
Improving Deduplication Techniques

by Accelerating Remainder Calculations

Michael Hirsch1, Shmuel T. Klein2, and Yair Toaff1

1 IBM – Diligent
Tel Aviv

{hirschm,yairtoaff}@il.ibm.com

2 Department of Computer Science
Bar Ilan University, Ramat Gan, Israel

tomi@cs.biu.ac.il

Abstract. The time efficiency of many storage systems rely critically on the ability
to perform a large number of evaluations of certain hashing functions fast enough.
The remainder function B mod P , generally applied with a large prime number P ,
is often used as a building block of such hashing functions, which leads to the need
of accelerating remainder evaluations, possibly using parallel processors. We suggest
several improvements exploiting the mathematical properties of the remainder function,
leading to iterative or hierarchical evaluations. Experimental results show a 2 to 5-fold
increase in the processing speed.

1 Introduction

The probabilistic pattern matching algorithm due to Karp and Rabin [3] is based on
the repeated evaluation of a so-called rolling hash: given is a text of length n and a
pattern of length m, a hash function has to be applied on all the substrings of the
text of length m. A naive implementation would thus yield a θ(nm) time complexity,
which might be prohibitive. The rolling property of the hash exploits the fact that
adjacent substrings are overlapping in all but their first and last characters, so that
the hash of one substring can be calculated in constant time from the hash value of
the preceding one, reducing the complexity to O(n).

There are, however, important applications of the Karp-Rabin scheme, beyond
pattern matching. Large storage and backup systems can be compressed by means of
deduplication: locating recurrent sub-parts of the text, and replacing them by pointers
to previous occurrences. One family of deduplication algorithms is known in the
storage industry as CAS (Content Addressed Storage) and based on assigning a hash
value to each data block [5,6]. Such systems detect only identical blocks and are
not suitable when large block sizes are used. Replacing identity by similarity enables
the use of much larger data chunks, as in the IBM ProtecTIER(R) product [1]. This
system is based on the evaluation of a hash function for a large number of strings,
and most of these evaluations can be done in constant time because of overlaps, as
mentioned above.

In a typical setting, a very large repository, say, of the order of 1 PB = 250 bytes,
will be partitioned into chunks of fixed or variable size, to each of which one or more
signatures are assigned. The details of the deduplication algorithm are not relevant to
our current discussion and the interested reader is referred to [1]. The signature of a
chunk is usually some function of the set of hash values produced for each consecutive
substring of k bytes within the chunk. The length k of these substrings, which we call

Michael Hirsch, Shmuel T. Klein, Yair Toaff: Improving Deduplication Techniques by Accelerating Remainder Calculations, pp. 173–183.

Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic

174 Proceedings of the Prague Stringology Conference 2011

seeds , may be 512 or more, so that the evaluation might put a serious burden on the
processing time.

Given a chunk C = x1x2 · · ·xn, where the xi denote characters of an alphabet Σ,
we wish to apply the hash function h on the set of substrings Bi of C of length k,
Bi = xixi+1 · · ·xi+k−1 being the substring starting at the i-th character of C. The
constant time, however, for the evaluation of Bi is based on the fact that one may
use the value obtained earlier for Bi−1, and this is obviously not true for the first
value to be used. That is, B1 needs an evaluation time proportional to k. Moreover,
in deduplication systems based on similarity rather than on identity, once a chunk of
the reference has been identified as being similar to a chunk of the version, a more
fine-grained comparison of the two is needed.

Figure 1 is a schematic representation of the following typical scenario: given are
two chunks which are already known to be similar, we need to identify as many of their
matching parts as possible. To this end, the reference is partitioned into a sequence
of non-overlapping seeds, and a hash value of each of these seeds is evaluated and
stored in a table HR. As to to version, the hash value of every seed at every possible
byte offset is calculated and potential matches are located in HR. If a match is found,
say, HV [i] = HR[j], it is almost certain that the string vivi+1 · · · vi+k−1 is identical to
r(j−1)k+1r(j−1)k+2 · · · rjk, so the strings can be accessed and we shall try to extend the
match to the left and right of these seeds.

