
String Suffix Automata and Subtree Pushdown

Automata⋆

Jan Janoušek

Department of Computer Science
Faculty of Information Technologies

Czech Technical University in Prague
Zikova 1905/4, 166 36 Prague 6, Czech Republic

Jan.Janousek@fit.cvut.cz

Abstract. String suffix automata accept all suffixes of a given string and belong to the
fundamental stringology principles. Extending their transitions by specific pushdown
operations results in new subtree pushdown automata, which accept all subtrees of a
given subject tree in prefix notation and are analogous to the suffix automata in their
properties. The deterministic subtree pushdown automaton accepts an input subtree
in time linear to the number of nodes of the subtree and its total size is linear to the
number of nodes of the given subject tree.

Keywords: tree, subtree, string suffix automata, tree pattern matching, pushdown
automata

1 Introduction

The theory of formal string (or word) languages [1,10,17] and the theory of formal
tree languages [4,5,9] are important parts of the theory of formal languages [16]. The
most famous models of computation of the theory of tree languages are various kinds
of tree automata [4,5,9]. Trees can also be seen as strings, for example in their prefix
(also called preorder) or postfix (also called postorder) notation. [11] shows that the
deterministic pushdown automaton (PDA) is an appropriate model of computation
for labelled ordered ranked trees in postfix notation and that the trees in postfix
notation acceptable by deterministic PDA form a proper superclass of the class of
regular tree languages, which are accepted by finite tree automata. In the further text
we will omit word “string” when referencing to string languages or string automata.

Tree pattern matching is often declared to be analogous to the problem of string
pattern matching [4]. One of the basic approaches used for string pattern matching
can be represented by finite automata constructed for the text, which means that the
text is preprocessed. Examples of these automata are suffix automata [6]. Given a
text of size n, the suffix automaton can be constructed for the text in time linear in
n. The constructed suffix automaton represents a complete index of the text for all
possible suffixes and can find all occurrences of a string suffix and their positions in
the text. The main advantage of this kind of finite automata is that the deterministic
suffix automaton performs the search phase in time linear in the size of the input
subtree and not depending on n.

This paper presents a new kind of acyclic PDAs for trees in prefix notation, which
is analogous to string suffix automata and their properties: subtree PDAs accept all

⋆ This research has been partially supported by the Ministry of Education, Youth and Sports
under research program MSMT 6840770014, and by the Czech Science Foundation as project
No. 201/09/0807.

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata, pp. 160–172.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 161

subtrees of the tree. The basic idea of the subtree PDAs has been presented in [13].
This paper deals with the subtree PDAs in more details. [12] contains the detailed
description of the subtree PDAs, related formal theorems, lemmas, and their proofs,
many of which are skipped in this paper. Moreover, [12] describes an extension of the
subtree PDAs – tree pattern PDAs, which accept all tree patterns matching the tree
and are analogous to string factor automata in their basic properties.

By analogy with the string suffix automaton, the subtree PDA represents a com-
plete index of the tree for all possible subtrees. Given a tree of size n, the main
advantage of the deterministic subtree PDA is again that the search phase is per-
formed in time linear in the size of the input subtree and not depending on n. We
note that this cannot be achieved by any standard tree automaton because the stan-
dard deterministic tree automaton runs always on the subject tree, which means the
searching by tree automata can be linear in n at the best.

Moreover, the presented subtree PDAs have the following two other properties.
First, they are input-driven PDAs [20], which means that each pushdown operation is
determined only by the input symbol. Input-driven PDAs can always be determinised
[20]. Second, their pushdown symbol alphabets contain just one pushdown symbol and
therefore their pushdown store can be implemented by a single integer counter. This
means that the presented PDAs can be transformed to counter automata [3,19], which
is a weaker and simpler model of computation than the PDA.

The rest of the paper is organised as follows. Basic definitions are given in section
2. Some properties of subtrees in prefix notation are discussed in the third section.
The fourth section deals with the subtree PDA. The last section is the conclusion.

