
On the Complexity of Variants of the

k Best Strings Problem

Martin Berglund and Frank Drewes

Department of Computing Science, Ume̊a University
90187 Ume̊a, Sweden

mbe@cs.umu.se, drewes@cs.umu.se

Abstract. We investigate the problem of extracting the k best strings from a non-
deterministic weighted automaton over a semiring S. This problem, which has been
considered earlier in the literature, is more difficult than extracting the k best runs, since
distinct runs may not correspond to distinct strings. Unsurprisingly, the computational
complexity of the problem depends on the semiring S used. We study three different
cases, namely the tropical and complex tropical semirings, and the semiring of positive
real numbers. For the first case, we establish a polynomial algorithm. For the second
and third cases, NP-completeness and undecidability results are shown.

1 Introduction

Weighted finite-state automata (WFA) are a popular tool for representing weights
assigned to potentially infinite languages of strings. This is useful in many areas,
notable cases being natural language processing and speech recognition. These auto-
mata are constructed in a way that conveniently solves the weighted version of the
membership problem, that is, the problem of computing the weight of a string. In
many cases, however, the WFA represents something like a “hypothesis space”, where
the weights represent some kind of desirability or quality. For example a natural lan-
guage translation system may be implemented as a weighted transducer, which for
an input string produces a WFA as output. This WFA then assigns weights to strings
according to the likelihood that the string is a good translation of the original input.
We may then wish to somehow enumerate a few of the “best” runs or strings with
respect to a given WFA.

In a WFA over a semiring S, transitions are assigned a weight in S. Essentially, the
weight of a run is the product of the weights of the edges traversed, and the weight of
an input string is the sum of the weights of all its runs.1 The problem of finding the
best runs is well-explored: it is the problem of finding the shortest paths in a directed
weighted graph. Notably, there are very efficient algorithms to, in order, enumerate
the shortest paths through a graph, where the edge weights are usually interpreted
as lengths and are, accordingly, summed up [2]. This corresponds to the use of the
tropical semiring, whose multiplication is ordinary addition and whose addition takes
the minimum. Algorithms for best runs in WFA over other types of semirings have
also been investigated [6].

Not quite as well investigated is the k best strings problem (k-BSP) where the
aim is to find the best strings, i.e., those with the least weight. This is different from
the problem of finding the best runs if non-deterministic WFA are considered, as the

1 Here, products and sums are built by using the multiplication and addition, respectively, of the
semiring.

Martin Berglund, Frank Drewes: On the Complexity of Variants of the k Best Strings Problem, pp. 76–88 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 77

weight of a string is the sum of the weights of all runs for that particular input string.
Thus, while every run corresponds to a particular input string, the weight of the run
does not in general coincide with the weight of the string. Furthermore, distinct runs
may correspond to the same input string, whereas the k-BSP asks for the k best
unique strings. This makes the problems differ even for the particular case of WFA
over the tropical semiring, where the weight of an input string is always the lowest
weight among all runs associated with the string. In the extreme case, the k best runs
may all belong to the same input string.

In [7], an algorithm is presented that solves the k-BSP for WFA over the tropical
semiring. This algorithm is based on a clever on-demand (or lazy) determinization,
which stops when the k runs with the least weight (in the determinized part) have
been found. The algorithm has been reported to be very efficient in practice. However,
it appears to run in exponential time in some bad cases. Therefore, it is a natural
question to ask whether there is a polynomial algorithm solving the problem.

In this paper, we give a positive answer to this question. Of course, this raises
the question whether the setting can be generalized to other semirings without losing
tractability. The first answers to this question will be given by considering a decision
problem closely related to the k-BSP for k = 1, namely the string quality threshold
problem (SQTP). Here, we are given a WFA and a threshold t ∈ S, and the question
is whether there exists a string whose weight is less than or equal to t (with respect
to the order considered).

In summary, we establish the following three main results:

– The k-BSP for WFA over the tropical semiring is solvable in polynomial time.
– For WFA over the tropical semiring on pairs of numbers (which we call the complex

tropical semiring), the SQTP is NP-complete.
– For WFA over the semiring of positive real numbers with the usual addition and

multiplication, the SQTP is undecidable.

The remainder of the paper is structured as follows. In the next section, basic
notions and notation are compiled. In Section 3, the problems to be investigated are
defined. In Sections 4, 5, and 6, the three main results are shown. Finally, a short
conclusion is given in Section 7.

2 Basic Notions and Notation

For n ∈ N, we denote the set {1, . . . , n} by [n]. The set {x | x ∈ R, x ≥ 0} ∪ {∞} is
denoted by R

∞
+ . Similarly, C

∞
+ denotes {x + yi | x ∈ R

∞
+ , y ∈ R

∞
+ }.

We denote a semiring as a tuple (S,⊕,⊗) where S is the domain, ⊕ the addition
operator and ⊗ the multiplication operator. Semirings will often be equipped with a
(possibly partial) order ≤, in which case the semiring is denoted by (S,⊕,⊗,≤). If ⊕
and ⊗ (and ≤) are clear from the context, then the semiring may simply be denoted
by S.

