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Abstract. We consider the classic problem of computing (the length of) the longest
common subsequence (LCS) between two strings A and B with lengths m and n,
respectively. There are several input sensitive algorithms for this problem, such as the
O(σn+min{Lm,L(n−L)}) algorithms by Rick [15] and Goeman and Clausen [5] and
the O(σn + min{σd, Lm}) algorithms by Chin and Poon [4] and Rick [15]. Here L is
the length of the LCS and d is the number of dominant matches between A and B, and
σ is the alphabet size. These algorithms require O(σn) time preprocessing for both A

and B. We propose a new fairly simple O(σm + min{Lm,L(n − L)}) time algorithm
that works in online manner: It needs to preprocess only A, and it can process B one
character at a time, without knowing the whole string B beforehand. The algorithm
also adapts well to the linear space1 scheme of Hirschberg [6] for recovering the LCS,
which was not as easy with the above-mentioned algorithms. In addition, our scheme fits
well into the context of incremental string comparison [12,10]. The original algorithm
of Landau et al. [12] for this problem uses O(σm + Lm) space. By using our scheme
instead, the space usage becomes O(σm + min{Lm,L(n − L)}).

Keywords: string algorithms, longest common subsequences, incremental string com-
parison

1 Introduction

We use the following conventions and notation in this paper. Σ is a finite alphabet of
size σ. Strings are composed of a finite (possibly length-zero) sequence of characters
from Σ. The length of a string A is denoted by |A|. When 1 ≤ i ≤ |A|, Ai denotes
the ith character of A. The notation Ai..h, where i ≤ h, denotes the substring of A
that begins at character Ai and ends at character Ah. Hence A = A1..|A|. String A is
a subsequence of string B if B can be transformed into A by deleting zero or more
characters from it. That is, the characters of A must appear in B in the same order
as in A, but they do not need to appear consecutively.

The length of a longest common subsequence (LCS) between two strings is a
classic measure of string similarity. Given two strings A and B, we denote the set
of their longest common subsequences by LCS(A,B). The length of each longest
common subsequence is denoted by LLCS(A,B). For example if A = “string” and B
= “writing”, then LCS(A,B) = {“ring”, “ting”} and LLCS(A,B) = 4. Throughout
this paper we use the traditional conventions that m denotes the length of string A,
n denotes the length of string B, and m ≤ n.

The problem of LCS/LLCS computation has been studied extensively (see e.g.
[3]). Wagner and Fischer [17] have given a basic O(mn) time LCS algorithm based
on dynamic programming. In terms of theoretical results, it has been proven that the
time complexity of the LCS problem has a general lower bound of Ω(n log m) [8], and

1 Here, as well as in [5] and [16], the alphabet size σ is assumed to be a constant.
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that the quadratic O(mn) worst case time complexity of the basic dynamic program-
ming algorithm cannot be improved by any algorithm that is based on individual
“equal/nonequal” comparisons between characters [1]. Currently the theoretically
fastest algorithm in the worst case is the O(mn/ log n) “Four Russians” algorithm of
Masek and Paterson [13].

There are several input sensitive algorithms for the LCS problem whose running
times depend on the properties of the input strings. For example the algorithm of Hunt
and Szymanski [9] has a running time O(r log n), where r is the number of matches
Ai = Bj over all i = 1, . . . ,m and j = 1, . . . , n. In similar fashion both Chin and
Poon [4] and Rick [15] have proposed O(σn + min{σd, Lm}) time algorithms, where
d is the number of so-called dominant matches and L = LLCS(A,B). Algorithms
whose running time depends on L are typically more efficient than basic dynamic
programming either when L is low, like for example the O(Ln + n log n) algorithm
of Hirschberg [7], or when L is high, like for example the O(n(m − L)) algorithm of
Wu et al. [18], but not in both cases simultaneously. Exceptions to this rule are the
O(σn+min{Lm,L(n−L)}) algorithms by Rick [15] and later by [5]. Rick’s algorithm
was the first algorithm that is efficient with both low and high values of L, and it has
also been found to be very efficient in practice [3].

