Taxonomies of Regular Tree Algorithms

Loek Cleophas' and Kees Hemerik?

1 FASTAR/Espresso Research Group, Department of Computer Science,
University of Pretoria, 0002 Pretoria, Republic of South Africa,
http://www.fastar.org
2 Software Engineering & Technology Group, Department of Mathematics and Computer Science,
Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands,
http://www.win.tue.nl/set
loek@loekcleophas.com, c.hemerik@tue.nl

Abstract. Algorithms for acceptance, pattern matching and parsing of regular trees
and the tree automata used in these algorithms have many applications, including
instruction selection in compilers, implementation of term rewriting systems, and model
checking. Many such tree algorithms and constructions for such tree automata appear
in the literature, but some deficiencies existed, including: inaccessibility of theory and
algorithms; difficulty of comparing algorithms due to variations in presentation style
and level of formality; and lack of reference to the theory in many publications. An
algorithm taxonomy is an effective means of bringing order to such a field. We report
on two taxonomies of regular tree algorithms that we have constructed to deal with
the deficiencies. The complete work has been presented in the PhD thesis of the first
author.
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1 Introduction

We consider the field of reqular tree languages for ordered, ranked trees.* This field has
a rich theory, with many generalizations from the field of regular string languages,
and many relations between the two [9,10,12,14]. Parts of the theory have broad
applicability in areas as diverse as instruction selection in compilers, implementation
of term rewriting systems, and model checking.

We focus on algorithmic solutions to three related problems in the field, i.e. tree
acceptance, tree pattern matching and tree parsing. Many such algorithms appear in
the literature, but unfortunately some deficiencies exist, including:

1. Inaccessibility of the theory and algorithms, as they are scattered over the litera-
ture and few or no (algorithm oriented) overview publications exist.

2. Difficulty of comparing the algorithms due to differences in presentation style and
level of formality.

3. Lack of reference to the theory and of correctness arguments in publications of
practical algorithms.

A tazonomy—in a technical sense made more precise below—is an effective means
of bringing order to such a subject. A taxonomy is a systematic classification of prob-
lems and solutions in a particular (algorithmic) problem domain. We have constructed
two such taxonomies, one for tree acceptance algorithms and one for tree pattern
matching ones.

1 An example of such a language as defined by a regular tree grammar can be found in Section 4.
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A few more practical deficiencies existed as well: no large and coherent collec-
tion of implementations of the algorithms existed; and for practical applications it
was difficult to choose between algorithms. We therefore designed, implemented, and
benchmarked a highly coherent toolkit of most of these algorithms as well. Taxonomies
also form a good starting point for the construction of such algorithmic toolkits.

In the past, taxonomies and/or toolkits of this kind have been constructed for
e.g. sorting [3,11], garbage collection [17], string pattern matching, finite automata
construction and minimization [21,22].

In this paper we focus on one of our taxonomies, and comment only briefly on
the other one and on the toolkit. The complete work has been presented in the PhD
thesis of the first author [9]. For more details we refer to this thesis and to recent
shorter publications [5,6,18].

Section 2 gives a brief introduction to taxonomies as we consider them. In Section 3
we outline the structure of our taxonomy of algorithms for tree acceptance and briefly
compare it to the one for tree pattern matching. Afterwards we focus on the one for
tree acceptance. Definitions of tree and tree grammar related notions are given in
Section 4. The main branches of the taxonomy for tree acceptance are discussed
in Sections 5-8. Section 9 briefly discusses some other parts of the work, namely the
toolkit and accompanying graphical user interface and the benchmarking experiments
performed with them. We end the paper with some concluding remarks in Section 10.

2 Taxonomies

In our technical sense a taxonomy is a means of ordering a set of algorithmic problems
and their solutions. Each node of the taxonomy graph is a pair consisting of (a
specification of) a problem and an algorithm solving the problem. For each (problem,
algorithm) pair the set of essential details is determined. In general, there are two
kinds of details: problem details, which restrict the problem, and algorithm details,
which restrict the algorithm (e.g. by making it more deterministic). The root of the
taxonomy graph contains a high-level algorithm of which the correctness is easily
shown. A branch in the graph corresponds to addition of a detail in a correctness
preserving way. Hence, the correctness of each algorithm follows from the details on
its root path and the correctness of the root.