Since the rolling hash property does not apply to the seed-by-seed evaluations of
the reference, each substring of size k requires a O(k) processing time. The techniques
in this paper are aimed at speeding up the initialization and non-overlapping hashing
operations using local parallelism, by means of the availability of several processors.

HR[3]

. . .

. . .

HV[1]

HR[2]

HV[2]
HV[3]

HV[4]
HV[5]

. . .

HR[1]
Reference

Version

Figure 1. Searching for matching parts in similar chunks

The hash function we consider in this work is the remainder function modulo
a prime number P , h(B) = B mod P , which is well known for yielding close to
uniform distributions on many real-life input distributions. We interchangeably use
B to denote a character string and the integer value represented by the binary string
obtained by concatenating the ascii codewords of the characters forming B. For
example, the string ABC would be in ascii 010000010100001001000011, so we would
identify the string with the value 4,276,803. Two main improvements to the standard
computation of the modulus are suggested: the first constructs a hierarchical structure
enabling the use of several processors in parallel; the second exploits the fact that
the computation can be performed iteratively to speed it up by calculating what we
shall call pseudo-hashes.

M. Hirsch et al.: Improving Deduplication Techniques by Accelerating Remainder Calculations 175

2 Hierarchical evaluation of the remainder function

Consider the input string B partitioned into m subblocks of d bits each, denoted
A[0], . . . , A[m − 1], where m = 2r is a power of 2, and d is a small integer, so that d
bits can be processed as an indivisible unit, typically d = 32 or 64. Given also is a
large constant number P of length up to d bits, that will serve as modulus. Typically,
but not necessarily, P will be a prime number, and for our application it is convenient
to choose P close to a power of 2. For example, one could use m = 64, d = 64 and
P = 255−55. We would like to split the evaluation of B mod P so as to make use of the
possibility to evaluate functions of the A[i] in parallel on m independent processors
p0, p1, . . . , pm−1, which should yield a speedup. We have

B mod P =

(

m−1
∑

i=0

A[i] × 2d(m−1−i)

)

mod P

Considering it as a polynomial (set x = 2d, then B =
∑m−1

j=0 A[m − 1 − j]xj), we
can use Horner’s rule to evaluate it iteratively. We first need the constant C defined
by

C = 2d mod P. (1)

Note then that if we have a string D of 2d bits and we want to evaluate D = D mod P ,
then we can write D = D1 × 2d +D2, where D1 and D2 are the leftmost, respectively
rightmost d bits of D. We get that

D = D1 × 2d + D2 = D1 × C + D2. (2)

Generalizing to m blocks of d bits each, we get the iterative procedure of Figure 2.

Iterative evaluation of B mod P

R ←− 0
for i ←− 0 to m − 1 do

R ←− (R × C + A[i]) mod P (3)

Figure 2. Iterative evaluation of B mod P

A further improvement can then be obtained by passing to a hierarchical tree
structure and exploiting the parallelism repeatedly in log m layers, using the m avail-
able processors. In Step 0, the m processors are used to evaluate A[i] mod P , for
0 ≤ i < m, in parallel. This results in m residues, which can be stored in the original
place of the m blocks A[i] themselves, since P is assumed to fit into d bits. For our
example values of m, d and P , only 55 of the 64 bits would be used.

In Step 1, only m
2

processors are used (it will be convenient to use those with
even indices), and each of them works, in parallel, on two adjacent blocks: p0 working
on A[0] and A[1], p2 working on A[2] and A[3], and generally p2k working on A[2k]
and A[2k + 1], for k = 0, 1, . . . , m

2
− 1. The work to be performed by each of these

processors is what has been described earlier for the block D. Again, the results will
be stored in-place, that is, right-justified in 2d-bit blocks, of which only the rightmost
d bits (or less, depending on P), will be affected.