The input sensitive algorithms typically rely on a preprocessing phase that is
possibly costly. For example the term σn in the two algorithms of Rick [15] and
the algorihms of Goeman and Clausen [5] and Chin and Poon [4] comes from the
preprocessing phase. It is furher often the case that the preprocessing needs to be
done for both A and B before the actual computation. This is true for example in
the case of each of the four above mentioned algorithms. This may be significant
for example within the setting of one-against-many type of comparison, e.g. when
comparing a single pattern string A against each string B in some string database. In
such a setting it would be desirable that the preprocessing phase would not need to be
repeated for each different string B, that is, if it would be enough to only preprocess
the string A once before the comparisons.

In addition to preprocessing only A, a further sometimes desirable property is that
the LCS algorithm should work in online manner. By this we mean that the algorithm
is able to process the string B one character at a time, without relying on knowledge
about the yet unprocessed characters. That is, the algorithm can first read B1 and
compute LLCS(A,B1), then read B2 and update the previous solution to correspond
to LLCS(A,B1..2), and so on until LLCS(A,B1..n). This is useful for example if we
wish to generate the set of all strings B for which it is true that LLCS(A,B) ≥ α,
where α is some threshold. Such a setting is feasible for example within the context of
indexed approximate matching, as proposed by Myers [14]2. For a pattern (piece) A,
the method of Myers generates a set of interesting strings by performing a depth-first
search (DFS) over a conceptional trie that contains all possible strings. During the
DFS, A is always compared to B1..j, the string that corresponds to the current node
in the trie. Maintaining this information in an efficient manner essentially requires
an online algorithm: when stepping from the node of B1..j to one of its child nodes,
which corresponds to some B1..j+1, the comparison information about LLCS(A,B1..j)
should be updated to correspond to LLCS(A,B1..j+1).

2 Myers considered edit distance, but a similar scheme can be used with LCS.
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Typically the space complexities of LCS algorithms coincide with their time com-
plexities if we wish to construct a string from the set LCS(A,B)3. The divide-
and-conquer scheme of Hirschberg [6] is a classic method to save space. It can be
used with several LCS algorithms in such manner that the value LLCS(A,B) and
a string from LCS(A,B) can be computed in linear space while the original asymp-
totic time complexity of the LCS algorithm is preserved. This space saving scheme
is not simple to use with Rick’s algorithm. Goeman and Clausen [5] proposed their
own O(σn + min{Lm,L(n − L)}) variant of Rick’s algorithm and showed how to
modify the algorithm to use O(σn) space, ie. linear space when the alphabet size
σ is constant. Their linear space scheme, however, changed the time complexity to
O(σn+min{Lm,m log m+L(n−L)}). Finally, Rick [16] proposed another linear space
variant that was able to maintain the O(σn + min{Lm,L(n − L)}) time complexity
of his original algorithm.

In this paper we propose an LCS algorithm that has O(σm+min{Lm,L(n−L)})
time complexity, same as the algorithms by Rick [15] and Goeman and Clausen [5].
Our algorithm, however, has some advantages. First of all we find it a bit more
simple than the previous two, which may be an important consideration in practice.
Perhaps the most significant difference is that our algorithm needs to preprocess
only the string A, and it furhermore works in online manner. As discussed above,
there are situations where these properties are important. The proposed algorithm
is also straight-forward to use within the linear-space divide-and-conquer scheme of
Hirschberg while preserving the O(σm + min{Lm,L(n − L)}) time complexity. And
as last we mention that the underlying principle behind our algorithm can also be
used quite directly within the setting of incremental string comparison [12,10].

2 Preliminaries

2.1 Dynamic programming

The basic O(mn) dynamic programming solution for the LCS problem is based on
filling an (m + 1) × (n + 1) dynamic programming matrix D in such manner, that
eventually each cell D[i, j] holds the value D[i, j] = LLCS(A1..i, B1..j). This can be
done using the well-known rules that are shown in Recurrence 1.

Recurrence 1.