2 Basic notions

2.1 Ranked alphabet, tree, prefix notation

We define notions on trees similarly as they are defined in [1,4,5,9].
We denote the set of natural numbers by N. A ranked alphabet is a finite nonempty

set of symbols each of which has a unique nonnegative arity (or rank). Given a ranked
alphabet A, the arity of a symbol a ∈ A is denoted Arity(a). The set of symbols of
arity p is denoted by Ap. Elements of arity 0, 1, 2, . . . , p are respectively called nullary
(constants), unary, binary, . . ., p-ary symbols. We assume that A contains at least
one constant. In the examples we use numbers at the end of the identifiers for a short
declaration of symbols with arity. For instance, a2 is a short declaration of a binary
symbol a.

Based on concepts from graph theory (see [1]), a labelled, ordered, ranked tree
over a ranked alphabet A can be defined as follows:

An ordered directed graph G is a pair (N,R), where N is a set of nodes and R

is a set of linearly ordered lists of edges such that each element of R is of the form
((f, g1), (f, g2), . . . , (f, gn)), where f, g1, g2, . . . , gn ∈ N , n ≥ 0. This element would
indicate that, for node f , there are n edges leaving f , the first entering node g1, the
second entering node g2, and so forth.

A sequence of nodes (f0, f1, . . . , fn), n ≥ 1, is a path of length n from node f0 to
node fn if there is an edge which leaves node fi−1 and enters node fi for 1 ≤ i ≤ n.
A cycle is a path (f0, f1, . . . , fn), where f0 = fn. An ordered dag (dag stands for
Directed Acyclic Graph) is an ordered directed graph that has no cycle. A labelling

162 Proceedings of the Prague Stringology Conference 2009

of an ordered graph G = (A,R) is a mapping of A into a set of labels. In the examples
we use af for a short declaration of node f labelled by symbol a.

Given a node f , its out-degree is the number of distinct pairs (f, g) ∈ R, where
g ∈ A. By analogy, the in-degree of the node f is the number of distinct pairs
(g, f) ∈ R, where g ∈ A.

A labelled, ordered, ranked and rooted tree t over a ranked alphabet A is an ordered
dag t = (N,R) with a special node r ∈ A called the root such that
(1) r has in-degree 0,
(2) all other nodes of t have in-degree 1,
(3) there is just one path from the root r to every f ∈ N , where f 6= r,
(4) every node f ∈ N is labelled by a symbol a ∈ A and out-degree of af is Arity(a).

Nodes labelled by nullary symbols (constants) are called leaves.
Prefix notation pref (t) of a labelled, ordered, ranked and rooted tree t is obtained

by applying the following Step recursively, beginning at the root of t:
Step: Let this application of Step be to node af . If af is a leaf, list a and halt. If af is
not a leaf, let its direct descendants be af1

, af2
, . . . , afn

. Then list a and subsequently
apply Step to af1

, af2
, . . . , afn

in that order.

Example 1. Consider a ranked alphabet A = {a2, a1, a0}. Consider a tree t1 over A
t1 = ({a21, a22, a03, a14, a05, a16, a07}, R), where R is a set of the following ordered
sequences of pairs:

((a21, a22), (a21, a16)),
((a22, a03), (a22, a14)),
((a14, a05)),
((a16, a07))

Tree t1 in prefix notation is string pref (t1) = a2 a2 a0 a1 a0 a1 a0. Trees can be
represented graphically and tree t1 is illustrated in Fig. 1. ⊓⊔

a05

a03 a14 a07

a22 a16

a21

pref(t1) = a2 a2 a0 a1 a0 a1 a0

Figure 1. Tree t1 from Example 1 and its prefix notation

The height of a tree t, denoted by Height(t), is defined as the maximal length of
a path from the root of t to a leaf of t.

2.2 Alphabet, language, pushdown automaton

We define notions from the theory of string languages similarly as they are defined
in [1,10].

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 163

Let an alphabet be a finite nonempty set of symbols. A language over an alphabet
A is a set of strings over A. Symbol A∗ denotes the set of all strings over A including
the empty string, denoted by ε. Set A+ is defined as A+ = A∗ \ {ε}. Similarly for
string x ∈ A∗, symbol xm, m ≥ 0, denotes the m-fold concatenation of x with x0 = ε.
Set x∗ is defined as x∗ = {xm : m ≥ 0} and x+ = x∗ \ {ε} = {xm : m ≥ 1}.

