
New Simple Efficient Algorithms Computing

Powers and Runs in Strings

Maxime Crochemore1,3, Costas Iliopoulos1,4, Marcin Kubica2,
Jakub Radoszewski⋆,2, Wojciech Rytter2,5, Krzysztof Stencel2,5, and

Tomasz Waleń2

1 King’s College London, London WC2R 2LS, UK
maxime.crochemore@kcl.ac.uk, csi@dcs.kcl.ac.uk

2 Dept. of Mathematics, Computer Science and Mechanics,
University of Warsaw, Warsaw, Poland

[kubica,jrad,rytter,stencel,walen]@mimuw.edu.pl
3 Université Paris-Est, France

4 Digital Ecosystems & Business Intelligence Institute,
Curtin University of Technology, Perth WA 6845, Australia

5 Dept. of Math. and Informatics,
Copernicus University, Toruń, Poland

Abstract. Three new simple O(n log n) time algorithms related to repeating factors
are presented in the paper. The first two algorithms employ only a basic textual data
structure called the Dictionary of Basic Factors. Despite their simplicity these algo-
rithms not only detect existence of powers but also find all primitively rooted cubes (as
well as higher powers) and all cubic runs. Our third O(n log n) time algorithm computes
all runs and is probably the simplest known efficient algorithm for this problem. It uses
additionally the Longest Common Extension function, however, due to relaxed running
time constraints, a simple O(n log n) time implementation can be used. At the cost of
logarithmic factor (in time complexity) we have novel algorithmic solutions for several
classical string problems which are much simpler than (usually quite sophisticated)
linear time algorithms.

Keywords: run, repetition, square, cube (in a string), Dictionary of Basic Factors

1 Introduction

In this paper, we present algorithms finding various types of repetitions in a string:
powers (e.g. squares or cubes), cubic runs and runs. Finding repetitions is a funda-
mental problem in text processing and has numerous applications. Examples of such
applications, an explanation of the motivation and related topics can be found in the
survey [8].

Various problems related to finding repetitions in a string have already been stud-
ied. For the problem of finding all distinct squares, a linear time algorithms are known
[14,17,18]. It is also known, that the maximal number of distinct squares in a string
is linear [13].

Multiple approaches to searching for squares in a string can be found in the
literature, however most of the existing algorithms are rather complex. The first
approach, is to check if a string is square-free. O(n log n) time algorithms for this
problem have been presented in [23,24] (the latter one is randomized). The optimal
O(n) time algorithms are described in [5,23].

⋆ Corresponding author. Some parts of this paper were written during the corresponding author’s
Erasmus exchange at King’s College London

Maxime Crochemore, Costas Iliopoulos, Marcin Kubica, Jakub Radoszewski, Wojciech Rytter, Krzysztof Stencel, Tomasz Waleń: New Simple Efficient

Algorithms Computing Powers and Runs in Strings, pp. 138–149 .

Proceedings of PSC 2010, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04597-8 c© Czech Technical University in Prague, Czech Republic

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 139

Another approach is to find all occurrences of primitively rooted squares in a
string. A number of O(n log n) time algorithms reporting all such occurrences can be
found in [2,4,19,22,25,26]. Due to the lower bound shown in [6] these algorithms are
optimal.

Yet another approach is to report all occurrences of squares in a string. If we
denote the number of such occurrences by z, then both O(n log n+z) time algorithms
[20,22,26] and O(n + z) time algorithms [14,17,18] are known for this problem.

Finally, there are recent results related to on-line square detection (that is, when
letters of u are given one by one), improving the time complexity from O(n log2 n)
[21] to O(n log n) [16] and O(n) [3].

Let u be a string of length n over a bounded alphabet. In Section 3 a very sim-
ple O(n log n) time algorithm checking whether u contains any kth string power is
presented. The algorithm reports all occurrences of primitively rooted kth powers for
any k ≥ 3, in particular, primitively rooted cubes. As a by-product we obtain an
alternative, algorithmic proof of the fact [6] that the maximal number of such occur-
rences is O(n log n). The output of the algorithm is later on used to list all cubic runs
in u, within the same time complexity.