Construction of an algorithm taxonomy is a bottom-up process. A literature sur-
vey of the problem domain is performed to gather algorithms. The algorithms are
rephrased in a common presentation style and analyzed to determine their essen-
tial details. When two algorithms differ only in a few details, abstracting over those
details yields a common ancestor. Repeating this abstraction process leads to the
main structure of a taxonomy graph. Considering new combinations of details may
lead to discovery of new algorithms. Eventually the taxonomy may be presented in a
top-down manner.

Several taxonomies of this kind appear in the literature. Broy and Darlington each
constructed one of sorting algorithms [3,11]. Jonkers [17] constructed a taxonomy of
garbage collection algorithms and also developed a general theory about algorithm
taxonomies. Watson [21] applied the method to construct taxonomies for string pat-
tern algorithms and for the construction and minimization of finite automata. Both
in subject and in style our work is closest to Watson’s.
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3 Overview of the Taxonomies of Regular Tree Algorithms
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Figure 1. Tree acceptance taxonomy. Each node is labeled with its corresponding
algorithm or section (S.) number in [9]. Constructions for tree acceptors used in
algorithms of branch (T-ACCEPTOR ) are not depicted. The bottom part of the figure
shows the four possible filters that can be used for detail FILTER.

The tree acceptance (aka language membership, membership) problem as we con-
sider it is the following: Given a regular tree grammar and a subject tree, determine
whether the tree is an element of the language defined by the grammar. Figure 1
depicts the taxonomy of algorithms we have constructed for this problem. The edge
labels correspond to details, explained in Table 1.

In the taxonomy graph, three main subgraphs can be distinguished. The first sub-
graph (detail T-ACCEPTOR and below) contains all algorithms based on the corre-
spondence between regular tree grammars and finite tree automata. For every regular
tree grammar an undirected finite tree automaton can be constructed, which accepts
exactly the trees generated by the grammar. By adding more detail, viz. a direction
(detail FR: frontier-to-root or detail RF: root-to-frontier) or determinacy (detail DET)
more specific constructions are obtained. The acceptance algorithms from this part
of the taxonomy are described in more detail in Section 5, while the tree automata
constructions used in them are discussed in Section 6.

The second subgraph (detail MATCH-SET and below) contains all algorithms based
on suitably chosen generalizations of the relation S = ¢ (where = indicates derivation
in zero or more steps (see Section 4), S is the start symbol of the grammar and ¢ is
the subject tree). For each subtree of ¢, they compute a set of items from which ¢
may be derived, a so-called match set. Tree t is accepted if and only if its match set
contains S. The algorithms in this subgraph of the taxonomy differ in the item set
used and in how the match sets are computed. This part of the taxonomy is described
in more detail in Section 7.
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T-ACCEPTOR

Use a tree automaton accepting the language of a regular tree grammar to
solve the language membership problem.

RF

Consider the transition relations of the tree automaton used in an algorithm
to be directed in a root-to-frontier or top-down direction.

FR

Consider the transition relations of the tree automaton used in an algorithm
to be directed in a frontier-to-root or bottom-up direction.

DET

Use a deterministic version of an automaton.

MATCH-SET

Use an item set and a match set function to solve the tree accep-
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tance/language membership problem. Such an item set is derived from
the productions of the regular tree grammar and the match set function
indicates from which of these items a tree is derivable.

Compute match set values recursively, i.e. compute the match set values
for a tree from the match set values computed for its direct subtrees.

Use a filtering function in the computation of match set function values.
Before computing the match set for a tree, such a filtering function is applied
to the match sets of its direct subtrees.

Use a tabulated version of the match set function (and of the filter functions,
if filtering is used), in which a bijection is used to identify match sets by
integers.

Uniquely decompose production right hand sides into stringpaths. Based
on matching stringpaths, production right hand sides and nonterminals
deriving the subject tree can be uniquely determined and tree acceptance
can thus be solved.

