
Finding Long and Multiple Repeats with Edit

Distance

Maria Federico1, Pierre Peterlongo2, Nadia Pisanti3, and Marie-France Sagot4,5

1 Dipartimento di Ingegneria dell’Informazione, University of Modena and Reggio Emilia, Italy
2 INRIA Rennes – Bretagne Atlantique, EPI Symbiose, Rennes, France

3 Dipartimento di Informatica, University of Pisa, Italy
4 Laboratoire de Biométrie et Biologie Evolutive, University of Lyon 1, France

5 INRIA Rhône-Alpes, France

Abstract. We present a tool for detecting long similar fragments that occur two or
more times in a set of biological sequences. The problem has interesting applications in
the analysis of biological sequences and their correlation, and becomes computationally
challenging when a certain non negligible number of insertions, deletions and substi-
tutions are allowed. For this reason exact exhaustive methods are hardly of practical
use. In this paper we introduce a tool, FilmRed, that performs this task, and that
manages instances whose size and parameters combination cannot be handled by any
existing tool. This is achieved by using a filter as a preprocessing step, and by using the
information that the filter has gathered also in the successive inference phase. To the
best of our knowledge, FilmRed is the first ab initio tool that can deal with repeats
occurring possibly several times, that have length of hundreds or thousands bases, and
whose occurrences may differ in even more than 10% of their positions in terms of
substitutions and indels.

Keywords: long repeats, multiple repeats, LTR, transposable elements, edit distance

1 Introduction

Genomes are made of an astonishing amount of repeated fragments, in particular
in complex organisms as eukaryotes. These repeats are approximate replications of
portions of genomes having different ranges and characteristics depending on their
origin and function. As for satellites, this can be tandem repeats of few hundred base
pairs, segmental duplications of length at least one thousand base pairs and some type
of transposons issued from the copy and paste process (retrotransposons). For long
time, these repeats, mainly occurring in the intergenic regions, were considered as junk
dna. However, mentality has changed; transposons, for instance, are now believed to
have role in immune system [7] and gene regulation [14]. Depending on the species
and of the kind of studied repeated element, the average number of occurrences of
a repeat, its length and its divergence between occurrences show a large variability.
In this paper, we focus on the problem of finding long multiple repeats that may
appear dispersed along one whole genome or chromosome, or are common to different
genomes/chromosomes. The proposed tool is designed for calling repeats that are
multiple (whose occurrences number may be strictly bigger than 2), long (typically
of length ≥ 100 base pairs), and approximate (each pair of occurrences may show
substitutions, insertions or deletions in up to 10 to 15% of their length).

The identification of such repeats, in particular in large and numerous genomes
and when the divergence authorized between repeat occurrences is high, is a particu-
larly difficult computational problem. Indeed, exact methods to find multiple repeats

Maria Federico, Pierre Peterlongo, Nadia Pisanti, Marie-France Sagot: Finding Long and Multiple Repeats with Edit Distance, pp. 83–97.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

84 Proceedings of the Prague Stringology Conference 2011

use dynamic programming, leading to a time complexity in O(nr) with n the average
length of sequences and r their number or the number of occurrences of searched
repeats. Such a time complexity is unacceptable for practical use unless with toy
examples. However, some tools as Speller [19], Smile [12] or Risotto [16] are designed
to fin elements that are multiple and possibly spread over large (set of) genomes.
However, this tools focus on particular user defined motifs that are indeed repeats
but usually small, anchored with mandatory substrings, well conserved and mostly
accepting only substitutions between occurrences. On the other hand, there exists a
broad range of heuristic based algorithms to find repeats. Some make use of seeds
for anchoring repeats before the application of dynamic programming and usually
perform progressive alignments: combining pairwise alignments beginning with the
most similar pair and progressing to the most distantly related. Even if efficient, such
tools do not ensure the accuracy and completeness of the found results.

In order to find multiple repeats in reasonable time, it is possible to preprocess the
data using a filter. In this framework, a filter is a tool that quickly discards fragments
of sequences that may not belong to any searched repeat. After the filtering phase,
usually the remaining dataset is much smaller than the original one, allowing the
application of a time consuming algorithm. The user may refer to [17] for a state of
the art about string filtration.

We propose FilmRed, a combinatorial approach that combines filtering and align-
ment phases. It is based on the Tuiuiu [15] filter. Tuiuiu is to date the state of the
art filter as it filters for multiple repeats while previous filters are designed for re-
peats having only two occurrences or not taking into account indels. FilmRed (i)
uses Tuiuiu as a preprocessing step and (ii) uses pieces of information collected dur-
ing Tuiuiu runtime to detect, after filtering, real repeats and to find their precise
borders and locations, thus finalising the repeats inference task.

2 The filter Tuiuiu and preliminary definitions

A string is a concatenation of zero or more symbols from an alphabet Σ. A string s of
length n on Σ is represented also by s[0]s[1] · · · s[n− 1], where s[i] ∈ Σ for 0 ≤ i < n.
The length of s is denoted by |s|. We denote by s[i, j] the substring s[i]s[i+1] · · · s[j]
of s.

We will focus on the problem of finding (L, r, d)-Erepeats, defined as follow:

Definition 1 ((L, r, d)-Erepeat). Given a set S of one or more input strings, a
length L > 0, an integer r ≥ 2, and an edit distance 0 ≤ d < L, we call a (L, r, d)-
Erepeat a set {ω1, . . . , ωr} of r words having length in the range [L−d, L+d] occurring
in the sequences of S such that for all i, j ∈ [1, r], dE(ωi, ωj) ≤ d, where dE(ω, ω

′)
denotes the edit distance between two strings ω and ω′.

