
Finding all covers of an indeterminate string in

O(n) time on average

Md. Faizul Bari, M. Sohel Rahman, and Rifat Shahriyar

Department of Computer Science and Engineering
Bangladesh University of Engineering and Technology

Dhaka, Bangladesh
{faizulbari, msrahman, rifat}@cse.buet.ac.bd

Abstract. We study the problem of finding all the covers of an indeterminate string.
An indeterminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for each
i, and Σ is a given alphabet of fixed size. Here we describe an algorithm for finding all
the covers of a string x. The algorithm is applicable for both regular and indeterminate
strings. Our algorithm starts with the border array and uses pattern matching technique
of the Aho-Corasick Automaton to compute all the covers of x from the border array.
On average the algorithm requires O(n) time to find out all the covers, where n is the
length of x. Finally, we extend our algorithm to compute the cover array of x in O(n2)
time and O(n) space complexity.

Keywords: indeterminate strings, covers, cover array, Aho-Corasick Automaton,
string regularities

1 Introduction

Characterizing and finding regularities in strings are important problems in many
areas of science. In molecular biology, repetitive elements in chromosomes determine
the likelihood of certain diseases. In probability theory, regularities are important in
the analysis of stochastic processes. In computer science, repetitive elements in strings
are important in e.g. data compression, computational music analysis, coding, auto-
mata and formal language theory. As a result, in the last 20 years, string regularities
have drawn a lot of attention from different disciplines of science.

The most common forms of string regularities are periods and repeats and there
are several O(n log n) time algorithms for finding repetitions [6,8], in a string x,
where n is the length of x. Apostolico and Breslauer [4] gave an optimal O(log log n)-
time parallel algorithm for finding all the repetitions of a string of length n. The
preprocessing of the Knuth-Morris-Pratt algorithm [14] finds all periods of every
prefix of x in linear time.

In many cases, it is desirable to relax the meaning of repetition. For instance, if
we allow overlapping and concatenations of periods in a string we get the notion of
covers. After periods and repeats, cover is the most popular form of regularities in
strings. The idea of cover generalizes the idea of periods or repeats. A substring c of
a string x is called a cover of x if and only if x can be constructed by concatenation
and superposition of c. Another common string regularity is the seed of a string. A
seed is an extended cover in the sense that it is a cover of a superstring of x.

Clearly, x is always a cover of itself. If a proper substring pc of x is also a cover of
x, then pc is called a proper cover of x. For example, the string x = abcababcabcabcab

has covers x and abcab. Here, abcab is a proper cover. A string that has a proper cover
is called coverable; otherwise it is superprimitive. The notion of covers was introduced

Md. Faizul Bari, M. Sohel Rahman, Rifat Shahriyar: Finding all covers of an indeterminate string in O(n) time on average, pp. 263–271.

Proceedings of PSC 2009, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04403-2 c© Czech Technical University in Prague, Czech Republic

264 Proceedings of the Prague Stringology Conference 2009

by Apostolico, Farach and Iliopoulos in [5], where a linear-time algorithm to test the
superprimitivity of a string was given. Moore and Smyth in [16] gave linear time
algorithms for finding all covers of a string.

In this paper, we are interested in regularities of indeterminate strings. An inde-
terminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for 1 ≤ i ≤ n,
and Σ is a given fixed alphabet. If |T [i]| > 1, then the position i of T is referred
to as an indeterminate position. The simplest form of indeterminate string is one in
which each indeterminate position can only contain a don’t care character, denoted
by ‘*’; the don’t care character matches any letter in the alphabet Σ. Effectively,
∗ = {σi ∈ Σ | 1 ≤ i ≤ |Σ|}. The pattern matching problem with don’t care charac-
ters has been solved by Fischer and Paterson [9] more than 30 years ago. However,
although the algorithm in [9] is efficient in theory, it is not very useful in practice.
Pattern matching problem for indeterminate string has also been investigated in the
literature, albeit with little success. For example, in [13], an algorithm was presented
which works well only if the alphabet size is small. Pattern matching for indetermi-
nate strings has mainly been handled by bit mapping techniques (Shift-Or method)
[7,18]. These techniques have been used to find matches for an indeterminate pat-
tern p in a string x [11] and the agrep utility [17] has been virtually one of the few
practical algorithms available for indeterminate pattern-matching.

