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Abstract. A parameterized approach to the problem of the maximum number of runs
in a string was introduced by Deza and Franek. In the approach referred to as the
d-step approach, in addition to the usual parameter the length of the string, the size of
the string’s alphabet is considered. The behaviour of the function ρd(n), the maximum
number of runs over all strings of length n with exactly d distinct symbols, can be
handily expressed in the terms of properties of a table referred to as the (d, n−d) table
in which ρd(n) is the entry at the dth row and (n−d)th column. The approach leads to a
conjectured upper bound ρd(n) ≤ n− d for 2 ≤ d ≤ n. The parameterized formulation
shows that the maximum within any column of the (d, n − d) table is achieved on
the main diagonal, i.e. for n = 2d, and motivates the investigation of the structural
properties of the run-maximal strings of length n bounded by a constant times the
size of the alphabet d. We show that ρd(n) = ρn−d(2n − 2d) for 2 ≤ d ≤ n < 2d,
ρd(2d) ≤ ρd−1(2d − 1) + 1 for d ≥ 3, ρd−1(2d − 1) = ρd−2(2d − 2) = ρd−3(2d − 3) for
d ≥ 5, and {ρd(n) ≤ n − d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}. The results
allow for an efficient computational verification of entries in the (d, n − d) table for
higher values of n and point to a plausible way of either proving the maximum number
of runs conjecture by showing that possible counter-examples on the main diagonal
would exhibit an impossible structure, or to discover an unexpected counter-example
on the main diagonal of the (d, n−d) table. This approach provides a purely analytical
proof of ρd(2d) = d for d ≤ 15 and, using the computational results of ρ2(d + 2) for
d = 16, . . . , 23, a proof of ρd(2d) = d for d ≤ 23.

Keywords: string, runs, maximum number of runs, parameterized approach, (d, n−d)
table

1 Introduction

The problem of determining the maximum number of runs in a string has a rich
history and many researchers have contributed to the effort. The notion of a run is
due to Main [17], the term itself was introduced in [13]. Kolpakov and Kucherov [14,15]
showed that the function ρ(n), the maximum number of runs over all strings of length
n, is linear. Several papers dealt with lower and upper bounds or expected values for
ρ(n), see [2,3,4,8,10,11,12,18,19,20,21,23] and references therein.

The counting estimates leading to the best upper bounds [3,4] rely heavily on
a computational approach and seem to reach a point where it gets highly challeng-
ing, bordering intractability, to verify the results or make further progress. A few
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researchers tried a structural approach. Rytter’s three neighbour lemma can be con-
sidered one such attempt, along with the ongoing work of W. Smyth et al. [6,7,16,22].

A parameterized approach to the investigation of the structural aspects of run-
maximal strings was introduced by Deza and Franek [5]. In addition to considering
the length of the string they introduced the parameter d giving the function ρd(n), the
maximum number of runs over all strings of length n with exactly d distinct symbols.
These values are presented in what we refer to as (d, n−d) table because the value of
ρd(n) is the entry at the row d and the column n− d, rather than the more usual row
d and column n. It is just a different presentation of the values ρd(n), but it points
to some interesting aspects and possible recurrences of the function ρd(n). Based on
the results presented in this paper and elsewhere, we believe that the table captures
the essence of the behaviour of the function ρd(n).

In Table 1, the computed entries for the first 10 rows and the first 10 columns
are presented (the entries were computed using the FJW algorithm, see [9]) and the
other entries are indicated. Several properties of the table were presented in [5], the
most important being the fact that ρd(n) ≤ n − d for 2 ≤ d ≤ n is equivalent
with ρd(2d) ≤ d for d ≥ 2. In other words, if the diagonal obeys the upper bound
n− d, so do all the entries in the table everywhere. Though in the related literature,
the maximum number of runs conjecture – or simply runs conjecture – refers to the
hypothesis that ρ(n) ≤ n, in this paper we will take it to be ρd(n) ≤ n− d.