The definition can be used to model repeats inside one sequence (|S| = 1) or
among several sequences (|S| > 1). In the latter case, one can also enforce that the
r words occur over r distinct sequences (and thus one needs |S| ≥ r). In both cases,
should it be r = 2, the problem could be solved in quadratic time with dynamic
programming just aligning the whole input against itself, but for multiple repeats
like those we target, this solution is not feasible. Current exact exhaustive methods
can manage input data of very limited size and/or detect repeats with very small
values of d (the approximation measure), while again our target is higher as we want

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 85

d to be as much as 10% or 15% of L. On the other hand, heuristics do not guarantee
to find all real repeats and, in general, the quality of their result much depends on
the absence of noise in the data.

Filters, and in particular lossless filters1, have been introduced with the goal of
speeding up any method (exact or heuristic) by means of a drastic reduction of the
input size obtained with the elimination of most of the data that does not contain
any repeat. There is a twofold practical impact of filters: exact methods can push
(possibly much) further the threshold of their applicability, while heuristics can gain
in speed and possibly even obtain results of better quality. In general, a filter is a good
filter if it is much faster than the search that it preprocesses (otherwise one would
rather directly perform the search), and it is at the same as selective as possible, thus
leaving the least amount of false positives, which are fragments of the input conserved
by the filter and that turn out not to contain a repeat.

The lossless filter tuiuiu is specifically designed to preprocess the inference of
(L, r, d)-Erepeats, and indeed it takes in input the parameters L, r, and d, as well
as the input sequence(s). The tool slides a window w of length L along the whole
input, checking whether there are at least r− 1 other fragments with which w fulfills
a specifically designed strong and fast-to-check necessary condition for being at edit
distance at most d. If this is the case, then the window w is kept, and it is discarded
otherwise. The windows taken into account are those starting at each possible position
of the sequences (these are roughly as many as the input size n), while the fragments
for which the condition is checked against w are actually overlapping blocks of size
L+ b+d occurring every b positions, where b is the smallest power of 2 larger than d.
This choice, already done by previous filters [4,18] allows to consider only n/b blocks,
thus gaining in speed. If a window w fulfills the necessary condition with a block B,
then we say that B is a friend of w. The size chosen for blocks ensures that any
occurrence of a word of an (L, 2, d)-Erepeat is always totally contained in at least
one such block (and possibly in two), and hence the filter is still lossless. On the
other hand, taking into account blocks rather than all possible fragments of size in
[L − d, L + d] starting positions, the selectivity of the filter becomes a bit weaker,
as the necessary condition is checked against a block larger than the window, and
in particular strictly greater than L + d which is the largest possible size to be at
edit distance at most d from a window of size L: this can be an additional source of
false positives. In other words, the fact that a window has a block as a friend, does
not necessarily mean that the block contains a fragment of size L+ d that fulfills the
condition with w, and in this case the block is retained without deserving it.

Summing up, the choice made in tuiuiu has actually been to design a very strong
necessary condition for two strings to be at edit distance at most d, and to insert
this checking in a suitable framework that detects fragments of the input data that
fulfill the requirement with respect to at least r − 1 others (belonging to distinct
input strings when the requirement for the repeat is to occur in r distinct sequences).
Doing this, the necessary condition for (L, 2, d)-Erepeats is actually turned into one
for (L, r, d)-Erepeats for any r ≥ 2. The fact that tuiuiu keeps a window w that
has at least r − 1 blocks as friends gives reasonable hope that w and each one of
these fragments are at edit distance at most d, but there is no indication that these

1 With lossless filters, we refer to methods that filter the data ensuring that no fragments that may
contain a similarity is removed.

86 Proceedings of the Prague Stringology Conference 2011

fragments among themselves are at pairwise distance at most d and also that they
will all be kept by the filter. Indeed, any (or both) of the following cases can hold:

1. One or more pair(s) of the friends of w may not even fulfill the necessary condition
between themselves. In other words, the window has enough friends but these are
not enough friends of each other. If one represents friendships as an edge, this
condition can be seen as a guaranteed star shape structure with the window w as
a center, while the requirement would actually be a clique.

2. It may turn out that a friend block of a window w is filtered out later during the
filtering process because it does not contain any retained window. We call this
case empty block. In such a case, if finally too many blocks friends of w are empty,
then w would be left with less than non empty r−1 friend blocks and thus should
be disposed.

Both cases can lead to w be a false positive should all these fragments be necessary
to w for being part of a (L, r, d)-Erepeat. For this reason tuiuiu performs an extra
check for empty blocks and, above all, multiple passes, to sensibly reduce the amount
of such false positives with very little extra time requirement. For more details about
tuiuiu and its optimization the reader can refer to [15,6]. In general, when using
tuiuiu, we make a double pass as a default choice.

3 The algorithm FilmRed

In this section we will describe the pipeline of the algorithm FilmRed (FInding Long
Multiple Repeats with Edit Distance) that is designed to exploit informations raised
by tuiuiu to find (L, r, d)-Erepeats. We start with some observations about windows
contained in overlapping blocks because the relation between windows and blocks
that contain them is critical at some steps of the algorithm, and also because we will
eventually merge overlapping blocks that turn out to contain a repeat in order to
highlight possibly longer repeats.

