
On Minimizing Deterministic Tree Automata

Loek Cleophas, Derrick G. Kourie, Tinus Strauss, and Bruce W. Watson

FASTAR Research Group, Department of Computer Science, University of Pretoria,
0002 Pretoria, Republic of South Africa, http://www.fastar.org

loek@loekcleophas.com, dkourie@cs.up.ac.za, tstrauss@cs.up.ac.za, bruce@fastar.org

Abstract. We present two algorithms for minimizing deterministic frontier-to-root
tree automata (dfrtas) and compare them with their string counterparts. The pre-
sentation is incremental, starting out from definitions of minimality of automata and
state equivalence, in the style of earlier algorithm taxonomies by the authors. The first
algorithm is the classical one, initially presented by Brainerd in the 1960s and pre-
sented (sometimes imprecisely) in standard texts on tree language theory ever since.
The second algorithm is completely new. This algorithm, essentially representing the
generalization to ranked trees of the string algorithm presented by Watson and Daciuk,
incrementally minimizes a dfrta. As a result, intermediate results of the algorithm can
be used to reduce the initial automaton’s size. This makes the algorithm useful in situ-
ations where running time is restricted (for example, in real-time applications). We also
briefly sketch how a concurrent specification of the algorithm in CSP can be obtained
from an existing specification for the dfa case.

Keywords: deterministic frontier-to-root tree automata, deterministic bottom-up tree
automata, minimization, minimality

1 Introduction

Minimization of deterministic finite string automata (dfas) has been studied since
the late 1950s. Many applications of such minimization arose, and as a result many
algorithms were published, often with vastly differing presentation styles and lev-
els of formality [12]. For the case of deterministic frontier-to-root (aka bottom-up)
tree automata (dfrtas), minimization was considered less frequently, likely due to
fewer applications being considered at the time. Minimization for dfrtas was first
discussed in the late 1960s by Brainerd [1,2], who presented a textual procedure for
minimization that is essentially the generalization to trees of a classical dfa mini-
mization approach. Later standard references either do not discuss minimization at
all or present an approach similar to Brainerd’s. Later standard references either do
not discuss minimization at all [8], have a discussion similar to Brainerd’s [9], or give
a somewhat imprecise algorithm [6]. As pointed out by Carrasco, Daciuk and For-
cada [3], discussions of an implementation of such a minimization algorithm are hard
to find. Their paper presents such a discussion for the case of deterministic bottom-
up tree automata over unranked trees. Carrasco et al. also presented an algorithm
for incremental construction of minimal deterministic bottom-up tree automata over
unranked trees [4].

For the string case, Watson presented an extensive taxonomy of minimization
algorithms [12, Chapter 7]. A concurrent specification of an incremental minimization
algorithm for the string case was recently presented by Strauss et al. [11], offering
possibilities for exploiting parallelism on systems or networks of systems with multiple
CPU cores.

Loek Cleophas, Derrick G. Kourie, Tinus Strauss, Bruce W. Watson: On Minimizing Deterministic Tree Automata, pp. 173–182.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

174 Proceedings of the Prague Stringology Conference 2009

Both in the string and the tree case, minimization is based on the notion of
language equivalence between states; either in the form of that equivalence relation, its
complement (i.e. the distinguishability relation), or of the state set partition induced
by the equivalence relation. In the classical approach, the algorithms start off with
a set of possibly equivalent state pairs. This is then refined iteratively by removing
state pairs that are definitely not equivalent, until the greatest fixed-point is reached.
The resulting set defines a partitioning of the states set into equivalence classes which
correspond to the state set of the minimal automaton equivalent to the original one.
Put differently, the algorithms compute the greatest fixed point from the top i.e. from
the unsafe side [13], meaning that intermediate results of the algorithm cannot be
used to reduce the initial dfa.

Watson in [12] and most recently Watson & Daciuk in [13] present an incremental
approach to dfa minimization. Their approach results in an algorithm that starts
out with a singleton partition for each of the states of the initial dfa and refines
this partition by iteratively merging partitions that are shown to be equivalent. The
greatest fixed-point reached corresponds to the state set of the minimal automaton
equivalent to the original one. Such an algorithm thus computes the greatest fixed
point from below i.e. from the safe side. Clearly, intermediate results from such an
algorithm can already be used to reduce the original dfa.

