Validation and Decomposition of Partially
Occluded Images with Holes

Julien Allali', Pavlos Antoniou?, Costas S. Iliopoulos?, Pascal Ferraro!', and Manal
Mohamed?

! LaBRI, University of Bordeaux I, UMR5800, 33405 Talence, France
2 Dept. of Computer Science, King’s College London, London WC2R 2LS,
England, UK

Abstract. A partially occluded image consists of a set of objects where some may be
partially occluded by others. Validating occluded images distinguishes whether a given
image can be covered by the members of a finite set of objects, where both the image
and the object range over identical alphabet. The algorithm presented here validates a
one-dimensional image z of length n, over a given set of objects all of equal length and
each composed of two parts separated by a transparent hole.

Keywords: valid image, approximate valid image, image decomposition

1 Introduction

In recent studies of repetitive structures of strings, generalized notions of periods have
been introduced [2]. Here we present practical methods to study the following type
of regularity: we want to “cover” a string using a set of “objects”.These objects may
“occlude” each other and may be separated by a hole.

Validating partially occluded images is a classical problem in computer vision
and its computational complexity is exponential. An input image is valid, if it can
be composed from a members of a finite set of objects, with some of the appearing
objects being partially occluded by other ones. This problem is also typical in pattern
recognition and computer graphics. There is a great number of artificial intelligence
and neural net solutions to this problem.

Validating occluded one dimensional images has been a well studied problem in
algorithm design. Tliopoulos and Simpson [6] focused on the theoretical aspect of the
problem and produced a sequential on-line algorithm for validating occluded one-
dimensional images. Furthermore, different aspects of this problem have been studied
and solved by Iliopoulos and Reid. In [5], the authors provided a linear time solution
to the problem in the presence of errors, in [4] they presented an optimal O(loglogn)-
time algorithm using parallel computation and in [3] solved the problem for discrete
two-dimensional partially occluded images in linear time.

In this paper, we move a step forward, based on the above analyses and we extend
the previous work by considering the validity of a family of images, that we call valid
1mages with holes. In this context, given a set of objects sy, ..., sk, each composed of
two parts separated by a small transparent hole, an image x of length n is a valid
image with hole, if z is iteratively obtained from a string z = #" by substituting
substrings of z by some objects s; , for some i € {1..k} and a special “background”
symbol #. We focus on designing an on-line algorithm for testing images in one
dimension for validity, with restricted set of objects, e.g., objects of the same length,
that are consisting of two parts separated by a hole of small size.

Julien Allali, Pavlos Antoniou, Costas S. Iliopoulos, Pascal Ferraro, Manal Mohamed: Validation and Decomposition of Partially Occluded Images with
Holes, pp. 129-136.
Proceedings of PSC 2009, Jan Holub and Jan Zd4rek (Eds.), ISBN 978-80-01-04403-2 (© Czech Technical University in Prague, Czech Republic

130 Proceedings of the Prague Stringology Conference 2009

The paper is organized as follows. In Section 2, we introduce basic definitions and
notations used in this paper. In Section 3, we present the principles for validating
images in one dimension. In Section 4, the main validating algorithm is presented
with its time complexity analysis. Finally, we state our conclusions in Section 5.

2 Background

An alphabet X is a set of elements that are called letters, characters or symbols. A
string x is a sequence of zero or more letters from X, that is x[1]x[2]-- - z[n] with
z[i] € X, 1 <i < n. The length of x, denoted by |z|, is the total number of letters in
x. The string of length zero is the empty string €. The string zy is a concatenation
of two strings = and y.

A string y is a substring of x, if and only if, there exist two strings v and v such
that * = uyv. A string u is a prefix (respectively suffiz) of x, if and only if, there
exists a string v over such that z = wv (respectively x = vu). If v # € then u is a
proper prefiz (respectively proper suffiz) of x.