For an alphabet Σ, Σ∗ denotes the set of all strings over Σ. The empty string,
i.e., the string of length 0, is denoted by ǫ. The length of a string s is denoted by
|s|, and s · s′ or simply ss′ denotes the concatenation of s with another string s′. The
notation |S| is also used to denote the cardinality of a set S.

A weighted finite-state automaton (WFA) is a tuple A = (Σ,Q, S, µ, λ, ρ) where
Σ is a finite alphabet of input symbols, Q is a finite set of states, S is the semiring
from which the weights are taken, µ : Q × Σ × Q → S is the weighted transition

78 Proceedings of the Prague Stringology Conference 2010

function and λ, ρ : Q → S are the initial and final weight vectors, respectively. The
WFA A is deterministic if, for all q ∈ Q and a ∈ Σ, there is at most one q′ ∈ Q such
that µ(q, a, q′) 6= 0.

The transition function µ can alternatively be viewed as a set of rules, namely

Rµ = {q
w,a
−−→ q′ | (q, a, q′) ∈ Q × Σ × Q and µ(q, a, q′) = w ∈ S \ {0}}

(where 0 is the additive identity of S). Thus, the case µ(q, a, q′) = 0 corresponds to
a non-existing rule. We define the size |A| of an automaton as the number of rules,
i.e., |A| = |Rµ|.

A WFA A computes a function A : Σ∗ → S, called a string series in the theory of
weighted automata [1], as follows: for all strings s = a1 · · · an,

A(s) =
∑

p1,...,pn+1∈Q

λ(p1)

(
n∏

i=1

µ(pi, ai, pi+1)

)
ρ(pn+1).

Here, the sums and products are defined using the operators ⊕ and ⊗, resp., of the
semiring. An alternating sequence of states and input symbols p1, a1, p2, . . . , an, pn+1

is also called a run of A on s. The weight of the run is given by the product
λ(p1) (

∏n
i=1 µ(pi, ai, pi+1)) ρ(pn+1). In other words, A(s) is the sum of the weights

of all runs on s.
By abuse of notation, A will simply be denoted by A from now on. We write

WFAS

Σ to denote the set of all WFA over Σ and S.
The reader may have noticed that we do not allow ǫ transitions in our WFA.

However, this restriction is not essential in any case studied here. Its sole purpose is
to simplify the presentation of the algorithm in Section 4. Let us have a look at an
example semiring to wrap this section up.

Example 1 (The tropical semiring). The tropical semiring is an important case both
for the following sections and in many practical applications. It is defined as Trop =
(R∞

+ , min, +,≤), where min, + and ≤ all have their usual meanings on R
∞
+ . Note that

the product in Trop is ordinary addition. For all A = (Σ,Q, Trop, µ, λ, ρ) ∈ WFATrop

Σ

and all strings s = a1 · · · an the formula above gives us

A(s) = min
p1,...,pn+1∈Q

λ(p1) +

(
n∑

i=1

µ(pi, ai, pi+1)

)
+ ρ(pn+1).

That is, finding the weight that A assigns to the string s corresponds to finding the
run on s with the minimal total weight. This makes the tropical semiring case closely
related to various shortest-path problems, as we will see in coming sections.

Consider the input alphabet Σ = {a, b}. We give a WFA over Trop such that,
for every s ∈ Σ∗, A(s) = |s| − l, where l is the length of the longest substring in s
consisting only of the symbol a. For this, we let Q = {prefix, middle, suffix}, λ(q) = 0
for all q ∈ Q,

Rµ = {prefix
1,x
−→ prefix (x ∈ Σ),

prefix
1,b
−→ middle,

middle
0,a
−→ middle,

middle
1,b
−→ suffix,

suffix
1,x
−→ suffix (x ∈ Σ) },

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 79

and

ρ(q) =

{
0 if q ∈ {middle, suffix}
∞ otherwise.

Intuitively, the WFA guesses non-deterministically the part to be left out when count-
ing the symbols the input string consists of.

3 Problem Definitions

As mentioned above, given a WFA A ∈ WFAS

Σ and some k ∈ N, we are interested in
computing the k “best” strings in the sense that these strings are assigned the lowest
weights by A. The formal definition of the problem reads as follows.

Definition 2 (k best strings problem). Let (S,⊕,⊗,≤) be a partially ordered
semiring, and let Σ be an alphabet. An instance of the k best strings problem (k-
BSP) over S is a pair (A, k) ∈ WFAS

Σ × N. A solution to the instance is a set S of
strings in Σ∗ such that |S| = k and, for all strings s, s′, if A(s) < A(s′) and s′ ∈ S
then s ∈ S.

The 1-BSP is the special case of the k-BSP where k = 1 is considered to be fixed.