In [11] the authors extended the notion of indeterminate string matching by distin-
guishing two distinct forms of indeterminate match, namely, quantum and determin-
istic. Roughly speaking, a quantum match allows an indeterminate letter to match
two or more distinct letters during a single matching process; a determinate match
restricts each indeterminate letter to a single match [11].

Very recently, the issue of regularities in indeterminate string has received some
attention. For example, in [2], the authors investigated the regularities of conserva-
tive indeterminate strings. In a conservative indeterminate string the number inde-
terminate positions is bounded by a constant. The authors in [2] presented efficient
algorithms for finding the smallest conservative cover (number of indeterminate posi-
tion in the cover is bounded by a given constant), λ-conservative covers (conservative
covers having length λ) and λ-conservative seeds. On the other hand, Antoniou et
al. presented an O(n log n) algorithm to find the smallest cover of an indeterminate
string in [3] and showed that their algorithm can be easily extended to compute all
the covers of x. The later algorithm runs in O(n2 log n) time.

In this paper, we devise an algorithm for computing all the covers of an indeter-
minate string x of length n in O(n2) time in the worst case. We also show that our
algorithm works in O(n) time on the average. We also extend our algorithm to com-
pute the cover array of x in O(n2) time and O(n) space complexity in the worst case.
Notably, our algorithm, unlike the algorithm of [2], does not enforce the restriction
that the cover or the input string x must be conservative.

The rest of this paper is organized as follows. Section 2 gives account of definitions
and notations. Section 3 presents our algorithm to find out all the covers of x. In
Section 4, we extend our algorithm to compute the cover array. Finally, Section 5
gives the conclusions.

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Σ. The set of all
strings over Σ is denoted by Σ∗. The length of a string x is denoted by |x|. The

Md. F. Bari, M. S. Rahman, R. Shahriyar: Finding all covers of an indeterminate string. . . 265

empty string, the string of length zero, is denoted by ǫ. The i-th symbol of a string x

is denoted by x[i]. A string w ∈ Σ, is a substring of x if x = uwv, where u, v ∈ Σ∗.
We denote by x[i . . . j] the substring of x that starts at position i and ends at position
j. Conversely, x is called a superstring of w. A string w ∈ Σ is a prefix (suffix) of x if
x = wy (x = yw), for y ∈ Σ∗. A string w is a subsequence of x (or x a supersequence
of w) if w is obtained by deleting zero or more symbols at any positions from x. For
example, ace is a subsequence of abcabbcde. For a given set S of strings, a string w is
called a common subsequence of S if s is a subsequence of every string in S.

The string xy is the concatenation of the strings x and y. The concatenation of
k copies of x is denoted by xk. For two strings x = x[1 . . . n] and y = y[1 . . . m] such
that x[n− i+1 . . . n] = y[1 . . . i] for some i ≥ 1 (i.e., x has a suffix equal to a prefix of
y), the string x[1 . . . n]y[i + 1 . . . m] is said to be a superposition of x and y. We also
say that x overlaps with y. A substring y of x is called a repetition in x, if x = uykv,
where u, y, v are substrings of x and k ≥ 2, |y| 6= 0. For example, if x = aababab,
then a (appearing in positions 1 and 2) and ab (appearing in positions 2, 4 and 6) are
repetitions in x; in particular a2 = aa is called a square and (ab)3 = ababab is called
a cube. A non-empty substring w is called a period of a string x, if x can be written
as x = wkw′ where k ≥ 1 and w′ is a prefix of w. The shortest period of x is called
the period of x. For example, if x = abcabcab, then abc, abcabc and the string x itself
are periods of x, while abc is the period of x.