We discuss several additional properties of the (d, n − d) table, the behaviour
of the function ρd(n) on or nearby the main diagonal, and discuss some structural
properties of run-maximal strings on the main diagonal. The results allow for the
extension of computational verification of the maximum number of runs conjecture
to higher values of n and also indicate a viable approach to an analytical investigation
of the conjecture by either showing a possible counter-example to the conjecture would
have to exhibit an impossible structure, or exhibiting a counter-example on the main
diagonal of the (d, n− d) table and direct calculation of entries for smaller columns.

Let us remark, that although we believe with the majority of the researchers in
the field that the conjecture is true and hence view the d-step approach as a possible
tool to prove it, if a counter-example exists, one must be on the main diagonal and
we believe it will easier to find there as the run-maximal strings of length being twice
the size of the alphabet seem to exhibit a richer structure than general run-maximal
strings. A counter-example would be in essence a quite striking result.

2 Notation and Preliminaries

Throughout this paper, we refer to k-tuples: a symbol which occurs exactly k times in
the string under consideration. Specially named k-tuples are the singleton (1-tuple),
pair (2-tuple), triple (3-tuple), quadruple (4-tuple), and quintuple (5-tuple).

Definition 1. A safe position in a string x is one which, when removed from x, does

not result in two runs being merged into one in the resulting new string.

A safe position does not ensure that the number of runs will not change when that
position is removed, only that no runs will be lost through being merged; runs may
still be destroyed by having an essential symbol removed. Safe positions are important
in that they may be removed from a string while only affecting the runs which contain
them. For an illustration consider x[1..9] = ababaabab. Position 5 (in bold) is not safe,
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n− d

1 2 3 4 5 6 7 8 9 10 11 12

d

1 1 1 1 1 1 1 1 1 1 1 ρ1(12) .
2 1 2 2 3 4 5 5 6 7 8 ρ2(13) .
3 1 2 3 3 4 5 6 6 7 8 ρ3(14) .
4 1 2 3 4 4 5 6 7 7 8 ρ4(15) .
5 1 2 3 4 5 5 6 7 8 8 ρ5(16) .
6 1 2 3 4 5 6 6 7 8 9 ρ6(17) .
7 1 2 3 4 5 6 7 7 8 9 ρ7(18) .
8 1 2 3 4 5 6 7 8 8 9 ρ8(19) .
9 1 2 3 4 5 6 7 8 9 9 ρ9(20) .
10 1 2 3 4 5 6 7 8 9 10 ρ10(21) .
11 . . . . . . . . ρ11(20) ρ11(21) ρ11(22) .
12 . . . . . . . . . . . .

Table 1. Values for ρd(n) with 1 ≤ d ≤ 10 and 1 ≤ n− d ≤ 10. For more values, see [1]. The bold
entries denote the main diagonal referred in the text, while the entries in italics denote the second
diagonal.

for if we remove it, the run abab starting at position 1 and the run abab starting at
position 6 will be merged together: abababab. Similarly position 6 is not safe, as its
removal would merger two runs. On the other hand, position 4 is safe. If we remove
it, we get abaaabab which destroys 1 run abab, however it does not cause any two
runs to merge.

When the position of a symbol is unambiguous, we may thus refer to a safe symbol

rather than to its position – for instance we can talk about a safe singleton, or about
the first member of a pair being safe, etc.

At various points we will need to relabel all occurrences of a symbol in a string
or substring. Let x

a
b denote the string x, in which all occurrences of a are replaced

by b, and vice versa. Sd(n) refers to the set of strings of length n with exactly d
distinct symbols. For a string x, A(x) denotes the alphabet of x, while r(x) denotes
the number of runs of x.

Lemma 2. There exists a run-maximal string in Sd(n) with no unsafe singletons for

2 ≤ d ≤ n.