Notice that the solution S is not necessarily unique, because each string s′ ∈ S can
be replaced with any other string s ∈ Σ∗ \S such that A(s) = A(s′). Thus, there may
even be an infinite number of solutions. Also note that in some cases no solution may
exist, because a solution cannot include elements from an infinite chain s0, s1, s2, . . .
such that A(si+1) < A(si) for all i ∈ N, i.e., the si get “better and better”. This
cannot happen if < is well-founded, as will be the case in the next two sections.

We also consider a closely related decision problem.

Definition 3 (String quality threshold problem). Let (S,⊕,⊗,≤) be a partially
ordered semiring, and let Σ be an alphabet. An instance of the string quality threshold
problem (SQTP) is a pair (A, t) ∈ WFAS

Σ×S. The question to be answered is whether
there exists a string s ∈ Σ∗ such that A(s) ≤ t.

As usual, we shall identify a decision problem such as the SQTP with the set of
all its yes instances. Thus, given an instance I, we write I ∈ SQTP to express that I
is a yes instance of SQTP . Note that if the 1-BSP problem A has a solution {s} we
will have (A, t) ∈ SQTP for all t ≥ A(s).

The problems are closely related in the other direction as well: as long as ≤ is a
total order, it holds that for all (A, t) ∈ SQTP all solutions {s} to the 1-BSP problem
(A, 1) satisfy A(s) ≤ t. That is, if we know that there exists some string with weight
less than or equal to t then any algorithm solving the 1-BSP will have to find such a
string.

4 A Polynomial k Best Strings Algorithm for the Tropical
Case

In this section, we show that the k-BSP can be solved in polynomial time for the
tropical semiring Trop = (R∞

+ , min, +,≤) (as defined in Example 1). For the rest
of this section, let us consider an instance (A, k) of the k-BSP over Trop, where
A = (Σ,Q, Trop, µ, λ, ρ). Let us start with an important lemma.

80 Proceedings of the Prague Stringology Conference 2010

Lemma 4 (Short minimal strings). For any string s ∈ Σ∗ let l =
⌊

|s|
|Q|

⌋
. Then

there exists at least l distinct strings s1, . . . , sl such that |si| ≤ |s| and A(si) ≤ A(s)
for all i ∈ [l].

Proof. Let s = a1 · · · an. By the definition of A(s), together with the fact that A is
defined over Trop, we know that A(s) = minp1,...,pn+1∈Q λ(p1)+ (

∑n
i=1 µ(pi, ai, pi+1))+

ρ(pn+1). Let p1, . . . , pn+1 ∈ Q be one of the (not necessarily unique) choices of states
that minimize the expression. Then, since n + 1 > l|Q| there exists a state q ∈ Q
which occurs l + 1 or more times among p1, . . . , pn+1 (by the pigeon hole principle).
Let i1, . . . , il+1 ∈ [n] be the distinct indices such that pij = q for all j. For all j ∈ [l+1]
let

F (j) =λ(p1) +
(∑ij−1

h=1 µ(ph, ah, ph+1)
)
+(∑n

h=il+1
µ(ph, ah, ph+1)

)
+ ρ(pn+1).

Notice that F (j) ≤ A(s) for all j ∈ [l+1], owing to the fact that all terms of the sum
defining F (j) are also part of the sum defining A(s). Now, for each j ∈ [l+1] construct
the string s′j = a1 · · · aij−1ail+1

· · · an. Notice that these strings are pairwise distinct.
For each of them it holds that A(s′j) ≤ F (j), since F (j) is the weight corresponding
to one of the possible state choices for the minimization in the evaluation of A(s′j).

Thus, as required, we have obtained l distinct strings s′1, . . . , s
′
l such that A(s′j) ≤

F (j) ≤ A(s). ⊓⊔

As a rather direct consequence, we get the following.

Corollary 5 (Existence of a short k-BSP solution). If (A, k) has a solution,
then it has a solution S such that |s| ≤ k|Q| for all s ∈ S.

To see this, simply consider a solution S that contains a string s longer than the
corollary states is necessary. By Lemma 4, there exists a shorter string s′ /∈ S of the
same weight, which s can be replaced with.

Now we are ready to describe, as a first step towards solving the k-BSP, an al-
gorithm that solves the 1-BSP. This does in the process solve the SQTP, since our
semiring is totally ordered. For solving the 1-BSP, we can simply apply Dijkstra’s
algorithm to A.

Algorithm 6 (1-BSP and SQTP algorithm). View A as a directed labeled
weighted graph by considering the states to be nodes and the rules to be weighted
edges. Then simply apply Dijkstra’s algorithm [8] to A in the following way:

1. For each q ∈ Q the algorithm assigns a weight weight(q) to q. Initially, weight(q) =
λ(q) and U = Q.

2. Take any q ∈ U with weight(q) = minq′∈U weight(q′).

3. For all edges q
w,a
−−→ q′ set weight(q′) = min(weight(q′),weight(q) + w).

4. Let U = U \ {q}. If U 6= ∅ go to step 2.

Now create the directed labeled graph G = (V,E) where V = Q and E = {q
a
−→ q′ |

(q, a, q′, w) ∈ µ,weight(q′) = weight(q)+w}. Then let ŵ = minq∈Q weight(q)+ρ(q), let
F = {q ∈ Q | weight(q) + ρ(q) = ŵ}, and let I = {q ∈ Q | weight(q) = λ(q)}. Then
simply perform a breadth-first search to find the (not necessarily unique) shortest

path q1
a1−→ . . .