From the aforementioned literature, the papers [2,4,22] deal also with powers of
arbitrary (integer) exponent, however the techniques used there (e.g., suffix trees,
Hopcroft’s factor partitioning) are much more sophisticated than the techniques ap-
plied in this paper. The O(n log n) time algorithm for a single square detection from
[23] is in some sense similar to the algorithm presented in this paper. However it
is less versatile than ours: we see no simple modification adapting it to detect all
occurrences of primitively rooted higher powers.

In Section 4, we present an application of the algorithm finding all occurrences of
primitively rooted cubes to find all cubic runs. This algorithm also runs in O(n log n)
time and it does not use any additional advanced techniques.

Finally, in Section 5, we give an algorithm reporting all runs in a string, in
O(n log n) time. It is significantly simpler than all known O(n log n) time algorithms
present implicitly in [2,4,22] and than the optimal O(n) time algorithm [17,18]. The
only non-trivial technique used in our algorithm is the Longest Common Extension
function. It can be either implemented as described in [10,15] — very efficiently, but
using quite sophisticated machinery, or less efficiently, but in a much simpler way,
what is sufficient to obtain O(n log n) time complexity.

2 Preliminaries

We consider words (strings) over a bounded alphabet Σ, u ∈ Σ∗. The empty word is
denoted by ε. The positions in u are numbered from 1 to |u|. For u = u1u2 . . . un, by
u[i . . j] we denote a factor of u equal to ui . . . uj (in particular u[i] = u[i . . i]). Words
u[1 . . i] are called prefixes of u, words u[i . . n] suffixes of u, whereas words that are
both a prefix and a suffix of u are called borders of u.

We say that a positive integer p is a period of the word u = u1 . . . un if ui = ui+p

holds for all i, 1 ≤ i ≤ n − p. Periods and borders correspond to each other, i.e. u
has a period p if and only if it has a border of length n − p, see e.g. [7,12].

A run (also called a maximal repetition) in a string u is such an interval [i . . j],
that:

– the shortest period p of the associated factor u[i . . j] satisfies 2p ≤ j − i + 1,

140 Proceedings of the Prague Stringology Conference 2010

– the interval can be extended neither to the left nor to the right, without violating
the above property, that is, u[i − 1] 6= u[i + p − 1] and u[j − p + 1] 6= u[j + 1],
provided that the respective characters exist.

A cubic run is a run [i . . j] for which the shortest period p satisfies 3p ≤ j − i + 1.
We identify a run (or a cubic run) with a corresponding triple (i, j, p).

If wk = u (k is a positive integer) then we say that u is the kth power of the word
w. A square (cube) is the 2nd (3rd) power of some nonempty word.

2.1 Dictionary of Basic Factors

Dictionary of Basic Factors is a simple, yet powerful data-structure. It is widely used
in this paper. For a word u of length n, the Dictionary of Basic Factors of u (denoted
by DBF(u)) consists of a sequence of arrays Namet[], for 0 ≤ t ≤ ⌊log n⌋. Array
Namet[] contains information about factors of u of length 2t — Namet[i] contains
information about word u[i . . i+2t−1], for 1 ≤ i ≤ n−2t +1. More precisely, value of
Namet[i] is the rank of u[i . . i+2t−1] among other factors of length 2t. Hence, values
of elements of all the arrays Namet[] are in the range from 1 to n. The important
property of DBF(u), that we exploit, is that u[i . . i + 2t − 1] ≤ u[j . . j + 2t − 1] if and
only if Namet[i] ≤ Namet[j]. DBF has a variety of known applications in the field of
text and sequence algorithms, see e.g. [11].

DBF(u) requires O(n log n) space and can be constructed in O(n log n) time [12].
Name0[] contains information about consecutive characters of u. So, Name0[] can
be computed in O(n) time, by sorting all the letters appearing in u and mapping
characters of u to numbers from 1 on. Having computed Namet[], one can easily
compute Namet+1[] in O(n) time. Factor u[i . . i + 2t+1 − 1] is a concatenation of
factors u[i . . i + 2t − 1] and u[i + 2t . . i + 2t+1 − 1]. Hence, it can be represented by
a pair (Namet[i], Namet[i + 2t]). Then, all such pairs can be sorted lexicographically
(in O(n) time) and mapped onto their ranks, that is integers from 1 on. Figure 1
shows the DBF for an example string.