3.1 Overlapping blocks and blocks merging

In this section we denote with c and c′ the starting position of a block. In general we
have 0 ≤ c ≤ n−1, but all observations and definitions of this section regard cases in
which the block contains at least a window and possibly it is not the rightmost block
of the input sequence, and hence in such cases c has a more tight upper bound.

Observation 1 Given a sequence S and an integer d. Let b be the smallest power of
2 larger than d. Any word w of length L in S can be totally contained in at most two
consecutive blocks of size L+ b+ d. In particular:

– words w = S[j, j +L− 1] with j ∈ [c, c+ b− 1] (and c ≤ n− b) belong only to the
block Bi = S[c, c+ b+ d+ L− 1];

– words w = S[k, k+L− 1] with k ∈ [c+ b, c+ b+ d− 1] (and c ≤ n− b− d−L+1)
belong to the consecutive blocks Bi = S[c, c+ b+d+L− 1] and Bi+1 = S[c+ b, c+
2b+ d+ L− 1].

Definition 2. Given a sequence S, two blocks B and B′, starting in S at positions c
and c′ respectively, are overlapped iff |c′ − c| < L− (b+ d).

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 87

We define the merging of two consecutive blocks in the following manner:

Definition 3 (block merging). Given a sequence S, let Bi = S[c, c+ b+ d+L− 1]
and Bi+1 = S[c+ b, c+ 2b+ d+ L− 1] be two consecutive blocks in S. A larger block
B′

i+1 = S[c, c + 2b + d + L− 1] of size L + 2b + d is obtained merging blocks Bi and
Bi+1.

The definition can be extended in a straightforward way to the merging of k
consecutive blocks.

Definition 4. Given a sequence S and k consecutive blocks Bi, Bi+1, . . . , Bi+(k−1) of
S, such that Bi starts at position c in S, merging the k blocks we obtain an enlarged
block B′

i+(k−1) = S[c, c+ kb+ d+ L− 1] of size L+ kb+ d.

3.2 Description of the algorithm

In this section we list the steps of the algorithm FilmRed.

Step 1: filtering step. The first step is actually to simply apply tuiuiu with double
pass, hence including the optimization that allows to discard also some false positives
due to empty blocks. With respect to the plain filter introduced in [15,6], in order
to collect information which is useful to speed up the successive steps, we extend
as follows this first phase. Information about not empty blocks that are friends of
each window kept by the filter is stored in the array data structure friendsOfWindow
whose size is the number of possible windows of length L (that is n−L, where n is the
length of the input sequences). The entry friendsOfWindow [w] of a specific window
w contains the list of blocks that are friend of w.
At the end of this step, the portion of the input that is left is the one containing kept
windows. In this way, a consistent percentage of the initial sequences is removed, and
we are left with actual repeats plus some false positives. The possible cases of false
positives have actually been described in Section 2 and, summing up, they can be
due to one or more of the following reasons:

FPrect : due to choice of checking the filtering condition for windows of size L against
blocks of size L+ d+ b.

FPcond : due to the fact that the condition the filter checks is only a necessary con-
dition, but not sufficient.

FP ∗ : due to the condition being checked between a window and r−1 or more blocks
(star shape) rather than between all such blocks (or actualy windows inside them).

Step 2: Semiglobal alignment. In this step, all windows kept by the filter after
Step 1 are aligned to all its friend blocks. Only windows that result to have at least
r−1 other fragments that are at edit distance smaller than d are actually kept. In other
words, this step eliminates all FPrect and FPcond false positives. More specifically, this
is achieved as follows. For each kept window w, a semiglobal alignment between w
and B is performed for all blocks B in friendsOfWindow [w]. The window has length
L while the block has length L+ b+d. We build a rectangular dynamic programming
matrix with the window w on rows and the block B on columns. The matrix is
initialized with zero on the first row, indels and mismatches cost 1 and matches cost
0. In order to require that w is entirely involved in the alignment, while for B it is

88 Proceedings of the Prague Stringology Conference 2011

enough to involve a substring, we check the last row: if there is a value lower or equal
to d, then B contains a repeat of w, that is a substring of length in [L − d, L + d]
such that its edit distance from w is at most d; otherwise, the friendship of B with w
was a false positive and B is removed from the list friendsOfWindow [w]. If with the
removal of blocks from friendsOfWindow [w] we obtain a list of size lower than r− 1,
then w is no longer a window to be kept, and is thus removed.

Each one of such alignments takes time L(L + b + d), and the number of align-
ments to be performed depends from the dataset and from the efficiency of the filter-
ing phase, that can only be evaluated experimentally (see Section 4 for experimental
results). A theoretical complexity analysis based on the worst case scenario would
result in a catastrophic expectation, not at all supported by practical cases. Among
the reasons for which this step will actually result feasible there is the fact that we ap-
ply a simple optimization with relevant practical impact: when there are consecutive
windows to be taken into account, there exists a relationship between the minimum
cost of the alignment of a window w against a block B, and the minimum cost of the
alignment of the successive window w′ (that is, the window starting just one position
after where w starts) and the same block B (who is likely to belong to friendsOfWin-
dow [w′] if it did belong to friendsOfWindow [w]). When considering w′ after that w
has been processed, we are virtually removing the first row of the alignment between
w and B, and adding an extra row on the bottom. If we denote with dist(win, blo)
the minimum value at the bottom row of the semiglobal alignment of a window win
and a block blo, then we have that

dist(w,B)− 1 ≤ dist(w′, B) ≤ dist(w,B) + 1

Therefore, storing for each block B, the minimum cost of the alignment with the
last aligned window w, it is possible to determine lower and upper bounds of the
alignment cost between B and the successive window w′. As a result, if dist(w,B) ∈
[d, d+1], then the alignment between w′ and B must be computed, but if dist(w,B) ≤
d − 1 (resp. dist(w,B) > d + 1), then we know for free that dist(w′, B) ≤ d (resp.
dist(w′, B) > d), and the alignments do not need to be computed.