an−→ qn+1 through G such that q1 ∈ I and qn+1 ∈ F .
Now, s = a1 · · · an is a solution to the 1-BSP, and we have A(s) = ŵ. Conse-

quently, (A, t) ∈ SQTP if and only if t ≥ ŵ. The running time of this algorithm,

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 81

being dominated by the running time of Dijkstra’s algorithm, is O(|A|+ |Q| log |Q|),
provided that some well-known optimizations are made [8].

The following lemma summarizes the properties of Algorithm 6.

Lemma 7. Algorithm 6 solves the 1-BSP in time O(|A|+ |Q| log |Q|). Furthermore,
if it returns {s}, then |s| ≤ |s′| holds for every other solution {s′} to the 1-BSP
instance.

The fact that the lemma above ensures |s| ≤ |s′| will enable us to exploit Corol-
lary 5. As building blocks for the general algorithm, let us make two more definitions.

Definition 8 (S-complement WFA). For any finite set S ⊂ P(Σ∗) let AS ∈
WFATrop

Σ denote the automaton (Σ,QS, Trop, µS, λS, ρS), constructed in the follow-
ing way.

– QS = {sink, rǫ} ∪ {rs | s is a prefix of a string in S}.
– For all q ∈ QS,

λ(q) =

{
0 when q = rǫ

∞ otherwise,

ρ(q) =

{
∞ if q = rs for some s ∈ S
0 otherwise.

– For all rs ∈ QS and all c ∈ Σ, RµS
contains the rules

• rs
0,c
−→ rsc if rsc ∈ QS,

• rs
0,c
−→ sink if rsc /∈ QS, and

• sink
0,c
−→ sink.

The reader should easily be able to check that, for all s ∈ Σ∗,

AS(s) =

{
∞ if s ∈ S
0 otherwise.

Definition 9 (Product-WFATrop). For all WFA A1 = (Σ,Q1, Trop, µ1, λ1, ρ1) and
A2 = (Σ,Q2, Trop, µ2, λ2, ρ2), let A1 × A2 denote the product automaton, defined by
A1 × A2 = (Σ,Q1 × Q2, Trop, µ, λ, ρ) where, for all (q1, q2) ∈ Q1 × Q2,

– λ(q1, q2) = λ1(q1) + λ2(q2),
– ρ(q1, q2) = ρ1(q1) + ρ2(q2), and
– µ((q1, q2), a, (q′1, q

′
2)) = µ1(q1, a, q′1) + µ2(q2, a, q′2) for all (q′1, q

′
2) ∈ Q1 ×Q2 and all

a ∈ Σ.

It should be clear that, for all s ∈ Σ∗, we have (A1 × A2)(s) = A1(s) + A2(s).
Given the 1-BSP algorithm, it is now straightforward to construct the algorithm that
solves the k-BSP.

Algorithm 10 (k-BSP algorithm). To compute a solution to the k-BSP instance
(A, k), we proceed as follows.

1. Initially, let S = ∅.
2. If |S| = k halt and return S as the answer.

82 Proceedings of the Prague Stringology Conference 2010

3. Construct the automaton A′ = A × AS where AS is the S-complement WFA as
in Definition 8 (this gives A′ = A for S = ∅).

4. Apply Algorithm 6 to the 1-BSP instance A′, and let s be the answer the algorithm
computes.

5. Let S = S ∪ {s} and go to step 2.

There is one degenerate case, where the string s computed in step 4 satisfies A′(s) = ∞
(that is, all strings that have a finite weight in A have already been picked). To handle
that edge case simply pick the remaining |S| − k strings from Σ∗ \ S arbitrarily and
halt. In all other cases, s /∈ S will hold at step 3.

Next, we establish the correctness and complexity of Algorithm 10 to complete
this section.

Theorem 11. If applied to a k-BSP instance (A, k), Algorithm 10 returns a correct
solution in time O((k3|A|2) log(k|A|)).

Proof. The correctness of the algorithm is straightforward to show. Consider steps 3
and 4 of the algorithm, and suppose that A′(s) 6= ∞. By the properties of A′ noted
above, and by Lemma 7, s is a shortest string such that A(s) = min{A(s′) | s′ ∈
Σ∗ \S}. By induction, this means that the set S that is eventually returned is a valid
solution. Furthermore, S is a shortest solution, i.e., every other solution S ′ satisfies∑

s∈S′ |s| ≥
∑

s∈S |s|.
As for the complexity of the algorithm, consider the kth iteration. Lemma 4 and the

fact that S is a shortest solution yield maxs∈S |s| ≤ k|Q|. This means that
∑

s∈S |s| ∈
O(k2|Q|). Constructing the automaton AS according to Definition 8 will then give
us O(k2|Q|) states, and since AS is deterministic we have |AS| ∈ O(k2|Q|).2 Thus,
A′ consists of O(k2|Q|2) states and O(k2|Q||A|) rules. By Lemma 7, this means that
Algorithm 6 runs in time O(k2|A||Q|+ (k2|Q|2) log(k2|Q|2)). Summing up over the k
iterations of the algorithm, this yields a running time of

O(k3|A||Q| + k3|Q|2 log(k2|Q|2)) = O(k3|A||Q| + k3|Q|2 log(k|Q|)).