Additionally, prefiz,(z) denotes the first p letters of x and suffiz,(z) denotes the
last p letters of x. Given two strings = = z[1|z[2]---z[n] and y = y[1|y[2] - - - y[m],
such that z[n — i+ 1]---z[n] = y[1] - - y[i] for some ¢ > 1 (that is such that = has
a suffix equal to a prefix of y), the string x[1] --- z[n]y[i + 1] ---y[m] is called a
superposition of x and y with ¢ overlap. A string w of x is called a cover of z if and
only if an extension of x can be constructed by concatenations and superposition of
w.

Valid Image over set of Objects:

Definition 1. Let x be a string of length n over an alphabet 3’ and let the dictionary
O = {s1,...,5n} be a set of strings called the objects also over Y. Then x is called
a valid 1mage if and only if z = z; for some ¢ > 0, where

20 =#"
zip1 = prefix (z;) s; suffixg(z;) . (1)
for some s; € O and p,q € {0,...,n — 1} such that p + |s,,| + ¢ = n. O
Equation (1) is called the substitution rule and the sequence zg, 21, . . .,z; is called the

generating sequence of x. The number of distinct generating sequences was proved to
be exponential [6].

An example of such generating sequences for a specific string is as follows. Let
O = {s1 = abc, sy = acde, s3 = ade, s, = de, s5 = abd}. Then x = abababacdedcdcade
is a valid image over O with generating sequence:
20 = #177
2 = (l_bC#14,
29 = abe#! ade,
23 = ababc#ade,
24 = abababc# ade,

25 = abababacde#*ade,

J. Allali, P. Antoniou, C. S. Iliopoulos, P. Ferraro, M. Mohamed: Validation and. .. 131

26 = abababacdedc#>ade,

z7 = abababacdedcdcade.

Note that the generating sequence of x is not unique. The following sequence:

20 = #177
= @#M,
2y = ababc#'?,
23 = abababc#°,
24 = abababc# ade,

25 = abababc#3 de# ade,

26 = abababc#>dedcade,

z7 = abababacdedcdcade.
also generates z as a valid image over O.
Valid Image over Set of Objects with Hole:
Let x be a string of length n over an alphabet X and let the dictionary O = {s1,..., Sk}
be a set of strings called the objects, where each object s; is composed of two strings

sk and s separated by a hole of length h. Then x is called a valid image if and only
if x = z; for some O <1, where

2o = #"

zip1 = prefix, (z;) sp, suffixg(z;) . (2)

for some s, € O and p,q € {0,...,n— 1} such that p+ |s,,| + ¢ = n.

Figure 1, presents the notion of finding the objects comprising an image. If the
image is observed from above, one can see some of the objects are partially occluded
by others but can see some of the covered ones through the hole. We are trying to
decompose what the eye sees to its sources. In this example of Figure 1 the valid
image of the objects is composed of the following elements:

Image = prefiz(sh) s| suffir(sl) substring(s}) prefiz(sh) st suffiz(sh) suffir(sh)

image T

Figure 1. Image consisting from objects separated by a hole of same length.

132 Proceedings of the Prague Stringology Conference 2009

In this paper, we consider the problem of validation of an image over a set of
objects with holes. Each object s; € O consists of a left part (head) and a right
part(tail) separated by a transparent hole of length h. We denote the left part of s; as
st and the the right part as s7. For simplicity, we require that |st| = |s7| and h < |s!,
for each s; € O.

The definition of a valid image implies that constituent objects are contained
within the image z. That is, there is no s; for all ¢ € {1,...,k} that is ‘cut’ at z[1]
or z[n].

This leads to the following facts:

If x is a valid image over O = {sy, S, ..., sk}, then for some i € {1,... k},

Fact 1: there exists a suffix 5] of s] that is also a suffix of .
Fact 2: there exists a prefix 8¢ of st that is also a prefix of .

Fact 3: there is no suffix of a left part s! that occurs in ending at position ¢, where
0>n—h-—|s]|

Fact 4: there is no prefix of a right part s! that occurs in z at position ¢', where
¢ < |st| + h.

3 Validation of Images with Objects of Equal Length

In this section, we start by defining what part of a valid image one should expect to
see within the hole i.e. between the left and the right parts of an object. Subsequently,
we proceed and present the main mechanism for validating one-dimensional images
over a set of objects with holes.

