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Abstract. In the last couple of years many works have been devoted to Abelian com-
plexity of words. Recently, Constantinescu and Ilie (Bulletin EATCS 89, 167–170, 2006)
introduced the notion of Abelian period. We show that a word w of length n over an
alphabet of size σ can have Θ(n2) distinct Abelian periods. However, to the best of our
knowledge, no efficient algorithm is known for computing these periods. The Brute-
Force algorithm computes all the Abelian periods either in time O(n3 × σ) using O(σ)
space or in time O(n2 ×σ) using O(n×σ) space. We present an off-line algorithm run-
ning in time O(n2×σ) using O(n+σ) space, thus improving the space complexity. This
algorithm is based on a select function. We then present on-line algorithms that also
enable to compute all the Abelian periods of all the prefixes of w. Experimental results
show that the new off-line algorithm is faster than the Brute-Force one. Moreover, in
most cases, one on-line algorithm, though having a worst case time complexity, is also
faster than the Brute-Force one.

1 Introduction

An integer p > 0 is a (classical) period of a word w of length n if w[i] = w[i + p] for
any 1 6 i 6 n−p. Classical periods have been extensively studied in combinatorics on
words [13] due to their direct applications in data compression and pattern matching.

The Parikh vector of a word w enumerates the cardinality of each letter of the
alphabet in w. For example, given the alphabet Σ = {a, b, c}, the Parikh vector of
the word w = aaba is (3, 1, 0). The reader can refer to [6] for a list of applications of
Parikh vectors.

An integer p is an Abelian period of a word w if w can be written as u0u1 · · ·uk−1uk

where all the ui’s are of length p and have the same Parikh vector P for 0 < i < k
and the Parikh vectors of u0 and uk are contained in P [9]. This definition matches
the one of weak repetition (also called Abelian power) when u0 and uk are the empty
word and k > 2 [10].

In the last couple of years many works have been devoted to Abelian complex-
ity [11,2,7,4,12,1,5,17]. Efficient algorithms for Abelian pattern matching have been
designed [8,6,14,15]. However, apart of the greedy off-line algorithm given in [10], nei-
ther efficient nor on-line algorithms are known for computing all the Abelian periods
of a given word.

In this article we present several efficient off-line and on-line algorithms for com-
puting all the Abelian periods of a given word. In Section 2 we give some basic def-
initions and notation. Section 3 presents off-line algorithms while Section 4 presents
on-line algorithms. In Section 5 we give some experimental results on execution times.
Finally, Section 6 contains conclusions and perspectives.
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Proceedings of PSC 2011, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-04870-2 c© Czech Technical University in Prague, Czech Republic



Gabriele Fici et al.: Computing Abelian Periods in Words 185

2 Definitions and notation

Let Σ = {a1, a2, . . . , aσ} be a finite ordered alphabet of cardinality σ and Σ∗ the set
of words on alphabet Σ. We set ind(ai) = i for 1 6 i 6 σ. We denote by |w| the
length of w. We write w[i] the i-th symbol of w and w[i. . j] the factor of w from the
i-th symbol to the j-th symbol, with 1 6 i 6 j 6 |w|. We denote by |w|a the number
of occurrences of the symbol a ∈ Σ in the word w.

The Parikh vector of a word w, denoted by Pw, counts the occurrences of each
letter of Σ in w, that is Pw = (|w|a1

, . . . , |w|aσ
). Notice that two words have the same

Parikh vector if and only if one word is a permutation of the other.
We denote by Pw(i,m) the Parikh vector of the factor of length m beginning at

position i in the word w.
Given the Parikh vector Pw of a word w, we denote by Pw[i] its i-th component

and by |Pw| the sum of its components. Thus for w ∈ Σ∗ and 1 6 i 6 σ, we have
Pw[i] = |w|ai

and |Pw| =
∑σ

i=1 Pw[i] = |w|.
Finally, given two Parikh vectors P ,Q, we write P ⊂ Q if P [i] 6 Q[i] for every

1 6 i 6 σ and |P| < |Q|.