Use an automaton as a pattern matcher for a set of stringpaths in a root-
to-frontier or top-down subject tree traversal.

Use an (optimal) Aho-Corasick automaton as a stringpath matcher and
define transition and output functions in terms of that automaton.

Use a deterministic root-to-frontier tree automaton as a stringpath matcher
and define transition and output functions in terms of that automaton.

REC

FILTER

TABULATE

S-PATH

SP-MATCHER

ACA-SPM

DRFTA-SPM

Table 1.

The third subgraph (detail SP-MATCHER and below) contains algorithms based
on the decomposition of items into so-called stringpaths and subsequent use of string
matching techniques. Based on stringpath matches found, matches of items and hence
essentially the match sets mentioned previously are computed for each subtree of ¢.
Section 8 gives a brief explanation of this taxonomy part.

As our focus in this paper is on the tree acceptance taxonomy and the algorithms
and constructions included in it, we do not formally define the tree pattern matching
problem. Figure 2 shows the taxonomy of tree pattern matching algorithms. Although
we do not explicitly give the meaning of the details used, it should be clear that the
taxonomies for tree acceptance and tree pattern matching have much in common.
Techniques such as the subset construction, match sets, and stringpaths are used in
both. This is not surprising: the two problems are closely related, and some kinds
of tree acceptors can be turned into tree pattern matchers (or vice versa) with little
effort. The same phenomenon can be observed in acceptors and pattern matchers for
string languages.
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Figure 2. Tree pattern matching taxonomy. Each node is labeled with its correspond-
ing algorithm or section (S.) number in [9]. Constructions for tree pattern matchers
used in algorithms of branch (T-MATCHER) are not depicted. The bottom part of the
figure shows the four possible filters that can be used for detail FILTER.

4 Notation and definitions

We use B and N to denote the booleans and the natural numbers. We use notation
(Set a : R(a) : E(a)) for the set of expressions E(a) for which a satisfies range
predicate R(a).

Many of the other notations and definitions we use are related to regular tree
language theory and to a large extent generalizations of familiar ones from regular
string language theory. To aid readers unfamiliar with this theory, we briefly intro-
duce the concepts needed in the rest of this paper. Readers may want to consult
e.g. [9,10,12,14] for more detail.

Let X be an alphabet, and r € X +— N. Pair (X, r) is a ranked alphabet, 7 is a
ranking function, and for all a € X, r(a) is called the rank or arity of a. (The ranking
function indicates the number of child nodes a node labeled by a particular symbol
will have.) We use X, for 0 < n to indicate the subset of X of symbols with arity n.

Given a ranked alphabet (X, r), the set of ordered, ranked trees over this alphabet,
set Tr(X,r), is the smallest set satisyfing

1. X C Tr(X, r), and
2. a(ty, ... t,) € Tr(X,r)forallty,... t, € Tr(X,r),a € X such that r(a) = n # 0.

As a running example, we assume (X, 7) to be {(a, 2), (b, 1), (¢,0), (d,0)}, i.e. con-
sisting of symbols a, b, ¢ and d with rank 2,1,0 and 0. Trees in 7r(X, r) include for
example ¢, a(b(c),d) and a(a(b(c),c),d).

A regular tree grammar (RTG) G is a b-tuple (N, X, r, Prods, S) where N and
X are disjoint alphabets (the nonterminals and terminals), (N U X, r) is a ranked
alphabet in which all nonterminals have rank 0, Prods C N x Tr(N U X, r) is the
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finite set of productions, and S € N (the start symbol). We use LHS and RHS for left
hand side and right hand side (of a production), and use RHS(Prods) for the set of
production RHSs.

Given a grammar GG, we use = for a derivation step, in which a nonterminal is
replaced by a corresponding production RHS. The reflexive and transitive closure of
= is denoted by =. The subset of 7r(X,r) derivable from S is denoted £(G). For
technical reasons, we introduce the augmented grammar G’ for a grammar G, defined
by G' = (NU{S'}, X, ru{(5,0)}, ProdsU{S" + S},S") where S’ is a fresh symbol.