Given a set of objects O, a string b of length h is a binding if it is a concatenation
of the following three (possibly empty) parts:

Part 1: is a sequence of suffixes of left /right parts of objects in O,
where the leading (first) suffix is a suffix of a left part of an object.

Part 2: is a substring of a left /right part of an object.

Part 3: is a sequence of prefixes of left /right parts of objects in O,
where the leading (last) prefix is a prefix of a right part of an object.

Note that any substring of a left or a right part of an object is also a binding if
it is of length h. A binding b is satisfied, if and only if, the length of the part of the
valid image following the binding is big enough to insure that each object from O
appears within the hole is totally occluded by the image.

Theorem 2. Let x be a string over Y. Let O = {sq, Sa,...,Sk} be a set of objects all
of the same length and each composed of left part sk and right part st separated by a
hole of length h. The string x is a valid image over O if and only if

r=3y with ic{l.k}, (3)

J. Allali, P. Antoniou, C. S. Iliopoulos, P. Ferraro, M. Mohamed: Validation and. .. 133

or
x=uys, with 1€ {l.k}, (4)

or
r=ys;w with i€ {l.k}, (5)

or
r=ysbslz with i€ {1.k}, (6)

where 8., 57 and 35; denote a prefix of the left part st, suffiz of the right part st and a
substring of either parts of s; respectively, y and w are valid images and b is a satisfied
binding.

The above theorem provides the main mechanism for validating images over a
set of objects with holes and all of equal length. Equations (3) and (4) are restate-
ments of Facts 1 and 2. Equations (5) and (6) state what one should expect at the
decomposition of two valid sub-images.

If an image x is of the form (5), and s; = us;v for some strings u, v and a non-
empty substring s; of either the left or the right part of s;, then z is a valid image,
since x can be generated by the sequence:

20 = #", 20 = #Ps;#9, where p = |y| — |ul,
followed by an application of the generating sequence of y on the first |y| symbols of
z1 and the generating sequence of w on the last |w| symbols of z;.

If an image z is of the form (6), and s!, and s/ are both the left and the right part
of s; separated by a hole of length h, then z is a valid image, since x can be generated
as:

zip1 = prefiv(z;)sibs] suffiz(2),
where b is the part of z; appearing in the hole separating the left and the right
part of s;, followed by an application of the generating sequence of y on the first
ly| = |prefiz(z;)] + |st| — |5}] symbols of z; and the generating sequence of w on the

last |w| symbols of z;.

4 An On-Line Algorithm

Here we present the algorithm for validating an image over a set of objects with holes
and of equal length. Algorithm 1 presents the main commands of the algorithm in
the form of pseudocode.

134 Proceedings of the Prague Stringology Conference 2009

Algorithm 1 On-line Image Validation ALgorithm

Input: image z[1....,n], the set of objects O = {s1,s2...s,} all of equal length.
Output: T if and only if x is a valid image, F otherwise.
initialization

1: valid[0,...,n] < [T,F,...,F]
2: p_valid[0] <1
3: last_prefix «— lastvalid — 0
4: begin
5: for i =1to N do
6: do
7: p-valid[i] < lastvalid
case study
8: (1) &) = x[¢..4] is the longest prefix of some s}
9: if valid[¢{ — 1] = T OR prefix[¢ — 1] = T then
10: prefix[max{last_prefiz +1,£}...i] < T
11: end if
12: if z[pwalid[¢ — 1] +1...¢ — 1] is a substring of some s; € O then
13: prefix[max{last_prefiz +1,£}...i] < T
14: end if
15: if p_valid[¢ — 1] > ¢ —|s;| — 1 then
16: Return “Invalid Image”
17: end if

18: lastprefiz «—i
19: (2) 8} = «[€..4] is the longest prefix of some sj.
20: if prefix[{ — 1] =T and first_prefiz < {— h + |s}| then

21: prefix[max{last_prefix +1,¢}...9] — T
22: end if

23: if & = s} then

24: valid[i] < T

25: last valid — 1%

26: end if

27 if lsuf fiz[j][¢ — h — 1] =T and z[¢ — h..£ — 1] is a satisfied binding then
28: prefix[max{last_prefiz +1,£}...i] < T
29: endif