Proof. Let x be a run-maximal string in Sd(n). We will show that one of the following
conditions must hold:

(i) x has no singletons, or
(ii) x has exactly one singleton which is safe, or
(iii) x has exactly one singleton which is unsafe, and there exists another run-

maximal string x
′ ∈ Sd(n) where x

′ has no unsafe singletons, or
(iv) x has more than one singleton, all of which are safe.

Let x have some unsafe singletons.

First, consider the case that x has exactly one singleton, C, which is unsafe: x =
uavavCavavw, where u, v, andw are (possibly empty) strings, and a ∈ A(x)−{C}.
Let x

′ = uavav(Cavavw)aC = uavav(aCv
a
CCv

a
Cw

a
C) = uavavaCṽCṽw̃. Clearly,

x
′ ∈ Sd(n),r(x

′) ≥ r(x), so x
′ is run-maximal and has no singletons.

Next, consider the case that x has at least two singletons C, D, of which one is
unsafe, C. Without loss of generality, we can assume C occurs before D : x =
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uavavCavavwDz, where u, v,w, and z are (possibly empty) strings and a ∈ A(x)−
{C,D}. Let x1 = uavav(CavavwDz)aC = uavavaCṽCṽw̃Dz̃. Clearly, x1 ∈ Sd(n)
and r(x1) ≥ r(x). We then modify x1 by removing the safe symbol a immediately to
the left of the first occurrence of C, yielding x2. Finally, we add a second copy of D
adjacent to the original D, restoring the original length: x3 = uavavCṽCṽw̃DDz̃.
x3 ∈ Sd(n) and r(x3) > r(x2) ≥ r(x1) ≥ r(x), which contradicts the run-maximality
of x. ⊓⊔

Lemma 3 is a simple observation that for a position to be unsafe, a symbol must
occur twice to the left and twice to the right of that position.

Lemma 3. If a string x consists only of singletons, pairs, and triples, then every

position is safe.

A corollary of Lemma 3 is that the maximum number of runs in a string with only
singletons, pairs, and triples is limited by the number of pairs and triples. Specifically,
r(x) = #pairs+ ⌊3

2
#triples⌋. This is because a pair can only be involved in a single

run, and a triple can be involved in at most 2 runs. The densest structure achievable
is through overlapping triples in the pattern aababb, which has 3 runs for every two
triples. The pairs, meanwhile, are maximized through adjacent copies.

3 Run-maximal strings below the main diagonal and in the

immediate neighbourhood above

We first remark that every value below the main diagonal in the (d, n − d) table is
equal to the value on the main diagonal directly above it. In other words, the values
on and below the main diagonal in a column are constant.

Proposition 4. We have ρd(n) = ρn−d(2n− 2d) for 2 ≤ d ≤ n < 2d.

Proof. Consider a run-maximal string x ∈ Sd(n), where 2 ≤ d ≤ n < 2d. By
Lemma 2, we can assume x has no unsafe singletons. Since n < 2d, x must have
a singleton, and hence it must be safe. We can remove this safe singleton, yielding a
new string y ∈ Sd−1(n − 1) and so ρd(n) = r(x) = r(y) ≤ ρd−1(n − 1). Recall the
following inequality noted in [5]:

ρd(n) ≤ ρd+1(n+ 1) for 2 ≤ d ≤ n (1)

Thus, ρd−1(n− 1) = ρd(n). ⊓⊔

Proposition 4 together with inequality (1) gives the following equivalency noted
in [5]: {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(2d) ≤ d for 2 ≤ d}.

If there is a counter-example to the conjectured upper bound, then the main diag-

onal must contain a counter-example. If it falls under the main diagonal, then by
Proposition 4 there must be a counter-example on the main diagonal – i.e. it can be
pushed up, and if it falls above the main diagonal, by the inequality (1), there must
be a counter-example on the main diagonal – i.e. the counter-example can be pushed
down.