Definition 1 ([9]). A word w has an Abelian period (h, p) if w = u0u1 · · ·uk−1uk

such that:

– Pu0
⊂ Pu1

= · · · = Puk−1
⊃ Puk

,
– |Pu0

| = h, |Pu1
| = p.

We call u0 and uk resp. the head and the tail of the Abelian period. Notice
that the length t = |uk| of the tail is uniquely determined by h, p and |w|, namely
t = (|w| − h) mod p.

The following lemma gives a bound on the maximum number of Abelian periods
of a word.

Lemma 2. The maximum number of Abelian periods for a word of length n over the
alphabet Σ is Θ(n2).

Proof. The word (a1a2 · · · aσ)n/σ has Abelian period (h, p) for any p ≡ 0 mod σ and
h < p. ⊓⊔

A natural order can be defined on the Abelian periods.

Definition 3. Two distinct Abelian periods (h, p) and (h′, p′) of a word w are ordered
as follows: (h, p) < (h′, p′) if p < p′ or (p = p′ and h < h′).

We are interested in computing all the Abelian periods of a word. The algorithms
we present in this paper can be easily adapted to give only the smallest Abelian
period.

3 Off-line algorithms

3.1 Brute-Force algorithm

In Figure 1 we present a Brute-Force algorithm which computes all the Abelian
periods of an input word w of length n. For each possible head of length h from 1
to ⌊(n − 1)/2⌋ the algorithm tests all the possible values of p such that p > h and
h+p 6 n. This is a reformulation of the algorithm given in [10]. The algorithm easily
adapts to give only the smallest Abelian period or the weak repetitions.
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AbelianPeriod-BruteForce(w, n)
1 for h ← 0 to ⌊(n − 1)/2⌋ do

2 p ← h + 1
3 while h + p ≤ n do

4 if (h, p) is an Abelian period of w then

5 Output(h, p)
6 p ← p + 1

Figure 1. Brute-Force algorithm for computing all the Abelian periods of a word w of length n.

Example 4. For w = abaababa the algorithm outputs (1, 2), (0, 3), (2, 3), (1, 4), (2, 4),
(3, 4), (0, 5), (1, 5), (2, 5), (3, 5), (0, 6), (1, 6), (2, 6), (0, 7), (1, 7) and (0, 8). Among
these periods (1, 2) is the smallest.

Theorem 5. The algorithm AbelianPeriod-BruteForce computes all the Abe-
lian periods of a given word of length n in time O(n3 × σ) with an O(σ) space or in
time O(n2 × σ) with a space in O(n × σ).

Proof. The correctness of the algorithm comes directly from Definition 1. Each test
in line 4 consists in comparing n/p Parikh vectors. Comparing two Parikh vectors

can be done in Θ(σ) time. The test in line 4 is performed
∑⌊(n−1)/2⌋

h=0

∑n−h
p=h+1 n/p =

O(
∑n

h=1

∑n
p=h n/p) = O(n2) times. With no preprocessing, this gives an overall time

of O(n3 × σ). If the Parikh vectors of all the prefixes of the word have been already
computed, this can be done by computing the difference between two Parikh vectors
(see [3]). This requires space and time in O(n × σ) and gives an overall time of
O(n2 × σ). ⊓⊔

3.2 Select-based algorithm

Let us introduce the select function [16] defined as follows.

Definition 6. Let w be a word of length n over alphabet Σ, then ∀ a ∈ Σ:

– selecta(w, 0) = 0;
– ∀ 1 6 i 6 |w|a, selecta(w, i) = j iff j is the position of the i-th occurrence of letter

a in w;
– ∀ i > |w|a, selecta(w, i) is undefined.

In order to compute the select function, we consider an array Sw of n elements that
stores the increasing ordered positions of a1, then the increasing ordered positions of
a2 and so on up to the increasing ordered positions of aσ. In addition to Sw, we also
consider an array Cw of σ +1 elements such that Cw[i] = ♯{w[k] = aj | j < i and 1 6

k 6 n} + 1 for 1 6 i 6 σ and Cw[σ + 1] = n + 1. Then, for i > 0,

selecta(w, i) =

{

Sw[Cw[ind(a)] + i − 1], if i 6 Cw[ind(a) + 1] − Cw[ind(a)]

undefined otherwise.