During this Step, new empty blocks can be introduced: a false positive can be
detected and discarded, and hence it may turn out that a block belonging to a list
friendsOfWindow [w] for some w is actually empty, that is, no window inside it is
kept anymore. For this reason, a strategy of removal of empty blocks is performed
also during the alignment step. This has the twofold effect of removing on the fly
some FP ∗ and also to spare some alignment computations.

At the end of this step, all false positives FPcond and FPrect have been removed
because now for all windows w the friendsOfWindow [w] data structure only stores
blocks containing at least one substring x of length in [L−d, L+d] whose edit distance
with w is ≤ d. Nevertheless, some FP ∗ possibly still remain. These will be removed
in the next step.

Step 3: Clique detection among blocks. At the beginning of this step, we have
a set of windows that can be either real repeats or FP ∗ false positives. For each such
window w we do know that in each block belonging to friendsOfWindow [w] there
is fragment at edit distance no greater than d with w, but this is not enough to
guarantee w is part of an actual repeat. In order to ensure that, it should be that
in any Bi (resp. Bj) of such blocks (actually in at least r − 1 of them) there is a
fragment fi (resp. fj) such that (i) dE(fi, w) ≤ d, and (ii) for all pairs Bi and Bj of

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 89

blocks in this set, we have dE(fi, fj) ≤ d. The existence, for each block, of a fragment
that fulfills condition (i) is guaranteed by previous steps, but the point is that the
same fi must fulfill condition (ii) as well. A possible way to see the problem we are
about to address, is to represent each window and each fragment fi as a node of a
graph, and to place an edge between two nodes if these are at edit distance at most
d: in this view, the selection made up to this step ensures that each w is a center of
star shaped subgraph that has at least r− 1 rays, but the actual requirement for this
subgraph is now to be a clique. Indeed, a block may contain several (possibly and
probably overlapping) fragments that are similar enough to another fragment and to
w, but the requirement is that a block should be able to pick a single fragment that
is similar enough to all other fragments. Somehow, the windows/block asymmetry is
what causes this possible shift that may result into a mislocation of the repetition.
Also with the goal of overtaking this problem, we relax the constraint over the length L
transforming the friendsOfWindow data structure in the array of lists friendsOfBlock
storing for each block B the list of not empty and overlapped blocks that are friends
of the windows contained in B and kept after the alignment step.

The construction of the friendsOfBlock data structure is performed during the
semi-global alignment step contemporarily to the update of the friendsOfWindow
array. When we find that a window wj has at least r − 1 non overlapped friend
blocks, if Bi is the block that contains wj, we add the list of friend blocks stored in
friendsOfWindow [j] in friendsOfBlock [i]. Note that for the Observation 1 the window
wj can belong to two consecutive blocks Bi and Bi+1, hence in this case the list of
friend blocks stored in friendsOfWindow [j] is added to both friendsOfBlock [i] and
friendsOfBlock [i+ 1].

The friendsOfBlock data structure is the adjacency list representation of the graph
in which maximal cliques composed of at least r non overlapped friend blocks should
be looked for. Blocks composing the found cliques contain occurrences of real multiple
repeats having length in [L−d, L+d] and that we can identify and visualize by aligning
all the blocks of each clique.

Shifting from windows to blocks at this stage introduces an heuristic step that
decreases the complexity of the clique detection task (because the size of the graph is
reduced) and maintains the method lossless (i.e., no (L, r, d)-Erepeat is missed) even
though it might prevent the removal of some FP ∗. We must say that in practice, in
all our experiments (that is, all those reported in Section 4, and many more), we have
never observed such kind of FP ∗. Nevertheless, these can theoretically exist.

a. Finding maximal cliques.
The Bron-Kerbosch [2] algorithm is an algorithm to find maximal cliques in an
undirected graph. That is, it lists all subsets of vertices with the two properties
that each pair of vertices in one of the listed subsets is connected by an edge, and
no listed subset can have any additional vertices added to it while preserving its
complete connectivity. We use this algorithm and, namely, the optimised version
reported in [2]. This variant of the algorithm involves the selection of a “pivot”
vertex for which in [8] two pivot selection strategies are investigated: we tested
both on several and distinct types of biological sequences, and we end up choosing
as pivot the vertex with largest degree because this strategy always outperforms
the one based on random selection.

b. Removing clique redundancy.
The graph represented by the friendsOfBlock array contains overlapped blocks as