We extend Proposition 4 to bound the behaviour of the entries in the immedi-
ate neighbourhood above the main diagonal in the (d, n − d) table. Proposition 5
establishes that the difference between the entry on the main diagonal and the entry
immediately above it is at most 1. In addition, the difference is 1 if and only if every
run-maximal string in Sd(2d) consists entirely of pairs; otherwise, the difference is 0.
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Proposition 5. We have ρd(2d) ≤ ρd−1(2d− 1) + 1 for d ≥ 3.

Proof. Let x ∈ Sd(2d) be a run-maximal string with no unsafe singletons (by Lemma 2).
If x does not have a singleton, then it consists entirely of pairs. It is clear that the
pairs must be adjacent and that r(x) = d and so x = aabbcc . . . Removing the first
a and renaming the second to b, y = bbbcc . . . ∈ Sd−1(2d − 1) and ρd−1(2d − 1) ≥
r(y) = r(x) − 1 = ρd(2d) − 1. If x has a singleton, since it is safe we can remove it
forming a string y ∈ Sd−1(2d− 1) so that ρd−1(2d− 1) ≥ r(y) = r(x) = ρd(2d), and
so ρd−1(2d− 1) = ρd(2d). ⊓⊔

We have seen that the gap between the first entry above the diagonal and the
diagonal entry is at most 1. Proposition 6 establishes that the three entries just
above the diagonal are identical.

Proposition 6. We have ρd−1(2d− 1) = ρd−2(2d− 2) = ρd−3(2d− 3) for d ≥ 5.

Proof. Let x be a run-maximal string in Sd−1(2d − 1). By Lemma 2 we can assume
that either it has a safe singleton or no singletons at all. In the former case, we can
remove the safe singleton obtaining y ∈ Sd−2(2d− 2) so that ρd−2(2d− 2) ≥ r(y) ≥
r(x) = ρd−1(2d− 1), and so ρd−1(2d− 1) = ρd−2(2d− 2). In the latter case, x consists
of pairs and one triple, and thus, by Lemma 3, all positions are safe. Therefore, we
can move all the pairs to the end of the string, yielding y = aaabbcc . . . ∈ Sd−1(2d−1)
and by removing the first a and renaming the remaining as to cs, z = ccbbcc . . . ∈
Sd−2(2d− 2). It follows that ρd−2(2d− 2) ≥ r(z) = r(y) = r(x) = ρd−1(2d− 1), and
so ρd−1(2d− 1) = ρd−2(2d− 2).

Let x be now a run-maximal string in Sd−2(2d − 2). Again, if x has a singleton,
we can assume by Lemma 2 it is safe and form y by removing the singleton. y ∈
Sd−3(2d − 3) and ρd−3(2d − 3) ≥ r(y) ≥ r(x) = ρd−2(2d − 2). If x does not have a
singleton, then r(x) = d− 1. To see this, consider the two cases:

(i) x consists of two triples and several pairs. The most runs which may be obtained
in such a string, after grouping the pairs at the end of the string, is through the
arrangement aababbccddee . . . In this case, there are d−4 runs from the pairs, and
3 runs from the triples, giving a total of d− 1 runs.

(ii) x consists of a quadruple and several pairs. The most runs which may be ob-
tained in this case is from a string with either the structure aabbaaccddee . . ., or
aabaabccddee . . ., where all the pairs have been grouped at the end, except for the
pair of bs which is used to break up the quadruple. In both cases, there are d− 4
runs involving characters c onward, and three runs involving the characters a and
b, again giving a total of d− 1 runs.

Now consider a string y = aabbaabbcdee . . . ∈ Sd−2(2d−2), which has two quadruples
(of as and bs), two singletons (c and d), and several pairs (e . . .). This string has d−6
runs from the pairs ee onward, and 5 runs from the characters a and b, giving a total
of d− 1 runs, i.e. r(x) = r(y). The singleton c in y being clearly safe, we can remove
it and continue as in the previous case. ⊓⊔

Remark 7 below providing a lower bound for the first 4 entries above the main
diagonal of the (d, n−d) table, is a corollary of the inequality ρd+s(n+2s) ≥ ρd(n)+s,
noted in [5], applied to ρ2(k) = k − 3 for k = 5, 6, 7 and 8.