Text a b b a a b b a b b a

Name0[] 1 2 2 1 1 2 2 1 2 2 1
(1, 2) (2, 2) (2, 1) (1, 1) (1, 2) (2, 2) (2, 1) (1, 2) (2, 2) (2, 1)

Name1[] 2 4 3 1 2 4 3 2 4 3
(2, 3) (4, 1) (3, 2) (1, 4) (2, 3) (4, 2) (3, 4) (2, 3)

Name2[] 2 5 3 1 2 6 4 2
(2, 2) (5, 6) (3, 4) (1, 2)

Name3[] 2 4 3 1

Figure 1. Example of DBF computation for word abbaabbabba. Factor abba appears
three times in this word and is represented in Name2[] by 2.

Using DBF, one can compare factors of arbitrary length, as given in the following
Lemma, see [12].

Lemma 1. Having precomputed DBF(u), any two factors of u can be compared in
O(1) time.

Proof. Let u[i . . j] and u[i′ . . j′] be the two factors that should be compared. We can
assume, that j − i = j′ − i′, since otherwise they have different lengths, cannot be
equal and can be compared by trimming the longer factor.

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 141

Let t be such an integer, that 2t ≤ j − i < 2t+1. Then, it is enough to compare
u[i . . i+2t −1] with u[i′ . . i′ +2t −1], and u[j−2t +1 . . j] with u[j′−2t +1 . . j′]. This
however can be done by comparing Namet[i] with Namet[i

′], and Namet[j − 2t + 1]
with Namet[j

′ − 2t + 1]. ⊓⊔

Later on, we show, that the memory complexity of the presented algorithm can be
reduced to O(n), although it uses DBF(u). To do this, we cannot store all the arrays
Namet[]. Instead, we should store just a fixed number (e.g. one) of such arrays, and
design the algorithm in such a way, that are used in the ascending order of t. Then,
new arrays can be computed when needed, replacing previously used arrays. Still, it is
possible to compare factors in O(1) time, provided that the ratio between the length
of the compared factors and 2t is bounded, as expressed by the following Lemma.

Lemma 2. Let t be a fixed number between 0 and ⌊log n⌋, and let Namet[] be one
of the arrays constituting DBF(u). It is possible to compare factors of u of length l,
using just Namet[], in constant time, provided that: l ≥ 2t and l

2t = O(1).

Proof. The proof is similar to the proof of the previous Lemma. The compared factors
can be covered using O(1) factors of length 2t. Hence, it is enough to compare O(1)
pairs of elements of Namet[]. ⊓⊔

3 Detecting String Powers

Let u be a word of length n. The following algorithm tests if u contains a kth power,
for k ≥ 2. It exploits DBF(u) and two other auxiliary data-structures, denoted by
POWERS and Prev.

POWERS is a list on which the result is accumulated. Each occurrence of a power
of the form (u[pos . . pos+root−1])k (i.e. kth power of a factor of length root, starting
at position pos) is represented by a pair (root, pos). The output of the algorithm is
a list of pairs denoting kth powers. We allow the same power to be inserted multiple
times — at the end the list is sorted and the repetitions are removed.

Prev[1 . . n] is an array of positions in the text, such that Prev[Namet[j]] is the
most recent occurrence of u[j . . j + 2t − 1] preceding j, or −1 if there is none.

For all values of t, the algorithm scans the text, and for each position j it checks (in
constant time) if factors of u of length 2t, starting at Prev[Namet[j]] and j generate
a power. Examples of how the algorithm works can be found in Fig. 2 and Table 1.