30: if §j = 8j then

31: valid[i] < T

32: last_valid — i

33: end 1f

34: (3) 5 = x[t.4] is the largest suffix of some s).
35 1 suffzx[]][]

36: (4) 55 = x[l..1] is the largest suffix of some s.
37 if p- valld[)] > ¢ —1 then

38: valid[i] < T

39: last valid — i

40: end if

41: end for

The algorithm is based on Facts 1-4 as well as the following principles:

(a) The occurrence of a proper prefix of either a left or a right part of an object in
a valid image must be followed by a prefix (not necessarily proper) of a left or a
right part of an object.

(b) If the occurrence of a proper prefix of either a left or a right part of an object is
followed by an occurrence of a proper suffix of either a left or a right part of an
object, then the image is not valid. In a valid image, the occurrence of a proper
suffix of an object is always preceded by the suffix of either a left or a right part
of an object.

(¢) The occurrence of a suffix of either a left or a right part of an object can be
followed by either a prefix or a substring or a suffix.

J. Allali, P. Antoniou, C. S. Iliopoulos, P. Ferraro, M. Mohamed: Validation and. .. 135

(d) If an occurrence of a suffix of a left part of an object is not followed by either
an occurrence of a prefix of its corresponding right part in a distance h or an
occurrence of a prefix of a left part of an object in a distance at most h, then the
image is not valid. In both cases a satisfied binding should separate the two parts.

(e) The occurrence of a substring in a valid image may be preceded by and followed
by valid images.

Preprocessing Stage

In this stage we preprocess the set of objects. We compute the suffix tree of the set
of the left and right parts of all objects in O [7,9,8]. This data structure will allow
us to perform a constant time on-line checks whether a suffix, or a substring of sé» /8"
occurs in any position of z. We will also build the Aho-Corasick automaton [1] for
the set of the left and right parts of all objects in O that will allow us to compute
the largest prefixes of sé. /8% occurring in .

Main Algorithm

At the beginning of step i the algorithm has already determined whether z[1..j] is a
valid image or not, for all j € {1..i — 1}. Moreover, the algorithm should determine
by the end of the current step whether x[1..j] is valid or not for j € {1..i}. This is
achieved by examining the suffixes of x[1..i]. There are six possible cases: A suffix of
x[1..i] can be either a prefix of a left part, a prefix of a right part, a suffix of a left
part, a suffix of a right part, a substring, a binding or a complete part of an object
s; for some j € {1..k}. Otherwise, the string is not a valid image (Theorem 2).

Let §§ = z[(..i] be the longest prefix of a left part of an object in O that is also a
suffix of x[1..7]. A prefix of a left part of an object is preceded by either a valid image,
or a proper prefix of left /right part an object or a substring of an object.

— If valid[¢—1] is marked TRUE, then x[1..{—1] is a valid image and position ¢ could
be the beginning of a valid sub-image, thus we mark prefizi] = TRUE, first-prefix
= (and last-prefiz = 1.

— If prefiz]¢ — 1] is marked TRUE, then we have a chain of prefixes, thus we mark
prefiz)i] = TRUFE and last-prefiz = i.

— If there is no prefix of a left /right part of an object or a valid image preceding §§-,
then «[1..7] is valid if and only if x[previous-valid[¢ — 1] + 1..¢ — 1] is a substring of
left /right part of an object or z[previous-valid[¢ — 1]+ 1..i] is a prefix of a satisfied
binding. If z[previous-valid[¢ — 1] + 1..¢ — 1] is a substring then ¢ is the start of a
valid image.

Let &} = x[l..1] be the longest prefix of a right part of an object in O that is also
a suffix of z[1..i]. Similarly, a prefix of an object is preceded by either a proper prefix
of left /right part an object or a substring of an object.

— If prefia[¢ — 1] is marked TRUE and first-prefiv < { — h + [s}| , then we have a
chain of prefixes thus we mark prefiz]i] = TRUE and last-prefix = i. If 8 = s (a
complete left part), then z[1..7] is a valid image and we mark the relevant array
as TRUE.