Remark 7. We have ρd−k(2d− k) ≥ d− 1 for k = 1, 2, 3 and 4 and d ≥ 6.
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4 Structural properties of run-maximal strings on the main

diagonal

We explore structural properties of the run-maximal strings on the main diagonal.
These results yield properties for run-maximal strings that have their length bounded
by nine times the number of distinct symbols they contain. We can thus shift the
critical region of the (d, n− d) table as summarized in the Theorem 8, the proof for
which can be found at the end of this section.

Theorem 8. We have {ρd(n) ≤ n− d for 2 ≤ d ≤ n} ⇔ {ρd(9d) ≤ 8d for d ≥ 2}.

Proposition 9 describes useful structural properties of run-maximal strings on the
main diagonal. The proof of the proposition relies on a few lemmas that will be mostly
presented without their entire proofs, just a few examples will be given to illustrate
the method. They all deal with the same basic scenario: assuming we know that the
table obeys the conjecture for all columns to the left of column d, which is the first
unknown column, we investigate the run-maximal strings of Sd(2d).

Proposition 9. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x be a run-maximal string in

Sd(2d). Either r(x) = ρd(2d) = d or x has at least ⌈7d
8
⌉ singletons, and no symbol

occurs exactly 2, 3, . . . , 8 times in x.

Proof. The proof that each symbol must be a singleton or occur at least 9 times is a
direct result of the lemmas which make up the remainder of this section. Then, let
x ∈ Sd(2d) be run-maximal, m1 denote the number of singletons, and m2 the number
of non-singleton symbols of x. We have m1 + 9m2 ≤ 2d and m1 + m2 = d, which
implies that m2 ≤ d/8 and hence m1 ≥ ⌈7d/8⌉. ⊓⊔

Proposition 9 provides a purely analytical proof that ρd(2d) = d for d ≤ 15, and
using the computation of ρ2(d+ 2) for d = 16, . . . , 23, that ρd(2d) = d for d ≤ 23.

Corollary 10. We have ρd(2d) = d for d ≤ 23 and ρd(n) ≤ n− d for n− d ≤ 23.

Proof. Assume that run-maximal x ∈ Sd(2d) satisfies r(x) = ρd(2d) > d. By Proposi-
tion 9, x consists only of singleton for 2 ≤ d ≤ 6, r(x) = ρ1(d+1) = 1 for 8 ≤ d ≤ 15,
and d < r(x) = ρ2(d+ 2) for 16 ≤ d ≤ 23, which are impossible. ⊓⊔

In Lemmas 11,12, and 13 we assume that for 2 ≤ d′ < d, the conjecture holds,
i.e. ρd′(2d

′) ≤ d′. Note that it is equivalent to ρd′(n
′) ≤ n′ − d′ for 2 ≤ d′ ≤ n′

when n′− d′ < d. We consider a run-maximal string x ∈ Sd(2d) containing a k-tuple.
We show that either the string x obeys the conjectured upper bound, or can be
manipulated to obtain a new string y with a larger alphabet of the same or shorter
length. We ensure that the manipulation process does not destroy more runs than the
amount the alphabet is increased or the length decreased. This allows us to estimate
the number of runs in y based on the values in the table for some d′ < d. In essence,
we manipulate a string from column d to a string from some column d′ < d while
monitoring the number of runs.