Since |Q| < |A| in all non-degenerate cases, this yields the bound stated. ⊓⊔

5 The Complex Tropical Case is NP-Complete

We now consider the extension of the tropical semiring to the plane, called the com-
plex tropical semiring. It is defined as Trop2 = (C∞

+ , min, +,≤) where min and +
are component-wise minimum and addition (i.e., min(x + yi, x′ + y′i) = min(x, x′) +
min(y, y′)i, and similarly for +). The (partial) order ≤ of this semiring is also defined
component-wise, i.e., for all a, b ∈ C

∞
+ we have a ≤ b if and only if a = min(a, b).

This case is an interesting extension of the normal tropical case, and would be useful
in settings where one wishes to track multiple qualities of a string independently. For
example in the case of natural language correction one could let the first component
signify the prevalence of typing mistakes (spelling fixes), whereas the second compo-
nent could signify the severity of structural mistakes (for example typical mistakes
for non-native speakers, like verb-subject agreement). We prove that the SQTP is
NP-complete even for deterministic WFA over Trop2. We start by showing that the
problem is in NP, followed by showing that it is NP-hard.

2 Here, we consider |Σ| to be a constant.

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 83

Lemma 12. The SQTP for WFA over Trop2 is in NP.

Proof. Lemma 4 holds even for Trop2, with precisely the same proof. As a direct
consequence Corollary 5 also holds. From this it follows that for any WFA A =
(Σ,Q, Trop2, µ, λ, ρ) and t ∈ C

∞
+ such that (A, t) ∈ SQTP there exists some s ∈ Σ∗

with |s| ≤ |Q| such that A(s) ≤ t.

We can then solve the SQTP instance (A, t) by non-deterministically choosing
any string s ∈ Σ∗ with |s| ≤ |Q| and checking if A(s) ≤ t. If this succeeds then
(A, t) ∈ SQTP. ⊓⊔

Lemma 13. The SQTP for deterministic WFA over Trop2 is NP-hard .

To prove the theorem by reduction, recall the shortest weight-constrained path prob-
lem [3].

Definition 14 (Shortest weight-constrained path). An instance of the shortest
weight-constrained path problem (SWCP) is a tuple I = (G,w, l, (u, v), (Mw,Ml)),
where G is a directed graph G = (V,E), w : E → N

+ is a weight function, l : E → N
+

is a length function, u, v ∈ V and Mw,Ml ∈ N
+. The question to be answered is

whether there exists a path from u to v such that the total weight of all edges on the
path is less than Mw and the total length of all edges on the path is less than Ml.

This problem is known to be NP-complete [3]. Given an instance I of the SWCP as
above, we construct a weighted automaton A over Trop2 such that (A, t) ∈ SQTP
for t = Mw + Mli if and only if I ∈ SWCP. The construction is straightforward, as
follows.

Construct the WFA A = (Σ,Q, Trop2, µ, λ, ρ) as follows. Let Q = V , let Σ =
{v̂1v2 | (v1, v2) ∈ E}, for all q ∈ Q let

λ(q) =

{
0 + 0i if q = u

∞ + ∞i otherwise,

and

ρ(q) =

{
1 + 0i if q = v
0 + 0i otherwise.

Then we simply let Rµ consist of all rules v1
ŵ, dv1v2
−−−→ v2, such that (v1, v2) ∈ E and

ŵ = w(v1, v2) + l(v1, v2)i.

Thus, the WFA interprets the input string as a sequence of edges in G. If this
sequence is a path starting at u, the state corresponding to the node reached on this
path will carry the weight equal to the weight-length combination up to that point;
all other states will carry the weight ∞ + ∞i. Owing to the choice of ρ, this yields
the desired result, i.e., (A, t) ∈ SQTP for t = Mw + Mli if and only if I ∈ SWCP.

Summing up, we have proved the following theorem.

Theorem 15. The SQTP for WFA over Trop2 is NP-complete.

Proof. Follows from Lemma 12 together with Lemma 13. ⊓⊔

84 Proceedings of the Prague Stringology Conference 2010

6 The General Case is Undecidable

We finally identify a semiring for which the SQTP turns out to be undecidable: the
semiring (R+, +, ∗,≤), where + and ∗ are ordinary addition and multiplication and
≤ is the usual order on R+. This case is not in itself practically motivated, but it is
very useful to clearly illustrate that there is no hope for a truly general solution to
the SQTP for arbitrary semirings.