A nondeterministic finite automaton (NFA) is a five-tuple FM = (Q,A, δ, q0, F),
where Q is a finite set of states, A is an input alphabet, δ is a mapping from Q × A
into a set of finite subsets of Q, q0 ∈ Q is an initial state, and F ⊆ Q is the set of
final (accepting) states. A finite automaton FM is deterministic (DFA) if δ(q, a) has
no more than one member for any q ∈ Q and a ∈ A. We note that the mapping δ is
often illustrated by its transition diagram.

Every NFA can be transformed to an equivalent DFA [1,10]. The transformation
constructs the states of the DFA as subsets of states of the NFA and selects only
such accessible states (ie subsets). These subsets are called d-subsets. In spite of the
fact that d-subsets are standard sets, they are often written in square brackets ([])
instead of in braces ({ }).

An (extended) nondeterministic pushdown automaton (nondeterministic PDA) is
a seven-tuple M = (Q,A, G, δ, q0, Z0, F), where Q is a finite set of states, A is an input
alphabet, G is a pushdown store alphabet, δ is a mapping from Q × (A ∪ {ε}) × G∗

into a set of finite subsets of Q × G∗, q0 ∈ Q is an initial state, Z0 ∈ G is the
initial pushdown symbol, and F ⊆ Q is the set of final (accepting) states. Triplet
(q, w, x) ∈ Q×A∗ ×G∗ denotes the configuration of a pushdown automaton. In this
paper we will write the top of the pushdown store x on its right hand side. The initial
configuration of a pushdown automaton is a triplet (q0, w, Z0) for the input string
w ∈ A∗.

The relation ⊢M⊂ (Q ×A∗ × G∗) × (Q ×A∗ × G∗) is a transition of a pushdown
automaton M . It holds that (q, aw, αβ) ⊢M (p, w, γβ) if (p, γ) ∈ δ(q, a, α). The k-
th power, transitive closure, and transitive and reflexive closure of the relation ⊢M

is denoted ⊢k
M , ⊢+

M , ⊢∗
M , respectively. A pushdown automaton M is deterministic

pushdown automaton (deterministic PDA), if it holds:

1. |δ(q, a, γ)| ≤ 1 for all q ∈ Q, a ∈ A ∪ {ε}, γ ∈ G∗.
2. If δ(q, a, α) 6= ∅, δ(q, a, β) 6= ∅ and α 6= β then α is not a suffix of β and β is not

a suffix of α.
3. If δ(q, a, α) 6= ∅, δ(q, ε, β) 6= ∅, then α is not a suffix of β and β is not a suffix of

α.

A pushdown automaton is input-driven if each of its pushdown operations is de-
termined only by the input symbol.
A language L accepted by a pushdown automaton M is defined in two distinct ways:

1. Accepting by final state:

L(M) = {x : δ(q0, x, Z0) ⊢
∗
M (q, ε, γ) ∧ x ∈ A∗ ∧ γ ∈ G∗ ∧ q ∈ F}.

2. Accepting by empty pushdown store:

Lε(M) = {x : (q0, x, Z0) ⊢
∗
M (q, ε, ε) ∧ x ∈ A∗ ∧ q ∈ Q}.

If PDA accepts the language by empty pushdown store then the set F of final states
is the empty set. The subtree PDAs accept the languages by empty pushdown store.

For more details see [1,10].

164 Proceedings of the Prague Stringology Conference 2009

2.3 Example of string suffix automaton

Example 2. Given the prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 of tree t1 from
Example 1, the corresponding nondeterministic suffix automaton is
FMnsuf (pref(t1)) = ({0, 1, 2, 3, 4, 5, 6, 7},A, δn, 0, {7})), where its transition diagram
is illustrated in Fig. 2. (For the construction of the nondeterministic suffix automaton
see [14].)

After the standard transformation of a nondeterministic suffix automaton to a
deterministic one [10], the deterministic suffix automaton for pref(t1) is
FMdsuf (pref(t1)) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},
A, δd, 0, {[7], [3, 5, 7], [5, 7]})), where its transition diagram is illustrated in Fig. 3.

0 1 2 3 4 5 6 7

a2 a2 a0 a1 a0 a1 a0

a2

a0

a1

a0

a1

a0

Figure 2. Transition diagram of nondeterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2 a2 a0 a1

a1

a1

a0 a1 a0

a0
a0

a1

a0

Figure 3. Transition diagram of deterministic suffix automaton for string
a2 a2 a0 a1 a0 a1 a0

3 Properties of subtrees in prefix notation

In this section we describe some general properties of the prefix notation of a tree
and of its subtrees. These properties are important for the construction of subtree
PDA, which is described in the next section.