90 Proceedings of the Prague Stringology Conference 2011

friends of a block, therefore the Bron-Kerbosch algorithm performed over such
graph finds a set of maximal cliques composed of overlapped blocks, in the sense
that there is no clique that is a subset of another one. We have to perform the clique
detection considering also overlapped blocks in order to enumerate exhaustively all
real repeats. Nevertheless, it is possible that two different cliques in the set actually
represent the same repeat. Indeed, for each pair of consecutive entries i and i+ 1
in friendsOfBlock corresponding to two consecutive blocks Bi and Bi+1 that share
a window wt kept after the semi-global alignment step because it has at least r−1
non overlapped friend blocks, if wt is not a FP ∗ the Bron-Kerbosch algorithm finds
two cliques: C = Bi∪friendsOfWindow [wt] and C ′ = Bi+1∪friendsOfWindow [wt].
Aligning blocks of both cliques C and C ′, the same repeat is found, because the
only two different blocks between C and C ′ contain the same occurrence wt of the
repeat (even if it is possible that blocks Bi and Bi+1 contain also other overlapped
occurrences of the same repeat).
This kind of redundancy in the output is actually avoided storing in friendsOf-
Block [i] and friendsOfBlock [i + 1] also blocks Bi+1 and Bi respectively. In this
way the Bron-Kerbosch algorithm finds only the clique C = Bi, Bi+1∪friendsOf-
Window [t].
On the other hand, the same type of redundancy now occurs within a single clique,
because Bi and Bi+1 represent the same occurrence of the repeat. Furthermore
the same situation may happen also for other blocks in the list of friend blocks of
wt stored in friendsOfWindow [t]: indeed, for each friend block Bj that contains a
kept window wk belonging also to Bj+1, both Bj and Bj+1 are friends of wt, while
representing the same occurrence of the repeat.

Figure 1. Mergein operation: given r = 2, windows w0 and w1 are two repeat occurrences shared
by consecutive blocks Bi,Bi+1 in sequence S0 and Bj ,Bj+1 in sequence S1 respectively. The Bron-
Kerbosch algorithm finds the clique C = Bi, Bi+1, Bj , Bj+1 in which Bi and Bi+1 (resp. Bj and
Bj+1) contain the same occurrence. The Mergein operation consists in merging consecutive blocks
inside the same clique. The white dashed areas possibly contain errors.

In order to remove such kind of redundancy inside a clique we merge consecutive
blocks composing it, therefore if we found a clique C = Bi, Bi+1, Bj, Bj+1, we
return the clique C ′ = B′

i+1, B
′

j+1. In particular, the merging inside cliques is
performed when a new block is added to a candidate clique. Note that the merge in
operation is applied also for overlapped blocks that are present inside a clique,
because they represent overlapped occurrences of the same repeat. We denote
the merging of consecutive or overlapped blocks inside a clique as Merge in. An
example is shown in Figure 1.
Of course, more than two consecutive or overlapped blocks may be present in a
clique, if they contain overlapped occurrences of the same repeat; in such case only
one block that is the union of all consecutive and overlapped blocks is returned as
part of the clique, therefore in the alignment we will see only one long occurrence.

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 91

Assuming that we perform the merging of consecutive and overlapped blocks inside
each found clique, it may happen that the set of found cliques contains subsets of
cliques each composed of consecutive blocks:

C =Bi, Bj , Bk, Bt

C ′ =Bi+1, Bj+1, Bk+1, Bt+1

C ′′ =Bi+2, Bj+2, Bk+2, Bt+2

...

Cn =Bi+n, Bj+n, Bk+n, Bt+n

In this case it is plausible to think that in the input sequences there exists a
longer repeat whose occurrences are the concatenation of the occurrences of shorter
n + 1 overlapped repeats with a certain degree of error d represented by cliques
C,C ′, C ′′, . . . , Cn. When the number of cliques composed of consecutive blocks is
huge it means that the user chose a not very accurate value for the length L of
repeats to be sought and this produces a little readable output difficult to be man-
aged. To address this problem we decide to merge consecutive blocks contained in
the n+ 1 cliques and to return only the clique C = B′

i+n, B
′

j+n, B
′

k+n, B
′

t+n repre-
senting the longer repeat. We denote the merging of consecutive blocks between

Figure 2. Mergeout operation: given r = 2, windows w0 and w1 are two occurrences of the same
repeat contained in blocks Bi in sequence S0 and Bj in sequence S1 respectively. Consecutive
blocks Bi+1 and Bj+1 contain windows w′

0 and w′

1 which are overlapped to w0 and w1, and are
occurrences of another repeat. The Bron-Kerbosch algorithm finds two cliques C ′ and C ′′ composed
of consecutive blocks, but actually in the sequences there exists a long repeat whose occurrences are
the concatenation of w0 and w1 in sequence S0, and of w′

0 and w′

1 in sequence S1. The Mergeout
operation consists in merging consecutive blocks between different cliques. The white dashed areas
possibly contain errors.

different cliques as Mergeout. An example is shown in Figure 2.
The two situations of having consecutive and overlapped blocks inside the same
cliques and in different cliques may happen simultaneously.
On the contrary, the merging of consecutive blocks contained in two different
cliques is not performed if there exist at least two blocks that are not consecutive
or overlapped in the two cliques.

Given that:
– as observed in Section 3.1 the enlarged blocks obtained from the merging of k
consecutive blocks, have size at most L+ kb+ d;

– each block contains overlapped occurrences of a repeat of length L with an
edit distance at most d from each other occurrence of the repeat,

then the enlarged blocks contain occurrences of repeats of length at most L +
kb+ d with at most kd errors (if areas containing errors in overlapped windows of
consecutive blocks are not overlapped, as in Figure 2).

92 Proceedings of the Prague Stringology Conference 2011

In order to obtain such kind of compressed output, each clique found by the Bron-
Kerbosch algorithm (possibly composed of enlarged blocks raised from the merging
of consecutive blocks inside the clique) is compared with all previously found
cliques and its blocks are merged with blocks of cliques composed of consecutive
blocks.

Once the blocks containing the actual repeats have been detected, and that the
noise due to redundancy there has been removed, then we are left with the output
fulfilling the requirements.