176 Proceedings of the Prague Stringology Conference 2011

Hierarchical evaluation of B mod P

for k ←− 0 to m − 1 do

A[k] ←− A[k] mod P

for i ←− 1 to r do

for k ←− 0 to m
2i − 1 do

use processor p2ik to evaluate, in parallel,

A[2ik + 2i − 1] ←− (A[2ik + 2i−1 − 1] × C[i] + A[2ik + 2i − 1]) mod P

Figure 3. Hierarchical parallel evaluation of B mod P

In Step 2, the m
4

processors whose indices are multiples of 4 are used, and each
of them is applied, in parallel, on two adjacent blocks of the previous stage. That is,
we should have applied now p0 on A[0]A[1] and A[2]A[3], etc., but in fact we know
that A[0] and A[2] contain only zeros, so we can simplify and apply p0 on A[1] and
A[3], and in parallel p4 on A[5] and A[7], and generally, p4k working on A[4k + 1]
and A[4k + 3], for k = 0, 1, . . . , m

4
− 1. Again, the work to be performed by each

of these processors is what has been described earlier for the block D since we are
combining two blocks, with the difference that the new constant C should now be
22d mod P = C2. The results will be stored right-justified in 4d-bit blocks, of which,
as before, only the rightmost d bits or less will be affected.

Continuing with further steps will yield a single operation after log m iterations.
Note that the overall work is not reduced by this hierarchical approach, since the
total number of applications of the procedure on block pairs is m

2
+ m

2
+ · · · = m− 1,

just as for the sequential evaluation. However, if we account only once for operations
that are executed in parallel, the number of evaluations is reduced to log m, which
should result is a significant speedup.

. . .

. . .

. . .

. . .

. . .

Step 0

Step 1

Step 3

Step 2

Step log m

A[0] A[1] A[2] A[3] A[4] A[5] A[6] A[7] A[m-1]

0 1 2 3 4 5 6 7

1 3

3

5 7

7

7

m-1

m-1

m-1

m-1

m-1

Figure 4. Schematic representation of the hierarchical evaluation

M. Hirsch et al.: Improving Deduplication Techniques by Accelerating Remainder Calculations 177

Summarizing, we first evaluate an array of constants

C[i] = C2i−1 = 2d×2i−1

to be used in step i for i = 1, 2, . . . ,m− 1. This is easily done noticing that C[1] = C
and C[i + 1] = C[i]2 for i ≥ 1. The parallel procedure is then given in Figure 3, and
a schematic view of the evaluation layers can be found in Figure 4.

3 Avoiding overflows

The algorithm as described above dealt with integers of d bits length. We shall, for
the ease of description, use the values d = 64 and P = 255 − 55 in the sequel, which
correspond to real-life applications, but all the ideas can easily be generalized to
any other appropriate values. When two 64 bit integers are multiplied as R × C in
equation (3), even though the result is sought modulo P , which is a 55-bit integer,
one temporarily needs 128-bit arithmetic, which yields a serious slow down of the
performance.

One might think that to circumvent this, it suffices to work with smaller blocks,
say, of d = 32 bits only. This will double the number of iterations, but could still result
in a gain, if during multiplications the 64 bit limit is never exceeded. For the parallel
implementation, the logarithmic number of parallel steps would only increase by 1.
However, reducing d does not yet solve the problem, because R is a 55-bit integer,
so when multiplied by the updated constant C = 232 mod P = 232, we can get up to
87 bits. In order to get all the integers in this evaluation to be of length at most 64
bits (the maximum is reached when multiplying R × C), so that no special 128-bit
arithmetic would be needed, R has to be split and the modulus has to be applied not
only at the end of each iteration.

Note that while we now assume that d = 32, the values of R are still stored in 64 bit
integers. The way of splitting the 8 bytes representing R will be into the 23 rightmost
bits and the complementing 41 leftmost bits. In fact, since the involved numbers are
residues of mod P , where P is a 55 bit prime, the number of least significant non-zero
bits in the left part is only 55 − 23 = 32. The representation of R is therefore

R = RL × 223 + RR,

where RL are the 41 (in fact, only 32) leftmost and RR are the 23 rightmost bits of
R, so

R × C = R × 232 = RL × 255 + RR × 232,

and since 255 mod P = 255 mod (255 − 55) = 55, we get that

R × C + A[i] = RL × 55 + RR × 232 + A[i].