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 165

Example 3. Consider tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from
Example 1, which is illustrated in Fig. 1. Tree t1 contains only subtrees shown in
Fig. 4.

a0

a0 a1 a0

a2 a1

a2

a2 a2 a0 a1 a0 a1 a0

a0

a0 a1

a2

a2 a0 a1 a0

a0

a1

a1 a0

a0

a0

Figure 4. All subtrees of tree t1 from Example 1, and their prefix notations

Generally, it holds for any tree that each of its subtrees in prefix notation is a
substring of the tree in prefix notation.

Theorem 4. Given a tree t and its prefix notation pref (t), all subtrees of t in prefix
notation are substrings of pref (t).

Proof. In [12]. ⊓⊔

However, not every substring of a tree in prefix notation is a prefix notation of its
subtree. This can be easily seen from the fact that for a given tree with n nodes there
can be O(n2) distinct substrings, but there are just n subtrees – each node of the
tree is the root of just one subtree. Just those substrings which themselves are trees
in prefix notation are those which are the subtrees in prefix notation. This property
is formalised by the following definition and theorem.

Definition 5. Let w = a1a2 · · · am, m ≥ 1, be a string over a ranked alphabet A.
Then, the arity checksum ac(w) = arity(a1) + arity(a2) + · · · + arity(am) − m + 1=∑m

i=1 arity(ai) − m + 1.

Theorem 6. Let pref (t) and w be a tree t in prefix notation and a substring of
pref (t), respectively. Then, w is the prefix notation of a subtree of t, if and only if
ac(w) = 0, and ac(w1) ≥ 1 for each w1 , where w = w1x, x 6= ε.

Proof. In [12]. ⊓⊔

We note that in subtree PDAs the arity checksum is computed by pushdown
operations, where the contents of the pushdown store represents the corresponding
arity checksum. For example, an empty pushdown store means that the corresponding
arity checksum is equal to 0.

4 Subtree pushdown automaton

This section deals with the subtree PDA for trees in prefix notation: algorithms and
theorems are given and the subtree PDA and its construction are demonstrated on
an example.

166 Proceedings of the Prague Stringology Conference 2009

Definition 7. Let t and pref (t) be a tree and its prefix notation, respectively. A
subtree pushdown automaton for pref (t) accepts all subtrees of t in prefix notation.

First, we start with a PDA which accepts the whole subject tree in prefix nota-
tion. The construction of the PDA accepting a tree in prefix notation by the empty
pushdown store is described by Alg. 1. The constructed PDA is deterministic.

Algorithm 1. Construction of a PDA accepting a tree t in prefix notation pref (t).
Input: A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an,
n ≥ 1.
Output: PDA Mp(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. For each state i, where 1 ≤ i ≤ n, create a new transition
δ(i − 1, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 8. A PDA accepting tree t1 in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0
from Example 1, which has been constructed by Alg. 1, is deterministic PDA Mp(t1) =
({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ1, 0, S, ∅)), where the mapping δ1 is a set of the following
transitions:

δ1(0, a2, S) = (1, SS)
δ1(1, a2, S) = (2, SS)
δ1(2, a0, S) = (3, ε)
δ1(3, a1, S) = (4, S)
δ1(4, a0, S) = (5, ε)
δ1(5, a1, S) = (6, S)
δ1(6, a0, S) = (7, ε)

The transition diagram of deterministic PDA Mp(t1) is illustrated in Fig. 5. In this
figure for each transition rule δ1(p, a, α) = (q, β) from δ the edge leading from state
p to state q is labelled by the triple of the form a|α 7→ β.

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ εa1|S 7→ Sa0|S 7→ εa1|S 7→ Sa0|S 7→ ε

Figure 5. Transition diagram of deterministic PDA Mp(t1) accepting tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 8

Fig. 6 shows the sequence of transitions (trace) performed by deterministic PDA
Mp(t1) for tree t1 in prefix notation. ⊓⊔

It holds that every input-driven PDA that has the same pushdown operations
as they are defined for the above deterministic PDA Mp(t) for tree t in prefix nota-
tion behaves such that the contents of its pushdown store corresponds to the arity
checksum. This is described by the following theorem. We note that such pushdown
operations correspond to the pushdown operations of the standard top-down parsing
algorithm for a context-free grammar with rules of the form

S → a Sarity(a).