4 Experiments and Discussion

4.1 Applications of FilmRed

This section shows results of an extensive set of tests performed to validate Film-

Red to find (L, r, d)-Erepeats in biological datasets containing one or more whole
genomes or chromosomes of Sunflower, Saccharomyces Cerevisiae, and in the CFTR
dataset ([3]) containing, for five different organisms (chicken, cow, human, mouse and
tetra), as many ortholog regions of the Cystic Fibrosis Transmembrane conductance
Regulator gene. Performances of the different steps of FilmRed will be evaluated in
terms of running time. Furthermore, we will also evaluate its selectiveness ability, in
terms of amount of data left after the first and the second steps of FilmRed (that
is, the filtering step, and the semiglobal alignment steps that removes FPcond and
FPrect, respectively). The selection of these two steps is defined as the ratio between
the number of non-removed overlapped substrings of length L and the total number
of overlapped substrings of length L present in the input sequences. Formally, the
selection of both steps 1) and 2) of FilmRed is given by:

sel =
number of words of length L kept by FilmRed step

number of words of length L in the input sequences
.

Obviously, given that both phases are lossless, the smaller the selection, the better.
On the other hand, for step 3) (that is, the clique detection step and the redundancy
removal, respectively), we report the number of output cliques.

Tests with Sunflower BAC sequences. A possible application to biological data
in which an accurate (L, r, d)-Erepeats finder can be employed, is that of detecting
LTR sequences (LTR is the acronym for Long Terminal Repeats, that are the se-
quences of about 300 bp length repeated at both ends of a transposable element).
In order to check whether this assumption is correct, as a first experiment we ap-
plied FilmRed to four different datasets composed of a single BAC sequence of the
Sunflower, using length parameters that agree with the expected structure of LTRs
(L = 200, 300, with d = 20, 30, respectively).

Table 1 and Table 2 report results of FilmRed for one of these four datasets
denoted as bacKnapp and containing 107161 bases, using respectively r = 2 and
r = 3. The results for the other three data sets were practically equivalent to that we
report.

Analyzing in detail the performance of the single steps of FilmRed we observe
that, as expected, the most time consuming step is the semiglobal alignment between
windows and friend blocks (except for the very special case of last line of Table 2 that

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 93

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 0.50 12.47% 5.13 10.32% 0.00 8 5.63
300 30 0.49 12.12% 10.85 9.85% 0.01 5 11.34

Table 1. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the Sunflower
bacKnapp dataset (107161 bases), with r = 2.

we will specifically comment later). However, we are able to perform the alignment
task in reasonable time for all parameters (and this holds for all the four datasets),
because the pre-processing filtering step sensibly reduces the input size.

The other step with an high theoretical computational complexity is clique detec-
tion performed on the graph of friend blocks. However, we observe that, even though
the Bron-Kerbosch algorithm applied on an n-vertex graph has a time complexity ex-
ponential in n, the clique detection phase is very fast in all tests, and even more when
r = 3 instead of r = 2, that is when the clique is less trivial, because it is performed
on really small graphs of friend blocks, thanks to the filtering of input sequences and
the little amount of false positives remaining after the semiglobal alignment step. For
what concerns the number of detected cliques, we can deduce that our strategy of
compression of the output allows us to obtain a restricted output. Indeed, FilmRed

returns very few repeats, especially when r = 3. Finally, the last two lines of Table 2
report tests in which the allowed edit distance is pushed quite far (45 edit opera-
tions allowed in a 300 bases long repeat means 15% of the involved bases): no new
result raises in this LTR finding task, but we can see that the time performances of
FilmRed are good, even if the filters helps much less and takes more time.

In addition, in order to validate our results, we compared repeats found by Film-

Red in the Sunflower with the ones found by the signature-based repeat finding tool
LTR Finder [22]. Given that no annotation is available yet, then the output of such
a tool is the only result we can compare to. We observed that all the repeats identi-
fied by the other tool are found also by FilmRed. The latter, however, returns also
further repeats, which are not identified by the former. These results suggest that
FilmRed can provide a fast solution to the problem of finding long repeats modeling
LTRs.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 0.44 3.32% 3.38 1.10% 0.00 3 3.82
300 30 0.46 3.42% 7.36 0.98% 0.00 2 7.82
200 25 0.59 5.66% 4.24 2.57% 0.00 3 4.83
300 45 178.25 41.70% 35.59 3.15% 0.00 2 213.84

Table 2. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the Sunflower
bacKnapp dataset (107161 bases), with r = 3.

Tests with Saccharomyces Cerevisiae genomes. We performed experiments on
the dataset s288c+w303 composed of three whole genomes (16 chromosomes each)
of three different strains of S. cerevisiae: RefSeq (that is fully annotated in the Sac-
charomyces Genome Database), S288c and W303, for a total of 26392324 bases. The
dataset was pre-processed by the regender tool [1] (the reported size is that after
regender is applied) in order to remove the resident genome (i.e., the total immotile

94 Proceedings of the Prague Stringology Conference 2011

DNA), which is equal among all the strains and does not contain mobile elements
like transposable elements. The goal of applying FilmRed to this dataset is to detect
transposable elements and LTRs that are shared by the three strains, and that could
not be detected by means of a traditional global alignment because in general, being
part of the most mobile DNA, have lost their colinearity.