When 0 ≤ i ≤ m and 0 ≤ j ≤ n :

D[i, j] =







0, if i = 0 or j = 0,
D[i − 1, j − 1] + 1, if Ai = Bj, and otherwise
max{D[i − 1, j], D[i, j − 1]}.

In the end, the desired LCS length LLCS(A,B) is found in the cell D[m,n]. The
matrix D is usually filled either in column- or rowwise order. If we are interested only
in the value LLCS(A,B) = D[m,n], for example a rowwise filling process needs to
store only the currently filled row i and the previous row i−1, which means that only
linear space is needed. A string in LCS(A,B) can be constructed by backtracking
along legal values from the cell D[m,n] to the cell D[0, 0] in the filled matrix D.
Any such legal path from D[m,n] to D[0, 0] represents a string in LCS(A,B). The

3 If only the value LLCS(A,B) is required, most algorithms can be modified to use much less space.
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characters of the string are determined in reverse order by the diagonal steps along
the path from D[i, j] to D[i − 1, j − 1] (meaning that Ai = Bj is included in the
subsequence). This backtracking process needs O(mn) space to recover a string in
LCS(A,B) as it needs to store the whole matrix D.

2.2 Linear space construction of a longest common subsequence

Hirschberg [6] proposed a divide-and-conquer scheme that can construct a string in

LCS(A,B) in linear space. Let
←−
A and

←−
B denote the reverse strings of A and B. That

is,
←−
A i = Am−i+1 and

←−
B j = Bn−j+1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n. Also let

←−
D denote

dynamic programming matrix that has been filled using strings
←−
A and

←−
B instead of A

and B. The method finds the middle point of a backtracking path, and then proceeds

recursively. The first step is to compute the the values D[⌊m
2
⌋, j] and

←−
D [⌈m

2
⌉, j] for

j = 1, . . . , n, where ⌊m
2
⌋ is a chosen middle row. This information can be computed in

O(m + n) space with rowwise filling order. It can be shown that a backtracking path

goes through those cells D[⌊m
2
⌋, k] for which the sum D[⌊m

2
⌋, k]+

←−
D [⌈m

2
⌉, n−k +1] is

maximal. Finding one such k takes linear time. After that the recursion proceeds to
find the midpoints in the two submatrices that correspond to comparing the string
A1..⌊m

2
⌋ with B1..k and the string A⌊m

2
⌋+1..m with Bk+1..n, respectively. The subsequence

can be constructed during this process (see [6]). The total work is directly proportional
to the total number of cells filled in the dynamic programming matrices. And this

number is ≈ Σ
log

2
m

h=0
1
2h mn < 2mn = O(mn), ie. the total work is at most roughly

twice as much as in the basic dynamic programming algorithm.

2.3 Incremental encoding of the dynamic programming matrix

Lemma 1 states well-known properties of adjacent values in D.

Lemma 1. Let D be a dynamic programming matrix that contains the values D[i, j]=
LLCS(A1..i, B1..j) for 0 ≤ i ≤ m and 0 ≤ j ≤ n. Then the following three properties
hold for 1 ≤ i ≤ m and 1 ≤ j ≤ n:

1. D[i,j] = D[i-1,j] or D[i,j] = D[i-1,j] + 1
2. D[i,j] = D[i,j-1] or D[i,j] = D[i,j-1] + 1
3. D[i,j] = D[i-1,j-1] or D[i,j] = D[i-1,j-1] + 1

Hunt and Szymanski [9] gave an O(M log L + n log σ) algorithm that uses these
properties. Here M denotes the number of match points between A and B, ie. M =
|{(i, j) | Ai = Bj, 1 ≤ i ≤ m, 1 ≤ j ≤ n}|. Two relevant variants of the algorithm of
Hunt And Szymanski are the O(σn + Lm) algorithm of Apostolico and Guerra [2]
and the O(M + Lm + n log σ) algorithm of Kuo and Cross [11].