For principles of the standard top–down (LL) parsing algorithm see [1].

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 167

State Input Pushdown Store
0 a2 a2 a0 a1 a0 a1 a0 S

1 a2 a0 a1 a0 a1 a0 S S

2 a0 a1 a0 a1 a0 S S S

3 a1 a0 a1 a0 S S

4 a0 a1 a0 S S

5 a1 a0 S

6 a0 S

7 ε ε

accept

Figure 6. Trace of deterministic PDA Mp(t1) from Example 8 for tree t1 in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0

Theorem 9. Let M = ({Q,A, {S}, δ, 0, S, ∅) be an input-driven PDA of which each
transition from δ is of the form δ(q1, a, S) = (q2, S

i), where i = arity(a). Then, if
(q3, w, S) ⊢+

M (q4, ε, S
j), then j = ac(w).

Proof. In [12]. ⊓⊔

The correctness of the deterministic PDA constructed by Alg. 1, which accepts
trees in prefix notation, is described by the following lemma.

Lemma 10. Given a tree t and its prefix notation pref (t), the PDA Mp(t) = ({0, 1, 2,
. . . , n},A, {S}, δ, 0, S, ∅), where n ≥ 0, constructed by Alg. 1 accepts pref (t).

Proof. In [12]. ⊓⊔

We present the construction of the deterministic subtree PDA for trees in prefix
notation. The construction consists of two steps. First, a nondeterministic subtree
PDA is constructed by Alg. 2. This nondeterministic subtree PDA is an extension
of the PDA accepting tree in prefix notation, which is constructed by Alg. 1. Sec-
ond, the constructed nondeterministic subtree PDA is transformed to the equivalent
deterministic subtree PDA. Although a nondeterministic PDA cannot generally be
determinised, the constructed nondeterministic subtree PDA is an input-driven PDA
and therefore can be determinised [20].

Algorithm 2. Construction of a nondeterministic subtree PDA for a tree t in prefix
notation pref (t).
Input:A tree t over a ranked alphabet A; prefix notation pref (t) = a1a2 · · · an, n ≥ 1.
Output:Nondeterministic subtree PDA Mnps(t) = ({0, 1, 2, . . . , n},A, {S}, δ, 0, S, ∅).
Method:

1. Create PDA Mnps(t) as PDA Mp(t) by Alg. 1.
2. For each state i, where 2 ≤ i ≤ n, create a new transition

δ(0, ai, S) = (i, SArity(ai)), where S0 = ε. ⊓⊔

Example 11. A subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by
Alg. 2, is nondeterministic PDA Mnps(t1) = ({0, 1, 2, 3, 4, 5, 6, 7},A, {S}, δ2, 0, S, ∅)),
where mapping δ2 is a set of the following transitions:

168 Proceedings of the Prague Stringology Conference 2009

δ2(0, a2, S) = (1, SS)
δ2(1, a2, S) = (2, SS) δ2(0, a2, S) = (2, SS)
δ2(2, a0, S) = (3, ε) δ2(0, a0, S) = (3, ε)
δ2(3, a1, S) = (4, S) δ2(0, a1, S) = (4, S)
δ2(4, a0, S) = (5, ε) δ2(0, a0, S) = (5, ε)
δ2(5, a1, S) = (6, S) δ2(0, a1, S) = (6, S)
δ2(6, a0, S) = (7, ε) δ2(0, a0, S) = (7, ε)

The transition diagram of nondeterministic PDA Mnps(t1) is illustrated in Fig.
7. Again, in this figure for each transition rule δ2(p, a, α) = (q, β) from δ2 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

A comparison of Figs. 7 and 2 shows that the states and the transitions of non-
deterministic subtree PDA Mnps(t1) correspond to the states and the transitions,
respectively, of the nondeterministic string suffix automaton for pref (t1); the transi-
tions of the subtree PDA are extended by pushdown operations so that it holds that
the number of symbols S in the pushdown store is equal to the corresponding arity
checksum. ⊓⊔

0 1 2 3 4 5 6 7

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a2|S 7→ SS

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 7. Transition diagram of nondeterministic subtree PDA Mnps(t1) for tree t1
in prefix notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 11

Theorem 12. Given a tree t and its prefix notation pref (t), the PDA Mnps(t) con-
structed by Alg. 2 is a subtree PDA for pref (t).