For a proof by reduction, we consider the problem whether a Turing machine
accepts the empty string (or, equivalently, whether a Turing machine without input
halts). We reduce this problem to the SQTP for WFA over R+, constructing the
WFA in such a way that the string series it computes will assign the weight 1 to
some string only if the Turing machine has an accepting run. Otherwise, the weights
of all strings will be strictly larger than 1. Throughout this section non-determinism,
in the same sense as in non-deterministic finite automata, will be a key concern,
importantly we will use non-deterministic Turing machines [4] as the starting point
of the reduction. That is, during the computation the Turing machine will sometimes
make non-deterministic choices between different instructions to jump to. As usual,
the acceptance criterion is that a computation ending in the accepting state exists.
The WFA constructed by the reduction will be non-deterministic as well.

Let us start by defining the precise machine model we will use. Rather than
using ordinary Turing machines, we use the well-known two-counter machines [5] as
our starting point. Let us first recall the basic definition of the original two-counter
machine.

Definition 16 (Two-counter machine). A two-counter machine without input is
a tuple M = (C,P, c0) consisting of a finite set C of states, a starting state c0 ∈ C,
and a program P : C → ({inc1, inc2} × C) ∪ ({jzdec1, jzdec2} × C × C) ∪ {accept}.

The semantics of a two-counter machine is the usual one from [5]. The machine
starts in state c0 with the counters set to zero. In state c, the instruction P (c) is
executed:

1. (inci, c
′) increments counter i and continues in state c′,

2. (jzdeci, c
′, c′′) continues in state c′ if counter i is zero, and decrements the counter

and continues in state c′′ if it is not zero, and
3. accept halts and accepts the input.

We now adjust this into another type of Turing machine which is equivalent but
more convenient for our purpose. The adjustment consists in

– adding another two counters (used for temporary “scratch” values) and allowing
all counters to contain negative values, and

– breaking the jzdec instruction into two, a zero instruction which simply makes
the computation immediately fail if the counter tested is non-zero, and a jump

instruction which non-deterministically chooses where to jump. That is, the jump

instruction has two targets and the machine non-deterministically picks one of
them.

This adjustment does not restrict the computational power of counter machines. We
provide the definition here for convenience. Four counters are not strictly needed, but
are convenient to let us quickly sketch how the jzdec instruction can be simulated
using the zero and jump instructions, demonstrating equivalence.

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 85

Definition 17 (Four-counter machine). A non-deterministic four-counter ma-
chine is a triple M = (C,P, c0) consisting of a finite set C of states, a starting state
c0 ∈ C, and a program

P : C → (
⋃

i∈[4]

{inci, deci, zeroi} × C) ∪ ({jump} × C × C) ∪ {accept}.

The computation starts in state c0 with all four counters set to zero. The semantics
of the instructions is given as follows, for all i ∈ [4]:

– inci increments the counter i,
– deci decrements the counter i (which may result in negative values),
– zeroi makes the computation immediately fail if the counter i is not zero,
– jump non-deterministically jumps to one of the two states given in the instruction,

and
– accept halts and accepts.

Such a machine is computationally equivalent to a two-counter machine. There is a
straightforward simulation of a two-counter machine by a four-counter machine. The
latter mimics the two-counter behavior in counters 1 and 2 while using counters 3
and 4 as temporary “scratch” variables. As a building block we can, using counter 4
as a temporary variable, implement the macro instruction copyi→3 (for i ∈ [2]), which
sets the value of counter 3 equal to the (non-negative) value in counter i. Assume
that we have counters 3 and 4 set to zero, then transfer the value in counter i into
both counter 3 and counter 4 by running the sequence deci, inc3, inc4 in a loop
until counter i is zero (simply loop non-deterministically many times and execute
zeroi when the loop ends). Finish the procedure by transferring the contents of
counter 4 back into counter i in the same way. Next consider the two-counter machine
instruction P (c) = (jzdec1, c

′, c′′), as given in to Definition 16. This can be translated
into the following instructions (using pairwise distinct new states qx):

P (c) = (jump, qzero1, qnonzero1),

P (qzero1) = (zero1, c
′),

P (qnonzero1) = (dec1, qcopy3),

P (qcopy3) = (copy1→3, qtest3),

P (qtest3) = (jump, qend, qdec3),

P (qdec3) = (dec3, qloop),

P (qloop) = (jump, qtest3, qtest3),

P (qend) = (zero3, c
′′).

Notice that if this scheme of translating a two-counter machine is used, no counter in
an accepting computation will ever actually become negative, since the above snippet
will immediately run into an infinite loop if it ever produces a negative counter (by
making the wrong non-deterministic choice in the first line). Note that this shows
that the accepting run of the four-counter machine simulating a two-counter machine
is uniquely determined if it exists. In fact, this holds for arbitrary starting configu-
rations. In the following, we assume that the four-counter machines we are dealing
with have this property. For our reduction, it is useful to define its unique accepting
computation (if it accepts), called the trace of the machine.

