep it till the repetitions of all levels (periods)
have been reported. We cannot use any of the data structures from the underlying
Crochemore’s algorithm as we did for variant A, so the memory requirement grows
by additional 4 ∗n machine words. The time-complexity is the same as for variant A,
i.e. O(n(log n)2).

How do we know that all the runs can fit into the search trees with a total of
n nodes? We do not know, for it is just a conjecture that the maximum number of
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Figure 4. Data structures for Variant B

runs < n. However, if we run out of the space (there is a safeguard), we will have found
a counterexample to the conjecture on the maximum number of runs (see e.g. [5]).

4.3 Variant C

As in Variant B, all repetitions for all levels are collected, joined into runs, and
reported together at the end. However, this variant differs from B in the data structure
used.

The repetitions are collected in a simple data structure consisting of an array
Buckets[]. In the bucket Buckets[s] we store a simple singly-linked list of all rep-
etitions that start at position s. To avoid as much as possible dynamic allocation,
so-called “allocation-from-arena” technique is used for the linked lists (Buckets[] is
allocated with the other structures) and 3 ∗n words is allocated in chunks as needed.
The memory requirement for collecting and storing all the repetitions is ≤ 4n ∗ log n
words, however an expected memory requirement is 4n words as the expected number
of repetitions is n (3n for the links, n for the buckets).

After all repetitions had been reported and collected, Buckets[] is traversed from
left to right and all repetitions are joined into runs - we call this phase “sweep”. In
another traversal,the runs can bereported. During the sweep, everything to the left
of the current index are runs, while everything to the right and including the current

Figure 5. Data structures for Variant C
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index are repetitions. For the joining business, we need for each period to remember
the rightmost run with that period, that is the role of the array RunLast[] (we can
reuse FNext[]). Thus when traversing the linked list in the bucket Buckets[i] and
currently dealing with a repetition with period p2, RunLast[p2] points to the last
run of period p2 so we can decide if the current repetition is to be “promoted” to a
run (with a zero tail), or joined with the run. Since the starting position of the last
run of period p2 is not stored in the run, we need one more array Run_s[] in which
we store the starting position (we can reuse FPrev[]).

Since storing a repetition in Buckets[] takes a constant time, and there are
O(n log n) repetitions, and since the joining business is also constant time, the overall
time complexity is O(n log n) + O(n log n), i.e. O(n log n).

5 Experimental results

Implementations of the three variants were compared as to their performance. The
testing was rather informal, just to give indications how the three variants compare.
Hardware: Sony VAIO laptop with Intel Core-2 Duo CPU T5800 @ 2.00 GHz, 4 GB
of RAM
Software: Windows Vista Home Premium SP1. The code was written in C++ and
was compiled using the GNU g++ compiler.
Each run was repeated five times, the minimum numbers are recorded in the table
given in Fig. 6 (random2.txt is a file of random strings on a binary alphabet, while
random21.txt is a file of random strings on an alphabet of size 21).

Figure 6. Comparing speed performance of variants A, B, and C

The table given in Fig. 7 records the performance averaged per a character of
input:

The results allow for a quick conclusion:

1. Overall, variant C is significantly faster than variants A and B. In fact by 3643%!
2. Even though variant A requires less additional memory, speed-wise does not do

much better than B.
3. The speed of variants A and B is not proportional to the string’s length. Rather,

it mostly depends on the type of the string. It works better on strings with large
alphabet size and low periodicity. This is intuitively clear, as for high periodicity
strings the height of the search trees are large.

6 Memory-saving modifications of Variant C

In the first modification, C1, repetitions are collected for a round of K levels, then a
sweep is executed and the resulting runs are reported, and the bucket memory is then
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Figure 7. Comparing speed performance of variants A, B, and C per character of
input

reused in the next “batch” of repetitions. For our experiments, we used K = 100, so
we refer to this variant as C1-100.

In the second modification, C2, we consolidate repetitions with small periods
(≤ K) into runs when putting them to the buckets (this saves memory since there
are fewer runs than repetitions). For a repetition with periond p ≤ K and start s, we
check p buckets to the left and to the right of s; for p > K, we check K buckets to
the left and to the right of s. This guarantes that all reptitions up to period K have
been consolidated into runs before the final sweep, while repetitions of periods > K
are partially consolidated. Thus the final sweep ignores the repetitions with periods
≤ K. Beside saving memory, the final sweep is a bit shorter, while putting repetitions
into the buckets is a bit longer. For our experiemts, we used K = 10, so we refer to
this variant as C2-10.

The table given in Fig. 8 show comparisons of C, C1-100, and C2-10 for the speed
of performance on the same datasets as the tests among the variants A, B, and C in
tables in Fig. 6 and Fig. 7.

Figure 8. Comparing speed performance of the variants C, C1-100, and C2-10

As expected, C is the fastest, however the differences are insignificant, except somehow
significant results for fibo.txt and fss.txt.

The table given in Fig. 9 show comparisons of memory usage of C, C1-100, and
C2-10.
Only on fibo.txt and fss.txt C1-100 and C2-10 exhibit memory savings, for all
other data sets, the memory requirements are the same corresponding to the string’s
length (i.e. only 1 arena segment is allocated).

For the next set of tests we used large strings with large number of runs. The
strings were obtained from W. Matsubara, K. Kusano, A. Ishino, H. Bannai, and



F. Franěk, M. Jiang: Crochemore’s repetitions algorithm revisited – computing runs 223

Figure 9. Comparing memory usage of the variants C, C1-100, and C2-10

A. Shinohara’s website dedicated to “Lower Bounds for the Maximum Number of
Runs in a String” at URL http://www.shino.ecei.tohoku.ac.jp/runs/ .

The table in Fig. 10 indicates the time performance C, C1-100, and C2-10 on
these run-rich large strings, while the table in Fig. 11 gives the memory usage.

Figure 10. Comparing speed of C, C1-100, and C2-10 on large run-rich strings

Figure 11. Memory usage of C, C1-100, and C2-10 on large run-rich strings

As expected, for strings with many short runs and a few long runs, C2-10 exhibits
significant memory savings, with little performance degradation.

7 Conclusion and further research

We extended Crochemore’s repetitions algorithm to compute runs. Of the three vari-
ants, variant C is by far more efficient time-wise, but requiring O(n log n) additional
memory. However, its performance warrantied further investigation into further re-
duction of memory requirements. The preliminary experiments indicate that C2-K is
the most efficient version and so it is the one that should be the used as the basis
for parallelization. Let us remark that variant C (and any of its modifications) could
be used as an extension of any repetitions algorithm that reports repetitions of the
same period together.
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Abstract. For a given word w, all the square-free words that can be reached by suc-
cessive application of rewriting rules uu→ u constitute w’s duplication root. One word
can have several such roots. We provide upper and lower bounds on the maximal num-
ber of duplication roots of words of length n that show that this number is at least
exponential in n.

Keywords: repetitions in strings, DNA operations, duplication

1 Repetitions and Duplication

A mutation,
.

which occurs frequently in DNA strands, is the duplication of a factor
inside a strand [19]. The result is called a tandem repeat, and the detection of these
repeats has received a great deal of attention in bioinformatics [1,20]. The recon-
struction of possible duplication histories of a gene is used in the investigation of the
evolution of a species [24]. Thus duplicating factors and deleting halves of squares
is an interesting algorithmic problem with some motivation from bioinformatics, al-
though squares do not need to be exact there. A very similar reduction was also
introduced in the context of data compression by Ilie et al. [10,11]. They, however
conserve information about each reduction step in the resulting string such that the
operation can also be undone again. In this way the original word can always be re-
constructed, which is essential for data compression. We will present their approach
in more detail in Section 3 and establish some relations between the two reductions.

So far, the interpretation of duplication as an operation on a string has mainly
inspired work in Formal Languages, most prominently the duplication closure. Dassow
et al. introduced the duplication closure of a word and showed that the languages
generated are always regular over two letters [7]. Wang then proved that this is not
the case over three or more letters [23]. These results had actually been discovered
before in the context of copy systems [8], [3]. It remains an open problem, whether
such duplication closures are always context-free or not. Later on, length bounds
for the duplicated factor were introduced [17], [15], and also the closure of language
classes under the duplication operations was investigated [12]. Finally, also a special
type of codes robust against duplications was investigated [16].

Besides considering duplication as a generative operation elongating strings, also
the effects of the inverse operation on words have been the object of investigations
[15]. Here duplications are undone, i.e. one half of them is deleted leaving behind
only the other half of the square. In this way words are reduced to square-free words,
which are in some sense primitive under this notion; this is why we call the set of all

⋆ This work was done while Peter Leupold was funded as a post-doctoral fellow by the Japanese
Society for the Promotion of Science under grant number P07810.

Peter Leupold: Reducing Repetitions, pp. 225–236.
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square-free words reachable from a given word w the duplication root of w in analogy
to concepts like the primitive root or the periodicity root of words. Duplication roots
of languages were studied already in earlier work by the present author [14].

Here we will focus on duplication roots of single words. Mainly the following
question is addressed: how many different duplication roots can a word have? We
establish an exponential lower bound for this number as well as an upper bound.
Besides any possible applications, this study of how repetitions in a sequence can be
nested follows important lines of study in Combinatorics of Words, where repetitions
have been in the center of attention from the very start in the work of Thue [22].

2 Definitions

We assume the reader to be familiar with fundamental concepts from Formal Lan-
guage Theory such as alphabet, word, and language, which can be found in many
standard textbooks like the one by Harrison [9]. The length of a finite word w is
the number of not necessarily distinct symbols it consists of and is written |w|. The
number of occurrences of a certain letter a in w is |w|a. The i-th symbol we denote
by w[i]. The notation w[i . . . j] is used to refer to the part of a word starting at the
i-th position and ending at the j-th position.

A word u is a prefix of w if there exists an i ≤ |w| such that u = w[1 . . . i]; if
i < |w|, then the prefix is called proper. The set of all prefixes is pref(w). Suffixes
are the corresponding concept reading from the back of the word to the front and
they are denoted by suff. We define the letter sequence seq(u) of a word u as follows:
any word u can be uniquely factorized as u = xi1

1 xi2
2 · · ·xiℓ

ℓ for some integers ℓ ≥ 0
and i1, i2, . . . , iℓ ≥ 1 and for letters x1, x2, . . . , xℓ such that always xj 6= xj+1; then
seq(u) := x1x2 · · ·xℓ. Intuitively speaking, every block of several adjacent occurrences
of the same letter is reduced to just one occurrence.

We call a word w square-free iff it does not contain any non-empty factor of the
form u2, where exponents of words refer to iterated catenation, and thus ui is the
i-fold catenation of the word u with itself. A word w has a positive integer k as a
period, if for all i, j such that i ≡ j(modk) we have w[i] = w[j], if both w[i] and w[j]
are defined.

For applying duplications to words we use string-rewriting systems. In our nota-
tion we mostly follow Book and Otto [2] and define such a string-rewriting system R
on Σ to be a subset of Σ∗×Σ∗. Its single-step reduction relation is defined as u→R v
iff there exists (ℓ, r) ∈ R such that for some u1, u2 we have u = u1ℓu2 and v = u1ru2.
We also write simpler just →, if it is clear which is the underlying rewriting system.

By
∗→ we denote the relation’s reflexive and transitive closure, which is called the

reduction relation or rewrite relation. The inverse of a single-step reduction relation
→ is →−1:= {(r, ℓ) : (ℓ, r) ∈ R}. Further notation that will be used is IRR(R) for
the set of words irreducible for a string-rewriting system R. With this we come to the
definition of duplications.

The string-rewriting system we use here is the duplication relation defined as
u♥v :⇔ ∃z[z ∈ Σ+ ∧ u = u1zu2 ∧ v = u1zzu2]. Notice how the symbol ♥ nicely
visualizes the operation going from one origin to two equal halves. If we have length
bounds |z| ≤ k or |z| = k on the factors to be duplicated we write ♥≤k or ♥k
respectively; the relations are called bounded and uniformly bounded duplication re-
spectively.
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♥∗ is the reflexive and transitive closure of the relation ♥. The duplication closure
of a word w is then w♥ := {u : w♥∗u}. The languages w♥≤k and w♥k are defined
analogously. Because our main topic is the reduction of squares, we will mainly use
the inverse of ♥ and will denote it by

.

:= ♥−1; the notations for length-bounded
versions and iterated applications are used accordingly. Notice that for

. ≤k the length
bound does not refer to the length of the rules’ left sides, but rather to half that length.
This makes sense, because otherwise for all even k we would have

. ≤k =
. ≤k+1,

and because this way the relations
. ≤k and ♥≤k correspond. We will use a similar

convention when talking about squares. Thus we will say that a square u2 is of length
|u|; in this case u will be called the base of this square.

With this we have all the prerequisites for defining the central notion of this work,
the duplication root.

Definition 1. The duplication root of a non-empty word w is

♥
√

w := IRR(
.

) ∩ {u : w
.

∗ u}.

As usual, this notion is extended in the canonical way from words to languages such
that

♥
√

L :=
⋃

w∈L

♥
√

w.

The roots ♥≤k
√

w and ♥k
√

w are defined in completely analogous ways, and also these
are extended to entire languages in the canonical way. When we want to contrast the
duplication (root) without length bound to the bounded variants we will at times call
it general duplication (root).

When talking about the elements of a word’s duplication root, we will also call
them simply roots; no confusion should arise. Similarly, where we say “the num-
ber of roots” we mean the root’s cardinality. Though not completely correct, these
formulations are more compact and in many cases easier to understand.