Proof. In [12]. ⊓⊔

It is known that each nondeterministic input-driven PDA can be transformed to
an equivalent deterministic input-driven PDA [20]. To construct deterministic subtree
or tree pattern PDAs from their nondeterministic versions we use the transformation
described by Alg. 3. This transformation is a simple extension of the well known
transformation of a nondeterministic finite automaton to an equivalent deterministic
one [10]. Again, the states of the resulting deterministic PDA correspond to subsets of
the states of the original nondeterministic PDA, and these subsets are again called d-
subsets. Moreover, the original nondeterministic PDA is assumed to be acyclic with a
specific order of states, and Alg. 3 precomputes the possible contents of the pushdown
store in particular states of the deterministic PDA according to pushdown operations
and selects only those transitions and accessible states of the deterministic PDA for

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 169

which the pushdown operations are possible. The assumption that the PDA is acyclic
results in a finite number of possible contents of the pushdown store. Furthermore,
the assumption of the specific order of states allows us to compute these contents of
the pushdown store easily in a one-pass way.

Algorithm 3. Transformation of an input-driven nondeterministic PDA to an equi-
valent deterministic PDA.
Input: Acyclic input-driven nondeterministic PDA Mnx(t) = ({0, 1, 2, . . . , n},A,{S},
δ, 0, S, ∅), where the ordering of its states is such that if δ(p, a, α) = (q, β), then p < q.
Output: Equivalent deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, qI , S, ∅).
Method:

1. Let cpds(q′), where q′ ∈ Q′, denote a set of strings over {S}. (The abbreviation
cpds stands for Contents of the PushDown Store.)

2. Initially, Q′ = {[0]}, qI = [0], cpds([0]) = {S} and [0] is an unmarked state.
3. (a) Select an unmarked state q′ from Q′ such that q′ contains the smallest possible

state q ∈ Q, where 0 ≤ q ≤ n.
(b) For each input symbol a ∈ A:

i. Add transition δ′(q′, a, α) = (q′′, β), where q′′ = {q : δ(p, a, α) = (q, β) for
all p ∈ q′}. If q′′ is not in Q′ then add q′′ to Q′ and create cpds(q′′) = ∅.
Add ω, where δ(q′, a, γ) ⊢Mdx(t) (q′′, ε, ω) and γ ∈ cpds(q′), to cpds(q′′).

(c) Set the state q′ as marked.
4. Repeat step 3 until all states in Q′ are marked. ⊓⊔

The deterministic subtree automaton for a tree in prefix notation is demonstrated
by the following example. The PDA reads an input subtree in prefix notation and
the accepting state corresponds to the rightmost leaves of all occurrences of the input
subtree in the subject tree.

Example 13. The deterministic subtree PDA for tree t1 in prefix notation
pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 1, which has been constructed by Alg. 3
from nondeterministic subtree PDA Mnps(t1) from Example 11, is deterministic PDA
Mdps(t1) = ({[0], [1, 2], [2], [3], [4], [5], [6], [7], [3, 5, 7], [4, 6], [5, 7]},A, {S}, δ3, [0], S, ∅)),
where mapping δ3 is a set of the following transitions:

δ3([0], a2, S) = ([1, 2], SS) δ3([0], a0, S) = ([3, 5, 7], ε)
δ3([1, 2], a2, S) = ([2], SS) δ3([0], a1, S) = ([4, 6], S)
δ3([2], a0, S) = ([3], ε) δ3([1, 2], a0, S) = ([3], ε)
δ3([3], a1, S) = ([4], S) δ3([4, 6], a0, S) = ([5, 7], ε)
δ3([4], a0, S) = ([5], ε)
δ3([5], a1, S) = ([6], S)
δ3([6], a0, S) = ([7], ε)

We note that there are no transitions leading from states [3, 5, 7], [5, 7] and [7],
because the pushdown store in these state is always empty and therefore no transition
is possible from these states due to the pushdown operations. This means that the
deterministic subtree PDA Mdps(t1) has fewer transitions than the deterministic string
suffix automaton constructed for pref (t1) [6,14,18], as can be seen by comparing
Figs. 3 and 8.