In this paper, we focus on minimization of dfrtas. We present both an algorithm
using the classical approach and a new algorithm using the incremental approach
to minimization. The latter is the first description of such an algorithm for the tree
case. The former is presented more precisely than in most existing literature (with
the exception of [3], although that work considers the case of unranked deterministic
bottom-up tree automata). Furthermore, its inclusion allows one easily to compare
and contrast the two approaches (as is the case for dfa minimization algorithms in
the taxonomy of such algorithms in [12, Ch. 7]).

We also briefly consider the generalization to the dfrta case of an existing con-
current specification in CSP of the incremental dfa minimization algorithm. This
elegant generalization further increases the parallelism in the specification.

The rest of this paper is structured as follows:

– Section 2 discusses some preliminaries on dfas, trees, and dfrtas needed in the
remainder of the paper.

– Equivalence of states and minimality of dfas and dfrtas are discussed in Sec-
tion 3.

– Section 4 discusses the classical approach to minimization of dfas and dfrtas.
– The incremental approach to minimization and our resulting new incremental

minimization algorithm for dfrtas is discussed in Section 5.
– Section 6 presents a concurrent specification for the new algorithm in CSP, based

on an existing specification of incremental minimization for the string case.
– Finally, Section 7 presents some concluding remarks and suggestions for future

work.

2 Preliminaries

Since our discussion of minimization of tree automata frequently refers to that for
the case of string automata, we recall some definitions related to deterministic finite
(string) automata.

L. Cleophas, D. G. Kourie, T. Strauss, B. W. Watson: On Minimizing Deterministic Tree. . . 175

Definition 1. A dfa M is a 5-tuple (Q,Σ, δ, q0, F) such that Q is a finite set, the
state set; Σ is an alphabet (a finite set of symbols); δ ∈ Q×Σ 9 Q is the transition
function; q0 ∈ Q is the initial or start state; and F ⊆ Q is the set of final or
accepting states.

We extend transition function δ to its transitive closure δ∗, defined inductively
by δ∗(q, ε) = q and δ∗(q, aw) = δ∗(δ(q, a), w). For every state q ∈ Q of a dfa, its

right language (left language) is defined as
→

L= {w ∈ Σ∗|δ∗(q, w) ∈ F} (
←

L= {w ∈
Σ∗|δ∗(q0, w) = q}).

We call a dfa complete if and only if its transition function δ is a total function.
A dfa with a partial transition function can be transformed into a complete one
by adding a single absorption state or sink state, usually denoted ⊥, and having
undefined transitions lead to this state. A state q ∈ Q is called unreachable if and
only if its left language is empty. A dfa without unreachable states is called reduced.
For simplicity, we assume dfas to be both reduced and complete from here on.

Many of the notations and definitions we use are related to regular tree language
theory. To a large extent they are straightforward generalizations of ones familiar
from regular string language theory. Readers may want to consult e.g. [5,6,8,9] for
more detail.

Let Σ be an alphabet, and r ∈ Σ → N. Pair (Σ, r) is a ranked alphabet, r is a
ranking function, and for all a ∈ Σ, r(a) is called the rank or arity of a. We use
Σn for 0 ≤ n to indicate the subset of Σ of symbols with arity n. In algorithms and
predicates, we will use n to indicate the rank or arity of a symbol a.

Given a ranked alphabet (Σ, r), the set of ordered, ranked trees over this alpha-
bet, set Tr(Σ, r), is the smallest set satisfying a ∈ Tr(Σ, r) for all a ∈ Σ0 and
a(t1, . . . , tn) ∈ Tr(Σ, r) for all t1, . . . , tn ∈ Tr(Σ, r), a ∈ Σ such that r(a) = n 6= 0.
Such trees can trivially be presented as rooted, connected, directed, acyclic graphs in
which each node has at most one incoming edge. Nodes labeled by symbols of rank 0
are called leaf nodes or leaves ; the sequence of leafs of a tree is called its frontier.

In one common view on processing of a tree by tree automata (tas), each tree
node is annotated with a state. For each node labeled by a symbol a (of rank n),
state q0 and states q1, · · · , qn may be assigned to that node and its direct subnodes
respectively if the tuple (q0, (q1, · · · qn)) is in the transition relation of symbol a. Note
that this simplifies to (q0, ()) for n = 0. A tree is accepted by a ta if and only if it
can be consistently annotated such that the state assigned to the root is a so-called
root accepting or final state.