Finally, notice that all words in a duplication root are square-free, and over an
alphabet of two letters only the seven square-free words {λ, a, b, ab, ba, aba, bab} exist.
They are uniquely determined by their first letter, the last letter, and the set of letters
occurring in them. Thus most problems about duplication roots are trivial unless we
have at least three letters. Therefore, unless otherwise stated, we will suppose an
alphabet of size at least three in what follows. First off, we illustrate this definition
with an example that also shows that duplication roots are in general not unique,
i.e., the set ♥

√
w can contain more than one element as we will see further on.

Example 2. By undoing duplications, i.e., by applying rules from
.

, we obtain from
the word w = abcbabcbc the words in the set {abc, abcbc, abcbabc} ; in a first step either
the prefix (abcb)2 or the suffix (bc)2 can be reduced, only the former case results in a
word with another square, which can be reduced to abc.

Thus we have the root ♥
√

abcbabcbc = {abc, abcbabc}. Exhaustive search of all
shorter words shows that this is a shortest possible example of a word with more
than one root over three letters.

Other examples with cardinalities of the root greater than two are the words
w3 = babacabacbcabacb where

♥
√

w3 = {bacabacb, bacbcabacb, bacb},
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and w5 = ababcbabcacbabcabacbabcab where

♥
√

w5 = {abcbabcabacbabcab, abcbabcab, abcacbabcab, abcabacbabcab, abcab},

As the examples have finite length, the bounded duplication root is in general
not unique either. The uniformly bounded duplication root, however, is known to be
unique over any alphabet [15].

As already stated in the Introduction, so far research on duplication has mainly
focused on its language theoretic properties. We recall the most important results on
these from [14].

Theorem 3. The closure properties of the classes of regular and context-free lan-
guages under the three duplication roots are as follows:

♥k
√

L ♥≤k
√

L ♥
√

L

REG Y Y N
CF ? ? N

The symbol Y stands for closure, N stands for non-closure, and ? means that the
problem is open.

Here our focus is different. We will look in more detail at the duplication roots of
single words. One interesting question is how ambiguous it can be in relation to a
word’s length.

Before we take a closer look at this question, however, we will now recall a notion
that is very closely related to our reduction.

3 The Relation to Repetition Complexity

In an effort to define a new measure for the complexity of words, Ilie et al. [10,11]
defined a reduction relation very similar to undoing duplications, which however re-
members the steps it takes, and in this way the original word can be restored from
the reduced one. For the definition let D = {0, 1, . . . 9} be the set of decimal digits,
and Σ be an alphabet disjoint from D. The alphabet for the reduction relation is
T := Σ ∪ D ∪ {〈, 〉, ^}. For a positive integer n let dec n denote its decimal rep-
resentation. Then the reduction relation ⇒ is defined by u ⇒ v iff u = u1x

nu2,
v = u1 〈x〉 ^〈dec n〉u2 for some u1, u2 ∈ T ∗, x = Σ+, n > 2. Finally, let h be the
morphism erasing all symbols except the letters from Σ.

We illustrate in a simple example the different way of operation of the two rela-
tions.

Example 4. For the word ababcbc there are two irreducible forms under ⇒, namely

〈ab〉〈2〉 cbc and aba 〈bc〉〈2〉. Under
.

, however, the images of both words under h
are further reducible to a common normal form: both ababcbc

.

abcbc
.

abc and
ababcbc

.

ababc
.

abc are possible reductions leading to abc. Notice how the brack-
ets block the further reduction of abab in aba 〈bc〉 ^〈2〉 and of bcbc in 〈ab〉 ^〈2〉cbc.

There are two main differences between the two relations.

1. A reduction un ⇒ 〈u〉 ^〈n〉 is done in a single step while the reduction un
.

∗ u
will always take n− 1 steps.
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2. If w ⇒∗ u then w
.

∗ h(u), but the reverse does not hold, see Example 4.

Despite these differences, the similarities are evident, and ⇒∗ can be embedded in
.

∗ . We state a further relation.

Proposition 5. For a word w, if ♥
√

w ⊆ {h(u) : w ⇒∗ u} then | ♥√w| = 1.

Proof. Let p and q be two different words in ♥
√

w. Then there exist words u, p′, q′ such
that w

.

∗ u, u
.

p′
.

∗ p, u
.

q′
.

∗ q, but no reductions p′
.

∗ q or q′
.

∗ p exist.
Intuitively this means that the paths to p and q divide in the point u, which thus is
a greatest lower bound of {p, q} in the set w . with

.

∗ as partial order. The two
unduplications in u

.

p′ and u
.

q′ must overlap, otherwise there would be a word
v such that p′

.

v and q′
.

v. Let the two factors that are reduced be u2
p and u2

q,
where |up| > |uq| without loss of generality; notice that |up| = |uq| would result in
p′ = q′.

The overlap of the unduplications must be greater than |uq|. Otherwise there is a
w′ such that the unduplications are applied to a factor upw

′uq or uqw
′up and the effect

can be seen as the deletion of up and uq; both would be possible consecutively. Further,
the maximal repetition of up were it is reduced must be less than u3

p, otherwise the
factor uq would still be present after deletion of one up. This means that a reduction
under⇒ can only result in 〈up〉 ^〈2〉, no higher exponent, and no factor up can follow
on either side.

There can be no factor u2
q directly preceding or following 〈up〉 on the side of the

overlap. Otherwise, again derivations p′
.

v and q′
.

v would have been possible.
This means that the square u2

q in h(p′) cannot be reduced, neither can an equivalent
reduction leading to the same result be done. Analogous reasoning holds for the case
that first u2

q is reduced to 〈uq〉 ^〈2〉, and thus {h(u) : w ⇒∗ u} cannot contain any
square-free word.

⊓⊔

Intuitively this means that if ⇒ can reduce a word to a square-free one, then the
overlaps of its repetitive factors must be so minor that they do not lead to ambiguous
duplication roots either. Already Example 4 shows that the converse of Proposition
5 does not hold.

From the proof of Proposition 5 we can extract an important property of the
relation

.

∗ that characterizes the situation, when two strings derived from the
same word can become incomparable.

Definition 6. Let w be a word. We will call two squares p2 and q2 a pair of critical
squares in w, if w has a factor u such that

1. p2 ∈ pref(u),
2. q2 ∈ suff(u),
3. |u| ≤ 2(max(|p|, |q|)) + min(|p|, |q|)− 1.

Without further proof we state the following.

Lemma 7. Let w, p, and q be words such that w
.

p and w
.

q.
If {v : p

.

∗ v} ∩ {v : q
.

∗ v} = ∅, then w contains a pair of critical squares.
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4 The Number of Duplication Roots

A decisive question for any algorithmic problem related to duplication is the one
about the possible number of duplication roots of a word with respect to its length.
To find an exact bound seems to be a very intricate problem, and so we try to find
good upper and lower bounds on this number. More formally, we try to find bounds
for the function defined as

duproots(n) := max{| ♥√w| : |w| = n}.
The function duproots is monotonically growing. For any word w, duplicate one of its
letters to obtain a word w′ of length |w| + 1. Clearly w′

.

w and thus ♥
√

w ⊆ ♥
√

w′.
Consequently we have duproots(n) ≤ duproots(n + 1) for all n > 0. Therefore writing
|w| = n in the definition is equivalent to writing |w| ≤ n.

Because it has often turned out to be very useful to consider problems about
duplications with a length restriction, we also define the function

bduproots≤ k(n) := max{| ♥≤k
√

w| : |w| = n}.

By definition we have bduproots≤k ≤ duproots and bduproots≤k ≤ bduproots≤k+1 for
all k > 0. We now try to characterize the growth of the function duproots more
exactly.

4.1 Bounding from Above

Obviously, rules from
.

can only be applied on square factors. Thus the number of
squares is the number of possible distinct rule applications in a string. However, when
we are interested in rule applications with distinct result and thus with potentially
distinct roots, the number of runs captures this more exactly.

Recall that a run is a maximal repetition of exponent at least two in a string. It
is known that the number of runs in a string of length n is linearly bounded by n
[13]. A great deal of work has been done to determine the constant c such that c · n
is the exact bound. The most recent results indicate that c lies between 1.6 [6] and
0.94 [18]. The following fact shows how this number plays a role for the number of
possible reductions via

.

and thus for the number of duplication roots.

Fact 8. Let w be a word with period k. Then all applications of rules from
. k will

result in the same word, i.e. {u : w
. k u} is a singleton set.

As a consequence of this, the number of distinct descendants of w with respect to
.

is equal to the number of runs in w. In this way. the number of runs seems to play
an important role for the computation of the maximal number of duplication roots.

To obtain a first approximation on this number, let us state the following: the
number of runs in a string of length n is bounded linearly by the string’s length.
Reducing one square leaves the word’s length in general in the order of n, thus also
the number of runs is again in the order of n.

On the other hand, every reduction via
.

removes at least one letter, thus there
can be at most n − 1 steps in the reduction of a word of length n. More precisely,
observe that deleting one half of a square cannot remove all copies of a letter from
a given string. Thus all roots of a word over three letters have at least three letters
themselves. Overall, there are up to n− 3 times up to n choices for reducing squares,
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and the number of different reduction paths lies in O(nn). Using the upper bound on
the number of runs we see that

duproots(n) ≤ (1.6n)n−3.

Of course, this gives a very rough upper bound. Most importantly, it disregards the
fact that many reductions starting in different points will converge again at some
point. Obviously, two rule applications in factors that do not overlap can be applied
in either order with identical result. Further, not all of the strings reachable during a
reduction will reach the maximum number of runs.

We recall a result from [14].

Lemma 9. If for two words u, v ∈ Σ∗ we have seq(u) = seq(v), then also ♥
√

u =
♥
√

v = ♥
√

seq(u).

This means that we can first do all the possible reductions of the form x2 → x for
single letters x. So for possible splits to different duplication roots we can assume
that at least two letters are deleted in every step. Actually, also the fact that u from
Example 4 is the shortest possible word with at least two distinct duplication roots
shows that we need only consider applications of rules u2 → u with |u| ≥ 2. This

lowers our upper bound to (1.6n)
n−3

2 .
The improvement is not substantial, however. In the initial approach, in some

sense all possible paths from w to words in ♥
√

w in the Hasse diagram of the partial

order [w . ,
.

∗] are counted. The improved version counts only the paths starting
from seq(w) as depicted in Figure 1. The optimal case, however would be to count
only one path per element of ♥

√
w. We can take another step into this direction for

the partial order [w .

≤k,
. ≤k

∗]. As exemplary value for k we choose 30, the reason
for this will become evident in the next section.

Figure 1. 10 versus 2 paths for the word aabcbabcbbc, by first reducing one-letter
squares from left to right. The direction of reductions is top to bottom.

Lemma 7 characterizes the words, from which it may not be possible to rejoin
outgoing paths. They need to have a critical overlap. The involved squares’ bases
cannot be longer than 30. Further, one must be shorter than the other, but of length at
least two. So for a given square, there are at most 29 such candidates. They can overlap
on either side, which gives 56 possible combinations. The shorter square must have
more than one half of its length inside the other, and at least one letter must be outside
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the other. So for a square of length m we have m− 1 possible positions. The overall
number of possible configurations is therefore 2

∑
2≤i≤29 i− 1 = 2

∑
1≤i≤28 i = 812.

For calculating the number of possible roots of a word w, we now employ the
following tactics. Again, we first compute seq(w). Then we do not follow all possible
paths from seq(w), but rather select one random square. If it does not form part
of a pair of critical squares, then we simply reduce it and proceed further with the
next square. Otherwise, for all critical pairs we follow also the paths resulting from
reducing the possible partners in these pairs. As we have seen, a square of length 30
can form part of at most 812 critical pairs. The length of the paths is subject to the
same bound as for

.

, and thus we have to follow at most 812
n−3

2 paths, which is
the upper bound on bduproots≤30.

Clearly, especially the first bound of (1.6n)
n−3

2 is very far off the real value. Indeed,
all roots of a word w are shorter than w unless w is square-free. Let us label w’s letters
from the start to the end. We can look at a rule uu→ u like the deletion of one copy
of u, so its labels disappear. Thus every word in ♥

√
w corresponds to a subset of the

set of |w| labels. There are only 2|w| such subsets, which gives us a much better upper
bound, also independent of the alphabet size. We still have given the construction of
our bound, because we feel that it bears potential for improvement even beyond 2|w|.
Intuitively, the linear bound on the number of runs in a string means that they must
be distributed rather evenly over the string’s length. Further, results like the Theorem
of Fine and Wilf suggest that one run can only form a very limited number of pairs of
critical squares, so that even in the case of unbounded duplication we should be able
to get an average constant bound like the one of 812 for

. ≤30. By careful analysis of
the possibilities, it should be possible to lower the bound even beyond 2|w|.

4.2 Bounding from Below

The upper bound on the number of duplication roots is very high and raises the
question how far from the real number it is. By an example we now establish a lower
bound for this number, which is also exponential. Thus it shows that the upper bound
is not too bad.

Example 10. We construct an example of a sequence of words wn, which are simply
powers of a word w, namely wn := wn. The number of roots increases exponentially in
n. This is a modification of a construction used earlier to present a simple language
with infinite duplication root [14]. We start the construction of w from the word
u = abcbabcbc; in Example 2 we have seen that the root of u consists of the two words
u1 = abc and u2 = abcbabc. The basic idea is to concatenate copies of u; in every
factor there is the choice of u1 or u2 and thus every additional copy of u doubles the
number of roots. However, simple concatenation of u would allow further reductions.
Therefore we need to modify and separate the different copies of u in ways that
prevent the creation of further squares.