Algorithm DetectPowers(u, n, k)
1: {detect kth string powers in a word u, |u| = n}
2: Name ← DBF(u)
3: POWERS ← ∅
4: for t ← 0 to ⌊log n⌋ do

5: Prev ← (0, 0, . . . , 0)
6: for j ← 1 to n − 2t + 1 do

7: name ← Namet[j]
8: pos ← Prev[name]
9: root ← j − pos

10: if u[pos . . pos + k · root − 1] is (really) a kth power
{constant time test due to DBF} then

11: POWERS.insert((root, pos))
12: Prev[name] ← j

13: RadixSort(POWERS) with repetitions removed
14: return POWERS

142 Proceedings of the Prague Stringology Conference 2010

Figure 2. The basic factor cacb of rank t = 2 at position j = 13 generates a cube
(cacbcab)3 starting at position pos = 6. The same cube is generated for t = 3 and
j = 13, for the basic factor cacbcabc.

a b b a b a a b b a a b a b b a b a a b a b b a a b b a b a a b

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Table 1. For the Thue-Morse word of length 32 the algorithm reports the following
squares (pairs (root, pos)): t = 0: (1, 2), (2, 3), (1, 6), (1, 8), (1, 10), (2, 11), (1, 14),
(2, 15), (1, 18), (2, 19), (1, 22), (1, 24), (1, 26), (2, 27), (1, 30); t = 1: (4, 5), (3, 12),
(3, 16), (4, 21); t = 2: (8, 9). In particular, the algorithm reports all squares in the
Thue-Morse words.

In the analysis of the algorithm we use some combinatorics of primitive words. The
primitive root of a word u is the shortest word w, such that wk = u for some positive
integer k. We call a word u primitive if it equals its primitive root, otherwise it is
called non-primitive. Primitive words admit a so-called synchronizing property, as
given in the following Lemma, see [7].

Lemma 3 (Synchronizing property of primitive words). A nonempty word is
primitive if and only if it occurs as a factor in its square only as a prefix and a suffix.

Theorem 4. DetectPowers algorithm reports only primitively rooted powers in the
word u.

Proof. Obviously, all positions reported by the algorithm represent kth powers. Thus
we only need to show that no non-primitively-rooted powers are reported.

Consider lines 7–12 of the algorithm, for some t and j. Assume that pos 6= 0. To

conclude the proof of the theorem, it suffices to show that the word w
def

= u[pos . . j−1]
is always primitive.

Assume to the contrary, that w = vm, for some v and m ≥ 2. Let z = u[j . . j +
2t − 1] = u[pos . . j + 2t − 1]. There are two cases (see Fig. 3):

a) Let us assume, that |w| ≥ 2t. Then z is a prefix of of w and |v| is a period of z.
b) Let us assume, that |w| < 2t. Then w is a prefix of z and u[j . . j + 2t − |w| − 1] is

a border of z.

In both cases z appears also at position j−|v|. Hence, Prev[Namet[j]] ≥ j−|v| > pos,
this contradiction concludes the proof. ⊓⊔

The following two theorems conclude that the algorithm correctly checks if the
word contains any kth power (i.e., whether the word is kth-power-free or not), and
also reports (among others) all kth powers of specific type, depending on the value
of parameter k (2 or ≥ 3).

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 143

Figure 3. Illustration of the proof of Theorem 4; case (a): |z| ≤ |w|, case (b):
|z| > |w| .

Theorem 5. For k = 2, the DetectPowers algorithm finds all occurrences of shortest
squares in u.

Proof. Let v2 be any shortest square occurring in u at position i. Note that v must
be primitive. Let s be such an integer, that 2s ≤ |v| < 2s+1. Consider the step of the
algorithm in which t = s, j = i + |v|. We show that the algorithm reports the square
v2 in this step, i.e., pos = i. Obviously pos ≥ i, hence it suffices to show that this
value cannot be greater than i.

Figure 4. Illustration of the proof of Theorem 5. (a) If pos − i < 2t then the
occurrences of w at positions i and pos overlap. (b) If pos−i ≥ 2t then the occurrences
of w at positions pos and j overlap.

If this was the case, the factor w
def

= u[j . . j + 2t − 1] would occur in u at positions
i, pos and j, thus forming an overlap, see Fig. 4. However, an overlap of a string
of length 2t corresponds to a square in u with primitive root shorter than 2t, what
contradicts the fact that v2 is the shortest square in u. ⊓⊔

Theorem 6. For a given k ≥ 3, the DetectPowers algorithm finds all occurrences of
primitively rooted kth powers in u.