A substring w of x is called a cover of x, if x can be constructed by concatenating
or overlapping copies of w. We also say that w covers x. For example, if x = ababaaba,
then aba and x are covers of x. If x has a cover w 6= x, x is said to be quasiperiodic;
otherwise, x is superprimitive. The cover array γ, is a data structure used to store the
length of the longest proper cover of every prefix of x; that is for all i ∈ {1, . . . , n},
γ[i] = length of the longest proper cover of x[1 . . . i] or 0. In fact, since every cover of
any cover of x is also a cover of x, it turns out that, the cover array γ describes all
the covers of every prefix of x. A substring w of x is called a seed of x, if w covers
a superstring of x1. For example, aba and ababa are some seeds of x = ababaab.
A border u of x is a prefix of x that is also a suffix of x; thus u = x[1 . . . b] =
x[n − b + 1 . . . n] for some b ∈ {0, . . . , n − 1}. The border array of x is an array
β such that for all i ∈ {1, . . . , n}, β[i] = length of the longest border of x[1 . . . i].
Since every border of any border of x is also a border of x, β encodes all the borders
of every prefix of x. Depending on the matching of letters, borders of indeterminate
strings can be of two types, namely, the quantum border and the deterministic border.
Roughly speaking, a quantum match allows an indeterminate letter to match two or
more distinct letters during a single matching process, whereas, a determinate match
restricts each indeterminate letter to a single match. The notion of these two type of
borders was introduced in [10].

An indeterminate string is a sequence T = T [1]T [2] · · ·T [n], where T [i] ⊆ Σ for
each i, and Σ is a given alphabet of fixed size. When a position of the string is
indeterminate, and it can match more than one element from the alphabet Σ, we say
that this position has non-solid symbol. If in a position we have only one element of
the alphabet Σ present, then we refer to this symbol as solid. In an indeterminate
string a non-solid position can contain up to |Σ| symbols. So, to check whether the
two positions match in the traditional way, we would need |Σ|2 time in the worst

1 Note that, x is a superstring of itself. Therefore, every cover is also a seed but the reverse is not
necessarily true.

266 Proceedings of the Prague Stringology Conference 2009

case. To perform this task efficiently we use the following idea originally borrowed
from [15] and later used in [3,2]. We use a bit vector of length |Σ| as follows:

∀T ⊆ Σ, ν[T] = [νt1 , νt2 , . . . , νt|Σ|
],

where ∀ti ∈ Σ νti =

{

1, if ti ∈ T

0, otherwise
(1)

During the string matching process instead of comparing T [i] with T [j], we test
bit vectors ν[T [i]] and ν[T [j]] using bit operation AND. Thus we can compare any
two symbols in constant time since the alphabet size is fixed.

In our algorithm we heavily use the Aho-Corasick Automaton invented by Aho
and Corasick in [1]. The Aho-Corasick Automaton for a given finite set P of patterns
is a Deterministic Finite Automaton G accepting the sets of all words containing a
word of P as a suffix. More formally, G = (Q,Σ, g, f, q0, F), where function Q is
the set of states, Σ is the alphabet, g is the forward transition, f is the failure link
i.e. f(qi) = qj , if and only if Sj is the longest suffix of Si that is also a prefix of
any pattern, q0 is the initial state and F is the set of final (terminal) states [1]. The
construction of the AC automaton can be done in O(d)-time and space complexity,
where d is the size of the dictionary, i.e. the sum of the lengths of the patterns which
the AC automata will match.

3 Our Algorithm

We start with a formal definition of the problem we handle in this paper.

Problem 1. Computing All Covers of an Indeterminate String over a fixed alphabet.
Input: We are given an indeterminate string x, of length n on a fixed alphabet Σ.
Output: We need to compute all the covers of x.

Our algorithm depends on the following facts:

Fact 1. Every cover of string x is also a border of x.

Fact 2. If u and c are covers of x and |u| < |c| then u must be a cover of c.

The running time analysis of our algorithm depends on Lemma 3 which is a
extension of the analysis provided in [12] by Iliopoulos et al. where they have showed
that number of borders of a regular string with a don’t care is bounded by 3.5 on
average. Here we have extended it for indeterminate strings and proved that, the
expected number of borders of an indeterminate string is also bounded by a constant.

Lemma 3. The expected number of borders of an indeterminate string is bounded by
a constant.