In this paper, we assume an example grammar Gy = (N, X, r, Prods, S) with N =
{S, B}, r and X as before, and with Prods defined as {S +— a(B,d), S+ a(b(c), B),
S+ ¢, Bw bB), B~ S, B d}. We assume G to be the corresponding
augmented grammar.

5 Algorithms based on Tree Automata

The first subgraph of the taxonomy deals with algorithms for tree acceptance that are
based on correspondences between regular tree grammars and finite tree automata.
The theoretical basis for this correspondence is well-known and generalizes a similar
correspondence between regular string grammars and finite string automata. To ease
understanding we briefly outline how the generalization works.

It is well known that the theory of regular tree languages generalizes that of regular
string languages [9,10,12,14]. This is not surprising: any string ag - - - a,,_1 can be seen
as a special kind of regular tree, viz. one consisting of n unary nodes, each labeled
with a symbol a; of rank 1, closed by a nullary node marked with a symbol of rank 0.
Notions from finite automata for strings can be generalized to the tree case as well,
although this requires a particular view of such automata. Suppose that a particular
string automaton goes through a state sequence q, . . ., ¢, when presented the string
ag - ap—1. This means that for each i : 0 < i < n the pair of states (¢;, ¢;11) must be
in the transition relation of symbol a;. We can summarize the transition sequence by
the following alternation of states and symbols: gpag - - - a,_1¢,. In other words, the
positions in the string have been consistently annotated with states qq, ..., q,. The
language accepted by the automaton can be defined as the set of strings that can be
consistently annotated in this way, such that ¢o and ¢, are initial and final states.

This view can easily be generalized to ordered, ranked trees: each node is anno-
tated with a state, and for each node labeled with a symbol a of rank n, the state
qo assigned to that node and the states ¢y, ..., q, of the n direct subnodes should be
such that the tuple (qo, (¢1,...,¢,)) is in the transition relation of symbol a. Note
that this simplifies to (qo, ()) for symbols of rank 0. (Hence, taking a frontier-to-root
or bottom-up view on tree automata, no equivalent for a string automaton’s initial
states is needed; no equivalent for a string automaton’s final states is needed when
taking a root-to-frontier or top-down view.) A tree is accepted by a finite tree au-
tomaton if and only if it can be consistently annotated such that the state assigned
to the root is a so-called root accepting state. This motivates the following definition:

Definition 1. A (finite) tree automaton (TA) M is a 5-tuple (Q, X, r, R, Q,.) such
that Q) is a finite set, the state set; (X, r) is a ranked alphabet; R = {R,|a € X} U R,
is the set of transition relations (where R. C Q X Q and R, C Q x Q", for alla € ¥
with r(a) =n); and Q.. C Q is the set of root accepting states.
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Many important theorems carry over from regular string grammars and automata
to the tree case as well. In particular:

Theorem 2. For every reqular tree grammar G there exists a tree automaton M such

that £(G) = L(M).

This theorem justifies the following algorithm as a solution for tree acceptance:

Algorithm 3 (T-ACCEPTOR)

[ const G = (N', X, 7', Prods’, S’") : augmented RTG;
t:Tr(X, r);
var b: B
| let M = (Q, X, r, R,Q.) be a TA such that L(M) = L(G);
b: =te L(M)
{b=te L(G)}
[

This abstract and rather trivial algorithm forms the root of the part of the tax-
onomy graph containing all algorithms based on tree automata. Note that it does
not specify how t € L(M) is determined. It could consider all state assignments to ¢
respecting the transition relations R, and determine whether an accepting one exists.

To obtain more specific and more practical algorithms, the automata and hence
the state assignments can be considered as directed ones (detail FR: frontier-to-root
aka bottom-up or detail RF: root-to-frontier aka top-down). This results in (the use
of) an e-nondeterministic frontier-to-root TA (eNFRTA) and e-nondeterministic root-
to-frontier TA (ENRFTA).

Restricting the directed automata to the case without e-transitions, we obtain the
e-less TA and (e-less) NRFTA and NFRTA. As with string automata, e-transitions can
be removed by a straightforward transformation. The use of the resulting automata
slightly simplifies the acceptance algorithms.