By considering transitions of tas to be directed frontier-to-root, we obtain the
nondeterministic εnfrtas; the deterministic dfrtas are obtained by further restrict-
ing the automata to have no ε-transitions and by restricting the transition relations
to be (partial) functions, i.e. for every state tuple and symbol yielding (at most) one
state. This motivates the following definition:

Definition 2. A dfrta is a 5-tuple (Q,Σ, r , R,Qra) such that Q is a finite set,
the state set; (Σ, r) is a ranked alphabet; R = {Ra|a ∈ Σ} is the set of transition
functions (where for all a ∈ Σ with r(a) = n we have Ra ∈ Qn

9 Q); and Qra ⊆ Q

is the set of root accepting or final states.

Compared to dfas on strings, two main differences appear: dfrtas have no start
states, and each transition on a symbol (of rank or arity n) relates an n-tuple of states

176 Proceedings of the Prague Stringology Conference 2009

to a state, instead of relating a single state to a state. Note that we will sometimes
refer to Qra as F .

Just as the extension, δ∗, of a dfa’s transition function δ (δ yields the state reached
after processing a single symbol) yields the state reached after processing a string,
for a dfrta we can define a function RSt yielding the state reached after processing
a tree, i.e. the state assigned to the root node of such a tree. It is defined inductively
by RSt(a) = Ra() for a ∈ Σ0 and RSt(a(t1, . . . , tn)) = Ra(RSt(t1), . . . ,RSt(tn)) for
t1, . . . , tn ∈ Tr(Σ, r), a ∈ Σ such that r(a) = n 6= 0.

Using this definition, we can define the language accepted at state q in a dfrta

M as L↓

M(q) = {t ∈ Tr(Σ, r)|RSt(t) = q}. The language accepted by the dfrta

then is simply the language accepted at either of its final or root accepting states:
LM =

⋃

q∈Qra

L↓

M(q). If M is clear from the context, we simply write L instead of

LM . Note that L↓

M(q) is analogous to the left language of a dfa state [7]; for obvious
reasons, we will therefore call it the down language of state q. Likewise, we define
the up language of a state, a notion similar to the right language of a dfa state [7]:

L↑

M(q) = {t ∈ Tr(Σ ′, r ′)|RSt(t ·# s) ∈ F for all s ∈ L↓

M(q)} where t has a single leaf
labeled # (and Σ ′ and r ′ are obtained by extending Σ and r with this symbol of
arity 0) and t ·# s denotes the tree obtained from t by substituting tree s for this leaf.

We call a dfrta complete, similar to the notion of completeness for dfas, if and
only if the Ra are total functions; a dfrta that is not complete can always be made
complete by adding a sink state and transitions to it, as is the case for dfas. A dfrta

state q is unreachable if and only if it can never be assigned to the root of any tree by
a computation of the dfrta—i.e. if and only if its down language L↓

M is empty. Like
dfas, dfrtas are reduced if and only if they contain no unreachable states. From
here on, we assume dfrtas to be both reduced and complete.

Finally, the size of a dfa or dfrta is defined as |Q|, i.e. the size of its state set.

3 Equivalence and minimality

We use Equiv as a predicate on two dfa states, defined for all p, q ∈ Q by

Equiv(p, q) ≡ (
→

L (p) =
→

L (q)).

and as a predicate on two dfrta states, defined for all p, q ∈ Q by

Equiv(p, q) ≡ (L↑(p) = L↑(q)).

Thus dfa (dfrta) states are equivalent if and only if their right languages (up

languages) are the same. Using an inductive definition of
→

L, Equiv(p, q) for dfa states
can easily be defined recursively [13] as

(p ∈ F ≡ q ∈ F) ∧
〈

∀ a : a ∈ Σ : Equiv(δ(p, a), δ(q, a))
〉

.

Similarly, Equiv(p, q) can be defined recursively for dfrta states. Before doing so, we
introduce two abbreviations:

–
→
ρ i:s is used to abbreviate (ρ1, . . . , ρi−1, s, ρi+1, . . . , ρn) (given

→
ρ= (ρ1, . . . , ρn));

– Predicate P (a, i,
→
ρ) is defined as a ∈ Σ ∧ 1 ≤ i ≤ n ∧

→
ρ∈ Qn.