The first measure we take is permuting the letters. Let ρ be the morphism, which
simply renames letters according to the scheme a → b → c → a. Then ρ(u) has the
two roots ρ(u1) and ρ(u2); similarly, ρ(ρ(u)) has the two roots ρ(ρ(u1)) and ρ(ρ(u2)).

We will now use this ambiguity to construct the word w. This word over the
four-letter alphabet {a, b, c, d} is

w = udρ(u)dρ(ρ(u))d = abcbabcbc · d · bcacbcaca · d · cabacabab · d.



Peter Leupold: Reducing Repetitions 233

Thus the duplication root of w contains among others the three words

wa = abc · d · bca · d · cabacab · d
wb = abc · d · bcacbca · d · cab · d
wc = abcbabc · d · bca · d · cab · d,

which are square-free. We now need to recall that a morphism h is called square-
free, iff h(v) is square-free for all square-free words v. Crochemore has shown that
a uniform morphism h is square-free iff it is square-free for all square-free words of
length 3 [5]. Here uniform means that all images of single letters have the same length,
which is given in our case.

The morphism we define now is ϕ(x) := wx for all x ∈ {a, b, c}. Thus to establish
the square-freeness of ϕ, we need to check this property for the images of all square-
free words up to length 3. These are

ϕ(aba) = abcdbcadcabacabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(abc) = abcdbcadcabacabdabcdbcacbcadcabdabcbabcdbcadcabd
ϕ(aca) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(acb) = abcdbcadcabacabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(bab) = abcdbcacbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(bac) = abcdbcacbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(bca) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcadcabacabd
ϕ(bcb) = abcdbcacbcadcabdabcbabcdbcadcabdabcdbcacbcadcabd
ϕ(cac) = abcbabcdbcadcabdabcdbcadcabacabdabcbabcdbcadcabd
ϕ(cab) = abcbabcdbcadcabdabcdbcadcabacabdabcdbcacbcadcabd
ϕ(cba) = abcbabcdbcadcabdabcdbcacbcadcabdabcdbcadcabacabd
ϕ(cbc) = abcbabcdbcadcabdabcdbcacbcadcabdabcbabcdbcadcabd,

where, of course, the images of all words shorter than three are contained in them.
All the twelve words listed here are indeed square-free as an eager reader can check,
and thus ϕ is square-free.

Now let t be an infinite square-free word over the letters a, b and c. Such a word
exists [22]. Then all the words in ϕ(pref(t)) are square-free, too. From the construction
of ϕ we know that for any word z of length i we can reach ϕ(z) from wi by undoing

duplications. Therefore ϕ(pref(t)) ⊆ ♥
√

w+. For two distinct square-free words t1 and
t2, also ϕ(t1) 6= ϕ(t2). Finally, notice that for all positive i ≤ n we have wn

.

∗ wi.
This means that all square-free words that are not longer than n lead to a different

duplication root of wn. Therefore bduproots≤30 ≤ s, where s(n) is the number of
ternary square-free words of length up to n. This function’s value is not known,
however, it was first bounded to 6 · 1.032n ≤ s(n) ≤ 6 · 1.379n by Brandenburg
[4]. A better lower bound was found by Sun s(n) ≥ 110

n
42 [21]. w itself is of length

3|u|+ 3 = 30. So we see that bduproots≤30(n) ≥ 1
30

110
n
42 .

Example 10 leaves room for improvement in several respects.

– The word w is over a four-letter alphabet. The letter d is used to separate the
different blocks that introduce the ambiguities and only use the alphabet {a, b, c}.
The question is whether this function can also be fulfilled by an appropriate word
over {a, b, c}; computer experiments with candidate words have always led to
unwanted squares with some of the adjoining factors.
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– The ambiguity of u that we use is only two-fold. Using the words w3 and w5 from
Example 2, it might be possible to pack more choices into less room and thus
improve the initial constant of 1

5
with similar constructions. However, this would

not change the magnitude. On the other hand, the resulting morphism would not
be uniform, which would complicate the establishment of its square-freeness.

Summarizing this section up to this point, we have the following bounds for the
function duproots.

Proposition 11. 1
30

110
n
42 ≤ duproots(n) ≤ 2n for all n > 0.

Because Example 10 uses only rules from
. ≤30, its bound holds also for bduproots≤30.

So for this function we get a much sharper characterization of its growth.

Proposition 12. 1
30

110
n
42 ≤ bduproots≤30(n) ≤ max{812

n−3
2 , 2n} for all n > 0.

While this upper bound is still enormous, we have at least achieved a bounding be-
tween two exponential functions. So for this case the bounds are much tighter, though
still rather loose. For ternary alphabet, the upper bound 6 · 1.379n by Brandenburg
can replace 2n in both Propositions.

4.3 Computing the Number of Duplication Roots

Proposition 11 shows that the straight-forward approach to computing the function
duproots will lead to exponential runtime. But it seems reasonable to assume that
it is not necessary to actually compute the set ♥

√
w to determine its size. Example

4 suggests that it suffices to identify the number of critical overlaps in the original
word. In this case, even linear time might suffice. However, it remains to show that
no new critical pairs can come up during a reduction, or at least that their number
can be foreseen by looking a the original word.

5 Open Problems

The first and most evident problem is, of course, a better characterization of the
function duproots. We conjecture that in some way a bounding will be possible in a
way similar to that for bduproots, and thus also duproots can be bounded from above
and below by exponential functions. For this a refined analysis of pairs of critical
squares might be the key, just as for a linear time algorithm to actually compute
duproots.

Besides this, three more algorithmic problems related to the duplication root of a
word suggest themselves.

(i) Duplication Root: For a given word w, find one of its duplication roots.
(ii) Minimal Duplication Root: For a given word w, find one of the shortest of

its duplication roots.
(iii) Complete Duplication Root: For a given word w, find all of its duplication

roots.

To solve Problem (i) we can follow any reduction. As seen above, these can take up to
n steps. In each step one square must be detected and reduced. Therefore a runtime
of O(n2 log n) can be expected. An interesting question is whether Problem (ii) can
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be solved faster than Problem (iii), i.e. do we basically have to enumerate the entire
root to know which is its smallest element, or can, for example, a greedy strategy
eliminate many candidate reductions early on. No exact results on the complexity of
any of the three problems are known.

Another interesting field is finding restrictions on the general duplication which
are on the one hand motivated from practical considerations like possible tandem
repeats in DNA, and on the other hand make the problems described here more
tractable. Since tandem repeats cannot occur at arbitrary factors of a DNA strand,
there might be less than exponentially many possible duplication histories for DNA
strands.

Acknowledgments. The words w3 and w5 from Example 2 were found by Szilárd Zsolt
Fazekas, the fact that w is the shortest example of a word with ambiguous root was
established by Artiom Alhazov with a computer. The observation that the number
of subsets of a set with |w| elements bounds | ♥√w| was first made by Masami Ito.
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Abstract. Denote by sq(w) the number of distinct squares in a string w and let S
be the class of standard Sturmian words. They are generalizations of Fibonacci words
and are important in combinatorics on words. For Fibonacci words the asymptotic
behaviour of the number of runs and the number of squares is the same. We show
that for Sturmian words the situation is quite different. The tight bound 8

10 |w| for the
number of runs was given in [3]. In this paper we show that the tight bound for the
maximal number of squares is 9

10 |w|. We use the results of [11] where exact (but not
closed) complicated formulas were given for sq(w) for w ∈ S and we show:

(1) for all w ∈ S sq(w) ≤ 9
10 |w|+ 4,

(2) there is an infinite sequence of words wk ∈ S such that

lim
k→∞

|wk| = ∞ and lim
k→∞

sq(wk)

|wk|
=

9

10
.

Surprisingly the maximal number of runs is reached by the words with recurrences of
length only 5. This contrasts with the situation of Fibbonaci words, though standard
Sturmian words are natural extension of Fibonacci words. If this length drops to 4,
the asymtotic behaviour of the maximal number of squares falls down significantly
below 9

10 |w|. The structure of Sturmian words rich in squares has been discovered by
us experimentally and verified theoretically. The upper bound is much harder, its proof
is not a matter of simple calculations. The summation formulas for the number of
squares are complicated, no closed formula is known. Some nontrivial reductions were
necessary.

1 Introduction

A square in a string is a subword of the form ww, where w is nonempty. The squares
are a simplest form of repetitions, despite the simple formulation many combinato-
rial problems related to squares are not well understood. The subject of computing
maximal number of squares and repetitions in words is one of the fundamental topics
in combinatorics on words [18,22] initiated by A. Thue [28], as well as it is important
in other areas: lossless compression, word representation, computational biology, etc.
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Let sq(w) be the number of distinct squares in the word w and sq(n) be the
maximal number of distinct squares in the word of length n. The behaviour of the
function sq(n) is not well understood, though the subject of squares was studied by
many authors, see [9,10,17]. The best known results related to the value of sq(n) are,
see [13,15,16]:

n− o(n) ≤ sq(n) ≤ 2n−O(log n).

In this paper we concentrate on the asymptotic behaviour of the maximal number of
squares in class of standard Sturmian words S. We show: for all w ∈ S sq(w) ≤ 9

10
|w|

and there is an infinite sequence of strictly growing words {wk} ∈ S such that

lim
k→∞

sq(wk)

|wk|
=

9

10
.

There are known efficient algorithms for the computation of integer powers
in words, see [2,6,11,23,24]. The powers in words are related to maximal repeti-
tions, also called runs. It is surprising that the known bounds for the number of
runs are much tighter than for squares, this is due to the work of many people
[3,7,8,14,19,20,25,26,27].

One of interesting questions related to squares is the relation of their number to
the number of runs. In case of Fibonacci words the number of squares and runs differ
only by 1.

The results of this paper show that the maximal number of squares and the max-
imal number of runs are possibly not closely related, since in case of well structured
words (Sturmian words) the density ratio of squares (the asymptotic quotient of the
maximal number of squares by the size of the string) is 9

10
and for runs it is 8

10
.

2 Standard Sturmian words

The standard Sturmian words (standard words, in short) are generalization of Fi-
bonacci words and have a very simple grammar-based representation which has some
algorithmic consequences.

Let S denote the set of all standard Sturmian words. These words are defined over
a binary alphabet Σ = {a, b} and are described by recurrences (or grammar-based
representation) corresponding to so called directive sequences: integer sequences

γ = (γ0, γ1, . . . , γn),

where γ0 ≥ 0, γi > 0 for 0 < i ≤ n.

The word xn+1 corresponding to γ, denoted by Sw(γ), is defined by recurrences:

x−1 = b, x0 = a,

x1 = xγ0

0 x−1, x2 = xγ1

1 x0,

. . . . . .

xn = x
γn−1

n−1 xn−2, xn+1 = xγn
n xn−1.

(1)

Fibonacci words are standard Sturmian words given by the directive sequences
of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds to a sequence of
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n ones). We consider here standard words starting with the letter a, hence assume
γ0 > 0. The case γ0 = 0 can be considered similarly.

For even n > 0 a standard word xn has the suffix ba, and for odd n > 0 it has the
suffix ab. The number N = |xn+1| is the (real) size, while n+1 can be thought as the
compressed size.

Example 1.
Consider directive sequence γ = (1, 2, 1, 3, 1). We have:

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab

x−1 = b, x0 = a, x1 = x1
0x−1 = a b, x2 = x2

1x0 = ab ab a,

x3 = x1
2x1 = ababa ab, x4 = x3

3x2 = ababaab ababaab ababaab ababa,

x5 = x1
4x3 = ababaabababaabababaabababa ababaab

The grammar-based compression consists in describing a given word by a context-
free grammar G generating this (single) word. The size of the grammar G is the
total length of all productions of G. In particular each directive sequence of a stan-
dard Sturmian word corresponds to such a compression – the sequence of recurrences
corresponding to the directive sequence. In this case the size of the grammar is pro-
portional to the length of the directive sequence.

For some lexicographic properties and structure of repetitions of standard Stur-
mian words see [5,3,1,4].

3 Summation formulas for the number of squares

The exact formulas for the number of squares in standard Sturmian words were given
by Damanik and Lenz in [11]. In this section we reformulate their formulas to have
compact version more suitable for the asymptotic analysis. The formulas are rather
complicated and such an analysis is nontrivial. It will be done in the section 5.

Denote qi = |xi|, where xi are as in equation (1). The following lemma charecterize
the possible lengths of periods of squares in Sturmian words.

Lemma 2. ([11])
Let w = Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Each primitive period of a
square in w has the length kqi for 1 ≤ k ≤ γi or kqi + qi−1 for 1 ≤ k < γi.

The squares in standard Sturmian word w with period of the length kqi for 1 ≤
k ≤ γi or kqi + qi−1 for 1 ≤ k < γi are said to be of type i.

Example 3.
Consider the word from Example 1:

Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab.

We have:

one square of type 0: a·a,

three squares of type 1 (period 2, 3): ab·ab, ba·ba, aba·aba,

three squares of type 2 (period 5): ababa·ababa, babaab·babaab, abaab·abaab,

and eleven squares of type 3 (with periods 7,14):
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ababaab·ababaab, babaaba·babaaba, abaabab·abaabab, baababa·baababa,

aababab·aababab, abababa·abababa, bababaa·bababaa,

ababaabababaab·ababaabababaab, babaabababaaba·babaabababaaba,

abaabababaabab·abaabababaabab, baabababaababa·baabababaababa.

Let sqi(γ0, γ1, . . . , γn), for 1 ≤ i ≤ n, be the number of squares of the type i and
let sq0(γ0, γ1, . . . , γn) be the number of squares with period of the form a+ in the
word Sw(γ0, γ1, . . . , γn).