5.1 FR: Frontier-to-Root Tree Acceptors

For (¢)NFRTAs, a recursive acceptance function RSt € Tr(X,r) — P(Q) can be
defined. This function yields the states assigned to a tree’s root node based on those
assigned to that node’s child nodes. A subject tree t is then accepted if and only if
at least one accepting state occurs in state set RSt(t).

Restricting the directed R, of the (e-less) NFRTA to be single-valued functions,
we obtain the deterministic DFRTA. A subset construction SUBSETy can be given,
similar to that for string automata, to obtain a DFRTA for an (¢)NFRTA. The use of
a DFRTA leads to the straightforward Algorithm 4 given below.
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Algorithm 4 (T-ACCEPTOR, FR, DET)

[ const G = (N, X, 1/, Prods’, S") : augmented RTG;
t:Tr(X, r);
var b: B
| let M = (Q, X, r, R,Q.,) be a DFRTA such that L(M) = L(G);
b: = Traverse(t) € Qra
{b=te L(G)}

func Traverse(st: Tr(X,r)) : Q =
I

| let a = st(e);
{ st = a(sty,...,st,) where n =r(a) }
Traverse : = R,(Traverse(sty),. .., Traverse(st,))

| I{ Post: { Traverse} = RSt(st) }

5.2 RF: Root-to-Frontier Tree Acceptors

For root-to-frontier automata, we can define a root-to-frontier acceptance function
Accept € Tr(X,r) x @Q — B indicating whether an accepting computation starting
from some state exists for a tree. In the resulting Algorithm (T-ACCEPTOR, RF) (not
given here), the value of this function is computed by possibly many root-to-frontier
subject tree traversals (starting from each of the root accepting states).

As with FRTAs, RFTAs can be restricted to e-less ones and further to deterministic
ones. Since DRFTAs are known to be less powerful than other TA kinds, algorithms
using DRFTAs cannot solve the acceptance problem for each input grammar. We refer
the reader to [9] for more information on algorithms using RFTAs to directly solve the
tree acceptance problem.

In Section 8 we briefly discuss how DRFTAs can be used for so-called stringpath
matching. Since there is a one-to-one correspondence between a tree and its set of
stringpaths, DRFTAs can thus be used to solve the tree acceptance problem, albeit
indirectly.

6 Construction of tree automata

Nowhere in Section 5 did we specify how the tree automata M, which are used
in Algorithm (T-ACCEPTOR ) and derived algorithms, are to be constructed. Such
constructions can be considered separately, as we do in this section.

Algorithm (T-ACCEPTOR ) and derived ones use TAs M such that L(M) = L(G).
Depending on the algorithm, the acceptor may need to be undirected or directed
RF or FR, and directed ones may need to be nondeterministic or deterministic. The
constructions differ in a number of aspects:

— Which item set is used to construct states: one containing all subtrees of produc-
tion RHSs, or one just containing all nonterminals as well as the proper subtrees
among RHSs,

— whether e-transitions are present or not—the latter indicated by label REM-¢ |
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— whether automata are undirected, root-to-frontier (aka top-down) or frontier-to-
root (aka bottom-up), and
— whether e-less directed automata are deterministic or not.

By combining choices for these aspects, twenty four constructions for tree acceptors
can be obtained. Roughly half are treated in [9, Chapter 6], seeming most interesting
because they occur in the literature or because they lead to ones that do.

For each construction in our taxonomy, the discussion in [9, Chapter 6] defines
the state set, root accepting state set and transition relation are defined; and usually
gives an example and a discussion of correctness and of related constructions and
literature. Presenting all of the constructions in such a similar, uniform and precise
way facilitates understanding and comparing the different constructions.

To further simplify understanding and comparison, the constructions are identified
by sequences of detail labels. For example, the first construction, Construction (TGA-
TA:ALL-SUB), is a basic construction for undirected TAs. Its state set corresponds to
all subtrees of production RHSs, while its transitions encode the relations between
(tuples of) such states, based on the relation between a tree and its direct subtrees
and the relation between a production LHS and RHS.