All these algorithms represent the dynamic programming matrix D in an incre-
mental manner. When we move from the cell D[i, j − 1] to the cell D[i, j], Lemma 1
states that the value of the current cell either remains the same or grows by one. Let
us define Ri[k] as the smallest column j where D[i, j] = k. Such a column j exists for
k = 0, . . . , D[i, n]. It is convenient to define also special sentinel values Ri[k] = n + 1
for k > D[i, n]. Now when 0 ≤ k ≤ D[i, n], the values Ri[k] represent the values D[i, j]
according to the relationship D[i, j] = k for j = Ri[k], . . . , Ri[k + 1] − 1. In addition,
the equality D[i, Ri[k]] = k = D[i, Ri[k] − 1] + 1 holds when 1 ≤ k ≤ D[i, n]. Due to
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this latter rule, we may view the values Ri[k] as increment points, although this is
awkward in the case of the first point Ri[0] = 0, which does not have a previous value
“D[i,−1] = −1” to increment. The left side of Fig. 1 shows an example of increment
points.

The values Ri[k] may be computed according to Recurrence 2.

Recurrence 2. (Based on Hunt and Szymanski [9])

When 0 ≤ i ≤ m :

Ri[k] =







0, if k = 0,
n + 1, if i = 0 and k > 0, and otherwise
min{ j | (Ai = Bj and Ri−1[k − 1] < j < Ri−1[k]) or j = Ri−1[k]}.

Several LCS algorithms use either a MatchList or a NextMatch4 auxiliary data
structure (see e.g. [12]).

MatchList is a vector of length m, where the entry MatchList [i] points to a linked
list that contains in sorted order indices j where Ai = Bj. This data structure takes
overall O(m + n) space and can be constructed in O(m log σ) time.

NextMatch is an n × σ matrix. For a given character a ∈ Σ, the entry
NextMatch[i, a] gives smallest k that is larger than i and where Bk = a. It is
convenient to use n + 1 as a sentinel value if such k does not exist. So more formally
NextMatch[i, a] = min{k | (k > i and Bk = a) or k = n + 1}. NextMatch can be
constructed in O(σn) time and space.

The algorithm of Hunt and Szymanski [9] uses the MatchList data structure and
stores the increment points Ri[k] of row i consecutively and in sorted order in an
array. Note that one row has at most O(L) increment points. The algorithm processes
row i after row i − 1. In order to compute the values Ri[k], the list MatchList [i] is
processed sequentially. At each match column j ∈ MatchList [i], the algorithm uses
an O(log L) binary search in the array of the values Ri−1[k] to check if the condition
Ri−1[k − 1] < j ≤ Ri−1[k] of Recurrence 2 holds for some k, and then updates the
increment points accordingly. This process takes overall O(M log L + n log σ) time,
which includes preprocessing the MatchList data structure.

The algorithm of Kuo and Cross [11] is quite similar to the algorithm of Hunt
and Szymanski. The difference is that the condition Ri−1[k − 1] < j ≤ Ri−1[k] of
Recurrence 2 is checked at each step while going through the list MatchList [i] and a
sorted list of values Ri−1[k] in parallel. The overall number of steps in this process is
limited by the total number of match points and increment points. Since the former
number equals M and the latter number is at most Lm, the overall time is O(M +
Lm + n log σ) when also preprocessing MatchList is included.

The algorithm of Apostolico and Guerra [2] uses the NextMatch matrix. When
processing row i, the values Ri−1[k] are considered in increasing order. For given
Ri−1[k − 1] and Ri−1[k], the existence of j that fulfills the conditions Ai = Bj and
Ri−1[k − 1] < j ≤ Ri−1[k] of Recurrence 2 can be checked in O(1) time by consulting
the value NextMatch[Ri−1[k−1], Ai]

5. Now the number of steps is limited only by the
number of increment points, and the overall time, including constructing NextMatch,
is O(σn + Lm).

4 The NextMatch data structure is sometimes called Closest .
5 It can be seen from Recurrence 2 that the condition Ri−1[k−1] < j ≤ Ri−1[k] needs to be checked

only once for each pair Ri−1[k − 1] and Ri−1[k].
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3 An algorithm using block encoding of the increment
points
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Figure 1. An example with A = “arabic” and B = “aerobic”. The left side shows
each cell D[i, j], which has an increment point Ri[k], in bold. The right side shows
the cells D[i, j] within a block βi enclosed in a bold rectangle.