L. Cleophas, D. G. Kourie, T. Strauss, B. W. Watson: On Minimizing Deterministic Tree. . . 177

Using these abbreviations Equiv(p, q) can be defined recursively for dfrta states
as

(p ∈ Qra ≡ q ∈ Qra) ∧
〈

∀ a, i,
→
ρ : P (a, i,

→
ρ) : Equiv(Ra(

→
ρ i:p), Ra(

→
ρ i:q))

〉

(proof omitted and similar to the string case, albeit slightly more complicated due to
the generalisation from string right languages to tree up languages). In other words,
two dfrta states are equal if and only if they are both final or non-final, and for
each alphabet symbol and each two state tuples that are identical except for the
appearance of p and q in corresponding positions, the transitions from these two
tuples on the symbol lead to equivalent states.

The usual definition of minimality of a finite automaton (whether on strings or
on trees), is that no language equivalent automaton with fewer states exists. Using
the definition of up language for dfrta states (respectively right language for dfa

states), minimality can also be written as a predicate

〈

∀ p, q ∈ Q : p 6= q : ¬Equiv(p, q)
〉

.

For any two states p, q (such that p 6= q), if Equiv(p, q) holds, they can be merged,
i.e. one of them can be eliminated in favor of the other (while redirecting in-transitions
to the eliminated state to the equivalent remaining one). Eventually, the resulting
automaton will be the minimal one recognizing the same language as the original
one. (Note that this minimal dfa or dfrta is unique up to isomorphism). We do not
address this reduction step in this paper, but focus on the computation of Equiv in
two essentially different ways.

4 The classical minimization approach

In the classical approach, the computation of Equiv starts out from two initial par-
titions, corresponding to F and Q\F . This is refined iteratively until the greatest
fixed-point is reached. The resulting partitioning corresponds to the state set of the
minimal automaton equivalent to the original one. Put differently, the algorithms
compute the greatest fixed point from the top i.e. from the unsafe side [13].

Classically, minimization algorithms may in fact be based on computing the dis-
tinguishability relation between states instead of the equivalence relation, or on com-
puting the partition induced on states by the equivalence relation, or some combi-
nation of the three. One variant of the classical minimization approach for the case
of dfas is presented in [12, Algorithm 7.18]. It uses layerwise computation of Equiv
(called E there) and of its negation ¬Equiv (called D there, and not included in our
presentation). We slightly adapt that algorithm to our notation here:

178 Proceedings of the Prague Stringology Conference 2009

Algorithm 3 (Layerwise computation of Equiv for dfas)

H := (F × F) ∪ ((Q\F) × (Q\F));
Hold := Q × Q;
{ invariant: H ⊇ Equiv }
do H 6= Hold →

{ H 6= Hold }
Hold := H ;
for (p, q) : (p, q) ∈ Hold →

as 〈∃ a : a ∈ Σ : (δ(p, a), δ(q, a)) 6∈ Hold〉 → H := H\(p, q) sa

rof

od{ H = Equiv }

As pointed out by Watson, without the computation of ¬Equiv (i.e. D), this is
essentially Wood’s algorithm for computing minimal dfas [14, p. 132], with Wood
stating it is based on Moore’s 1950s work [10].

A version of this algorithm for the case of dfrtas is presented below. It essentially
corresponds to the approach in [6, Section 1.5].1 The resulting equivalence relation
Equiv (called P there) is then used to determine the induced equivalence classes and
construct the corresponding minimal dfrta.

Algorithm 4 (Layerwise computation of Equiv for dfrtas)

H := (F × F) ∪ ((Q\F) × (Q\F));
Hold := Q × Q;
{ invariant: H ⊇ Equiv }
do H 6= Hold →

{ H 6= Hold }
Hold := H ;
for (p, q) : (p, q) ∈ Hold →

as
〈

∃ a, i,
→
ρ : P (a, i,

→
ρ) : (Ra(

→
ρ i:p), Ra(

→
ρ i:q)) 6∈ Hold

〉

→ H := H\(p, q) sa

rof

od{ H = Equiv }

Even though this algorithm may look rather complicated compared to the one for
dfas, there is only one essential difference: instead of considering for each symbol a

and state p and q where their out-transition on this symbol leads, one has to consider
this for states p and q within contexts: their occurrence at the same position in two
otherwise equal state tuples (cf. the definition of Equiv for dfrta states as given at
the end of Section 3).