The revised evaluation is given in Figure 5. Note that the mod P operation within
the loop has been removed, and replaced by two mod operations following the loop. We
thus call the intermediate values pseudo-remainders . The correctness of the procedure
is based on the following

Theorem The value of R is smaller than 256, that is, fits into 56 bits, at the end of

each iteration.

178 Proceedings of the Prague Stringology Conference 2011

Revised iterative evaluation

R ←− 0
for i ←− 0 to m − 1 do

RL ←− R / 223

RR ←− R mod 223

R ←− RL × 55 + RR × 232 + A[i]
end-for

if R > P then

R ←− R − P
if R > P then

R ←− R − P

Figure 5. Iterative evaluation without mod

Proof By induction on i, the index of iteration. For i = 0, at the beginning of the
iteration, R and thus also RL and RR are 0. The value of R at the end of iteration 0
is therefore A[0], which has only 32 bits, less than 56.

Suppose the assumption is true at the end of iteration i, and consider the beginning
of iteration i+1. RR has at most 23 bits by definition, and RL has at most 56−23 = 33
bits by the inductive assumption. Hence RR × 232 is of length at most 55 bits, and
so is RR × 232 + A[i], since the 32 rightmost bits of RR × 232 are zero. The binary
representation of 55 uses 6 bits, so RL × 55 is of length at most 33 + 6 = 39 bits. At
the end of the iteration, the length of R, obtained by adding a 39 bit number to a 55
bit number, must therefore be at most 56, and this limit is achieved only if a carry
propagates beyond the leftmost bit of RR × 232. ⊓⊔

It follows from the Theorem that there is no overflow if we remove the repeated ap-
plication of the modulo operator, and only perform a single (and rarely, two) modulus
at the end of the iteration. This is the purpose of the last four lines. Since at the end,
R < 256 = 2P + 110, the modulus can be replaced by subtraction. If P ≤ R < 2P ,
then R mod P = R−P . For the rare cases in which 2P ≤ R < 2P +110 (only 110 out
of the possible almost 256 values of R), a second subtraction of P will be necessary.

To understand how all the mod operations within the iteration could be saved,
recall that our objective was to calculate B mod P . It would thus suffice, mathe-
matically speaking, to apply a single mod operation after having calculated B, but
in practice, such an evaluation is not feasible, because we are dealing here with a
m × d bit long number, which cannot be handled. The classical solution, generally
used in modular exponentiation algorithms [2], is to exploit the properties of the mod-
ulo function, to repeatedly apply the modulus to subparts of the formula, so as to
never let the operands on which the modulus has to be applied grow above the limit
permitted by the hardware at hand. For example, representing B as a polynomial
B =

∑m
j=1 A[m − j]xj−1, where we have set x = 232, using Horner’s rule, we get

B =
(

· · ·
(

(

A[0]x + A[1]
)

x + A[2]
)

x + · · ·
)

x + A[m − 1],

where after each multiplication and addition, modP is applied, so if we start with d
bit numbers, at no stage of the evaluation do we use numbers larger than 2d bits.

M. Hirsch et al.: Improving Deduplication Techniques by Accelerating Remainder Calculations 179

This was the approach in Section 2, and had as drawback that such a large number
of modulo applications is expensive. The current suggestion reverts the process and
removes again the internal modulo applications, but not entirely, since this would
get us back to handling m × d bit numbers. Rather, it removes only a part of the
internal operations, but leaves the cheap ones, basing ourselves on the fact that we
work modulo a prime which is very close to a power of 2, namely P = 255 − 55 in
our example, but one can find such primes for any given exponent, see [4]. We thus
get that 255 mod P = 55 in our case, an extremely small number relative to P , which
can be used to decompose blocks into adjacent subblocks at a low price.