We cannot present the constructions here in detail, but restrict ourselves to de-
scribing them briefly and showing how constructions from the literature are included.
We emphasize that our taxonomy presents all of them together and relates all of them
for the first time.

— The basic Construction (TGA-TA:ALL-SUB) described above does not explicitly
appear in the literature, but its FR and RF versions appear in van Dinther’s 1987
work [20].

— Applying REM-¢ results in Construction (TGA-TA:ALL-SUB:REM-¢) for automata
isomorphic to those constructed by Ferdinand et al. (1994) [13]. This detail makes
states corresponding to certain full RHSs unreachable and therefor useless.

— To prevent such states from occurring, a state set containing only nonterminals and
proper subtrees of RHSs can be used instead. Of the resulting Construction (TGA-
TA:PROPER-N:REM-¢),

e an undirected version appears in Ferdinand, Seidl and Wilhelm’s 1994 pa-
per [13] and later in Wilhelm & Maurer [23]. Somewhat surprisingly, the con-
struction in its general form apparently did not occur in the literature before

1994.
It is well known however that every RTG can easily be transformed into one with
productions of the form A — a(A,...,A,) only (by introducing fresh nontermi-

nals and productions). For such RTGs,
e an FR directed version already appeared in Gecseg and Steinby’s [14, Lem-
ma 3.4] in 1984.
It is also straightforward to transform any RTG into one with productions of
the form given above and of the form A — B (i.e. additionally allowing unit
productions). For such RTGs,
e an FR directed version of Construction (TGA-TA:PROPER-N:REM-¢) already
appears in Brainerd’s 1960s work [2] and again in [20], and
e an RF directed version appears in Comon et al. ’s online work [10].
— Constructions (TGA-TA:ALL-SUB:REM-¢£:RF:SUBSETg;) and (TGA-TA:PROPER-N:-
REM-£:RF:SUBSETy; ), which are derived constructions resulting in DRFTAs, do not
appear in the literature, probably due to the restricted power of such automata.



Loek Cleophas and Kees Hemerik: Taxonomies of Regular Tree Algorithms 155

For a specific subclass of RTGs for which DRFTAs can be constructed, a variant
resulting in tree parsers based on such DRFTAs is presented in [20].

— A construction for DFRTAs which uses all RHSs for state set construction—
i.e. Construction (TGA-TA:ALL-SUB:REM-£:FR:SUBSETy)—appears in [15]. The
encompassed subset construction constructs the reachable subsets only, with an
explicit sink state for the empty set. The presentation mostly disregards the auto-
mata view and uses the recursive match set view of Section 7. It was inspired by
and gives a more formal version of the initial construction presented in Chase’s
1987 paper [4].

— A construction for DFRTAs which uses only nonterminals and proper subtrees of
RHSs—Construction (TGA-TA:PROPER-N:REM-£:FR:SUBSETy)—appears in [13,
Section 6] and in [23, Sections 11.6-11.7].

7 Algorithms based on Match Sets

In this section we consider the second subgraph of the taxonomy. Algorithms in this
part solve the tree acceptance problem, i.e. S = ¢, by suitably chosen generalizations
of relation =. First, from the tree grammar a set of Items is constructed, e.g. the set
of subtrees of right hand sides of productions of the grammar. Then, for the subject
tree t, a so-called match set MS(t) is computed, the set of all p € Items for which
p = t holds. Tree t is accepted if and only if S € MS(t).

Algorithms in this part of the taxonomy differ in the set ltems used and in how
function MS is computed. The first algorithm, Algorithm (MATCH-SET), does not
specify how to compute function MS.

Function MS can effectively be computed recursively over a subject tree, i.e. by a
scheme of the form MS(a(ty,...,t,)) = F(MS(t1),..., MS(t,)). Function F composes
and filters items for MS(a(ty,...,t,)) from those in the match sets MS(t1), ..., MS(t,)
computed for the n direct subtrees of a(ty, ..., t,). For symbols a of rank n and trees

t1,...,tn, the value of F(MS(ty),..., MS(t,)) is defined to be
Cl(Comp,( Filt,1(MS(t1)), ..., Filt,,(MS(t,))))
where:

— The Filt,; are filter functions, filtering items from the respective match sets based
e.g. on the values of a and 7. Filtering is based on certain elements of children’s
match sets never contributing to the parent’s match set. Such a child match set
element may thus be safely disregarded for the computation of the parent’s match
set. Note that the identity function is among these filter functions.