Proof. Assume that there is an occurrence of vk, for v primitive, which starts at
position i in u. Let integer s be defined as 2s−1 < |v| ≤ 2s. Let us consider the step
of the algorithm in which t = s, j = i + |v|. We show that in this step pos = i, this
concludes that the considered power is reported by the algorithm.

Let us note that pos ≥ i, since 2t < 2|v|, and therefore:

u[i . . i + 2t − 1] = u[j . . j + 2t − 1]
def

= w,

see Fig. 5a. We prove the inequality pos ≤ i by contradiction. Assume that i < pos <
j. Then the prefix of w of length |v|, that is the word v, would occur in u at positions:

144 Proceedings of the Prague Stringology Conference 2010

Figure 5. Illustration of the proof of Theorem 6

i, pos and j (see Fig. 5.b). This is not possible, however, due to the synchronizing
property of primitive words (Lemma 3). ⊓⊔

Remark. It is easy to see that the stronger claim (from Theorem 6) does not hold in
the case of k = 2 (Theorem 5). That is, not all primitively rooted squares are detected
by the algorithm. Among others, the squares for which the primitive root admits a
very long border, e.g., ((ab)ma)2, may not be reported.
Finally, let us consider the complexity of the algorithm DetectPowers.

Theorem 7. The time complexity of the DetectPowers algorithm is O(n log n). More-
over, for k = O(1) the algorithm can be modified to require only O(n) space and still
satisfy the properties from Theorems 4–6.

Proof. The analysis of the time complexity is straightforward — the outer loop of the
algorithm makes O(log n) iterations and in each iteration the inner loop runs in O(n)
time.

The space complexity of the presented implementation is also O(n log n) due to
the space requirements of the DBF, however it can be reduced to O(n) if only two
consecutive rows of the table Name are stored in the memory.

This causes a difficulty only in the kth-power-test in line 8, since the value of
root can be arbitrary. However, along with the proofs of Theorems 5 and 6, we
can immediately return false in the test if the parameter root is not in the interval
[2t, 2t+1) (for squares) or the interval (2t−1, 2t] (for higher powers), and still the output
of the algorithm will fulfill the requirements.

Thus the predicate reduces to testing equality of words of length (k − 1) · root =
c·2t−1, where 1 ≤ c = O(1) for k = O(1), thus can be performed using only Namet−1[]
in constant time (Lemma 2). ⊓⊔

4 Application of the DetectPowers Algorithm for Cubic
Runs

In this section we show how to use the output of the DetectPowers algorithm to
compute, in a simple manner, all cubic runs in a string u of length n in O(n log n)
time. Cubic runs [9] are special type of runs in which the period is at least 3 times
shorter than the run, hence they characterize strong periodic properties of a word.

Let L be the output of the DetectPowers algorithm for u and k = 3. It is a
sorted list of pairs with repetitions removed. Moreover, without the loss of generality,
we can assume, that it is sorted in ascending lexicographical order of pairs. Let us

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 145

define a special sublist of L as a maximal continuous subsequence of L of the form
(per, i), (per, i+1), . . . , (per, i+ s). Note, that such a sublist corresponds to a cubic
run (i, i + s + 3 · per − 1, per).

Example 8. For the following list of pairs (root, pos):

L = (2, 3), (2, 4), (2, 5), (4, 8), (4, 9), (4, 28), (4, 29), (4, 30), (4, 31), (5, 18)

the corresponding cubic runs are:

(3, 10, 2), (8, 20, 4), (28, 42, 4), (18, 32, 5).

Thus we obtain:

Restriction 9. There is a bijection between special sublists of L and cubic runs.

The following algorithm scans the list of cubes and glues together its special
sublists into cubic runs, utilizing Observation 9.

Algorithm DetectCubicRuns(u, n)
1: {list all cubic runs in the word u, |u| = n}
2: L ← DetectPowers(u, n, 3)
3: L.append((−1,−1))
4: CRUNS ← ∅
5: prev root ← prev pos ← start ← −1
6: for all (root, pos) ∈ L do

7: if (root, pos) = (prev root, prev pos + 1) then

8: prev pos ← pos

9: else if start ≥ 0 then

10: CRUNS.insert((start, prev pos + 3 · prev root − 1, prev root))
11: start ← prev pos ← pos

12: prev root ← root

13: return CRUNS

Theorem 10. The DetectCubicRuns algorithm computes all cubic runs in a string u
of length n in O(n log n) time.