The classical minimization approach for dfrtas has been known for decades, with
its first description appearing in Brainerd’s 1967 PhD thesis [1]. That description is
not as explicitly algorithmic as the one given here or in [6, Section 1.5], and in fact,
an algorithmic presentation worked out in detail to an implementation level—albeit
for the case of dfrtas on unranked trees—did not appear until 2007 [3].

1 Note however, that the quantification used in [6, Section 1.5] is somewhat imprecise, as it leaves
i unbounded.

L. Cleophas, D. G. Kourie, T. Strauss, B. W. Watson: On Minimizing Deterministic Tree. . . 179

5 An incremental minimization algorithm

Watson in [12] and most recently Watson & Daciuk in [13] presented an incremental
approach to dfa minimization. Their approach results in an algorithm that starts
out with a singleton partition for each of the states of the initial dfa and refines
this partition by iteratively merging partitions that are shown to be equivalent. The
greatest fixed-point reached corresponds to the state set of the minimal automaton
equivalent to the original one. Such an algorithm thus computes the fixed point from
below i.e. from the safe side. Clearly, intermediate results from such an algorithm
can already be used to reduce the original dfa. We provide a first version of this
incremental approach for dfrtas.

From the problem of deciding the structural equivalence of two types, it is known
that equivalence of two states can be computed recursively by turning the mutually re-
cursive set of equivalences Equiv into a functional program. For cyclic automata, a di-
rect translation from definition to functional program might lead to non-termination.
Thus, in addition to two states, the functional program for compute equivalence also
takes a third parameter. An invocation equiv(p, q, ∅) returns, via the local variable
eq, the truth value of Equiv(p, q). The third parameter, S, is used during recursion
to capture pairs of states that are assumed to be equivalent until shown otherwise.

The recursion depth can be bounded by the larger of |Q| − 2 and 0 without
affecting the result [12, Section 7.3.3], and we add a parameter k to function equiv to
do so. For efficiency reasons, parameter S is made a global variable. We assume that
it is initialized to ∅. When S = ∅, an invocation equiv(p, q, (|Q| − 2) max 0) returns
Equiv(p, q); after such an invocation returns, S = ∅.

Algorithm 5 (Pointwise computation of Equiv(p, q) for dfas)

func equiv(p, q, k) =
|[if k = 0 → eq := (p ∈ F ≡ q ∈ F)

[] k 6= 0 ∧ {p, q} ∈ S → eq := true

[] k 6= 0 ∧ {p, q} 6∈ S →
eq := (p ∈ F ≡ q ∈ F);
S := S ∪ {{p, q}};
for a : a ∈ Σ →

eq := eq ∧ equiv(δ(p, a), δ(q, a), k − 1)
rof ;
S := S\{{p, q}}

fi;
return eq

]|{ equiv(p, q, k) ≡ Equiv(p, q) }

Function equiv can be used to compute relation Equiv. To do so, we maintain
set G (H) consisting of pairs of states known to be distinguishable i.e. belonging to
¬Equiv (equivalent i.e. belonging to Equiv). To initialize both sets, we note that final
states are never equivalent to non-final ones, and that a state is always equivalent to
itself. Since Equiv is an equivalence relation, we ensure that H is transitive at each
step of the algorithm. Finally, we have a global variable S as used by function equiv :

180 Proceedings of the Prague Stringology Conference 2009

Algorithm 6 (Incremental computation of Equiv)

S, G, H := ∅, ((Q\F) × F) ∪ (F × (Q\F)), {(q, q)|q ∈ Q};
{ invariant: G ⊆ ¬Equiv ∧ H ⊆ Equiv }
do (G ∪ H) 6= Q × Q →

let p, q : (p, q) ∈ ((Q × Q)\(G ∪ H));
if equiv(p, q, (|Q| − 2) max 0) →

H := H ∪ {(p, q), (q, p)};
H := H+

[] ¬equiv(p, q, (|Q| − 2) max 0) →
G := G ∪ {(p, q), (q, p)};

fi

od{ H = Equiv }

The repetition in this algorithm can be interrupted and the partially computed H

can be safely used to merge states, leading to a not necessarily minimal but potentially
smaller automaton than the original one.