— The Comp, are composition functions, which result in those subtrees of RHSs that
are compositions of the subnodes’ (filtered) match set elements and the symbol a.

— (l is a closure function, adding e.g. nonterminal LHSs corresponding to complete
RHSs that are in the composite match set.

The resulting algorithms are Algorithm (MATCH-SET, REC) (not using filter func-
tions) and Algorithms (MATCH-SET, REC, FILTER) (with different instantiations of
filter functions).

As an example of recursive match set computation, assume that we want to
compute MS(a(b(c),d)) and that we use the identity function as a filter function
(i.e. no filtering is applied). Furthermore, assume that MS(b(c)) = {b(c),b(B), B}
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and MS(d) = {d, B} have already been computed. Based on this, MS(a(b(c),d))
will contain a(b(c),d) and a(B,d) by composition with a, and B and S by the clo-
sure function, since S = a(b(c),d) and B = S. No other elements are included in
MS5(a(b(c), d)).

It is straightforward to show that match sets and relations between them, as
computed by Algorithm (MATCH-SET, REC) with particular item sets, correspond to
states and transition relations of DFRTAs obtained by particular automata construc-
tions as in Section 6. Recursive match set computation and the use of a DFRTA as an
acceptor are simply two views on one approach [9, Chapter 5|. This correspondence
is indicated by the dotted line in Figure 1.

To improve computation efficiency, values of MS cq. the acceptance function of
the DFRTA are usually tabulated to prevent recomputation. Such tabulation uses a
bijection between states (elements of P(Items)) and integers for indexing the tables.
The tabulation starts with symbols of rank 0, creating a state for each of them,
and continues by computing the composition of symbols with match sets represented
by existing states, for as long as new states are encountered, i.e. the computation
is performed for the reachable part of state set P(Items) only. Such reachability-
based tabulation is essentially straightforward, but somewhat intricate for trees/n-
ary relations, even more so in the presence of filtering. We therefore do not present
an example here; see e.g [9, Chapter 5] or [15] instead.

In practice, the size of the RTGs used leads to large but usually sparse tables:
e.g for instruction selection, an RTG may well have hundreds of productions and lead
to tables of over 100 MB. Filtering is therefore used to reduce storage space. For
example, given match set MS(b(c)) above, b(B) can be filtered, as it does not occur
as a subtree of any Item in G. Different item categories can be filtered out (and may
lead to different space savings, depending on the grammar):

— Filtering trees not occurring as proper subtrees (such as b(B)); filter TFILT, orig-
inally by Turner [19].

— Filtering trees not occurring as the ith child tree of a node labeled a; filter CFILT,
originally by Chase [4,15].

— One of two new filter functions. Our research in taxonomizing the existing algo-
rithms and filter functions lead us to describe these new ones, which can be seen
as simplifications of Chase’s filter functions yet somewhat surprisingly had not
been described before:

e Filtering trees based on index ¢ only, i.e. not occurring as the ith child tree of
any node; filter TFILT.

e Filtering trees based on symbol a only, i.e. not occurring as a tree of a node
labeled a at any child position; filter SFILT.

Even more surprisingly given their non-appearance in the literature, these two filters
turn out to outperform Chase’s filter on both text book example RTGs and instruction
selection RTGs for e.g. the Intel X86 and Sun SPARC families: the index filter results
in lower memory use, while the symbol filter results in slightly faster tabulation
time than with Chase’s filter. The experimental results have been described in detail
in [5,9,18].
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8 Algorithms using stringpath matching

The third subgraph (detail SP-MATCHER and below) of the taxonomy in Figure 1
contains algorithms for tree acceptance that are derived from algorithms for tree
pattern matching. We only briefly sketch the main ideas.