Proof (Proof of Lemma 3). We suppose that the alphabet Σ consists of ordinary
letters 1, 2, . . . , α, α ≥ 2. First we consider the probability of two symbols of a string
being equal. Equality occurs in the following cases:

Md. F. Bari, M. S. Rahman, R. Shahriyar: Finding all covers of an indeterminate string. . . 267

Symbol Match To Number of cases
σ ∈ {1, 2, . . . , α} σ ∈ {1, 2, . . . , α} α

σ ∈ S, S ⊆ Σ σ ∈ S, S ⊆ Σ, |S| > 1
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

Thus the total number of equality cases is α +
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

and the number of overall cases is 22α. Therefore the probability of two symbols of a
string being equal is

α +
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

22α

Now let’s consider the probability of string x having a border of length k. If we
let P [expression] denotes the probability that the expression hold, then

P

[

x[1 . . . k] = x[n − k + 1 . . . n]

]

= P

[

x[1] = x[n − k + 1]

]

× · · · × P

[

x[k] = x[n]

]

=

(

α +
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

22α

)k

From this it follows that the expected number of borders is

n−1
∑

k=1

(

α +
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

22α

)k

This summation assumes its maximum value when α is equal to 12 and the sum-
mation is bounded above by

n−1
∑

k=1

(

α +
∑α

j=1

(

α

j

)

{2α−j(2j − 1) −
(

j

1

)

}

22α

)k

≤

(

16221211

16777216

)

+

(

16221211

16777216

)2

+ · · ·

+

(

16221211

16777216

)n−1

=
1 −

(

16221211

16777216

)n

1 −
(

16221211

16777216

) − 1

=
1

556005

16777216

− 1

= 29.1746

So, the expected number of borders of an indeterminate string is bounded by
29.1746. ⊓⊔

Now by using Fact 1, we can compute all the covers of x from its border array.
This can be done simply by checking each border and finding out whether it covers
x or not. Our algorithm is based on this approach. Broadly speaking, our algorithm
consists of two steps. In the first step, the deterministic border array of x is computed.

268 Proceedings of the Prague Stringology Conference 2009

For this we have used the algorithm introduced by Holub and Smyth in [10], that
can compute the deterministic border array of an indeterminate string x in expected
O(n) time and space complexity, where n is the length of x. In the second step, we
check each border whether it is a cover of x or not. Utilizing Fact 2 and the pattern
matching technique of Aho-Corasick Automaton, this step can be performed in O(n)
time and space complexity on average. In what follows, we explain the steps of the
algorithm in more details.

3.1 First Step: Computing the Border Array

In the first step, we utilize the algorithm provided by Holub and Smyth [10] for
computing the deterministic border of an indeterminate string. The output of the
algorithm is a two dimensional list β. Each entry βi of β contains a list of pair (b, νa),
where b is the length of the border and νa represents the required assignment and the
list is kept sorted in decreasing order of border lengths of x[1 . . . i]. So the first entry
of βi represents the largest border of x[1 . . . i]. The algorithm is given below just for
completeness.

Algorithm 1 Computing deterministic border array of string x

1: βi[j]← φ, ∀i, j ∈ {1..n}
2: νi ← ν[x[i]], ∀i ∈ {1..n} {set bit vector for each x[i]}
3: for i ← 1 to n− 1 do

4: for all b, βi[b] 6= φ do

5: if 2b− i + 1 < 0 then

6: p← νb+1 AND νi+1

7: else

8: p← βi[b + 1] AND νi+1

9: end if

10: if p 6= 0
|Σ|

then

11: βi+1[b + 1]← p

12: end if

13: end for

14: p← ν1 AND νi+1

15: if p 6= 0
|Σ|

then

16: βi+1[1]← p

17: end if

18: end for

If we assume that the maximum number of borders of any prefix of x is m, then
the worst case running time of the algorithm is O(nm). But from Lemma 3 we know
that the expected number of borders of an indeterminate string is bounded by a
constant. As a result the expected running time of the above algorithm is O(n).

3.2 Second Step: Checking the Border for a Cover

In the second step, we find out the covers of string x. Here we need only the last
entry of the border array, βn, where n = |x|. If βn = {b1, b2, b3} then we can say that
x has three borders, namely x[1 . . . b1], x[1 . . . b2] and x[1 . . . b3] of length b1, b2 and
b3 respectively and b1 > b2 > b3. If the number of borders of x is m then number
of entry in βn is m. We iterate over the entries of βn and check each border in turn
to find out whether it covers x or not. To identify a border as a cover of x we use
the pattern matching technique of an Aho-Corasick automaton. Simple speaking, we
build an Aho-Corasick automaton with the dictionary containing the border of x and

Md. F. Bari, M. S. Rahman, R. Shahriyar: Finding all covers of an indeterminate string. . . 269

parse x through the automaton to find out whether x can be covered by it or not.
Suppose in iteration i, we have the length of the ith border of βn equal to b. In this
iteration, we build an Aho-Corasick automaton for the following dictionary:

D = {x[1]x[2] · · · x[b]}, where ∀j ∈ 1 to b , x[j] ∈ Σ (2)

Then we parse the input string x through the automaton to find out the posi-
tions where the pattern c = x[1 . . . b] occurs in x. We store the starting index of the
occurrences of c in x in a position array P of size n = |x|. We initialize P with all
entries set to zero. If c occurs at index i of x then we set P [i] = 1. Now if the distance
between any two consecutive 1’s is greater than the length of the border b then the
border fails to cover x, otherwise c is identified as a cover of x. We store the length
of the covers in an array AC. At the end of the process AC contains the length of all
the covers of x. The definition of AC can be given as follows:

AC = {c1, c2, . . . , ck}, where ∀i ∈ 1 to k, ci is a cover of x (3)

Algorithm 2 formally presents the steps of a function isCover(), which is the heart
of Step 2 described above.

Algorithm 2 Function isCover(x, c)

1: Construct the Aho-Corasick automaton for c

2: parse x and compute the positions where c occurs in x and put the positions in
the array Pos

3: for i = 2 to |Pos| do

4: if Pos[i] − Pos[i − 1] > |c| then

5: Return FALSE
6: end if

7: end for

8: Return TRUE

The time and space complexity of Algorithm 2 can be deduced as follows. Clearly,
Steps 3 and 2 run in O(n). Now, the complexity of Step 1 is linear in the size of
the dictionary on which the automaton is build. Here the length of the string in the
dictionary can be n − 1 in the worst case. So, the time and space complexity of this
algorithm is O(n).

A further improvement in running time is achieved as follows. According to Fact 2,
if u and c are covers of x and |u| < |c| then u must be a cover of c. Now if βn =
{b1, b2, . . . , bm} then from the definition of border array b1 > b2 > · · · > bn. Now if in
any iteration we find a bi that is a cover of x then from Fact 2, we can say that for all
j ∈ {i + 1, . . . ,m}, if bj is a cover of x if and only if bj is a cover of bi. So instead of
parsing x we can parse bi for the subsequent automatons and as |bi| ≤ |x| this policy
improves the overall running time of the algorithm. Algorithm 3 formally present the
overall process of Step 2 described above.

270 Proceedings of the Prague Stringology Conference 2009

Algorithm 3 Computing all covers of x

1: k← n

2: AC ← φ {AC is a list used to store the covers of x}
3: for all b ǫ βn do

4: if isCover(x[1..k], x[1..b]) = true then

5: m← b

6: AC.Add(k)
7: end if

8: end for

The running time of Algorithm 3 is O(nm), where m is number of borders of x

or alternatively number of entries in βn. Again, from Lemma 3 we can say that the
number of borders of an indeterminate string is bounded by a constant on average.
Hence, the expected running time of Algorithm 3 is O(n).

It follows from above that our algorithm for finding all the covers of an indetermi-
nate string of length n runs in O(n) time on the average. The worst case complexity
of our algorithm is O(nm), i.e., O(n2), which is also an improvement since the current
best known algorithm [3] for finding all covers requires O(n2 log n) in the worst case.

4 Computing Cover Array

The cover array γ, is to store the length of the longest proper cover of every prefix of x;
that is for all i ∈ {1, . . . , n}, γ[i] = length of the longest proper cover of x[1 . . . i] or 0.
Our algorithm can readily be extended to compute the cover array of x. Algorithm 3
can be used here after some modification to compute the cover array of x. Here we only
need the length of the largest border of each prefix of x. This information is stored
in the first entry of each βi of the border array. If the border array is implemented
using any traditional two dimensional list even then the first entry of each list can be
accessed in constant time. Let us assume that βi[1] denotes the first entry of the list
βi that is βi[1] is the length of the largest border of x[1 . . . i].

Algorithm 4 Computing cover array γ of x

1: γ[i]← 0 ∀ i ǫ {1 . . . n}
2: for i ← 1 to n do

3: if isCover(x, x[1 . . . βi[1]]) = true then

4: γ[i]← βi[1]

5: end if

6: end for

The isCover(x, c) function (Algorithm 2) is used to identify the covers of x. The
algorithm iterates over the first entries of the border array β and checks the borders
one by one. If the border x[1 . . . βi[1]] is identified as a cover then γ[i] is set equal to
βi[1]. otherwise its set to zero. The steps are formally presented in Algorithm 4.