The algorithm is not dfa-specific and as a result can be applied for the dfrta-
case, provided function equiv is suitably chosen. Looking at function equiv for the dfa

case, we see that the update to eq in the loop is performed for every out-transition of
p and q. For the dfrta case, the equivalent is to perform the update for every out-
transition involving p and q, with such out-transitions involving tuples of states that
are identical except for an appearance of p and q respectively at the same position:

Algorithm 7 (Pointwise computation of Equiv(p, q) for dfrtas)

func equiv(p, q, k) =
|[if k = 0 → eq := (p ∈ F ≡ q ∈ F)

[] k 6= 0 ∧ {p, q} ∈ S → eq := true

[] k 6= 0 ∧ {p, q} 6∈ S →
eq := (p ∈ F ≡ q ∈ F);
S := S ∪ {{p, q}};

for a, i,
→
ρ : P (a, i,

→
ρ) →

eq := eq ∧ equiv(Ra(
→
ρ i:p), Ra(

→
ρ i:q), k − 1)

rof ;
S := S\{{p, q}}

fi;
return eq

]|{ equiv(p, q, k) ≡ Equiv(p, q) }

Watson and Daciuk in [13] considered different ways to improve both the theoret-
ical and the practical running time of the algorithm for the dfa case. Furthermore,
they showed the resulting efficient implementation to be competitive to implemen-
tations of classical minimization algorithms, even though the basic incremental al-
gorithm is known to have a worse theoretical running time complexity. We expect
similar results to hold for the dfrta case and plan to consider these as future work.

L. Cleophas, D. G. Kourie, T. Strauss, B. W. Watson: On Minimizing Deterministic Tree. . . 181

6 A CSP specification for incremental DFRTA minimization

In [11, Section 5], Strauss et al. presented a concurrent version of the incremental
minimization algorithm for dfas in the form of a CSP specification. The crucial
part of that specification w.r.t. the difference between dfas and dfrtas is presented
below.2 It corresponds to the for-loop in function equiv of Algorithm 5.

FanOutpq(S, k) = |‖a∈Σ

(if ({δ(p, a), δ(q, a)} /∈ S) then

(Equiv δ(p,a),δ(q,a)(S ∪ {(p, q)}, k − 1) △ (1)

(toδ(p,a),δ(q,a)?eqa → (EqSet := EqSet ∪ {eqa}))

else (EqSet := EqSet ∪ {true})) (2)

We refer to [11, Section 5] for details on this and other parts of the specification.
Here, we focus on adapting this particular part to the case of dfrtas. All the other
parts of the specification stay the same, just as all the other parts of the sequential al-
gorithm stay the same when generalizing from dfas to dfrtas (compare Algorithm 5
to Algorithm 7).

To generalize the specification of FanOutpq(S, k), we merely need to generalize the

range of the interleaving operator |‖ from a ∈ Σ to P (a, i,
→
ρ) and replace the δ(p, a)

and δ(q, a) by Ra(
→
ρ i:p) and Ra(

→
ρ i:q).

The generalization of the CSP specification from dfas to dfrtas is thus rather
elegant. As hinted at in [11], a significant advantage of a CSP specification such as
the foregoing, is maximally to expose opportunities for parallelization. Expressing
the dfrta minimization algorithm in the suggested CSP format indicates that these
opportunities will increase drastically if there are a large number of state tuples
(which in turn depends on the ranks of the symbols and the number of states).
How one exploits these opportunities will clearly depend on the available hardware
configuration. The CSP specification is provided in anticipation of a continuation in
the current surge in the chip industry towards increasingly large multi-core processors.
Thus, while in some senses the CSP specification is a theoretical result, we believe
that it is sufficiently generic to serve as a useful reference point in experimenting with
parallel implementations of the dfrta minimization algorithm.

7 Conclusion

This paper has high-lighted once again that many results from the field of regular
string languages generalize to that of regular tree languages. It showed, by way of
three minimization algorithms, how this generalization becomes quite transparent
and elegant if suitable notation is used.