86 Proceedings of the Prague Stringology Conference 2010

Definition 18 (Run of a four-counter machine M). Let M = (C,P, c0) be a
four-counter machine. The trace alphabet of M is

Σ(M) = {jump
[c]
ci | c ∈ C,P (c) = (jump, c1, c2), i ∈ [2]} ∪

{o
[c]
i | c ∈ C, o ∈ {inc, dec, zero}, i ∈ [4], P (c) = (oi, c

′) for a c′ ∈ C} ∪
{accept[c] | c ∈ C,P (c) = accept}.

The trace of M , starting in state c with counter values κ1, . . . , κ4 ∈ N, is denoted
by trace(M, c, κ1, . . . , κ4). It is the string r ∈ Σ(M)∗ defined as follows:

1. If P (c) = accept, then r = accept
[c].

2. If P (c) = (inci, c
′), then the trace is inc

[c]
i ·trace(M, c′, κ′

1, . . . , κ
′
4), where κ′

i = κi+1
and κ′

j = κj for all j 6= i.

3. If P (c) = (deci, c
′), then the trace is dec

[c]
i ·trace(M, c′, κ′

1, . . . , κ
′
4), where κ′

i = κi−1
and κ′

j = κj for all j 6= i.

4. If P (c) = (zeroi, c
′) then r is undefined unless κi = 0, in which case r = zero

[c]
i ·

trace(M, c′, κ1, . . . , κ4).

5. If P (c) = (jump, c′, c′′) then r = jump
[c]
c′ · trace(M, c′, κ1, . . . , κ4) or r = jump

[c]
c′′ ·

trace(M, c′′, κ1, . . . , κ4), depending on which one is defined. If neither of them is
defined then r is undefined.

Notice that trace(M, c0, 0, . . . , 0) is defined if and only if the machine accpets.

With this out of the way we get to the core part of this section. The following construc-
tion will take any four-counter machine M and construct a WFA A ∈ WFA

R+

Σ(M) such

that A(s) ≤ 1 if and only if s is a valid trace of M , that is s = trace(M, c0, 0, . . . , 0).

Algorithm 19 (Four-counter WFA reduction). Let M = (C,P, c0) be a four-
counter machine as above. We construct A = (Σ,Q, R+, µ, λ, ρ) such that there exists
s ∈ Σ∗ with A(s) ≤ 1 if and only if trace(M, c0, 0, . . . , 0) is defined. This construction
can be performed in the following way. Let Q = {pc | c ∈ C} ∪

⋃
i∈[4]{ci,up, ci,down} ∪

{fail, final}. Let Σ = Σ(M) be as in Definition 18. For all q ∈ Q, let

λ(q) =

{
1 for q ∈ {pc0 , fail} ∪ {ci,up, ci,down | i ∈ [4]}
0 otherwise

and

ρ(q) =

{
1 if q ∈ {fail} ∪ {pc | c ∈ C}
0 otherwise.

Of course, the trick lies in the way in which Rµ is constructed. Each state carries
a weight holding some invariant meaning in each step over a string. We start with
some rules that will keep weights constant in certain situations (i.e., the rules are
loops with a weight of 1, the neutral element with respect to multiplication):

C1. {fail
1,x
−→ fail | x ∈ Σ \ {zero

[c]
i | i ∈ [4], c ∈ C}}

C2. {ci,d
1,x
−→ ci,d | d ∈ {up, down}, i ∈ [4], x ∈ Σ \ {inc

[c]
i , dec

[c]
i | c ∈ C}}

Next, we define rules to manage the accepting state:

S1. {fail
1,accept[c]

−−−−−−−→ final | c ∈ C}

S2. {final
1,x
−→ fail | x ∈ Σ}

M.Berglund, F.Drewes: On the Complexity of Variants of the k Best Strings Problem 87

The following rules are for managing the program counter:

P1. {pc

1,o
[c]
i−−−→ pc′ | c, c′ ∈ C, i ∈ [4], o ∈ {inc, dec, zero}, (oi, c

′) = P (c)}

P2. {pc

1,jump
[c]

c′−−−−−→ pc′ | (jump, c1, c2) = P (c), c′ ∈ {c1, c2}}

P3. {pc′
1,x[c]

−−−→ fail | c, c′ ∈ C, x[c] ∈ Σ, c 6= c′}

Some rules are needed to manage the counters:

N1. {ci,up

2,inc
[c]
i−−−−→ ci,up | i ∈ [4], c ∈ C}

N2. {ci,down

1/2,inc
[c]
i−−−−−−→ ci,down | i ∈ [4], c ∈ C}

N3. {ci,up

1/2,dec
[c]
i−−−−−−→ ci,up | i ∈ [4], c ∈ C}

N4. {ci,down

2,dec
[c]
i−−−−→ ci,down | i ∈ [4], c ∈ C}

Finally, the following rules implement the zero instruction:

Z1. {ci,up

1/3,zero
[c]
i−−−−−−→ fail | i ∈ [4], c ∈ C}

Z2. {ci,down

1/3,zero
[c]
i−−−−−−→ fail | i ∈ [4], c ∈ C}

Z3. {fail
1/3,zero

[c]
i−−−−−−→ fail | i ∈ [4], c ∈ C}

The idea is that the weight of the trace trace(M, c0, 0, 0, 0, 0), if it exists, is 1,
while all other strings over Σ will get a weight strictly greater than 1. This algorithm
may take some explanation to be convincing. Let us note the key invariants exhibited
by the construction.