We slightly abuse the notation and denote sq(γ0, γ1, ..., γn) = sq
(
Sw(γ0, γ1, ..., γn)

)
.

Denote d(0) =
⌊

γ0+1
2

⌋
and for 1 ≤ i ≤ n and γ = (γ0, γ1, . . . , γn):

d1(i) =

{ γi

2
qi + qi−1 − 1 for even γi

γi

2
qi + 1

2
qi for odd γi

d(i) = d1(i) + γi qi − qi − γi + 1.

Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then sq(γ0, γ1, . . . , γn) is
determined as follows, see [11]:

Summation formulas:

(1) sq(γ0, γ1, . . . , γn) =
∑n

i=0 sqi(γ0, γ1, . . . , γn).

(2) (0 ≤ i ≤ n− 3) or (i = n− 2 & γn ≥ 2) ⇒ sqi(γ) = d(i).

(3) γn = 1 ⇒ sqn−2(γ) =

{
d(n− 2)− qn−3 + 1 for even γn−2

d(n− 2)− qn−2 + qn−3 + 1 otherwise

(4) γn = 1 ⇒ sqn−1(γ) =

{
d1(n− 1)− qn−2 + 1 for even γn−1

d1(n− 1)− qn−1 + qn−2 − 1 otherwise

(5) γn > 1 ⇒ sqn−1(γ) =

{
d(n− 1)− qn−2 + 1 for even γn−1

d(n− 1)− qn−1 + qn−2 − 1 otherwise

(6) sqn(γ) =

{
d1(n)− qn + 2 for even γn

d1(n)− qn otherwise
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4 Sturmian words with many squares

In this section we present and analyse the sequence {wk} of Sturmian words achieving
asymptotically maximal ratio:

lim
k→∞
|wk| =∞ and lim

k→∞

squares(wk)

|wk|
=

9

10
.

Recall that the squares with periods kqi for 1 ≤ k ≤ γi or kqi + qi−1 are said to
be of the type i.

Consider the words
wk = Sw(k, k, 2, 1, 1).

Example 4.

w1 = Sw(1, 1, 2, 1, 1) = (aba)2ab(aba)3ab,

w2 = Sw(2, 2, 2, 1, 1) =
(
(aab)2a

)2

aab
(
(aab)2a

)3

aab,

w3 = Sw(3, 3, 2, 1, 1) =
(
(aaab)3a

)2

aaab
(
(aaab)3a

)3

aaab.

Sw(3, 3, 2, 1, 1) is illustrated in Figure 1.

a a a ba a a b a a a b a a a a ba a a b a a a b a a a a b a a a b a a a b a a a ba a a a b a a a ba a a ba a a a b a a a ba a a ba a a a b
1 1 0

1 1 0

2

3

2

Figure 1. The squares in word Sw(3, 3, 2, 1, 1) with their shifts and types.

Theorem 5.
We have sq(k, k, 2, 1, 1) −→ 9

10
·
∣∣∣Sw(γ0, γ1, . . . , γn)

∣∣∣ for k −→∞.

Proof.
Let γ = (k, k, 2, 1, 1). We have:

Sw(γ) =
(
(akb)ka

)2

akb
(
(akb)ka

)3

akb

and
|Sw(γ)| = 5k2 + 7k + 7.

We compute separately the number of squares for each type 0 ≤ i ≤ 4.

There are two cases depending on the parity of k and we can assume that k > 1.
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Case 1: k is odd.

We have (according to our formulas):

sq0(γ) =
1

2

(
k + 1

)
,

sq1(γ) =
1

2

(
3k2 + 1

)
,

sq2(γ) = 2k2 + 2k + 1,

sq3(γ) = k2 + k,

sq4(γ) = 0,

sq(γ) =
1

2

(
9k2 + 7k + 4

)
.

Finally

lim
k→∞

sq(γ)

|Sw(γ)| = lim
k→∞

9k2 + 7k + 4

10k2 + 14k + 14
= 0.9 .

Case 2: k is even.

We have (according to our formulas):

sq0(γ) =
1

2
k,

sq1(γ) =
1

2

(
3k2 − k

)
,

sq2(γ) = 2k2 + 2k + 1,

sq3(γ) = k2 + k,

sq4(γ) = 0,

sq(γ) =
1

2

(
9k2 + 6k + 2

)
.

Finally

lim
k→∞

sq(γ)

|Sw(γ)| = lim
k→∞

9k2 + 6k + 2

10k2 + 14k + 14
= 0.9.

This concludes the proof.

5 Asymptotic behaviour of the maximal number of squares

The formulas (1-6) from the section 3 give together the value of sq(γ), however there
is no close simple formula. Therefore tight asymptotic estimations are nontrivial. We
start with an estimation for short γ. The proof of the following simple lemma is
omitted in this version.

Lemma 6. [Short γ]
sq(γ0, γ1, γ2) ≤ 7

3
|Sw(γ0, γ1, γ2)| and sq(γ0, γ1, γ2) ≤ |Sw(γ0, γ1, γ2)| − 4.
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For a word w of length at least 2 denote by exch2(w) the word resulting from w by
exchanging the last two letters.

Lemma 7. sq(w) ≤ sq
(
exch2(w)

)
+ 4.

Proof.
It is known, see [13], that there are at most two last occurrences of different squares at
a single position in a string. If we reverse the word then this corresponds to the end-
positions of the first occurrences. Hence at the last two positions at most 4 different
squares can end which do not appear earlier in the same word with the last two letters
removed. This completes the proof.

The next two lemmas allows us to restrict the values of last two elements of the
directive sequence in the asymptotic estimation of sq(γ).

Lemma 8. [Reduction of γn]
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. If γn > 1 then

sq(γ0, . . . , γn−1, γn) ≤ sq(γ0, . . . , γn−1, γn − 1, 1) + 4.

Proof.
The words Sw(γ0, . . . , γn− 1, 1) and Sw(γ0, . . . , γn) differ only on the last two letters,
see [18]. Hence

Sw(γ0, . . . , γn − 1, 1) = exch2

(
Sw(γ0, . . . , γn)

)
.

Now the thesis follows from the Lemma 7.

Lemma 9. [Reduction of γn−1]
Let x = SW (γ0, . . . , γn−2, γn−1, 1), x′ = SW (γ0, . . . , γn−2, 1, 1),
x′′ = SW (γ0, . . . , γn−2, 2, 1).
Then (

sq(x′) ≤ 9

10
|x′| and sq(x′′) <

9

10
|x′′|

)
⇒ sq(x) ≤ 9

10
|x|.

Proof.
If γn−1 is odd then let ∆ = γn−1 − 1 otherwise let ∆ = γn−1 − 2.
Consider what happens when we change γn−2 by the quantity ∆.
The increase of the number of squares is ∆

2
qn−1, while the increase in the length of

the word is ∆ qn−1. The increase of squares is amortized by half of the increase of the
length. Therefore we can subtract ∆ from γn−1.

Observation

d(i) ≤





(
3

2
γi − 1

)
qi + qi−1 − 1 for even γi

(
3

2
γi −

1

2

)
qi for odd γi
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Lemma 10.
For 2 ≤ r ≤ n− 3 we have

r∑

i=0

d(i) <
3

2
qr+1 + qr.

Proof.
According to the observation above and implication

γi ≥ 2 ⇒ qi−1 − qi < − 1

2
qi,

we have:

d(i) ≤ 3

2
γi qi −

1

2
qi.

Observe now that γi qi = qi+1 − qi−1. Hence for r ≥ 2:

r∑

i=1

γi qi = qr+1 + qr − q0 − q1.

Consequently

r∑

i=0

d(i) < d(0) +
3

2

r∑

i=1

γi qi −
1

2
qr

≤ d(0) +
3

2

(
qr+1 + qr − q0 − q1

)
− 1

2
qr

≤ 3

2
qr+1 + qr.

This completes the proof.

Now we are ready to prove the tight bound for the number of squares in standard
Sturmian words.

Theorem 11.
Let Sw(γ0, γ1, . . . , γn) be a standard Sturmian word. Then

sq(γ0, γ1, . . . , γn) ≤ 9

10
·
∣∣∣Sw(γ0, γ1, . . . , γn)

∣∣∣ + 4.

Proof.
First assume that:

γn = 1 and γn−1 ∈ {1, 2}

Let us shorten the notation and denote:

A = qn−2, B = qn−3, α = γn−2.

We have, due to Lemma 10, the following fact (in terms of A and B):
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Claim 1.
n−3∑

i=0

sqi(γ) =
n−3∑

i=0

d(i) ≤ 3

2
A + B.

This, together with the fact that sqn(γ0, γ1, . . . , γn−1, 1) = 0, implies:

Claim 2.

sq(γ) ≤ Φ(γ)
def
=

3

2
A + B + sqn−1(γ) + sqn−2(γ).

Our goal is to prove the inequality

Φ(γ) ≤ 9

10
|w|.

Using our terminology we can write:

(a)
∣∣Sw(γ)

∣∣ =

{
2 α A + A + 2B for γn−1 = 1
3 α A + A + 3B for γn−1 = 2

(b) sqn−2(γ) ≤
{

3
2

α A− A for even γn−2

3
2

α A− 3
2
A + B + 1 for odd γn−2

(c) sqn−1(γ) ≤
{

α A + B for γn−1 = 2
A− 1 for γn−1 = 1

There are 4 cases depending on γn−1 ∈ {1, 2} and the parity of α.

Case 1: (γn−1 = 1, α is even)

In this case inequality Φ(γ) ≤ 9
10
|w| reduces to:

3

2

(
α+1

)
A+B ≤ 9

10

(
(2 α+1) A+2 B

)
.

This reduces to:
3

2

(
α + 1

)
≤ 9

10

(
2 α + 1

)
.

The last inequality is reduced to 0.6 ≤ 0.3 α, which obviously holds for α ≥ 2.

This completes the proof of this case.
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Case 2: (γn−1 = 1, α is odd)

In this case the inequality Φ(γ) ≤ 9
10
|w| reduces to:

(
3

2
α+1

)
A+2 B ≤ 9

10

(
(2 α+1) A+2 B

)
,

which holds for α ≥ 1, A > B > 0.

Case 3: (γn−1 = 2, α is even)

In this case

Φ(γ) ≤
(5

2
α +

1

2

)
A + 2 B.

Consequently the inequality Φ(γ) ≤ 9
10
|w| reduces to:

(
5

2
α+

1

2

)
A+2 B ≤ 9

10

(
3 α A+A+3B

)
.

This holds since α ≥ 2, A > B > 0.

Case 4: (γn−1 = 2, α is odd)

In this case

Φ(γ) ≤ 5

2
α A + 3 B + 1.

Now the inequality Φ(γ) ≤ 9
10
|w| reduces to:

5

2
α A + 3 B + 1 ≤ 9

10

(
3 α A + A + 3B

)
.

This holds for α ≥ 1, A > B > 0.

We proved that

sq(γ0, γ1, . . . , γn−2, 1, 1) ≤ 9

10
|Sw(γ0, γ1, . . . , γn−2, 1, 1)|

and

sq(γ0, γ1, . . . , γn−2, 2, 1) ≤ 9

10
|Sw(γ0, γ1, . . . , γn−2, 2, 1)|.

This implies, that in general case, due to Lemma 8 and Lemma 9, we have

sq(γ0, γ1, . . . , γn) ≤ 9

10
|Sw(γ0, γ1, . . . , γn)|+ 4,

which completes the proof of the theorem.
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6 Final remarks

The maximal repetition (the run, in short) in a word w is a nonempty subword
w[i..j] = ukv (k ≥ 2), where u is of the minimal length and v is proper prefix
(possibly empty) of u, that can not be extended (neither x[i− 1..j] nor x[i..j + 1] is
a run with period |u|).
Let ρ(w) be the number of runs in the word w. For n-th Fibonacci word Fn we have:

sq(Fn) = 2|Fn−2| − 2,

ρ(Fn) = 2|Fn−2| − 3,

hence sq(Fn) = ρ(fn) + 1, see [12,21].

For standard Sturmian words the situation is different. We have:

ρ(w)

|w| −→ 0.8 and
sq(w)

|w| −→ 0.9,

see [3] for more details.

The maximal number of runs is reached for the standard Sturmian words of the
form vk = Sw(1, 2, k, k). Using the formulas (1-6) from the section 3 we have:

sq(vk) =

{
5
2
k2 + 5

2
k + 4 for even k

5
2
k2 + 5k − 5

2
for odd k

and

|vk| = 5k2 + 2k + 5,

consequently
sq(vk)

|vk|
−→ 1

2
.

We have shown in the section 4 that the maximal number of squares is achieved for
the Sturmian words of the form wk = Sw(k, k, 2, 1, 1). Now we compute the number
of runs for wk using formulas from [3]. We have:

ρ(wk) = 9k + 7

and

|wk| = 5k2 + 7k + 7,

hence
ρ(wk)

|wk|
−→ 0.

The results above show that the maximal number of squares and the maximal
number of runs for standard Sturmian words are not closely related. The asymptotical
limits are close, but both are reached for different type of words.
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Abstract. Novel high throughput sequencing technologies have redefined the way
genome sequencing is performed. They are able to produce millions of short sequences
in a single experiment and with a much lower cost than previous methods. In this
paper, we address the problem of efficiently mapping and classifying millions of de-
generate and weighted sequences to a reference genome, based on whether they occur
exactly once in the genome or not, and by taking into consideration probability scores.
In particular, we design parallel algorithms for Massive Exact and Approximate Unique
Pattern Matching for degenerate and weighted sequences derived from high throughput
sequencing technologies.