— If l-suffiz[j][¢ — h — 1] is marked TRUFE and x[¢ — h..£ — 1] is a satisfied binding
then we have a prefix of a valid image (Eq. (6)), thus we mark prefiz[i]| = TRUE
and last-prefiz = i. If 87 = s} (a complete left part), then z[1..7] is a valid image
and we mark the relevant array as TRUE.

136 Proceedings of the Prague Stringology Conference 2009

Let Eé- = z[l..1] be the longest suffix of a left part of an object in O that is also a
suffix of z[1..7]. If valid[¢ — 1] then [-suffiz[j][i] is marked TRUE.

Finally, let 57 = x[(..i] be the longest suffix of a right part of an object in O that
is also a suffix of z[1..i]. Note that, in a valid image, a suffix 57 is always preceded by
a valid image.

— If previous-valid[¢ — 1] > ¢ — 1, then z[1..4] is valid.
— If there is no valid image preceding 57, then x[1..i] is valid if and only if the length
of i—previous-valid[l — 1] < |s;].

Theorem 3. Algorithm 1 validates an image x over a set O of objects of equal length
and all and each composed of two parts separated by a hole in linear O(|x|+|O|) time.

Proof. The construction of the Aho-Corasick automaton and the suffix tree of the
dictionary O both require O(|O)]| time.

At Stage 1, finding the largest suffix that is a prefix of some part of an object
requires constant time. At Stage i —1, we have traced on the Aho-Corasick automaton
the largest prefix of a part of an object that is a suffix of z[1..i — 1]; on Stage i, we
can either extend this prefix with one symbol, z[i], or we can follow the failure link
that lead to the largest such prefix. Each of the other lines of Algorithm 1 requires
constant time and thus the bound on the running time follows.

5 Conclusions

We have presented an on-line algorithm that determines whether a given image is
valid or not over a given set of objects with holes where each object composed of two
parts separated by a transparent hole. We have solved the problem for a restricted set
of objects. I.e. objects of the same lengths and presented a linear time algorithm. As
future work, the algorithm may be modified in the same way as the original validation
algorithm by [6], in order to deal with a set of objects of different lengths. Another
interesting problem is the computation of the depth of an object in an image, i.e. the
number of rules applied after the placement of an object in an image.

References

1. A. V. AHO AND M. J. CorASICK: Efficient string matching: an aid to bibliographic search.

Commun. ACM, 18(6) 1975, pp. 333-340.

2. C. S. ILioPoULOS AND L. MOUCHARD: Quasiperiodicity and string covering. Theoretical Com-
puter Science, 218(1) 1999, pp. 205-216.

3. C. S. IrniopouLos AND J. F. REID: Validating and decomposing partially occluded two-
dimensional images, in Proc. Prague Stringology Club Workshop (PSCW’98), J. Holub and
M. Simének, eds., 1998, pp. 83-94.

4. C. S. IuiopouLos AND J. F. REID: Optimal parallel analysis and decomposition of partially

occluded strings. Parallel Computing, 26(4) 2000, pp. 483-494.
5. C. S. IuiorouLos AND J. F. REID: Decomposition of partially occluded strings in the presence

of errors. International Journal of Pattern Recognition and Artificial Intelligence, 15(7) 2001,

pp. 1129-1142.
6. C. S. ILIOPOULOS AND J. SIMPSON: On line validation and analysis of partially occluded images.

Journal of Automata, Languages and Combinatorics, 6(3) 2001, pp. 291-303.
7. E. M. MCCREIGHT: A space-economical suffiz tree construction algorithm. J. ACM, 23(2) 1976,

pp. 262-272.
8. E. UKKONEN: On-line construction of suffix trees. Algorithmica, 14(3) 1995, pp. 249-260.
9. P. WEINER: Linear pattern matching algorithms, in SWAT ’73: Proceedings of the 14th Annual

Symposium on Switching and Automata Theory (swat 1973), Washington, DC, USA, 1973, IEEE
Computer Society, pp. 1-11.