The algorithm presents a tradeoff between applying the remainder function only
once (cheap but unfeasible because of the size of the numbers involved), and applying
it repeatedly in every iteration (resulting in small numbers, but computationally
expensive). We apply it only once (rarely twice) at the end, but managed by an
appropriate decomposition of the numbers to remove the moduli and still force all
the involved numbers to be small.

Note that this technique can not be applied generally in situations where the
modulus is chosen as a large random prime number, as often done in cryptographic
applications, since it critically depends on the fact that 255 mod P is a small number.
In our case, it uses only 6 bits, and the Theorem would still hold for values needing
up to 22 bits, in which case RL × (255 mod P) is of length at most 33 + 22 = 55 bits.
The sum of two 55 bit numbers would then still fit into the 56 bits claimed in the
induction. But for 23 bits, we could already overflow into 57 bits. If P is a random
prime number of 55 bits, the expected length of 255 mod P is 54 bits and will only
extremely rarely fit into 22 bits. The application field of the technique is thus when
repeated evaluations are needed, all modulo a constant P , which can therefore be
chosen as some convenient prime just a bit smaller than a given power of two. This
is the case in rolling hashes of the Rabin-Karp type we consider here.

4 Adapting the hierarchical method

We now turn to adapting the hierarchical method, which can be used in parallel with
m processors, to 64-bit arithmetic to improve processing time. The input is a sequence
of n = 2m blocks of d = 64 bits each. The hierarchical evaluation is done in m = log n
layers, with layer i processing what we shall call superblocks , consisting of 2i original
d-bit blocks, i = 0, 1, . . . ,m − 1. The scenario at layer i, for the superblock indexed
k, k = 0, 1, . . . , n

2i − 1, is:

A[2ik+2i−1]A[2ik+2i−1−1]

The superblock consists of two halves, and only the rightmost block (in fact,
only its 55 rightmost bits) in each half is non-zero. The evaluation combines the two
non-zero values and puts the output in the rightmost block, using the command

A[2ik + 2i − 1] ←−
(

A[2ik + 2i−1 − 1] × C[i] + A[2ik + 2i − 1]
)

mod P.

The values C[i] = C2i−1 = 264×2i−1 can be calculated as C[1] = 264 mod P and
C[i + 1] = C[i]2 for i > 1. For P = 255 − 55, these values are given in Table 1.

180 Proceedings of the Prague Stringology Conference 2011

i C[i] bits
1 28,160 15
2 792,985,600 30
3 16,336,612,484,973,479 55
4 8,143,640,278,601,598 55
5 5,745,742,201,926,802 55
6 16,594,324,020,821,548 55

Table 1. Constants for hierarchical evaluation

We thus need more than 64 bits to evaluate A[2ik + 2i−1 − 1] × C[i] for i > 1.
To fit into the 64-bit arithmetic constraint, we propose two strategies. The first is a
generic one, that can be applied to any values of the parameters, and processes each
layer in the same way. The second achieves some additional savings by adapting the
specific values in our running example differently in each of the layers.

4.1 General uniform adaptation of the parameter values

The first iteration (layer 0), which applies the modulus on the original 64 bit blocks
to produce 55 bit numbers, can be kept without change. For the higher layers, the
input of which are two non-adjacent 55-bit blocks A[2ik+2i−1−1] and A[2ik+2i−1],
the latter can be used as is, but the former has to be multiplied, so we split the block
into 11 subblocks of length 5 bits.

Denote the 11 blocks forming A[2ik + 2i−1 − 1], from right to left, by E[k, i, j],
j = 0, 1, . . . , 10, which gives

A[2ik + 2i−1 − 1] =
10
∑

j=0

E[k, i, j] × 25j.

In addition, prepare a two dimensional table CC[i, j] for the above values of i and j,
defined by

CC[i, j] = C[i] × 25j.

Then

A[2ik + 2i−1 − 1] × C[i] + A[2ik + 2i − 1] =
10
∑

j=0

E[k, i, j] × CC[i, j] + A[2ik + 2i − 1].