Filter Semiglobal Align Clique detection Total
L d time(s) sel time(s) sel time #cliques time(s)
200 20 29.44 0.17% 744.48 0.09% 6.30 24 780.22
300 30 31.68 0.16% 1473.65 0.07% 2.13 13 1507.46
5000 500 9.00 0 - - - - 9.00

Table 3. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the
s288c+w303 dataset (26392324 bases) of the S. Cerevisiae, with r = 3.

Table 3 reports results of tests performed to find (L, r, d)-Erepeats characterized by
the following parameters: r = 3, L = 200, 300, 5000 with d = 20, 30, 500, respectively,
in the s288c+w303 dataset. We chose these parameters based on the peculiar struc-
ture of the transposons that can be evinced from the annotation of RefSeq provided in
the Saccharomyces Genome Database (available at http://www.yeastgenome.org):
they are long between 5000 and 6000 bases and are delimited by two LTRs of 200-300
bases.

Basically, all the observations we made for the sunflower data set hold here as
well, including the fact that our tool is a good candidate to detect LTRs: for this
data set an annotation is available, and hence in this case we could really validate
our results. In particular, we checked whether the repeats found by FilmRed in this
dataset of S. Cerevisiae correspond to real LTRs whose annotation is available in the
Saccharomyces Genome Database (http://www.yeastgenome.org). We found that
repeats output using parameters L = 300, d = 30, r = 2 actually correspond to real
LTRs, or are part of retrotransposons, or they match with the sequence of putative
proteins of unknown function. For example, blocks composing a detected clique con-
tain occurrences of the following annotated LTRs: YCLWdelta3 and YCLWdelta5
in chromosome III, YDRWdelta19 and YDRWdelta28 in chromosome IV, and YL-
RWdelta14 and YLRWdelta23 in chromosome XII. For longer repeated sequences
such as transposons and retrotrasposons, nothing is selected, as expected, probably
because the edit distance with 10% of edit operations is not the right framework to
capture transposons’ divergence.

4.2 Comparison with other tools

As already pointed out, to the best of our knowledge, FilmRed is the first ab initio
tool that can deal with repeats occurring in possibly more than two sequences, that
have length of hundreds or thousands of bases, and whose occurrences may differ in
even more than 10% of their positions in terms of substitutions and indels. For this
reason we cannot compare FilmRed with other methods solving the same problem.
In this section we report results of experiments performed to compare FilmRed with
existing methods for local similarity search. In particular, as the major strength of
FilmRed is its capacity to identify repeats in more than two input sequences, we
concentrated our attention on existing tools for multiple local sequence alignment. It
is important to note, however, that the output provided by FilmRed and the one

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 95

provided by multiple local alignment tools are different, because the tasks addressed
by the two kinds of tool are different. Indeed, FilmRed returns repeats and their
occurrences, while the output of multiple local alignment tools is the alignment of
whole input sequences in which we can identify local similarity areas (the repeats)
looking at the alignment.

We compared FilmRed with some of the most popular multiple local alignment
tools on the CFTR dataset, which is the smallest dataset (5.5 Mbases) composed of
more than two sequences that we have studied in our work. Experiments were run on
an Intel(R) Quad-core Xeon(R) E5405/2GHz with 10GB of RAM.

Table 4 reports results of experiments performed on the CFTR dataset ([3]) com-
posed of 5518041 bases. Experiments were performed using parameters: L = 100,
r = 5 and d = 7, 12, 14, 15, with r = 5.

Filter Semiglobal Align Clique detection Total
d time(s) sel time(s) sel time #cliques time(s)
7 64.20 0.05% 56.56 0 - - 120.76
12 1017.51 0.01% 0.88 0 - - 1018.39
14 3772.65 0.02% 1.41 0.001% 0.00 1 3774.06
15 7128.19 0.65% 740.01 0.003% 0.01 1 7868.21

Table 4. Performances of the different phases of FilmRed to find (L, r, d)-Erepeats on the CFTR
dataset (5518041 bases), with L = 100 and r = 5.

We can see that for low values of d, no repeat is detected, while for larger d there is
a repeat that, besides the fact that its occurrences pairwise show 15% of differences,
our tool is fast to find.

Tool Class Result
MSA [11] exact manages sequences at most 50 character long
ClustalW [21] progressive runs for more than 38 hours
TCoffee [13] progressive runs out of memory
Kalign [10,9] progressive runs for more than 28 hours
DiAlign [20] iterative runs out of memory
MUSCLE [5] iterative runs out of memory

Table 5. Results of several multiple local sequence alignment tools on the CFTR dataset.

We have tried to search for other tools able to find the same results (that is, for
example, the existing repeat of L=100 bases long occurring in all five sequences of
the CFTR data set, and with up to 14% pairwise edit distance between occurrences
that is detected by FilmRed) with which we could compare the performances of
FilmRed. Table 5 summarizes the results of the comparison. As we can see, none
of the tested tools was able to manage in reasonable time and without huge memory
usage, inputs as large as the one provided by sequences in the CFTR dataset. On the
contrary, as shown in Table 4, FilmRed ends its computation in reasonable time on
this dataset with these parameters.