Proof. Due to Theorem 7, line 2 of the algorithm runs in O(n log n) time. The time
complexity of the rest of the algorithm is O(|L|+n), where |L| denotes the number of
elements in the list L. Time complexity of lines 6–13 is clearly O(|L|). Finally, again
due to Theorem 7, |L| = O(n log n), which yields O(n log n) total time complexity of
the DetectCubicRuns algorithm.

Due to Theorems 4 and 6, the list L contains all occurrences of all primitively
rooted cubes in the word u. In the for-all-loop (lines 6–12) the algorithm glues together
cubes forming special sublists of L, thus forming the same cubic run. Hence, the
output of the algorithm comprises exactly all the cubic runs in u. ⊓⊔

5 Detecting Runs

In this section we describe a different, however still very simple algorithm which re-
ports all (ordinary) runs in a string u of length n in O(n log n) time. In the following
pseudocode, in the for-loop we consider candidates for runs with period per. Verifi-
cation of existence of runs is performed using the longest common prefix (lcpref in

146 Proceedings of the Prague Stringology Conference 2010

short) and the longest common suffix (lcsuf in short) queries, also called longest com-
mon extension queries (see also Fig. 6). Here, lcpref(a, b) denotes the length of the
longest common prefix of suffixes u[a . . n] and u[b . . n], similarly lcsuf(a, b) denotes
the length of the longest common suffix of prefixes u[1 . . a] and u[1 . . b].

The obtained list of candidates RUNS may contain the same run listed several
times and additionally with periods being multiples of its shortest period. There-
fore, in the end (lines 11–14) we remove such repetitions, leaving at most one triple
(i, j, per) for given i, j, with the smallest corresponding value of period per.

Algorithm DetectRuns(u, n)
1: {list all runs in the word u, |u| = n}
2: RUNS ← ∅
3: for per ← 1 to n div 2 do

4: pos ← per

5: while pos + per ≤ n do

6: left ← lcsuf(pos, pos + per)
7: right ← lcpref(pos, pos + per)
8: if left + right > per then

9: RUNS.insert((pos − left + 1, pos + per + right − 1, per))
10: pos ← pos + per

11: RadixSort(RUNS) {triples sorted lexicographically}
12: prev ← (−1,−1);
13: for all (i, j, per) ∈ RUNS do

14: if prev = (i, j) then RUNS.delete((i, j, per)); else prev ← (i, j)
15: return RUNS

The following theorem shows correctness of the DetectRuns algorithm, i.e., that it
computes exactly all distinct runs in a string.

Theorem 11.

(a) Each run (a, b, q) in the word u is inserted to the list RUNS (line 9) at least once.
(b) Every triple (a, b, p) inserted to RUNS in line 9 of the algorithm corresponds to a

run (a, b, q) in u with q | p.

Proof. (a) Let a + r, for 0 ≤ r < q, be any of the first q positions of the run. Then,
by the definition of a run, the following inequalities hold, see Fig. 6:

lcsuf(a + r, a + r + q) = r + 1

lcpref(a + r, a + r + q) ≥ q − r.

Hence, if per = q and pos = a+ r then the condition in line 8 of the algorithm is true
and the run (a, b, q) is reported. However, this happens for r ≡ −a (mod per), i.e.,
in the mth step of the while-loop, where m = ⌈a/per⌉.

(b) Clearly any triple (a, b, p) inserted into the list RUNS in line 9 of the algorithm
corresponds to an interval [a . . b] in u with period (not necessarily shortest) equal to
p and repeating at least twice within the interval, i.e., 2p ≤ b− a + 1. Moreover, this
interval is not extendable to either side without violating this periodicity.

Let q be the shortest period of the factor u[a . . b]. Note that q | p, since otherwise,
by Fine & Wilf’s Periodicity Lemma [7,12], gcd(p, q) would be a shorter period of
this factor. To show that [a . . b] is a run with period q, it suffices to prove that this
interval is not extendable to either size with regard to the period q.