Lemma 11. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either

r(x) = ρd(2d) = d or x does not contain a pair.
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Proof. Assume that x does not obey the conjectured upper bound and so r(x) > d.
Let us assume that x contains a pair of C’s and so x = uCvCw. Change the first
occurrence of C to a new symbol D /∈ A(x) to obtain y = uDvCw. Since a pair
can be in at most one run (see for instance [5]), we destroyed at most one run and
increased the alphabet size by one, so d− 1 ≥ ρd+1(2d) ≥ r(y) ≥ r(x)− 1. It follows
that d ≥ r(x), a contradiction with our earlier assumption. ⊓⊔

Lemma 12. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either

r(x) = ρd(2d) = d or x does not contain a triple.

Proof. (A sketch) If x does not obey the conjecture and has a triple of C’s, the triple
can be involved in at most two runs. We change the first two occurrences of C to
new symbols D and E obtaining y ∈ Sd+2(2d). This destroys at most two runs while
increasing the size of the alphabet by 2, a contradiction with our assumption. ⊓⊔

For k-tuples of higher degree, 4 ≤ k ≤ 8, the approach is very similar, but since
such a k-tuple can be in multiple runs, the discussion of cases become more complex
and thus we summarize all these results without a proof in Lemma 13.

Lemma 13. Let ρd′(2d
′) ≤ d′ for 2 ≤ d′ < d. Let x ∈ Sd(2d) be run-maximal. Either

r(x) = ρd(2d) = d or x does not contain a k-tuple, 4 ≤ k ≤ 8.

While the previous lemmas were provided for entries on the main diagonal, the
result can be generalized to any entry in column n − d where ρd′(n

′) ≤ n′ − d′ for
n′− d′ < n− d. Either ρd(n) ≤ n− d, or no run-maximal x ∈ Sd(n) has a pair, triple,
. . . , 8-tuple. The induction hypothesis only requires that all entries to the left of the
unknown column satisfy the conjecture; there is no restriction within the unknown

column.
Having proven Proposition 9, we can present the proof of Theorem 8:

Proof. The proof follows directly from Proposition 9. If the conjecture does not hold,
let d be the first column for which ρd(2d) > d. Let x ∈ Sd(2d) be run-maximal.
By Proposition 9, x has at least k = ⌈7d

8
⌉ singletons, and by Lemma 2 they must

all be safe. Let us form y by removing all these safe singletons. This gives a string
y ∈ Sd−k(2d− k) violating the conjecture, i.e. r(y) > d. d′ = d− k = d

8
and d = 8d′

and 2d− k = 9d′. Thus we found a y ∈ Sd′(9d
′) such that r(y) > 8d′. ⊓⊔

When investigating a single column, the first counter-example in the column can-
not have a singleton, as otherwise the counter-example could be pushed up. Nor, by
Proposition 9, can it contain a k-tuple for 2 ≤ k ≤ 8. Theorem 8 together with
these facts give a simplified way to computationally verify that the whole column d
satisfies the conjecture: show that there are no counter-examples for 2 ≤ d′ ≤ d

8
, and

only strings with no k-tuples, 1 ≤ k ≤ 8, need to be considered when looking for the

counter-examples.

5 Conclusion

The properties presented in this paper constrain the behaviour of the function ρd(n)
as presented in the (d, n − d) table below the main diagonal and in an immediate
neighbourhood above the main diagonal. One of the main contributions lies in the
characterization of structural properties of the run-maximal strings on the main di-
agonal, giving yet another property equivalent with the maximum number of runs
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conjecture. Not only do these results provide a faster way to computationally check
the validity of the conjecture for greater lengths, they indicate a possible way to
prove the conjecture along the ideas presented in Proposition 9 and its proof: a first
counter-example on the main diagonal could not possibly have a k-tuple for any con-
ceivable k. We were able to carry the reasoning up to k = 8, but these proofs are not
easy to scale up as the combinatorial complexity increases. The hope and motivation
for further research along these lines is that there is a common thread among all
these various proofs that may lead to a uniform method ruling out all the k-tuples
and thus proving the conjecture, or to exhibit an unexpected counter-example on the
main diagonal of the (d, n− d) table.
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