Keywords: parallel algorithms, string algorithms, high throughput sequencing tech-
nologies

1 Introduction

The computational biology applications that have been developed for decades are
strongly related to the technology that generates the data they consider. The algo-
rithms, and the application parameters, are tuned in such a way that they abolished
intrinsic limitations of the technology. As an example, the length of the data to be
processed, or the quality/error rate that accompanies this data, are crucial elements
that are considered for choosing the appropriate data structure for preprocessing,
storing, analyzing, and comparing sequences. Moreover, the way solutions are im-
proved reflects both computer science and biotechnology advances.

Among the large number of equipment that produce data, the DNA sequencers
play a central role. DNA sequencing is the generic term for all biochemical methods
that determine the order of the nucleotide bases in a DNA sequence. It consists of
obtaining (generally relatively short) fragments of a DNA sequence (typically less
than a thousand bp - base pair). The Sanger sequencing method [17,18] has been the
workhorse technology for DNA sequencing for almost 30 years. It has been slowly
replaced by technologies that used different colored fluorescent dyes [16,22] and poly-
acrylamide gels. Later, the gels were replaced by capillaries, increasing the length of
individual obtained fragments from 450 to 850 bp. Despite the many technological
advances, obtaining the complete sequence of a genome was carried out in very large
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dedicated “sequencing factories”, which require hundreds of automatic sequencers
using highly automated pipelines.

Along the years, sophisticated algorithms have been developed for assembling
whole genomes, from a simple bacterial genome [6] to the human genome [7]. These
algorithms were following the progress of the sequencing technologies, and were fully
taking into account all the biases introduced by the equipment.

Very recent advances, based either on sequencing-by-synthesis (SBS) or on hy-
bridization and ligation, are producing millions of short reads overnight. Depending
on the technology (454 Life Science, Solexa/Illumina or Polony Sequencing, to name
a few), the size of the fragments can range from a dozen of base pairs to several
hundreds.

These high throughput sequencing technologies have the potential to assemble a
bacterial genome during a single experiment and at a moderate cost [8] and are aimed
in sequencing DNA genomic sequences. One such technology, PyrosequencingTM, mas-
sively parallelises the sequencing via microchip sensors and nanofluids, and it produces
reads that are approximately 200 bp long, and may not improve beyond 300 bp in
the near future [24]. In contrast, the technology developed by the Solexa/Illumina [2],
generates millions of very short mate-pair reads ranging from 25 [26] to 50 [8] bp long,
although in the future this number may be increased to 75. The results of these new
technologies mark the beginning of a new era of high throughput short read sequenc-
ing that moves away form the traditional Sanger methods. The common denominator
of these technologies is the fact that they are able to produce a massive amount of
relatively short reads. Due to this massive amount of data generated by the above
systems, efficient algorithms for mapping short sequences to a reference genome are
in great demand.

Popular alignment programs like BLAST or BLAT are not successful because they
focus on the alignment of fewer and longer sequences [11]. Recently, a new thread of
applications addressing the short sequences mapping problem has been devised for
this particular objective. These applications are based on the pigeonhole principle,
and make use of hashing and short key indexing techniques.

ELAND is the mapping algorithm developed as part of the Illumina pipeline. It
is optimized to map very short reads of 20 − 32 bp ignoring additional bases when
the reads are longer, whilst allowing at most two mismatches between the read and
the genomic sequence [21]. SOAP [14] supports multi-threaded parallel computing
and allows up to two mismatches, or a gap of 1-3 bp without any other mismatch.
SeqMap [11] allows up to 5 mixed mismatches and inserted/deleted nucleotides in
mapping.

RMAP [21] and MAQ [13] are ungapped mapping programs, which take read
qualities, base position probabilities, and mate-pair information into account. Their
strategies resemble the strategies developed by Ewing et al. in [5], where at each
position of the reads a quality score is assigned, which encodes the probability that
the base at that position is either rightly or wrongly positioned.

The last two applications show the necessity for a measure of accuracy concern-
ing the mapping methods. Accuracy can be quantified in terms of sensitivity and
specificity. Possible causes of limitations in the accuracy of these experiments include
sequencing errors arising from any part of the high throughput experiment, variation
between sampled genome that generated the reads and the reference genome, as well
as ambiguities caused by repeats in the reference genome [21].
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Therefore, the limitations of the equipment used, or the natural polymorphisms
that can be observed between individual samples can give rise to uncertain sequences,
where in some positions more than one nucleotide can be present. These sequences,
where more than one base are possible in certain positions, are called degenerate or
indeterminate sequences.

Figure 1 presents the sequence logo of a degenerate DNA sequence, which is the
consensus DNA sequence derived from different reads at the same location. In this
consensus degenerate sequence, one can note that in some positions more than one
base occurs, and in fact all bases (A,C,G, T in the case of DNA sequences) may
occur.

Figure 1. A sequence logo of a biological degenerate sequence. Picture taken from
[19].

Degenerate string pattern matching has mainly been handled by bit mapping tech-
niques (Shift-Or method) [1,28]. These techniques have been used to find matches
for a degenerate pattern in a string [9], and the agrep utility [27] has been virtually
one of the few practical algorithms available for degenerate pattern matching.

Very often, each position of a sequence is accompanied by probabilities of each
base occuring in the specific position. In the case of the high throughput experiments,
these quality scores, which accompany the raw sequence data, describe the confidence
of bases in each read [21]. The sequencing quality scores assign a probability to the
four possible nucleotides for each sequenced base. Bases with low quality scores are
more likely to be sequencing errors. These sequences, where the probability of every
symbol’s occurrence at every location is given, are called weighted sequences.

Weighted sequences are also used to represent relatively short sequences such as
binding sites, as well as long sequences such as protein families profiles [3]. Addi-
tionally, they have been used to represent complete chromosome sequences that were
obtained using the traditional method of whole-genome shotgun strategy.

In this paper, we present parallel algorithms for addressing the problem of effi-
ciently mapping uniquely occuring short reads to a reference genome. In particular,
we design parallel algorithms for Massive Exact and Approximate Unique Pattern
Matching for degenerate and weighted sequences derived from high throughput se-
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quencing technologies. Our approach differs from the above mapping programs in
three key points:

– it preprocesses the genomic sequence based on the reads length, by using word-
level parallelism, before mapping the reads to it. This provides efficiency to the
method.

– it does not index and hash the reads, but instead it converts each read to a unique
arithmetic value. This results to a much higher sensitivity in terms of the number
of reads perfectly mapped to the reference genome.

– it directly classifies the mapped reads into unique and duplicate matches, i.e. into
reads that occur exactly once in the genome and into reads that occur more than
once. The uniqueness of a mapped read guarantees an adequate placement on the
sequence, and provides anchors that will be used for placing mate-pair reads, and
other connected reads as well. It also identifies something that is totally region
specific, while most of the genome is repetitive.

The rest of the paper is structured as follows. In Section 2, we present the prelimi-
naries. In Section 3, we define the problem of Massive Exact and Approximate Unique
Pattern Matching for degenerate and weighted sequences. In Section 4 and Section
5, we present the parallel algorithms for solving the exact and the approximate case,
respectively. Finally, we briefly conclude with some future work in Section 6.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗. The length of a string x is denoted by |x|. The empty
string, that is the string of length zero, is denoted by ǫ. The i-th symbol of a string
x is denoted by x[i].

A string w is a substring of x if x = uwv, where u, v ǫ Σ∗. We denote by x[i . . . j]
the substring of x that starts at position i and ends at position j. Conversely, x is
called a superstring of w. A string w is a prefix of x if x = wy, for y ǫ Σ∗. Similarly,
w is a suffix of x if x = yw, for y ǫ Σ∗.

In this work, we are considering the finite alphabet Σ for DNA sequences, where
Σ = {A,C,G, T}.

A degenerate string is a sequence t = t[1 . . . n], where t[i] ⊆ Σ for each i. When
a position of the string is degenerate, and it can match more than one element from
the alphabet Σ, we say that this position has non-solid symbol. If in a position only
one element of the alphabet Σ is present, we refer to this symbol as solid.

A weighted string over alphabet Σ is a sequence s = s[1 . . . n] of sets of couples. In
particular, each s[i] is a set ((q1, πi(q1)), (q2, πi(q2)), . . . , (q|Σ|, πi(q|Σ|)), where πi(qj) is
the occurrence probability of character qj at position i. A symbol qj occurs at position
i of a weighted sequence s = s[1 . . . n] if and only if the probability of occurrence
of symbol qj at position i is greater than zero, i.e. πi(qj) > 0. For every position

1 ≤ i ≤ n,
∑|Σ|

j=1 πi(qj) = 1. For example,
(

A 0.8
C 0.2

)
is a non-solid symbol, implying that

base A occurs with probability 80 % and C with probability 20 %.

3 Problems definition

We denote the generated short reads as the set p0, p1, . . . , pr−1 and we call them pat-
terns. Notice that r is a very large integer number (r > 107). Due to the massive
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amount of data, specialized solutions are needed to various sequencing-related prob-
lems. The length ℓ of each pattern is nowadays typically between 25 and 50 bp long,
and we denote that constant range, without loss of generality, as ℓmin ≤ ℓ ≤ ℓmax.
We assume that the data is derived from high quality sequencing methods and there-
fore we will consider patterns with at most µ = 3 non-solid symbols. We are given a
genomic solid sequence t = t[1 . . . n] and a positive threshold k ≥ 0.

We define the Massive Exact and Approximate Unique Pattern Matching problem
for degenerate and weighted sequences as follows.

Problem 1.
Find whether the degenerate pattern pi = pi[1 . . . ℓ], for all 0 ≤ i < r, of length
ℓmin ≤ ℓ ≤ ℓmax, with at most µ non-solid symbols, occurs with at most k-mismatches
in t = t[1 . . . n], exactly once.

Problem 2.
Find whether the weighted pattern pi = pi[1 . . . ℓ], for all 0 ≤ i < r, of length
ℓmin ≤ ℓ ≤ ℓmax, with at most µ non-solid symbols, occurs with at most k-mismatches
in t = t[1 . . . n], exactly once, with probability at least c, if

∏ℓ
i=1 πi(qi) ≥ c.

We mainly focus on the following classes of both problems:

Class 1. pi occurs in t exactly once
Class 2. pi occurs with at most 1-mismatch in t, exactly once
Class 3. pi occurs with at most 2-mismatches in t, exactly once

Class 2 and Class 3 correspond to cases where the pattern either contains a se-
quencing error (quality score associated with read is indicating it), or a small differ-
ence between a mutant and the reference genome, which will have an impact on the
proteins that have to be translated, as explored in [23,25].

4 Massive Exact Unique Pattern Matching in Parallel

In this section, we solve the problem of Class 1. The focus is to find occurrences of
pattern pi, for all 0 ≤ i < r, in text t = t[1 . . . n]. In particular, we are interested in
whether pi occurs in t exactly once.

The proposed algorithm makes use of the message-passing paradigm, by using p
processing elements. The following assumptions for the model of communications in
the parallel computer are made. The parallel computer comprises a number of nodes.
Each node comprises one or several identical processors interconnected by a switched
communication network. The time taken to send a message of size n between any
two nodes is independent of the distance between nodes and can be modelled as
tcomm = ts +ntw, where ts is the latency or start-up time of the message, and tw is the
transfer time per data. The links between two nodes are full-duplex and single-ported:
a message can be transferred in both directions by the link at the same time, and
only one message can be sent and one message can be received at the same time.

In addition, the proposed parallel algorithm makes use of word-level parallelism
by compacting strings into single computer words that we call signatures. We get
the signature σ(x) of a string x, by transforming it to its binary equivalent using
2-bits-per-base encoding of the DNA alphabet (see Table 1), and packing its decimal
value into a computer word (see Table 2).
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The idea of employing signatures is long known to computer scientists, introduced
by Dömölki in [4] in 1964 for his Shift-Or algorithm, a string matching algorithm
based on only few bitwise logical operations. The most well known application is
the four Russians algorithm, which packs rows of boolean matrices into computer
words speeding up boolean matrix multiplication. A randomised version of finger-
prints (modulo a prime number) was employed by Karp and Rabin in [12] for solving
the pattern matching problem. Their method cannot be used in our pattern match-
ing problem as our signatures are small and, thus, there is no practical speed up by
reducing it modulo a prime number.

A 0 0
C 0 1
G 1 0
T 1 1

Table 1. Binary Encoding of DNA alphabet

String x A G C A T
Binary form 0 0 1 0 0 1 0 0 1 1
Signature σ(x) 1 4 7

Table 2. Signature of AGCAT

Our aim is to preprocess text t and create two sets of lists Λℓmin
, . . . , Λℓmax

and
Λ′

ℓmin
, . . . , Λ′

ℓmax
. Each list Λℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each duplicate substring

of length ℓ of t. Each list Λ′
ℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each unique substring of

length ℓ of t.
An outline of the parallel algorithm, for all ℓmin ≤ ℓ ≤ ℓmax, is as follows:

Problem Partitioning. We use a data decomposition approach to partition the text
t with the sliding window mechanism into a set of substrings z1, z2, . . . , zn−ℓ+1, where
zi = t[i . . . i + ℓ− 1], for all 1 ≤ i ≤ n− ℓ + 1.

Step 1. We assume that text t is stored locally on the master processor. We make
sure that the load is evenly balanced by distributing z1, z2, . . . , zn−ℓ+1 among the p
available processors. Each processor ρq, for all 0 ≤ q < p, is allocated a fair amount
aq of substrings, as shown in Equation 1.

aq =

{⌈n−ℓ+1
p
⌉, if q < n− ℓ + 1 mod p

⌊n−ℓ+1
p
⌋, otherwise

(1)

We denote zfirstq
, . . . , zlastq

as the set of the allocated substrings of length ℓ of processor
ρq.