5 Conclusion and Perspectives

The problem of finding long repeats approximated with edit distance, modelling trans-
posable elements in biological sequences, is computationally challenging when a cer-
tain non negligible number of insertions, deletions and substitutions are admitted in

96 Proceedings of the Prague Stringology Conference 2011

repeat occurrences. For this reason the exhaustive discovery of such repeats might be
unfeasible for many instances. We proposed an ab initio method, called FilmRed,
which is, to the best of our knowledge, the first tool that can deal with repeats oc-
curring possibly several times, that have length of hundreds or thousands of bases,
and whose occurrences may differ in even more than 10% of their positions in terms
of substitutions and indels. This is achieved by using a filter as a preprocessing step
in order to discard as many as possible fragments of sequences that are guaranteed
not to contain any searched repeat, and using the information gathered during the
filtering phase in order to speed up a successive dynamic programming based align-
ment step performed to infer the repeats. Although, in theory, the current version
of FilmRed might return some false positives due to the introduction of a localized
heuristic step in the method, we have never observed them in practice. Future work
will consist in clearly evaluating the false positive rate and finding a new way for
fixing the problem.

References

1. G. Battaglia, R. Grossi, N. Pisanti, R. Marangoni, and G. Menconi: Inferring mobile
elements in S.Cerevisiae strains, in Proceedings of International Conference on Bioinformatics
Models, Methods and Algorithms (BIOINFORMARTICS), 2011. In press.

2. C. Bron and J. Kerbosch: Algorithm 457: finding all cliques of an undirected graph. Com-
munication of ACM, 16(9) 1973, pp. 575–577.

3. M. Brudno et al.: LAGAN and Multi-LAGAN: Efficient tools for large-scale multiple align-
ment of genomic DNA. Genome Research, 13 2003, pp. 721–731.

4. S. Burkhardt, A. Crauser, P. Ferragina, H.-P. Lenhof, E. Rivals, and M. Vin-

gron: q-gram based database searching using a suffix array (QUASAR), in ACM Conference
on Research in COmputational Molecular Biology (RECOMB 1999), 1999, pp. 77–83.

5. R. C. Edgar: Muscle: multiple sequence alignment with high accuracy and high throughput.
Nucleic Acids Research, 32 2004, pp. 1792–1797.

6. M. Federico, P. Peterlongo, and N. Pisanti: An optimized filter for finding multiple
repeats in DNA sequences, in Proceedings of the 8th ACS/IEEE International Conference on
COmputer Systems and Applications (AICCSA 2010), IEEE Computer Society Press, 2010,
pp. 1–8.

7. J. M. Jones and M. Gellert: The taming of a transposon: V(D)J recombination and the
immune system. Immunological Reviews, 200(1) 2004, pp. 233–248.

8. I. Koch: Fundamental study: Enumerating all connected maximal common subgraphs in two
graphs. Theoretical Computer Science, 250 2001, pp. 1–30.

9. T. Lassmann, O. Frings, and E. L. L. Sonnhammer: Kalign2: high-performance multiple
alignment of protein and nucleotide sequences allowing external features. Nucleic Acid Research,
37(3) 2009, pp. 858–865.

10. T. Lassmann and E. L. Sonnhammer: Kalign – an accurate and fast multiple sequence
alignment algorithm. BMC Bioinformatics, 6 2005.

11. D. J. Lipman, S. F. Altschul, and J. D. Kececioglu: A tool for multiple sequence align-
ment, in Proceedings of National Acadademy of Sciences, 1989, pp. 4412–4415.

12. L. Marsan and M.-F. Sagot: Algorithms for extracting structured motifs using a suffix
tree with an application to promoter and regulatory site consensus identification. Journal of
Computational Biology, 7(3–4) 2000, pp. 345–362.

13. C. Notredame, D. G. Higgins, and J. Heringa: T-Coffee: a novel method for fast and
accurate multiple sequence alignment. Journal of Molecular Biology, 302 2000, pp. 205–217.

14. V. Pereira, D. Enard, and A. Eyre-Walker: The Effect of Trasposable Element Insertions
on Gene Expression Evolution in Rodents. PLoS one, 4(2) 2009, p. e4321.

15. P. Peterlongo, G. T. Sacomoto, A. P. do Lago, N. Pisanti, and M.-F. Sagot:
Lossless filter for multiple repeats with bounded edit distance. Algorithms for Molecular Biology,
4 2009.

Maria Federico et al.: Finding Long and Multiple Repeats with Edit Distance 97

16. N. Pisanti, A. M. Carvalho, L. Marsan, and M.-F. Sagot: Risotto: Fast extraction of
motifs with mismatches, in LATIN, 2006, pp. 757–768.

17. N. Pisanti, M. Giraud, and P. Peterlongo: Filters and seeds approaches for fast homology
searches in large datasets, in Algorithms in computational molecular biology, M. Elloumi and
A. Y. Zomaya, eds., John Wiley & sons, 2010.

18. K. Rasmussen, J. Stoye, and E. Myers: Efficient q-gram Filters for finding all epsilon-
matches over a given length. Journal of Computational Biology, 13(2) 2006, pp. 296–308.

19. M.-F. Sagot: Spelling approximate repeated or common motifs using a suffix tree, in LATIN,
1998, pp. 374–390.

20. A. R. Subramanian, M. Kauffmann, and B. Morgenstern: DIALIGN-TX: greedy and
progressive approaches for segment-based multiple sequence alignment. Algorithms for Molecular
Biology, 3 2008.

21. J. D. Thompson, D. G. Higgins, and T. J. Gibson: Clustal W: improving the sensitiv-
ity of progressive multiple sequence alignment through sequence weighting, position-specific gap
penalties and weight matrix choice. Nucleic Acids Research, 22 1994, pp. 4673–4680.

22. Z. Xu and H. Wang: LTR FINDER: an efficient tool for the prediction of full-length LTR
retrotransposons. Nucleic Acids Research, 35 2007, pp. W265–W268.