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 147

Figure 6. Graphical interpretation of lcsuf(a+r, a+r+q) and lcpref(a+r, a+r+q)
for a run (a, b, q) and 0 ≤ r < q

Assume to the contrary that the interval is extendable to the left (the other case
is analogical). Then we have:

u[a − 1] = u[a − 1 + q] = u[a − 1 + q + (p/q − 1) · q] = u[a − 1 + p]

and consequently [a . . b] would be extendable to the left w.r.t. the period p, a contra-
diction. ⊓⊔

Now let us analyze the time complexity of the algorithm. It mostly depends on the
time complexity of the lcpref and lcsuf queries. Their efficient implementation in-
volves the Longest Common Prefix (LCP) and Suffix Arrays (SUF) (computed in
O(n) time), and Range Minimum Queries (RMQ) (with O(n) preprocessing time and
O(1) query time) [10]. Techniques used in the efficient implementation of these data
structures are rather complex. However, without increasing overall time complexity
of the algorithm, we can compute the Suffix Array and preprocess RMQ in O(n log n)
time. Hence, we can use much simpler machinery.

The Suffix Array of u can be computed in O(n log n) time using DBF(u) — all the
suffixes are sorted lexicographically and can be compared in O(1) time using DBF(u).
Then, the LCP array can be simply computed in O(n) time using the Suffix Array.

Preprocessing of RMQ data-structure in O(n log n) time resembles computation
of DBF a lot. The main difference is that instead of computing ranks of factors we
compute positions of minimal elements in ranges. Then, we can find a minimum in
the given range by covering the given range by two ranges whose size is a power of
two, and comparing their minimal elements. Hence, O(1) query time is preserved.

Thus we obtain O(n log n) preprocessing time and O(1) query time for the lcpref
and lcsuf queries, what yields the time complexity of the algorithm specified in the
following theorem.

Theorem 12. The time complexity of the DetectRuns algorithm is O(n log n).

Proof. For a given value of per, the while-loop performs at most n/per steps, each in
constant time. The time complexity of the for-loop is therefore

O





⌊n/2⌋
∑

per=1

n

per



 = O(n log n)

and this is also the maximum size of the list RUNS.
All remaining operations in the algorithm are: lcpref/lcsuf preprocessing which is

performed in O(n log n) time, and sorting and removing duplicates from RUNS, both
performed in O(|RUNS|) = O(n log n) time. In total, we obtain the aforementioned
time complexity of the algorithm. ⊓⊔

148 Proceedings of the Prague Stringology Conference 2010

6 Acknowledgements

The authors thank Tomasz Kociumaka for the idea of the proof of Theorem 6.

References

1. A. Apostolico and Z. Galil, eds., Combinatorial Algorithms on Words, vol. F12 of NATO
ASI Series, Springer-Verlag, 1985.

2. A. Apostolico and F. P. Preparata: Optimal off-line detection of repetitions in a string.
Theor. Comput. Sci., 22 1983, pp. 297–315.

3. G.-H. Chen, J.-J. Hong, and H.-I. Lu: An optimal algorithm for online square detection, in
CPM, A. Apostolico, M. Crochemore, and K. Park, eds., vol. 3537 of Lecture Notes in Computer
Science, Springer, 2005, pp. 280–287.

4. M. Crochemore: An optimal algorithm for computing the repetitions in a word. Inf. Process.
Lett., 12(5) 1981, pp. 244–250.

5. M. Crochemore: Transducers and repetitions. Theor. Comput. Sci., 45(1) 1986, pp. 63–86.
6. M. Crochemore, S. Z. Fazekas, C. S. Iliopoulos, and I. Jayasekera: Bounds on

powers in strings, in Developments in Language Theory, M. Ito and M. Toyama, eds., vol. 5257
of Lecture Notes in Computer Science, Springer, 2008, pp. 206–215.

7. M. Crochemore, C. Hancart, and T. Lecroq: Algorithms on Strings, Cambridge Univer-
sity Press, 2007.

8. M. Crochemore, L. Ilie, and W. Rytter: Repetitions in strings: Algorithms and combina-
torics. Theor. Comput. Sci., 410(50) 2009, pp. 5227–5235.