We propose to store the increment points Ri[k] using a kind of block encoding.
The idea is in some sense similar to the well-known run-length encoding used in data
compression. We will define βi as a list that stores the values Ri[k] of row i using block
encoding. Each block item in βi is a pair of integers (s, e). This value tells that there
exists some k for which Ri[k] = s and Ri[k + h] = s + h for h = 0, . . . , e− s. That is,
there is a block of consecutive increment points starting from column s = Ri[k] and
ending at column e = Ri[k + e− s]. We also require that each block (s, e) is maximal:
if k > 0, then Ri[k − 1] < s− 1, and if k + e− s < D[i, n], then Ri[k + e− s + 1] > e.
The right side of Fig. 1 shows an example.

It is convenient to define that each list βi has in its end a special sentinel block
(n + 1, n + 1). The sentinel delimits the end of row i and does not correspond to any
real increment point. The sentinel blocks also never change, and they for example
cannot be merged with another block if column n contains an increment point. A
constructive definition of the list βi is as follows:

1. The initial case k = 0: Set the pair (Ri[0], 0) = (0, 0) as the first item in βi.
2. The general case 1 ≤ k ≤ D[i, n]: Let (s, e) be the last item in the list βi before

processing Ri[k].
a) If Ri[k] = e + 1, replace the item (s, e) with (s, e + 1) in the list βi.
b) If Ri[k] > e + 1, insert the new item (Ri[k], Ri[k]) to the end of the list βi.

3. The sentinel corresponding to k = D[i, n] + 1: Insert the pair (n + 1, n + 1) to the
end of the list βi.

From here on we will use the notation (si
q, e

i
q) to denote the qth item in the list βi. Us-

ing this notation, a list βi with r items may be expressed as βi = ((si
1, e

i
1), . . . , (s

i
r, e

i
r)).

Note that a complete list βi always has at least two blocks. In addition we will use
the notation (si

ℓ, e
i
ℓ) to denote the last block in the current, possibly only partially

completed list βi.
Initially at row 0 we know that β0 = ((0, 0), (n + 1, n + 1)). Algorithm 1 describes

how the list βi can be constructed from the list βi−1.
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Algorithm 1. Assume that we are given the list βi−1 = ((si−1
1 , ei−1

1 ), . . . , (si−1
r , ei−1

r ))
that contains r items and represents all increment points Ri−1[k] of row i − 1. Then
the list βi that represents all increment points Ri[k] of row i can be formed correctly
by using the following steps:

1. Initially set the list βi to be empty.
2. The first case q = 1:

Insert the item (si−1
1 , ei−1

1 ) = (0, ei−1
1 ) to βi.

3. For q = 2, . . . , r:
Set j = NextMatch[ei−1

q−1, Ai]. There are the following subcases:

a) If ei−1
q−1 < j < si−1

q , then:
i) If j > ei

ℓ, insert the block (j, j) to the end of βi.
ii) If j = ei

ℓ + 1, replace (si
ℓ, e

i
ℓ) with (si

ℓ, e
i
ℓ + 1) in the list βi.

iii) After processing case i or ii, insert the block
(min{n + 1, si−1

q + 1}, ei−1
q ) to the end of βi if min{n + 1, si−1

q + 1} ≤ ei−1
q .

b) If j ≥ si−1
q and q < r, insert the block (si−1

q , ei−1
q ) to the end of βi.

Theorem 2. Algorithm 1 builds the list βi correctly.

Proof. It is not difficult to show that Algorithm 1 follows the principles of Recurrence
2. Fig. 2 illustrates the process.

The case q = 1 can be seen to be correct. When q > 1 and Algorithm 1 begins
processing the block (si−1

q , ei−1
q ), it can be shown that within the column interval

(ei
ℓ, . . . , e

i−1
q−1) and (si−1

q , ei−1
q ), βi should contain increment points in the column j =

NextMatch[ei−1
q−1, Ai] and in the columns j = si−1

q + 1, . . . , ei−1
q (if si−1

q + 1 ≤ ei−1
q ).