Example. Table 3 shows the processors allocation for the case of t = GGGTCTA,
ℓ = 3 and p = 3.

Step 2. Each processor ρq compacts each allocated substring zi, for all first q ≤ i ≤
last q, into a signature σ(zi), packs it in a couple (i, σ(zi)), where i represents the
matching position of zi in t, and adds the couple to a local list Zq. Notice that, as
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ρq aq firstq lastq Allocated substrings
ρ0 2 1 2 z1 = GGG, z2 = GGT
ρ1 2 3 4 z3 = GTC, z4 = TCT
ρ2 1 5 5 z5 = CTA

Table 3. Processors allocation for t = GGGTCTA, ℓ = 3 and p = 3

soon as we compact zfirstq
into σ(zfirstq

), then each σ(zi), for all first q + 1 ≤ i ≤ last q,

can be retrieved in constant time (using “shift”-type of operation).

Step 3. We sort the local lists Zq based on the signature’s field, in parallel, using
Parallel Sorting by Regular Sampling (PSRS) [20], a practical parallel deterministic
sorting algorithm. Notice that parallel sorting means rearranging the elements of the
local lists Zq, so that each processor ρq still has a fair amount in Zq, but with the
smallest signatures stored in sorted order by processor ρ0, ρ1 etc.

Step 4. Each processor ρq runs sequentially through its sorted list Zq and checks
whether the signatures in Zq[x] and Zq[x + 1] are equal, for all 0 ≤ x < |Aq| − 1. If
they are equal, then ρq adds Zq[x] to a new list Lq. If not, then Zq[x] is added to a
new list L′

q.

Step 5. Each processor ρq, for all 1 ≤ q < p, sends the first element in Zq to the
neighbour processor ρq−1. Then, each processor ρq, for all 0 ≤ q < p − 1, compares
the signature of the last element in Zq, to the signature of the element received from
processor ρq+1. If they are equal, then processor ρq adds the element to the list Lq,
else it is added to the list L′

q.

Step 6. We perform a gather operation, in which processor ρ0 collects a unique
message, local list Lq, from each processor ρq, for all 1 ≤ q < p, and stores each local
list Lq in rank order, resulting in a new combined sorted list Λℓ. We do the same with
the local list L′

q, resulting in a new sorted combined list Λ′
ℓ. Processor ρ0 performs a

one-to-all broadcast to send both lists Λℓ and Λ′
ℓ to all other processors.

Main Step. Assume that the two sets of lists Λℓmin
, . . . , Λℓmax

and Λ′
ℓmin

, . . . , Λ′
ℓmax

are
created and stored on each processor ρq. We extend the set of patterns p0, p1, . . . , pr−1

to a new set p′0, p
′
1, . . . , p

′
r′−1, r < r′, as follows.

We make sure that each processor ρq is allocated a fair amount of query patterns
from the set p0, p1, . . . , pr−1, in a similar way as in step 1.

1. Problem 1. For each degenerate pattern pi of length ℓ with λ non-solid symbols,
such that λ ≤ µ, we create

∏ℓ
j=1 |pi[j]| new patterns, each differing in λ positions.

2. Problem 2. For each weighted pattern pi of length ℓ with λ non-solid symbols,
such that λ ≤ µ, we create

∏ℓ
j=1 |pi[j]| new patterns, each differing in λ positions.

We select each of those patterns, say s = s[1 . . . ℓ], with s[1] = (q1, π1(q1)), s[2] =

(q2, π2(q2)), . . . , s[ℓ] = (qℓ, πℓ(qℓ)), that satisfy
∏ℓ

j=1 πj(qj) ≥ c.

Then, each processor can determine, by using a binary search, whether an allo-
cated pattern p′i of length ℓ occurs in t exactly once, in O(log n) time. If σ(p′i) ∈ Λ′

ℓ,
then p′i is a unique pattern, and the algorithm returns its matching position in t. If
σ(p′i) ∈ Λℓ, then p′i occurs in t more than once. If σ(p′i) /∈ Λℓ and σ(p′i) /∈ Λ′

ℓ, then p′i
does not occur in t.
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Notice that in a case when 2ℓ > w, where w is the word size of the machine (e.g.
32 or 64 in practice), our algorithm can easily be adopted by storing the signatures
in ⌈2ℓ/w⌉ computer words.

Theorem 1. Given the text t = t[1 . . . n], the set of patterns p0, p1, . . . , pr−1, the
length of each pattern ℓmin ≤ ℓ ≤ ℓmax, the word size of the machine w, and the
number of processors p, the parallel algorithm solves the Class 1 of Problem 1 and
Problem 2 in O(⌈ℓmax/w⌉(n

p
log n

p
+ r

p
ℓmax log n)) computation time and O(n log p+r)

communication time.

Proof. In step 1, assuming that the text t is kept locally on master processor, the data
distribution can be done in O(ts log p + tw

n
p
(p − 1)) communication time. In step 2,

each processor creates a fair amount of signatures inO(⌈ℓmax/w⌉n
p
) computation time.

In step 3, the PSRS algorithm can be executed in O(⌈ℓmax/w⌉n
p

log n
p
) computation

time, where n ≥ p3, and O(n/
√

p) communication time [20]. In step 4, the sequential
run through the local list Zq takes O(⌈ℓmax/w⌉n

p
) computation time. Step 5 involves

O(1) point-to-point simple message transfers and comparisons. In step 6, the gather
operation can be done in O(ts log p + tw

n
p
(p− 1)), and the one-to-all broadcast take

O((ts + twn) log p) communication time.
Assuming that the two sets (of a constant number) of lists are created, the main

step runs in O(⌈ℓmax/w⌉ r
p
ℓmax log n) computation time, for the binary search, and

O(ts log p + tw
r
p
(p − 1)) communication time, for the patterns distribution. Notice

that, since |Σ| = 4 and µ = 3, the number of the new created patterns is treated as
constant.

Hence, asymptotically, the overall time is O(⌈ℓmax/w⌉(n
p

log n
p
+ r

p
ℓmax log n)) com-

putation time, and O(n log p + r) communication time. ⊓⊔

5 Massive Approximate Unique Pattern Matching in
Parallel

In this section we solve the problem of Class 2 and Class 3. The focus is to find
occurrences of pi, for all 0 ≤ i < r, in text t = t[1 . . . n] with at most k-mismatches.
In particular, we are interested in whether pi occurs with at most 1-mismatch in t
exactly once for the problem of Class 2, or with at most 2-mismatches exactly once
for the problem of Class 3.

The proposed parallel algorithm makes use of the message-passing paradigm, by
using p processing elements, and word-level parallelism, by compacting strings into
signatures, and applying a bit-vector algorithm for efficient approximate string match-
ing with mismatches.

Our aim is to preprocess text t and create two sets of lists Λℓmin
, . . . , Λℓmax

and
Λ′

ℓmin
, . . . , Λ′

ℓmax
. Each list Λℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds each duplicate substring

of length ℓ of t with at most k-mismatches. Each list Λ′
ℓ, for all ℓmin ≤ ℓ ≤ ℓmax, holds

each unique substring of length ℓ of t.

5.1 The bit-vector algorithm for fixed-length approximate string
matching with k-mismatches

Iliopoulos, Mouchard and Pinzon in [10] presented the Max-Shift algorithm, a bit-
vector algorithm that solves the fixed-length approximate string matching problem:
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given a text t of length n, a pattern ρ of length m and an integer ℓ, compute the
optimal alignment of all substrings of ρ of length ℓ and a substring of t. The focus
of the Max-Shift algorithm is on computing matrix D′, which contains the best
scores of the alignments of all substrings of pattern ρ of length ℓ and any contiguous
substring of the text t.

The Max-Shift algorithm makes use of word-level parallelism in order to com-
pute matrix D′ efficiently, similar to the manner used by Myers in [15]. The algorithm
is based on the O(1) time computation of each D′[i, j] by using bit-vector operations,
under the assumption that ℓ ≤ w, where w is the number of bits in a machine word
or O(ℓ/w)-time for the general case. The algorithm maintains a bit-vector matrix
B[0 . . . m, 0 . . . n], where the bit integer B[i, j], holds the binary encoding of the path
in D′ to obtain the optimal alignment at i, j with the differences occurring as leftmost
as possible.

Here the key idea is to devise a bit-vector algorithm for the fixed-length approx-

imate string matching with at most k-mismatches problem: given a text t of length
n, a pattern ρ of length m and an integer ℓ, find all substrings of ρ of length ℓ that
match any contiguous substring of t of length ℓ with at most k-mismatches. If we
assign ρ=t, we can extract all the duplicate substrings of length ℓ of t with at most
k-mismatches. The focus is on computing matrix M , which contains the number of
mismatches of all substrings of pattern ρ of length ℓ and any contiguous substring of
the text t of length ℓ.

Example. Let the text t = ρ = GGGTCTA and ℓ = 3. Table 4 shows the matrix M .

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 2 1 0 0 1 2 2 2
3 G 3 2 1 0 1 2 3 3
4 T 3 3 2 1 0 2 2 3
5 C 3 3 3 2 2 0 3 2
6 T 3 3 3 3 2 3 0 3
7 A 3 3 3 3 3 2 3 0

Table 4. Matrix M for t = ρ = GGGTCTA and ℓ = 3

We maintain the bit-vector B[i, j] = bℓ · · · b1, where bλ = 1, 1 ≤ λ ≤ ℓ, if there is
a mismatch of a contiguous substring of the text t[i− ℓ + 1 . . . i] and t[j − ℓ + 1 . . . j]
in the λth position. Otherwise we set bλ = 0.

Given the restraint that the integer ℓ is less than the length of the computer
word w, then the bit-vector operations allow to update each entry of the matrix B in
constant time (using “shift”-type of operation on the bit-vector). The maintenance
of the bit-vector is done via operations defined as follows:

1. shiftc(x): shifts and truncates the leftmost bit of x.
2. δH(x, y): returns the minimum number of replacements required to transform x

into y
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The Bit-Vector-Mismatches algorithm for computing the bit-vector matrix
B and matrix M is outlined in Figure 2.

Bit-Vector-Mismatches

⊲Input: t, n, ρ, m, ℓ

⊲Output: B, M

1 begin

2 ⊲ Initialization

3 B[0 . . .m, 0]← min(i, ℓ) 1’s; B[0, 0 . . . n]← 0

4 M [0 . . .m, 0]← min(i, ℓ); M [0, 0 . . . n]← 0

5 ⊲ Matrix B and Matrix M computation

6 for i← 1 until m do

7 for j ← 1 until n do

8 B[i, j]← shiftc(B[i− 1, j − 1]) or δH(ρ[i], t[j])

9 M [i, j]← ones(B[i, j])

10 end

Figure 2. The Bit-Vector-Mismatches algorithm for computing matrix B and
matrix M

Example. Let the text t = ρ = GGGTCTA and ℓ = 3. Table 5 shows the bit-vector
matrix B. Consider the case when i = 7 and j = 5. Cell B[7, 5] = 101 denotes
that substrings t[3 . . . 5] = CTA and t[5 . . . 7] = GTC have a mismatch in position
1, a match in position 2, and a mismatch in position 3, resulting in a total of two
mismatches, as shown in cell M [7, 5].

0 1 2 3 4 5 6 7

ǫ G G G T C T A

0 ǫ 0 0 0 0 0 0 0 0
1 G 1 0 0 0 1 1 1 1
2 G 11 10 00 00 01 11 11 11
3 G 111 110 100 000 001 011 111 111
4 T 111 111 101 001 000 011 110 111
5 C 111 111 111 011 011 000 111 101
6 T 111 111 111 111 110 111 000 111
7 A 111 111 111 111 111 101 111 000

Table 5. The bit-vector matrix B for t = ρ = GGGTCTA and ℓ = 3

Assume that the bit-vector matrix B[0 . . . m, 0 . . . n] is given. We can use the
function ones(v), which returns the number of 1’s (bits set on) in the bit-vector v, to
compute matrix M (see Figure 2, line 9).
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5.2 The parallel algorithm

The key idea behind parallelising the Bit-Vector-Mismatches algorithm, is that
cell B[i, j] can be computed only in terms of B[i− 1, j − 1] (see Figure 2, line 8).

An outline of the parallel algorithm, for all ℓmin ≤ ℓ ≤ ℓmax, is as follows:

Problem Partitioning. We use a functional decomposition approach, in which the
initial focus is on the computation that is to be performed rather than on the data
manipulated by the computation. We assume that the text t (and the pattern ρ = t)
is stored locally on each processor. This can be done by using a one-to-all broadcast
operation in (ts + twn) log p communication time, which is asymptotically O(n log p).
We partition the problem of computing matrix B (and M) into a set of diagonal
vectors ∆0, ∆1, . . . , ∆n+m, as shown in Equation 2.

∆ν [x] =





B[ν − x, x] : 0 ≤ x ≤ ν, (a)
B[m− x, ν −m + x] : 0 ≤ x < m + 1, (b)
B[m− x, ν −m + x] : 0 ≤ x < n + m− ν + 1, (c)

(2)

where,
(a) if 0 ≤ ν < m
(b) if m ≤ ν < n
(c) if n ≤ ν < n + m + 1

Step 1. We make sure that the load is evenly balanced among the p available pro-
cessors in each diagonal ∆ν . Each processor ρq, for all 0 ≤ q < p, is allocated a fair
amount aq[ν] of cells in each diagonal ∆ν , as shown in Equation 3.

aq[ν] =

{
⌈ |∆ν |

p
⌉, if q < |∆ν | mod p

⌊ |∆ν |
p
⌋, otherwise

(3)

We denote ∆ν [first q[ν]], . . . , ∆ν [last q[ν]] as the set of the allocated cells of processor
ρq in diagonal ∆ν .