The weight carried by the states ci,up and ci,down (i ∈ [4]) will always be 2x and 2−x,
respectively, for some x ∈ Z. In fact, the rule schemas N1–N4 ensure that the value x
corresponds exactly to the value that the counter i would have at the corresponding
point in the computation of M . In this way, the counters are represented.

The states pc represent the current state of M . At each point in time, there is
exactly one such state with weight 1, all others carrying the weight 0. Rule schema
P3 ensures that if operations ever occur in an order that is impossible in M , weight
will be added to the state “fail”. This enforces program flow.

This brings us to the important “fail” state, which starts out with the weight 1
and will, by rule schema C1, always keep its weight from the previous step for all
input symbols except zero. The symbol zero is handled specially by the rule schemas

Z1–Z3. Let f be the weight of “fail” when encountering the symbol zero
[c]
i . Since the

counter states will have weights 2x and 2−x (for some x ∈ Z) the state “fail” gets
assigned the weight 1

3
f + 1

3
2x + 1

3
2−x. Notice that if f = 1 this sum will be equal to

1 if and only if x = 0, and if f > 1 then the sum will always be greater than 1. This
means that the state “fail” will carry the weight 1 if it did so before and the counter
i is zero. Otherwise, it will carry a weight strictly larger than 1. This encodes the
effect of the instruction zeroi.

Notice that the state “final” gets a weight greater than or equal to 1 when accept
[c]

is encountered (rule schema S1). On all symbols the weight of “final” gets added to
“fail” (rule schema S2), which means that if accept is encountered in any but the last
position this forces the weight of “fail” to be greater than 1. This enforces a valid end
state.

88 Proceedings of the Prague Stringology Conference 2010

Finally, ρ sums up the weights of “fail” and all the p states. The p states get set to
0 when encountering the right accept

[c], so all that remains is the “fail” state weight.
As we have seen, “fail” will maintained equal to 1 if all steps follow the constraints
of M , and will end up greater than 1 otherwise.

Let us wrap this section up with the theorem stating the result of the reduction.

Theorem 20. The SQTP is undecidable for WFA over (R+, +, ∗,≤).

Proof. Algorithm 19 converts a non-deterministic four-counter machine M into a
WFA A over R+ such that (A, 1) ∈ SQTP if and only if M accepts (which is an
undecidable problem). ⊓⊔

7 Conclusions

We have shown that the k-BSP is efficiently computable in the tropical case by a
straightforward algorithm, while even the SQTP is difficult in the complex tropical
case and undecidable for the positive real numbers.

Some remaining tasks for future work include improving the polynomial bound
for the tropical k-BSP algorithm, which is likely to be possible since the worst-cases
of the different parts of the algorithm almost seem to be mutually exclusive. In fact,
it may also be worthwhile to analyze the situations in which the algorithm in [7] may
exhibit an exponential worst-case behaviour. The algorithm uses a priority queue to
determine in which direction the determinization algorithm should proceed. In some
bad cases, the problem seems to be that this priority queue may not contain enough
information in order for the strategy to become efficient. Hence, one could try to find
a refined definition of priorities that (provably) avoids the problem.

Of course, there are many other semirings left for which polynomial solutions of
the k-BSP may be obtainable. Moreover, one could try to abstract from concrete
semirings by studying properties that give rise to polynomial solutions.

References

1. M. Droste, W. Kuich, and H. Vogler: Handbook of Weighted Automata, Springer Publishing
Company, Incorporated, 2009.

2. D. Eppstein: Finding the k shortest paths. SIAM J. Comput., 28(2) 1999, pp. 652–673.
3. M. R. Garey and D. S. Johnson: Computers and Intractability; A Guide to the Theory of

NP-Completeness, W. H. Freeman & Co., New York, NY, USA, 1990.
4. J. E. Hopcroft, R. Motwani, and J. D. Ullman: Introduction to Automata Theory, Lan-

guages, and Computation (2nd Edition), Pearson Education International, Upper Saddle River,
N.J. 04758, 2003.

5. M. L. Minsky: Computation: finite and infinite machines, Prentice-Hall, Inc., Upper Saddle
River, NJ, USA, 1967.

6. M. Mohri: Semiring frameworks and algorithms for shortest-distance problems. J. Autom. Lang.
Comb., 7(3) 2002, pp. 321–350.

7. M. Mohri and M. Riley: An efficient algorithm for the n-best-strings problem, in In Proceedings
of the International Conference on Spoken Language Processing 2002, 2002.

8. M. A. Weiss: Data structures and algorithm analysis, Benjamin-Cummings Publishing Co., Inc.,
Redwood City, CA, USA, 1992.