Figs. 2b, 2c and 2d, correspond, respectively, to the case 3b, the subcase i of the case
3a, and the subcase ii of the case 3a in Algorithm 1.

Note that when processing the next q, the newly created block (si
ℓ, e

i
ℓ) may be

appended to contain one more increment point in the subcase ii of the case 3a in
Algorithm 1. This is reflected in Figs. 2b - 2d in how the value in column ei−1

q−1 + 1
remains undecided.

We omit a more detailed proof from this version of the paper. ⊓⊔

Theorem 3. The time complexity of Algorithm 1 is O(min{Lm,L(n − L)}).

Proof. Fig. 3 illustrates the proof. Since the time complexity of Algorithm 1 is directly
proportional to the total number of blocks that it processes, we will find an upper
bound for the number of the blocks.

We begin by considering some column interval j = u, . . . , v on row i, where
0 ≤ u ≤ v ≤ n. Let #i(u, v) denote the number of increment points and #i(u, v)
denote the number of non-increment points within these columns. Clearly #i(u, v) +
#i(u, v) = v−u+1, since each column j either does or does not contain an increment
point Ri[k] for some k.

Since each maximal block of consecutive increment points contains at least one
increment point, the number of blocks that appear, even partially, within columns
j = u, . . . , v is bounded by #i(u, v). On the other hand, each maximal block is
followed by a non-increment point or the end of the considered region. Hence the
number of blocks within columns j = u, . . . , v is bounded also by #i(u, v) + 1.

Let us first analyse the first z = m−L rows. Row i has #i(0, n) = D[i, n] increment
points, and from Lemma 1 we know that D[i, n] ≤ i. Hence βi contains at most i
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Figure 2. Figures a) - d) illustrate processing the block (si−1
q , ei−1

q ). Here x denotes

the value D[i−1, si−1
q ], and the bold rectangles enclose blocks of consecutive increment

points. The solid arrows show increment blocks that must be inherited to row i in
columns si−1

q +1, . . . , ei−1
q . The dashed arrow shows where the increment point at si−1

q

moves.
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Figure 3. The figure illustrates the time complexity analysis of Algorithm 1.
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blocks. This means that the lists βi for rows i = 0, . . . , z contain at most a total of

Σz
i=0i = z(z+1)

2
blocks.

Let us then consider the rows z+i for i = 1, . . . , L. Each such row contains at most
#z+i(0, n) ≤ z + i increment points. On the other hand, at least i of the increment
points must be located within the first n−L+i columns, ie. #i(0, n−L+i) ≥ i. This is
because the condition LLCS(A,B) = L requires that LLCS(A1..m−L+i, B1..n−L+i) =
D[z + i, n − L + i] ≥ i (this is not difficult to prove by using Lemma 1). Now
#i(0, n − L + i) = n − L + i + 1 − #i(0, n − L + i) ≤ n − L + 1, so columns
j = 0, . . . , n−L+i of row z+i contain at most n−L+1 blocks. If i < L, the remaining
columns j = n − L + i + 1, . . . , n of row i contain at most #z+i(n − L + i + 1, n) =
#z+i(0, n) − #z+i(0, n − L + i) ≤ z blocks. Hence the total number of blocks on row
z + i is bounded by n − L + 1 + z.

Based on the preceding discussion, the total number of blocks on all rows i =

0, . . . ,m is at most z(z+1)
2

+ L(n − L + 1 + z). We note that z(z+1)
2

≤ m(m − L) =
O(m(n−L)), and that L(n−L+1+ z) = L(n−L+1+m−L) ≤ L(2n− 2L+1) =
O(L(n − L)) = O(m(n − L)).

On the other hand #i(0, n) ≤ L for all i = 0, . . . ,m, and so the total number of
blocks has also the bound O(Lm).

By combining the previous two bounds, we have that the total number of blocks
is bounded by O(min{Lm,m(n−L)}. If n−L < L, then m

2
≤ n

2
< L, ie. m = O(L).