Step 2. Each processor ρq computes each allocated cell ∆ν [x], for all first q[ν] ≤ x ≤
last q[ν], in each diagonal ∆ν , using the Bit-Vector-Mismatches algorithm.

Step 3. It is possible that in a certain diagonal ∆ν , ν > 0, a processor will need
a cell or a pair of cells, which were not computed on its local memory in diagonal
∆ν−1. We need a communication pattern in each diagonal ∆ν , for all 0 ≤ ν < n + m,
which minimises the data exchange between the processors. It is obvious, that in each
diagonal, each processor needs only to communicate with its neighbours (boundary
cells swaps).

Step 4. On every occasion a processor ρq computes a cell M [i, j] ≤ k, where i ≥ ℓ
and j ≥ ℓ, we notice two possible cases:

1. if M [i, j] = 0 and i = j, then substring t[i − ℓ + 1 . . . i] occurs in t at least once.
We compact substring t[i− ℓ + 1 . . . i] into a signature σ(t[i− ℓ + 1 . . . i]), pack it
in a couple (i− ℓ + 1, σ(t[i− ℓ + 1 . . . i])), and add the couple to a new list Zq.
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2. if i 6= j, then substrings t[i − ℓ + 1 . . . i] and t[j − ℓ + 1 . . . j] are considered to
be duplicates with at most k-mismatches. We compact both substrings into the
signatures σ(t[i−ℓ+1 . . . i]) and σ(t[j−ℓ+1 . . . j]), pack them in couples (i−ℓ+1,
σ(t[i− ℓ + 1 . . . i])) and (j− ℓ + 1, σ(t[j− ℓ + 1 . . . j])), and add the couples to the
list Zq.

Step 5. Assume that the diagonal supersteps ∆0, ∆1, . . . , ∆n+m are executed. The
local lists Zq are constructed, and so, we follow the steps 3-6 of the parallel algorithm
in Section 4.

Main step. Assume that the two sets of lists Λℓmin
, . . . , Λℓmax

and Λ′
ℓmin

, . . . , Λ′
ℓmax

are
created and stored on each processor ρq. We extend the set of patterns p0, p1, . . . , pr−1

to a new set p′0, p
′
1, . . . , p

′
r′−1, r < r′, as in Section 4. Then, each processor can deter-

mine by using a binary search, whether an allocated pattern p′i of length ℓ occurs in t
exactly once, in O(log n) time. If σ(p′i) ∈ Λ′, then p′i is a unique pattern with at most
k-mismatches, and the algorithm returns its matching position in t. If σ(p′i) ∈ Λℓ,
then p′i occurs in t more than once.

Notice that, in a case where σ(p′i) /∈ Λℓ and σ(p′i) /∈ Λ′
ℓ, then p′i does not occur in

t, and we can check whether the k-mismatches occur inside the pattern p′i as follows.

1. Class 2 and Class 3. We construct a new set of patterns xj, for all 0 ≤ j < |Σ|.ℓ,
differing from p′i in one position, and we compact each xj into a signature σ(xj). If
σ(xj) ∈ Λ′

ℓ, then p′i is a unique pattern with at most 1-mismatch, and the algorithm
returns its matching position in t. If σ(xj) ∈ Λℓ, then we discard pattern p′i as it
has to occur in t exactly once. If σ(xj) /∈ Λℓ and σ(xj) /∈ Λ′

ℓ then p′i does not occur
in t.

2. Class 3. We construct a new set of patterns yj, for all 0 ≤ j < |Σ|2.
(

ℓ
2

)
, differing

from p′i in two positions, and we compact each yj into a signature σ(yj). If σ(yj) ∈
Λ′

ℓ, then p′i is a unique pattern with at most 2-mismatches, and the algorithm
returns its matching position in t. If σ(yj) ∈ Λℓ, then we discard pattern p′i as it
has to occur in t exactly once. If σ(yj) /∈ Λℓ and σ(yj) /∈ Λ′

ℓ then p′i does not occur
in t.

In general, for the problem of k-mismatches, for each pattern p′i of length ℓ that
does not occur in t, we construct k new sets of patterns, each containing |Σ|λ.

(
ℓ
λ

)

patterns differing from p′i in λ positions, for all 1 ≤ λ ≤ k.

Theorem 2. Given the text t = t[1 . . . n], the set of patterns p0, p1, . . . , pr−1, the
length of each pattern ℓmin ≤ ℓ ≤ ℓmax, the word size of the machine w, and the num-
ber of processors p, the parallel algorithm solves the Class 2 and Class 3 of Problem 1

and Problem 2 in O(⌈ℓmax/w⌉(n2

p
+ ℓ3maxr

p
log p)) computation time, and O(n log p+ r)

communication time.

Proof. We partition the problem of computing matrix B (and M) into a set of n+m+1
diagonal vectors, thus O(n) supersteps (since n = m). In step 1, the allocation can be
done in O(1) time. In step 2, the cells computation requires O(⌈ℓmax/w⌉n

p
) time. In

step 3, the data exchange between the processors involves O(1) point-to-point sim-
ple message transfers. In step 4, the local lists Zq are constructed in O(⌈ℓmax/w⌉n

p
)

time. Assuming that the diagonal supersteps are executed, step 5 can be done in
O(⌈ℓmax/w⌉(n

p
log n

p
)) computation time, and O(n log p) communication time (see

Section 4).
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Assuming that the two sets (of a constant number) of lists are created, the main

step runs in O(⌈ℓmax/w⌉( ℓ3maxr
p

log n)) computation time, for the binary search, and

O(ts log p + tw
r
p
(p− 1)) communication time, for the patterns distribution.

Hence, asymptotically, the overall time is O(⌈ℓmax/w⌉(n2

p
+ ℓ3maxr

p
log p)) computa-

tion time, and O(n log p + r) communication time. ⊓⊔

Also, the space complexity can be reduced to O(n) by noting that each diagonal
∆ν depends only on diagonal ∆ν−1.

6 Conclusion

In this paper, we have presented parallel algorithms to tackle the data emerging from
the new high throughput sequencing technologies in biology. The new technologies
produce a huge number of very short sequences and these sequences need to be
classified, tagged and recognised as parts of a reference genome. Our algorithms can
manipulate this data for degenerate and weighted sequences for Massive Exact and
Approximate Unique Pattern matching. Implementation of the algorithms described
in this paper is under way and will be presented in the near future.
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Abstract. We study the problem of finding all the covers of an indeterminate string.
An indeterminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for each
i, and Σ is a given alphabet of fixed size. Here we describe an algorithm for finding all
the covers of a string x. The algorithm is applicable for both regular and indeterminate
strings. Our algorithm starts with the border array and uses pattern matching technique
of the Aho-Corasick Automaton to compute all the covers of x from the border array.
On average the algorithm requires O(n) time to find out all the covers, where n is the
length of x. Finally, we extend our algorithm to compute the cover array of x in O(n2)
time and O(n) space complexity.

Keywords: indeterminate strings, covers, cover array, Aho-Corasick Automaton,
string regularities

1 Introduction

Characterizing and finding regularities in strings are important problems in many
areas of science. In molecular biology, repetitive elements in chromosomes determine
the likelihood of certain diseases. In probability theory, regularities are important in
the analysis of stochastic processes. In computer science, repetitive elements in strings
are important in e.g. data compression, computational music analysis, coding, auto-
mata and formal language theory. As a result, in the last 20 years, string regularities
have drawn a lot of attention from different disciplines of science.

The most common forms of string regularities are periods and repeats and there
are several O(n log n) time algorithms for finding repetitions [6,8], in a string x,
where n is the length of x. Apostolico and Breslauer [4] gave an optimal O(log log n)-
time parallel algorithm for finding all the repetitions of a string of length n. The
preprocessing of the Knuth-Morris-Pratt algorithm [14] finds all periods of every
prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance, if
we allow overlapping and concatenations of periods in a string we get the notion of
covers. After periods and repeats, cover is the most popular form of regularities in
strings. The idea of cover generalizes the idea of periods or repeats. A substring c of
a string x is called a cover of x if and only if x can be constructed by concatenation
and superposition of c. Another common string regularity is the seed of a string. A
seed is an extended cover in the sense that it is a cover of a superstring of x.

Clearly, x is always a cover of itself. If a proper substring pc of x is also a cover of
x, then pc is called a proper cover of x. For example, the string x = abcababcabcabcab
has covers x and abcab. Here, abcab is a proper cover. A string that has a proper cover
is called coverable; otherwise it is superprimitive. The notion of covers was introduced
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by Apostolico, Farach and Iliopoulos in [5], where a linear-time algorithm to test the
superprimitivity of a string was given. Moore and Smyth in [16] gave linear time
algorithms for finding all covers of a string.

In this paper, we are interested in regularities of indeterminate strings. An inde-
terminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for 1 ≤ i ≤ n,
and Σ is a given fixed alphabet. If |T [i]| > 1, then the position i of T is referred
to as an indeterminate position. The simplest form of indeterminate string is one in
which each indeterminate position can only contain a don’t care character, denoted
by ‘*’; the don’t care character matches any letter in the alphabet Σ. Effectively,
∗ = {σi ∈ Σ | 1 ≤ i ≤ |Σ|}. The pattern matching problem with don’t care charac-
ters has been solved by Fischer and Paterson [9] more than 30 years ago. However,
although the algorithm in [9] is efficient in theory, it is not very useful in practice.
Pattern matching problem for indeterminate string has also been investigated in the
literature, albeit with little success. For example, in [13], an algorithm was presented
which works well only if the alphabet size is small. Pattern matching for indetermi-
nate strings has mainly been handled by bit mapping techniques (Shift-Or method)
[7,18]. These techniques have been used to find matches for an indeterminate pat-
tern p in a string x [11] and the agrep utility [17] has been virtually one of the few
practical algorithms available for indeterminate pattern-matching.

In [11] the authors extended the notion of indeterminate string matching by distin-
guishing two distinct forms of indeterminate match, namely, quantum and determin-
istic. Roughly speaking, a quantum match allows an indeterminate letter to match
two or more distinct letters during a single matching process; a determinate match
restricts each indeterminate letter to a single match [11].

Very recently, the issue of regularities in indeterminate string has received some
attention. For example, in [2], the authors investigated the regularities of conserva-
tive indeterminate strings. In a conservative indeterminate string the number inde-
terminate positions is bounded by a constant. The authors in [2] presented efficient
algorithms for finding the smallest conservative cover (number of indeterminate posi-
tion in the cover is bounded by a given constant), λ-conservative covers (conservative
covers having length λ) and λ-conservative seeds. On the other hand, Antoniou et
al. presented an O(n log n) algorithm to find the smallest cover of an indeterminate
string in [3] and showed that their algorithm can be easily extended to compute all
the covers of x. The later algorithm runs in O(n2 log n) time.

In this paper, we devise an algorithm for computing all the covers of an indeter-
minate string x of length n in O(n2) time in the worst case. We also show that our
algorithm works in O(n) time on the average. We also extend our algorithm to com-
pute the cover array of x in O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [2], does not enforce the restriction
that the cover or the input string x must be conservative.

The rest of this paper is organized as follows. Section 2 gives account of definitions
and notations. Section 3 presents our algorithm to find out all the covers of x. In
Section 4, we extend our algorithm to compute the cover array. Finally, Section 5
gives the conclusions.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗. The length of a string x is denoted by |x|. The
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empty string, the string of length zero, is denoted by ǫ. The i-th symbol of a string x
is denoted by x[i]. A string w ∈ Σ, is a substring of x if x = uwv, where u, v ∈ Σ∗.
We denote by x[i . . . j] the substring of x that starts at position i and ends at position
j. Conversely, x is called a superstring of w. A string w ∈ Σ is a prefix (suffix ) of x if
x = wy (x = yw), for y ∈ Σ∗. A string w is a subsequence of x (or x a supersequence
of w) if w is obtained by deleting zero or more symbols at any positions from x. For
example, ace is a subsequence of abcabbcde. For a given set S of strings, a string w is
called a common subsequence of S if s is a subsequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by xk. For two strings x = x[1 . . . n] and y = y[1 . . . m] such
that x[n− i+1 . . . n] = y[1 . . . i] for some i ≥ 1 (i.e., x has a suffix equal to a prefix of
y), the string x[1 . . . n]y[i + 1 . . . m] is said to be a superposition of x and y. We also
say that x overlaps with y. A substring y of x is called a repetition in x, if x = uykv,
where u, y, v are substrings of x and k ≥ 2, |y| 6= 0. For example, if x = aababab,
then a (appearing in positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are
repetitions in x; in particular a2 = aa is called a square and (ab)3 = ababab is called
a cube. A non-empty substring w is called a period of a string x, if x can be written
as x = wkw′ where k ≥ 1 and w′ is a prefix of w. The shortest period of x is called
the period of x. For example, if x = abcabcab, then abc, abcabc and the string x itself
are periods of x, while abc is the period of x.