The first algorithm that was generalized to the dfrta case was already known,
but has been presented here in a style which highlights how the generalization occurs.

The second algorithm generalized to the dfrta case gives a completely new result,
being namely a generalization to ranked trees of the string algorithm presented by
Watson and Daciuk, incrementally minimizing a dfrta. As a result, intermediate
results of the algorithm can be used to reduce the initial automaton’s size. This makes

2 The specification has been slightly adapted to the notation used in the current paper.

182 Proceedings of the Prague Stringology Conference 2009

the algorithm useful in situations where running time is restricted (for example, in
real-time applications). The new incremental minimization algorithm for dfrtas can
be further improved, similar to the improvements made for the dfa case in [13,
Section 6]. We expect such improvements to lead to better performance in practice,
similar to the dfa case. To verify this and to be able to compare the (improved) new
algorithm and the one using a classical approach to minimization, both need to be
implemented and benchmarked.

In the third instance, we also briefly described how an existing concurrent speci-
fication of the incremental dfa minimization algorithm in CSP gives rise to one for
the dfrta case. Once again, the generalization was facilitated by relying on suit-
ably defined notation. While implementations of the concurrent specification could
be investigated to see whether the parallelization is efficient in practice on currently
available hardware, we consider that its principal value lies in serving as a refer-
ence point in deriving parallel implementations on the anticipated massively parallel
machines of the future.

References

1. W. S. Brainerd: Tree Generating Systems and Tree Automata, PhD thesis, Purdue University,
June 1967.

2. W. S. Brainerd: The minimalization of tree automata. Information and Control, 13(5) Novem-
ber 1968, pp. 484–491.

3. R. C. Carrasco, J. Daciuk, and M. L. Forcada: An implementation of deterministic tree

automata minimization, in CIAA, J. Holub and J. Zdárek, eds., vol. 4783 of Lecture Notes in
Computer Science, Springer, 2007, pp. 122–129.

4. R. C. Carrasco, J. Daciuk, and M. L. Forcada: Incremental construction of minimal

tree automata. Algorithmica, 2008.
5. L. G. W. A. Cleophas: Tree Algorithms: Two Taxonomies and a Toolkit, PhD thesis, Dept. of

Mathematics and Computer Science, Eindhoven University of Technology, April 2008, http:
//alexandria.tue.nl/extra2/200810270.pdf.

6. H. Comon, M. Dauchet, R. Gilleron, F. Jacquemard, D. Lugiez, S. Tison, and

M. Tommasi: Tree automata: Techniques and applications, 2007, http://www.grappa.

univ-lille3.fr/tata/.
7. J. Daciuk and R. C. Carrasco: Perfect hashing with pseudo-minimal bottom-up determinis-

tic tree automata, in Intelligent Information Systems XVI, Proceedings of the International IIS’08
Conference held in Zakopane, Poland, June 16-18, 2008, M. A. Klopotek, A. Przepiorkowski,
S. T. Wierzchon, and K. Trojanowski, eds., Academic Publishing House Exit, Warszawa, 2008,
pp. 229–238.

8. J. Engelfriet: Tree Automata and Tree Grammars, Lecture Notes DAIMI FN-10, Aarhus
University, April 1975.

9. F. Gécseg and M. Steinby: Tree Automata, Akadémiai Kiadó, Budapest, 1984.
10. E. F. Moore: Gedanken experiments on sequential machines, in Automata Studies, C. E. Shan

and J. McCarthy, eds., Princeton University Press, Princeton, NJ, 1956.
11. T. Strauss, D. G. Kourie, and B. W. Watson: A concurrent specification of an incremen-

tal DFA minimisation algorithm, in Proceedings of the Prague Stringology Conference 2008,
J. Holub and J. Žďárek, eds., Czech Technical University in Prague, Czech Republic, 2008,
pp. 218–226.

12. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Dept. of
Mathematics and Computing Science, Technische Universiteit Eindhoven, September 1995,
http://www.fastar.org/publications/PhD_Watson.pdf.

13. B. W. Watson and J. Daciuk: An efficient incremental DFA minimization algorithm. Natural
Language Engineering, 9(1) 2003, pp. 49–64.

14. D. Wood: Theory of Computation, Harper & Row, New York, 1987.