Each term in the summation uses at most 5 + 55 = 60 bits, so the sum of the
12 terms uses at most 60 + ⌈log 12⌉ = 64 bits, as requested. In fact, since the ele-
ments E[k, i, j] all belong to a small set {0, 1, . . . , 31}, one can precompute a three
dimensional table CCC[i, j, p] defined, for p = 0, . . . , 31 by

CCC[i, j, p] = CC[i, j] × p = C[i] × 25j × p.

M. Hirsch et al.: Improving Deduplication Techniques by Accelerating Remainder Calculations 181

This reduces then the right hand side of the summation above to

10
∑

j=0

CCC [i, j, E[k, i, j]] + A[2ik + 2i − 1].

To take this idea of tabulating even a step further, note that the elements in
the table are computed only once, so this could be done offline, and there, 128-bit
operations could be permitted. Instead of partitioning A[2ik+2i−1−1] into 11 blocks
of 5 bits each, any other partition into ⌈55/q⌉ blocks of q bits each could be considered,
if we were willing to extend the table CCC[i, j, p] to the 2q possible values of q-bit
strings. Taking, for example, q = 11, we get 5 blocks of 11 bits and would have
to consider 2048 possible values of p in CCC[i, j, p]. The number of bits needed to
represent CC[i, j]×p would then be 55+11 = 66, but this is evaluated only once, and
what will finally be stored (and used afterwards) is CC[i, j] × p, which again needs
only 55 bits; the sum of six 55-bit numbers fits into 58 bits, so there is no overflow.

The number of elements needed in the table CCC is m×
⌈

55
q

⌉

×2q. Table 2 brings

the size of the table for a few sample values of q, for m = 6 as in our example.
The number of 64-bit operations for the evaluation of each new value is equal to the
number of blocks b: there are b + 1 terms to be added, but only x − 1 additions are
needed to add x terms.

q # blocks # lines # entries Actual size
3 19 8 912 6.2 K
4 14 16 1344 9.1 K
5 11 32 2112 14.4 K
6 10 64 3840 26.3 K
7 8 128 6144 42 K
8 7 256 10752 74 K
9 7 512 21504 147 K
10 6 1024 36864 252 K
11 5 2048 61440 420 K
12 5 4096 122880 840 K
16 4 65536 1572864 10.5 M
20 3 1048576 18874368 126 M

Table 2. Size of auxiliary table for various values of q

We can thus choose the value of q according to the required tradeoff: the lower q,
the less storage is needed for the CCC tables, but the more operations have to be
performed. Taking for example values of q from 5 to 7, the tables would fit into 50K,
but 9 to 12 operations have to be performed.

4.2 Specific adaptation of the parameter values for m = 6 and d = 64

The tradeoffs in Table 2 lead to the following suggestions for the lower layers. Consider
layer 1, consisting of superblocks of 128 bits. Figure 6 represents the layout after
iteration 0, in which two 55-bit strings have been evaluated (in grey in the figure).
We partition the superblock as indicated, which yields as value:

D = D11 × 2110 + D12 × 255 + D13.

182 Proceedings of the Prague Stringology Conference 2011

0 55 64 110 119 127

D11

D12

D13

Figure 6. Layer 1: two blocks of 64 bits each

0 128 161 255

D21

D23

D24

55 183

D22

165

Figure 7. Layer 2: two blocks of 128 bits each

0 256 511

D36

55 311

256 311 275 262 268 306

D33 D32 D31 D35 D34

Figure 8. Layer 3: two blocks of 256 bits each

D13 uses only 55 bits; D12 also needs 55 bits, but is multiplied by 255 mod P =
55, which needs 6 bits, so together 61 bits; D11 needs 9 bits, and multiplied by
2110 mod P = 552 = 3025, which needs 12 bits, so together 21 bits; their sum has
therefore at most 62 bits, so only two 64-bit additions are needed.

For layer 2, we need a different layout, given in Figure 7. The superblock consists
now of two subparts of 128 bits each. This partition yields the following equality:

D = D21 × 2165 + D22 × 2161 + D23 × 2110 + D24.