This implies that O(min{Lm,m(n − L)} = O(min{Lm,L(n − L)}, since the choice
m(n − L) is smaller than Lm only when m = O(L).

Hence we have reached the conclusion that the asymptotic time complexity of
Algorithm 1 may be stated in the form O(min{Lm,L(n − L)}. When also prepro-
cessing of NextMatch is taken into account, the time complexity becomes O(σn +
min{Lm,L(n − L)}. ⊓⊔

3.1 Constructing a longest common subsequence in O(σn) space

We briefly sketch how to use Algorithm 1 in the divide-and-conquer scheme discussed
in Section 2.2 in order to construct a string from the set LCS(A,B) using O(σn +
min{Lm,L(n − L)} time and O(σn) space. The required space is determined by
NextMatch and is linear for constant σ.

Let
←−
β i denote the block list for row i of

←−
D that corresponds to the reverse

strings
←−
A and

←−
B . Algorithm 1 can produce both middle-row lists β⌊m

2
⌋ and

←−
β ⌈m

2
⌉ in

O(min{Lm,m(n−L)} time. A column k where the sum D[⌊m
2
⌋, k]+

←−
D [⌈m

2
⌉, n−k+1]

is maximal can be found in O(L) time by merging the size-O(L) lists β⌊m

2
⌋ and

←−
β ⌈m

2
⌉

in such manner that the other list is processed in reverse order. Overall we may state
that the process has an upper bound of c min{Lm,m(n − L)} operations for some
constant c.

Then the divide and conquer scheme does the same process for the string-
pairs (A1..⌊m

2
⌋, B1..k) and (A⌊m

2
⌋+1..m, Bk+1..n). Handling these takes at most

c(min{L1
m
2
, m

2
(k − 1 − L1)} + c(min{L2

m
2
, m

2
(n − k + 1 − L2)} operations, where

L1 = LLCS((A1..⌈m

2
⌉−1, B1..k−1), L2 = LLCS(A⌈m

2
⌉+1..m, Bk+1..n), and L1 + L2 = L.

The sum of minimal choices in these two min-clauses is obviously never larger than
a sum of two arbitrary choices. Therefore the overall value is limited above by both
c(L1

m
2

+ L2
m
2
) = cLm

2
= 1

2
cLm and c(m

2
(k − 1 − L1) + m

2
(n − k + 1 − L2)) =

c(m
2
(k − 1 − L1 + n − k + 1 − L2)) = 1

2
cm(n − L), which results in the upper bound
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1
2
c min{Lm,m(n − L)} for the operations done in the second stage. By continuing

the same analysis, the result is that the overall number of operations done during the

divide-and-conquer scheme has an asymptotic limit Σ
log

2
m

h=0
1
2h c min{Lm,m(n−L)} <

2c min{Lm,m(n − L)} = O(min{Lm,m(n − L)}) = O(min{Lm,L(n − L)}. By
employing simple index-readjustments, each stage can use the same NextMatch built

for the complete strings A and B (and a sorresponding
←−−−−−−−
NextMatch for

←−
A and

←−
B ).

Hence the preprocessing needs to be done only once, using O(σn) time and space.

3.2 A remark on incremental string comparison

Landau et al. [12] proposed an algorithm (that Ishida et al. [10] later extended), which
can handle an incremental version of the LCS problem: After computing LLCS(A,B),
we should next be able to compute either LLCS(A,Bb) or LLCS(A, bB), ie. a charac-
ter b may be added to either end of B. The algorithm uses NextMatch and maintains
all increment points of D that corresponds to comparing the current A and B. We
do not go into more details in this paper but just briefly note that our block encod-
ing can be used also in this setting with very few modifications. Then the overall
space usage becomes O(σn + min{Lm,L(n − L)}) instead of O(σn + Lm), the time
for computing LLCS(A, bB) after LLCS(A,B) remains the same, and the time for
computing LLCS(A,Bb) after LLCS(A,B) becomes O(min{L, (n − L)}) instead of
the O(L) time of the original scheme [10].
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