The transition diagram of deterministic PDA Mdps(t1) is illustrated in Fig. 8.
Again, in this figure for each transition rule δ3(p, a, α) = (q, β) from δ3 the edge
leading from state p to state q is labelled by the triple of the form a|α 7→ β.

170 Proceedings of the Prague Stringology Conference 2009

[0] [1, 2] [2] [3] [4] [5] [6] [7]

[3, 5
7]

[4, 6] [5, 7]

a2|S 7→ SS

a2|S 7→ SS

a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ εa0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

Figure 8. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix
notation pref (t1) = a2 a2 a0 a1 a0 a1 a0 from Example 13

Fig. 9 shows the sequence of transitions (trace) performed by deterministic subtree
PDA Mdps(t1) for an input subtree st in prefix notation pref (st) = a1a0. The accepting
state is [5, 7], which means there are two occurrences of the input subtree st in tree
t1 and their rightmost leaves are nodes a05 and a07. ⊓⊔

State Input Pushdown Store
[0] a1 a0 S

[4, 6] a0 S

[5, 7] ε ε

accept

Figure 9. Trace of deterministic subtree PDA Mdps(t1) from Example 13 for an input
subtree st in prefix notation pref (st) = a1a0

Theorem 14. Given an acyclic input-driven nondeterministic PDA Mnx(t) = (Q,A,

{S}, δ, q0, S, ∅), the deterministic PDA Mdx(t) = (Q′,A, {S}, δ′, {q0}, S, ∅) construc-
ted by Alg. 3 is equivalent to PDA Mnx(t).

Proof. In [12]. ⊓⊔

We note that trees with the structure pref (t) = (a1)n−1a0 represent strings. Such
a tree is illustrated in Fig. 10. It can be simply shown that the deterministic subtree
PDAs for such trees have the same number of states and transitions as the determin-
istic suffix automata constructed for pref (t) and accept the same language.

It is obvious that the number of distinct subtrees in a tree can be at most the
number of nodes of the tree.

Lemma 15. Given a tree t with n nodes, the number of distinct subtrees of tree t is
equal or smaller than n.

Proof. In [12]. ⊓⊔

At the end of this section we discuss the total size of the constructed deterministic
subtree PDA, which cannot be greater than the total size of the deterministic suffix
automaton constructed for pref (t) [6,7]. We recall that the deterministic subtree
PDA can have even fewer states and transitions than the corresponding deterministic
string suffix automaton as certain states and transitions need not be accessible due
to pushdown operations.

Jan Janoušek: String Suffix Automata and Subtree Pushdown Automata 171

a1

a1

a1

...

a0

pref(t2) = (a1)n−1a0

Figure 10. A tree t2, which represents a string, and its prefix notation

Theorem 16. Given a tree t with n nodes and its prefix notation pref (t), the deter-
ministic subtree PDA Mdps(t) constructed by Algs. 2 and 3 has just one pushdown
symbol, fewer than N ≤ 2n + 1 states and at most N + n − 1 ≤ 3n transitions.

Proof. The deterministic subtree PDA in question may have only states and tran-
sitions which correspond to the states and the transitions, respectively, of the de-
terministic suffix automaton constructed for pref (t). Therefore, the largest possible
numbers of states and transitions of the deterministic subtree PDA are the same as
those of the deterministic suffix automaton. The numbers of states and transitions
of the deterministic suffix automaton are proved in Theorems 6.1 and 6.2 in [7] or in
Theorem 5.3.5 in [18]. We note that these proofs are based on the following principle:
Given a substring u, the d-subset of the state in which the deterministic suffix au-
tomaton is after reading u is called the terminator set of u [18]. It holds for any two
substrings u1 and u2 that their terminator sets cannot overlap; in other words, the
terminator sets of a deterministic suffix automaton correspond to a tree structure. It
has been proved that this tree structure is such that the above-mentioned numbers
of states and transitions hold. ⊓⊔

5 Conclusion

We have described a new kind of pushdown automata: subtree PDAs for trees in
prefix notation. These pushdown automata are in their properties analogous to suffix
automata, which are widely used in stringology. The presented subtree PDAs repre-
sent a complete index of the subject tree with n nodes for all possible subtrees and
the deterministic version allows to find all occurrences of input subtrees of size m in
time linear in m and not depending on n.