The tree pattern matchers that we use in these tree acceptors reduce tree pattern
matching to string pattern matching, using a technique first described in [16]. Each
tree can be fully characterized by a set of stringpaths, and a tree pattern matches at a
certain position in a tree if and only if all its stringpaths do. By traversing the subject
tree and using a multiple string pattern matcher (e.g. [1]), matches of stringpaths can
be detected. In [8] (originally presented at this conference as [7]) and [9] we discuss
such algorithms in more detail and show that a certain DRFTA construction leads
to DRFTAs—i.e. deterministic RF tree automata—that are also usable for stringpath
matching. With a little extra bookkeeping, a tree pattern matcher of this kind can
be turned into a tree acceptor.

9 Other Parts of the Work

Our work on regular tree algorithms has resulted in two taxonomies and a toolkit
of algorithms. In this paper, we have mainly reported on one of the taxonomies, al-
though it was pointed out in Section 3 how similar the tree pattern matching and tree
acceptance algorithms and taxonomies are. In this section we present some remarks
on the rest of the work. We refer the interested reader to [5,9] for more information.

As mentioned in Section 1, taxonomies form a good starting point for the construc-
tion of highly coherent algorithm toolkits. Based on the taxonomies of tree acceptance
and tree matching algorithms, such an (experimental) toolkit was developed as part of
our research. The toolkit contains most of the concrete algorithms and automata con-
structions from the taxonomies, as well as a number of fundamental algorithms and
data structures—such as alphabets, trees, regular tree grammars, simple grammar
transformations—and some extensions of tree acceptance algorithms to tree pars-
ing and rudimentary instruction selection. The design of the toolkit was guided by
the two taxonomies: the hierarchy of the taxonomies determines the class and inter-
face hierarchies of the toolkit, and the abstract algorithms lead to straightforward
method implementations. The toolkit, called FOREST FIRE, is implemented in Java
and accompanied by a graphical user interface (GUI) called FIRE WooD. This GUI
supports input, output, creation and manipulation of data structures from the toolkit
and was used to interactively experiment with and get insight into algorithms. More
details on the toolkit and GUI can be found in [5,18]. The toolkit and GUI, including
source code, example input files and brief manuals, are available for non-commercial
purposes via http://www.fastar.org.

10 Concluding Remarks

The two taxonomies we constructed cover many algorithms and automata construc-
tions for tree acceptance and tree pattern matching, which appeared in the literature
in the past forty years. As for earlier taxonomies, their construction required a lot
of time and effort to study original papers and distill the published algorithms’ es-
sential details (more so than in usual scientific research, which is typically limited to
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studying one or a few existing publications and building on those). Abstraction and
sequentially adding details to obtain algorithms were essential and powerful means
to clearly describe the algorithms and to make their correctness more apparent.

The uniform presentation in the taxonomies improves accessibility and shows al-
gorithm relations: comparing algorithms previously presented in different styles has
become easier and consultation of the original papers is often no longer necessary.

The taxonomies also lead to new and rediscovered algorithms: for example, two
new filters were discovered which, though conceptually simple, are practically rele-
vant. Furthermore, Turner’s filter was more or less rediscovered. Our initial literature
search, although apparently quite extensive, did not find Turner’s paper—Ilikely be-
cause it was not referred to by any other literature in the same field. As a result, we
came up with the rather basic filter independently, before eventually finding it in the
literature.

The uniform presentation simplified and guided the high-level design of our toolkit
of regular tree algorithms, although the choice of representations for basic data struc-
tures still took some time and effort. Experiments with the toolkit provided some
interesting results, including the fact that the new filters outperformed Chase’s more
complex but frequently used filter in many cases.

The results from our research thus are both theoretical and practical, ranging from
formal definitions and algorithm taxonomies to a toolkit and experimental results. A
form of symbiosis occurred between the theoretical and the practical: the taxonomies
were helpful in constructing the toolkit, while the experiments with the toolkit in
turn lead to a better understanding of the theoretical definitions and algorithm de-
scriptions, thus helping to simplify the taxonomies.
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