9. M. Crochemore, C. S. Iliopoulos, M. Kubica, J. Radoszewski, W. Rytter, and

T. Walen: On the maximal number of cubic runs in a string, in LATA, A. H. Dediu, H. Fernau,
and C. Mart́ın-Vide, eds., vol. 6031 of Lecture Notes in Computer Science, Springer, 2010,
pp. 227–238.

10. M. Crochemore, C. S. Iliopoulos, M. Kubica, W. Rytter, and T. Walen: Efficient
algorithms for two extensions of LPF table: The power of suffix arrays, in SOFSEM, J. van
Leeuwen, A. Muscholl, D. Peleg, J. Pokorný, and B. Rumpe, eds., vol. 5901 of Lecture Notes in
Computer Science, Springer, 2010, pp. 296–307.

11. M. Crochemore and W. Rytter: Usefulness of the Karp-Miller-Rosenberg algorithm in
parallel computations on strings and arrays. Theor. Comput. Sci., 88(1) 1991, pp. 59–82.

12. M. Crochemore and W. Rytter: Jewels of Stringology, World Scientific, 2003.
13. A. S. Fraenkel and J. Simpson: How many squares can a string contain? J. of Combinatorial

Theory Series A, 82 1998, pp. 112–120.
14. D. Gusfield and J. Stoye: Linear time algorithms for finding and representing all the tandem

repeats in a string. J. Comput. Syst. Sci., 69(4) 2004, pp. 525–546.
15. L. Ilie and L. Tinta: Practical algorithms for the longest common extension problem, in

SPIRE, J. Karlgren, J. Tarhio, and H. Hyyrö, eds., vol. 5721 of Lecture Notes in Computer
Science, Springer, 2009, pp. 302–309.

16. J. Jansson and Z. Peng: Online and dynamic recognition of squarefree strings, in MFCS,
J. Jedrzejowicz and A. Szepietowski, eds., vol. 3618 of Lecture Notes in Computer Science,
Springer, 2005, pp. 520–531.

17. R. M. Kolpakov and G. Kucherov: Finding maximal repetitions in a word in linear time,
in Proceedings of the 40th Symposium on Foundations of Computer Science, 1999, pp. 596–604.

18. R. M. Kolpakov and G. Kucherov: On maximal repetitions in words. J. of Discr. Alg., 1
1999, pp. 159–186.

19. S. R. Kosaraju: Computation of squares in a string (preliminary version), in CPM, M. Cro-
chemore and D. Gusfield, eds., vol. 807 of Lecture Notes in Computer Science, Springer, 1994,
pp. 146–150.

20. G. M. Landau and J. P. Schmidt: An algorithm for approximate tandem repeats, in CPM,
A. Apostolico, M. Crochemore, Z. Galil, and U. Manber, eds., vol. 684 of Lecture Notes in
Computer Science, Springer, 1993, pp. 120–133.

21. H.-F. Leung, Z. Peng, and H.-F. Ting: An efficient online algorithm for square detection, in
COCOON, K.-Y. Chwa and J. I. Munro, eds., vol. 3106 of Lecture Notes in Computer Science,
Springer, 2004, pp. 432–439.

M.Crochemore et al.: New Simple Efficient Algorithms Computing Powers and Runs. . . 149

22. M. G. Main and R. J. Lorentz: An O(n log n) algorithm for finding all repetitions in a
string. J. Algorithms, 5(3) 1984, pp. 422–432.

23. M. G. Main and R. J. Lorentz: Linear time recognition of squarefree strings, in Apostolico
and Galil [1], pp. 271–278.

24. M. O. Rabin: Discovering repetitions in strings, in Apostolico and Galil [1], pp. 279–288.
25. A. O. Slisenko: Detection of periodicities and string matching in real time. J. Soviet Math.,

22 1983, pp. 1316–1386.
26. J. Stoye and D. Gusfield: Simple and flexible detection of contiguous repeats using a suffix

tree. Theor. Comput. Sci., 270(1-2) 2002, pp. 843–856.