Regarding specific tree algorithms whose model of computation is the standard
deterministic pushdown automaton, recently we have introduced principles of other
three new algorithms. First, a new and simple method for constructing subtree pattern
matchers as deterministic pushdown automata directly from given subtrees without
constructing finite tree automata as an intermediate product [8,13]. Second, tree
pattern pushdown automata, which represent a complete index of the tree for all tree
patterns matching the tree and the search phase of all occurrences of a tree pattern

172 Proceedings of the Prague Stringology Conference 2009

of size m is performed in time linear in m and not depending on the size of the
tree [12,13]. These automata representing indexes of trees for all tree patterns are
analogous in their properties to the string factor automata [6,7] and are an extension
of the subtree PDA presented in this paper. Third, a method for finding all repeats
of connected subgraphs in trees with the use of subtree or tree pattern PDA [15,13].
More details on these results and related information can also be found on [2].

I would like to thank to Bořivoj Melichar and anonymous referees – their comments
have contributed to improving the text significantly.

References

1. A. V. Aho and J. D. Ullman: The theory of parsing, translation, and compiling, Prentice-Hall
Englewood Cliffs, N.J.,, 1972.

2. Arbology www pages: Available on: http://www.arbology.org, July 2009.
3. J. Berstel: Transductions and Context-Free Languages, Teubner Studienbucher, Stuttgart,

1979.
4. L. Cleophas: Tree Algorithms. Two Taxonomies and a Toolkit., PhD thesis, Technische Uni-

versiteit Eindhoven, Eindhoven, 2008.
5. H. Comon, M. Dauchet, R. Gilleron, C. Löding, F. Jacquemard, D. Lugiez, S. Tison,

and M. Tommasi: Tree automata techniques and applications. Available on: http://www.
grappa.univ-lille3.fr/tata, 2007, release October, 12th 2007.

6. M. Crochemore and C. Hancart: Automata for matching patterns, in Handbook of For-
mal Languages, G. Rozenberg and A. Salomaa, eds., vol. 2 Linear Modeling: Background and
Application, Springer-Verlag, Berlin, 1997, ch. 9, pp. 399–462.

7. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, New Jersey, 1994.
8. T. Flouri, J. Janoušek, and B. Melichar: Tree pattern matching by deterministic push-

down automata. accepted for WAPL 2009 conference, 2009.
9. F. Gecseg and M. Steinby: Tree languages, in Handbook of Formal Languages, G. Rozenberg

and A. Salomaa, eds., vol. 3 Beyond Words. Handbook of Formal Languages, Springer-Verlag,
Berlin, 1997, pp. 1–68.

10. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to automata theory, lan-

guages, and computation, Addison-Wesley, Boston, 2nd ed., 2001.
11. J. Janoušek and B. Melichar: On regular tree languages and deterministic pushdown auto-

mata. accepted for publication in Acta Informatica, Springer, 2009.
12. J. Janoušek and B. Melichar: Subtree and tree pattern pushdown automata for trees in

prefix notation. submitted for publication, 2009.
13. London stringology days 2009 conference presentations: Available on: http://www.dcs.kcl.

ac.uk/events/LSD&LAW09/, King’s College London, London, February 2009.
14. B. Melichar, J. Holub, and T. Polcar: Text searching algorithms. Available on: http:

//stringology.org/athens/, 2005, release November 2005.
15. B. Melichar and J. Janoušek: Repeats in trees by subtree and tree pattern pushdown auto-

mata. draft, 2009.
16. G. Rozenberg and A. Salomaa, eds., Handbook of Formal Languages, Springer-Verlag,

Berlin, 1997.
17. G. Rozenberg and A. Salomaa, eds., Vol. 1: Word, Language, Grammar, Handbook of

Formal Languages, Springer-Verlag, Berlin, 1997.
18. B. Smyth: Computing Patterns in Strings, Addison-Wesley-Pearson Education Limited, Essex,

England, 2003.
19. L. G. Valiant and M. Paterson: Deterministic one-counter automata, in Automaten theorie

und Formale Sprachen, 1973, pp. 104–115.
20. K. Wagner and G. Wechsung: Computational Complexity, Springer-Verlag, Berlin, 2001.