As the worst case running time of the isCover(x, c) function is O(n) and the algo-
rithm iterates over the n lists of the border array β, the running time of Algorithm 4
is O(n2). The space requirement to store the cover array γ is clearly linear in the
length of x, so the space complexity is O(n).

5 Conclusions

In this paper we have presented an average case O(n) time and space complex algo-
rithm for computing all the covers of a given indeterminate string x of length n. We

Md. F. Bari, M. S. Rahman, R. Shahriyar: Finding all covers of an indeterminate string. . . 271

have also presented an algorithm for computing the cover array γ of an indeterminate
string. This algorithm requires O(n2) time and O(n) space in the worst case. Both of
these algorithms are improvement over existing algorithms.

References

1. A. V. Aho and M. J. Corasick: Efficient string matching: an aid to bibliographic search.
Communications of the ACM, 18(6) 1975, pp. 333–340.

2. P. Antoniou, M. Crochemore, C. S. Iliopoulos, I. Jayasekera, and G. M. Landau:
Conservative string covering of indeterminate strings. Proceedings of the Prague Stringology
Conference 2008, 2008, pp. 108–115.

3. P. Antoniou, C. S. Iliopoulos, I. Jayasekera, and W. Rytter: Computing repetitive
structures in indeterminate strings. Proceedings of the 3rd IAPR International Conference on
Pattern Recognition in Bioinformatics (PRIB 2008), 2008.

4. A. Apostolico and D. Breslauer: An optimal O(log log n)-time parallel algorithm for de-
tecting all squares in a string. SIAM Journal of Computing, 25(6) 1996, pp. 1318–1331.

5. A. Apostolico, M. Farach, and C. S. Iliopoulos: Optimal superprimitivity testing for
strings. Information Processing Letters, 39(11) 1991, pp. 17–20.

6. A. Apostolico and F. P. Preparata: Optimal off-line detection of repetitions in a string.
Theory of Computer Science, 22 1983, pp. 297–315.

7. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Communications of
the ACM, 35(10) 1992, pp. 74–82.

8. M. Crochemore: An optimal algorithm for computing the repetitions in a word. Information
Processing Letters, 12(5) 1981, pp. 244–250.

9. M. J. Fischer and M. S. Paterson: String-matching and other products. Technical report,
Cambridge, MA, USA, 1974.

10. J. Holub and W. F. Smyth: Algorithms on indeterminate strings. Miller, M., Park, K. (eds.):
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms AWOCA’03, 2003,
pp. 36–45.

11. J. Holub, W. F. Smyth, and S. Wang: Fast pattern-matching on indeterminate strings.
Journal of Discrete Algorithms, 6(1) 2008, pp. 37–50.

12. C. S. Iliopoulos, M. Mohamed, L. Mouchard, K. G. Perdikuri, W. F. Smyth, and

A. K. Tsakalidis: String regularities with don’t cares. Nordic Journal of Computing, 10(1)
2003, pp. 40–51.

13. C. S. Iliopoulos, L. Mouchard, and M. S. Rahman: A new approach to pattern matching
in degenerate DNA/RNA sequences and distributed pattern matching. Mathematics in Computer
Science, 1(4) 2008, pp. 557–569.

14. D. E. Knuth, J. H. Morris, and V. R. Pratt: Fast pattern matching in strings. SIAM
Journal of Computing, 6(2) 1977, pp. 323–350.

15. I. Lee, A. Apostolico, C. S. Iliopoulos, and K. Park: Finding approximate occurrences
of a pattern that contains gaps, in Proceedings 14-th Australasian Workshop on Combinatorial
Algorithms, SNU Press, 2003, pp. 89–100.

16. D. Moore and W. F. Smyth: An optimal algorithm to compute all the covers of a string.
Information Processing Letters, 50(5) 1994, pp. 239–246.

17. S. Wu and U. Manber: Agrep – a fast approximate pattern-matching tool. In Proceedings
USENIX Winter 1992 Technical Conference, San Francisco, CA, 1992, pp. 153–162.

18. S. Wu and U. Manber: Fast text searching: allowing errors. Communications of the ACM,
35(10) 1992, pp. 83–91.