D24 uses only 55 bits; D23 is of length 51 bits, but is multiplied by 2110 mod P = 3025,
which needs 12 bits, so together 63 bits; D22 is of length 4 bits, and is multiplied by
2161 mod P , which needs 55 bits, so together 59 bits; finally, D21 needs 18 bits, and is
multiplied by 2165 mod P = 553 = 166375, which needs 18 bits, so together 36 bits;
their sum has therefore at most 64 bits, so only three 64-bit additions are needed.

Layer 3 will be the last with special treatment. A superblock, now consisting of two
halves of 256 bits each, will be partitioned according to the layout given in Figure 8.
The desired value of D is then obtained by adding the following terms:

D31 × 2306, in bits: 5 + 55 = 60
D32 × 2275, in bits: 31 + 29 = 60
D33 × 2268, in bits: 7 + 55 = 62
D34 × 2262, in bits: 6 + 55 = 61
D35 × 2256, in bits: 6 + 55 = 61
D36, in bits: 55

Their sum has at most 64 bits, and only five 64-bit additions are needed.

M. Hirsch et al.: Improving Deduplication Techniques by Accelerating Remainder Calculations 183

It seems fair to consider the amortized global cost for evaluating the signature,
since only at the lowest level, all the n processors are involved, and for the higher
levels, specifically, for level i, the number of working processors is only n/2i. The
amortized number of 64-bit additions is therefore

1×n+2×
n

2
+3×

n

4
+5×

n

8
+11×

[

n

16
+

n

32
+ · · ·

]

= n×
[

1 + 1 +
3

4
+

5

8
+

11

8

]

= 4.75n.

5 Experimental results

We have compared the above methods on randomly chosen input texts, several GB
of our exchange database. Actually, the exact choice of the test data is not relevant,
because the number of remainder operations performed is not data dependent.

WS M2 X5 GPU

baseline 114 139 168 595
hierarchical 229 200 377 1896
pseudo remainders 582 256 1067 2327

Table 3. Experimental comparison of performance

The following methods were tested: as baseline, we took a regular iterative eval-
uation, processing single bytes, that is, d = 8. In all our tests, the size of B was
m = 212 = 4096 bits or 512 bytes. The next method was a hierarchical implementa-
tion, according to Figure 3, with blocks of size d = 64, and using 128-bit arithmetic
where necessary. Finally, we also ran the revised iterative method of Figure 5 using
pseudo remainders, with d = 32 and 64-bit operations only.

The tests were run on several platforms: WS: a 3.2 GHz Intel PC Workstation,
M2: an IBM 3850M2 server (2.93 GHz Intel Xeon X7350), X5: an IBM 3850X5 server
(2.27 GHz Intel Xeon X7560), and GPU: an Nvidia GeForce GTX 465 graphics board,
using copy to/from device. The results are presented in Table 3, all values giving the
number of MB processed per second.

References

1. L. Aronovich, R. Asher, E. Bachmat, H. Bitner, M. Hirsch, and S. T. Klein: The

design of a similarity based deduplication system. Proc. of the SYSTOR’09 Conference, 2009,
pp. 1–14.

2. T. H. Cormen, C. E. Leiserson, and R. L. Rivest: Introduction to Algorithms, MIT Press,
1990.

3. R. M. Karp and M. O. Rabin: Efficient randomized pattern-matching algorithms. IBM Journal
of Research and Development, 1987, pp. 249–260.

4. Primes just less than a power of two: http://primes.utm.edu/lists/2small/.
5. S. Quinlan and S. Dorward: Venti: A new approach to archival storage. Proc. FAST’02, the

1st USENIX Conference on File And Storage Technologies, 2002, pp. 89–101.
6. B. Zhu, K. Li, and H. Patterson: Avoiding the disk bottleneck in the data domain deduplica-

tion file system. Proc. FAST’08, the 6th USENIX Conference on File And Storage Technologies,
2008, pp. 279–292.