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w 6= x, x is said to be quasiperiodic;
otherwise, x is superprimitive. The cover array γ, is a data structure used to store the
length of the longest proper cover of every prefix of x; that is for all i ∈ {1, . . . , n},
γ[i] = length of the longest proper cover of x[1 . . . i] or 0. In fact, since every cover of
any cover of x is also a cover of x, it turns out that, the cover array γ describes all
the covers of every prefix of x. A substring w of x is called a seed of x, if w covers
a superstring of x1. For example, aba and ababa are some seeds of x = ababaab.
A border u of x is a prefix of x that is also a suffix of x; thus u = x[1 . . . b] =
x[n − b + 1 . . . n] for some b ∈ {0, . . . , n − 1}. The border array of x is an array
β such that for all i ∈ {1, . . . , n}, β[i] = length of the longest border of x[1 . . . i].
Since every border of any border of x is also a border of x, β encodes all the borders
of every prefix of x. Depending on the matching of letters, borders of indeterminate
strings can be of two types, namely, the quantum border and the deterministic border.
Roughly speaking, a quantum match allows an indeterminate letter to match two or
more distinct letters during a single matching process, whereas, a determinate match
restricts each indeterminate letter to a single match. The notion of these two type of
borders was introduced in [10].

An indeterminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for
each i, and Σ is a given alphabet of fixed size. When a position of the string is
indeterminate, and it can match more than one element from the alphabet Σ, we say
that this position has non-solid symbol. If in a position we have only one element of
the alphabet Σ present, then we refer to this symbol as solid. In an indeterminate
string a non-solid position can contain up to |Σ| symbols. So, to check whether the
two positions match in the traditional way, we would need |Σ|2 time in the worst

1 Note that, x is a superstring of itself. Therefore, every cover is also a seed but the reverse is not
necessarily true.
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case. To perform this task efficiently we use the following idea originally borrowed
from [15] and later used in [3,2]. We use a bit vector of length |Σ| as follows:

∀T ⊆ Σ, ν[T ] = [νt1 , νt2 , . . . , νt|Σ|
],

where ∀ti ∈ Σ νti =

{
1, if ti ∈ T
0, otherwise

(1)

During the string matching process instead of comparing T [i] with T [j], we test
bit vectors ν[T [i]] and ν[T [j]] using bit operation AND. Thus we can compare any
two symbols in constant time since the alphabet size is fixed.

In our algorithm we heavily use the Aho-Corasick Automaton invented by Aho
and Corasick in [1]. The Aho-Corasick Automaton for a given finite set P of patterns
is a Deterministic Finite Automaton G accepting the sets of all words containing a
word of P as a suffix. More formally, G = (Q,Σ, g, f, q0, F ), where function Q is
the set of states, Σ is the alphabet, g is the forward transition, f is the failure link
i.e. f(qi) = qj , if and only if Sj is the longest suffix of Si that is also a prefix of
any pattern, q0 is the initial state and F is the set of final (terminal) states [1]. The
construction of the AC automaton can be done in O(d)-time and space complexity,
where d is the size of the dictionary, i.e. the sum of the lengths of the patterns which
the AC automata will match.

3 Our Algorithm

We start with a formal definition of the problem we handle in this paper.

Problem 1. Computing All Covers of an Indeterminate String over a fixed alphabet.
Input: We are given an indeterminate string x, of length n on a fixed alphabet Σ.
Output: We need to compute all the covers of x.

Our algorithm depends on the following facts:

Fact 1. Every cover of string x is also a border of x.

Fact 2. If u and c are covers of x and |u| < |c| then u must be a cover of c.

The running time analysis of our algorithm depends on Lemma 3 which is a
extension of the analysis provided in [12] by Iliopoulos et al. where they have showed
that number of borders of a regular string with a don’t care is bounded by 3.5 on
average. Here we have extended it for indeterminate strings and proved that, the
expected number of borders of an indeterminate string is also bounded by a constant.

Lemma 3. The expected number of borders of an indeterminate string is bounded by
a constant.

Proof (Proof of Lemma 3). We suppose that the alphabet Σ consists of ordinary
letters 1, 2, . . . , α, α ≥ 2. First we consider the probability of two symbols of a string
being equal. Equality occurs in the following cases:
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Symbol Match To Number of cases
σ ∈ {1, 2, . . . , α} σ ∈ {1, 2, . . . , α} α

σ ∈ S, S ⊆ Σ σ ∈ S, S ⊆ Σ, |S| > 1
∑α

j=1

(
α
j

)
{2α−j(2j − 1)−

(
j
1

)
}

Thus the total number of equality cases is α +
∑α

j=1

(
α
j

)
{2α−j(2j − 1) −

(
j
1

)
}

and the number of overall cases is 22α. Therefore the probability of two symbols of a
string being equal is

α +
∑α

j=1

(
α
j

)
{2α−j(2j − 1)−

(
j
1

)
}

22α

Now let’s consider the probability of string x having a border of length k. If we
let P [expression] denotes the probability that the expression hold, then

P

[
x[1 . . . k] = x[n− k + 1 . . . n]

]
= P

[
x[1] = x[n− k + 1]

]
× · · · × P

[
x[k] = x[n]

]

=

(
α +

∑α
j=1

(
α
j

)
{2α−j(2j − 1)−

(
j
1

)
}

22α

)k

From this it follows that the expected number of borders is

n−1∑

k=1

(
α +

∑α
j=1

(
α
j

)
{2α−j(2j − 1)−

(
j
1

)
}

22α

)k

This summation assumes its maximum value when α is equal to 12 and the sum-
mation is bounded above by

n−1∑

k=1

(
α +

∑α
j=1

(
α
j

)
{2α−j(2j − 1)−

(
j
1

)
}

22α

)k

≤
(

16221211

16777216

)
+

(
16221211

16777216

)2

+ · · ·

+

(
16221211

16777216

)n−1

=
1−

(
16221211
16777216

)n

1−
(

16221211
16777216

) − 1

=
1

556005
16777216

− 1

= 29.1746

So, the expected number of borders of an indeterminate string is bounded by
29.1746. ⊓⊔

Now by using Fact 1, we can compute all the covers of x from its border array.
This can be done simply by checking each border and finding out whether it covers
x or not. Our algorithm is based on this approach. Broadly speaking, our algorithm
consists of two steps. In the first step, the deterministic border array of x is computed.
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For this we have used the algorithm introduced by Holub and Smyth in [10], that
can compute the deterministic border array of an indeterminate string x in expected
O(n) time and space complexity, where n is the length of x. In the second step, we
check each border whether it is a cover of x or not. Utilizing Fact 2 and the pattern
matching technique of Aho-Corasick Automaton, this step can be performed in O(n)
time and space complexity on average. In what follows, we explain the steps of the
algorithm in more details.

3.1 First Step: Computing the Border Array

In the first step, we utilize the algorithm provided by Holub and Smyth [10] for
computing the deterministic border of an indeterminate string. The output of the
algorithm is a two dimensional list β. Each entry βi of β contains a list of pair (b, νa),
where b is the length of the border and νa represents the required assignment and the
list is kept sorted in decreasing order of border lengths of x[1 . . . i]. So the first entry
of βi represents the largest border of x[1 . . . i]. The algorithm is given below just for
completeness.

Algorithm 1 Computing deterministic border array of string x
1: βi[j]← φ, ∀i, j ∈ {1..n}
2: νi ← ν[x[i]], ∀i ∈ {1..n} {set bit vector for each x[i]}
3: for i ← 1 to n− 1 do

4: for all b, βi[b] 6= φ do

5: if 2b− i + 1 < 0 then

6: p← νb+1 AND νi+1

7: else

8: p← βi[b + 1] AND νi+1

9: end if

10: if p 6= 0|Σ| then

11: βi+1[b + 1]← p
12: end if

13: end for

14: p← ν1 AND νi+1

15: if p 6= 0|Σ| then

16: βi+1[1]← p
17: end if

18: end for

If we assume that the maximum number of borders of any prefix of x is m, then
the worst case running time of the algorithm is O(nm). But from Lemma 3 we know
that the expected number of borders of an indeterminate string is bounded by a
constant. As a result the expected running time of the above algorithm is O(n).

3.2 Second Step: Checking the Border for a Cover

In the second step, we find out the covers of string x. Here we need only the last
entry of the border array, βn, where n = |x|. If βn = {b1, b2, b3} then we can say that
x has three borders, namely x[1 . . . b1], x[1 . . . b2] and x[1 . . . b3] of length b1, b2 and
b3 respectively and b1 > b2 > b3. If the number of borders of x is m then number
of entry in βn is m. We iterate over the entries of βn and check each border in turn
to find out whether it covers x or not. To identify a border as a cover of x we use
the pattern matching technique of an Aho-Corasick automaton. Simple speaking, we
build an Aho-Corasick automaton with the dictionary containing the border of x and



Md. F. Bari, M. S. Rahman, R. Shahriyar: Finding all covers of an indeterminate string. . . 269

parse x through the automaton to find out whether x can be covered by it or not.
Suppose in iteration i, we have the length of the ith border of βn equal to b. In this
iteration, we build an Aho-Corasick automaton for the following dictionary:

D = {x[1]x[2] · · · x[b]}, where ∀j ∈ 1 to b , x[j] ∈ Σ (2)

Then we parse the input string x through the automaton to find out the posi-
tions where the pattern c = x[1 . . . b] occurs in x. We store the starting index of the
occurrences of c in x in a position array P of size n = |x|. We initialize P with all
entries set to zero. If c occurs at index i of x then we set P [i] = 1. Now if the distance
between any two consecutive 1’s is greater than the length of the border b then the
border fails to cover x, otherwise c is identified as a cover of x. We store the length
of the covers in an array AC. At the end of the process AC contains the length of all
the covers of x. The definition of AC can be given as follows:

AC = {c1, c2, . . . , ck}, where ∀i ∈ 1 to k, ci is a cover of x (3)

Algorithm 2 formally presents the steps of a function isCover(), which is the heart
of Step 2 described above.

Algorithm 2 Function isCover(x, c)

1: Construct the Aho-Corasick automaton for c

2: parse x and compute the positions where c occurs in x and put the positions in
the array Pos

3: for i = 2 to |Pos| do

4: if Pos[i]− Pos[i− 1] > |c| then

5: Return FALSE
6: end if

7: end for

8: Return TRUE

The time and space complexity of Algorithm 2 can be deduced as follows. Clearly,
Steps 3 and 2 run in O(n). Now, the complexity of Step 1 is linear in the size of
the dictionary on which the automaton is build. Here the length of the string in the
dictionary can be n− 1 in the worst case. So, the time and space complexity of this
algorithm is O(n).

A further improvement in running time is achieved as follows. According to Fact 2,
if u and c are covers of x and |u| < |c| then u must be a cover of c. Now if βn =
{b1, b2, . . . , bm} then from the definition of border array b1 > b2 > · · · > bn. Now if in
any iteration we find a bi that is a cover of x then from Fact 2, we can say that for all
j ∈ {i + 1, . . . ,m}, if bj is a cover of x if and only if bj is a cover of bi. So instead of
parsing x we can parse bi for the subsequent automatons and as |bi| ≤ |x| this policy
improves the overall running time of the algorithm. Algorithm 3 formally present the
overall process of Step 2 described above.
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Algorithm 3 Computing all covers of x
1: k← n
2: AC ← φ {AC is a list used to store the covers of x}
3: for all b ǫ βn do

4: if isCover(x[1..k], x[1..b]) = true then

5: m← b
6: AC.Add(k)
7: end if

8: end for

The running time of Algorithm 3 is O(nm), where m is number of borders of x
or alternatively number of entries in βn. Again, from Lemma 3 we can say that the
number of borders of an indeterminate string is bounded by a constant on average.
Hence, the expected running time of Algorithm 3 is O(n).

It follows from above that our algorithm for finding all the covers of an indetermi-
nate string of length n runs in O(n) time on the average. The worst case complexity
of our algorithm is O(nm), i.e., O(n2), which is also an improvement since the current
best known algorithm [3] for finding all covers requires O(n2 log n) in the worst case.

4 Computing Cover Array

The cover array γ, is to store the length of the longest proper cover of every prefix of x;
that is for all i ∈ {1, . . . , n}, γ[i] = length of the longest proper cover of x[1 . . . i] or 0.
Our algorithm can readily be extended to compute the cover array of x. Algorithm 3
can be used here after some modification to compute the cover array of x. Here we only
need the length of the largest border of each prefix of x. This information is stored
in the first entry of each βi of the border array. If the border array is implemented
using any traditional two dimensional list even then the first entry of each list can be
accessed in constant time. Let us assume that βi[1] denotes the first entry of the list
βi that is βi[1] is the length of the largest border of x[1 . . . i].

Algorithm 4 Computing cover array γ of x

1: γ[i]← 0 ∀ i ǫ {1 . . . n}
2: for i ← 1 to n do

3: if isCover(x, x[1 . . . βi[1]]) = true then

4: γ[i]← βi[1]

5: end if

6: end for

The isCover(x, c) function (Algorithm 2) is used to identify the covers of x. The
algorithm iterates over the first entries of the border array β and checks the borders
one by one. If the border x[1 . . . βi[1]] is identified as a cover then γ[i] is set equal to
βi[1]. otherwise its set to zero. The steps are formally presented in Algorithm 4.

As the worst case running time of the isCover(x, c) function is O(n) and the algo-
rithm iterates over the n lists of the border array β, the running time of Algorithm 4
is O(n2). The space requirement to store the cover array γ is clearly linear in the
length of x, so the space complexity is O(n).

5 Conclusions

In this paper we have presented an average case O(n) time and space complex algo-
rithm for computing all the covers of a given indeterminate string x of length n. We
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have also presented an algorithm for computing the cover array γ of an indeterminate
string. This algorithm requires O(n2) time and O(n) space in the worst case. Both of
these algorithms are improvement over existing algorithms.
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Hyyrö, Heikki 192

Iliopoulos, Costas S. 129, 249
Inenaga, Shunsuke 40
Ishino, Akira 203
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