Cw[i]− 1 is the number of letters in w strictly smaller than ai. Array Cw serves as an
index to access Sw.
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Example 7. For w = abaababa the select function uses the following three arrays:

1 2 3 4 5 6 7 8 a b 1 2 3 1 2 3 4 5 6 7 8

w a b a a b a b a ind 1 2 Cw 1 6 9 Sw 1 3 4 6 8 2 5 7

Then selectb(w, 2) = Sw[Cw[ind(b)] + 2− 1] = 5, which means that the second b in w
appears in position 5.

The ComputeSelect function (see Figure 2) computes the two arrays Cw and
Sw used by the select function. This can be done in O(n + σ) time and space. Once
these two arrays have been computed, each call to the select function is answered in
constant time.

ComputeSelect(w, n)
1 Cw[1] ← 1
2 for i ← 2 to σ + 1 do

3 Cw[i] ← Cw[i − 1] + Pw[i − 1]
4 for i ← 1 to σ do

5 P [i] ← 0
6 for i ← 1 to n do

7 Sw[Cw[ind(w[i])] + P [ind(w[i])] ← i
8 P [ind(w[i])] ← P [ind(w[i])] + 1
9 return (Cw,Sw)

Figure 2. Algorithm computing Cw and Sw arrays.

The Brute-Force algorithm tests all possible pairs (h, p) but it is clear that, given
h, some pairs cannot be Abelian periods. For example, let w = abaaaaabaa and
h = 2. Since Pw(1, h) has to be included in Pw(h + 1, p), the pairs (2, 3), (2, 4) and
(2, 5) cannot be Abelian periods of w: the minimal p value such that (2, p) can be an
Abelian period is in fact 6, in order to include the second b of w. This remark leads
us to give the following definitions and propositions.

Definition 8. Let w be a word of length n on alphabet Σ. Then ∀ 0 6 h 6 ⌊(n−1)/2⌋,
Mw[h] is defined by

Mw[h] =

{

min{p | Pw(1, h) ⊂ Pw(h + 1, p)} if ∀ a ∈ Σ, 2 × |w[1. . h]|a 6 |w|a
−1 otherwise.

In other words, if ∀ a ∈ Σ, selecta(w, 2 × |w[1. . h]|a) is defined then

Mw[h] = max{h + 1, max{selecta(w, 2 × |w[1. . h]|a) | a ∈ Σ} − h},

otherwise Mw[h] = −1.

Proposition 9. Let w be a word of length n on alphabet Σ and 0 6 h 6 ⌊(n−1)/2⌋.
If Mw[h] = −1, then Mw[h′] = −1 ∀h′ > h and h′ cannot be a head of an Abelian
period of w.

Proof. If Mw[h] = −1, then by definition ∃ a ∈ Σ such that 2 × |w[1. . h]|a > |w|a.
Then, we cannot find a value p such that |w[1. . h]|a 6 |w[(h + 1). . (h + p)]|a. It is
clear that this is also true for all value h′ > h. ⊓⊔
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ComputeM(w, n,Cw,Sw)
1 Mw[0] ← 0
2 for a ∈ Σ do

3 H[a] ← 0
4 for h ← 1 to ⌊n−1

2 ⌋ do

5 H[w[h]] ← H[w[h]] + 1
6 s ← selectw[h](w, 2 × H[w[h]])
7 if s is defined then

8 Mw[h] ← max{Mw[h − 1] − 1, s − h}
9 else Mw[h] ← −1

10 for h ← 1 to ⌊n−1
2 ⌋ do

11 if Mw[h] = h then

12 Mw[h] ← h + 1
13 return Mw

Figure 3. Algorithm computing the Mw array.

The array Mw can be computed in time and space O(n+σ), processing positions
of w from left to right (see Figure 3).

Consider now the following definition.

Definition 10. Let w be a word of length n on alphabet Σ. Then ∀ 0 6 h 6 ⌊(n −
1)/2⌋, Gw[h] is defined by

Gw[h] = max{ selecta(w, i + 1) − selecta(w, i) | a ∈ Σ,

h < selecta(w, i) < selecta(w, i + 1) 6 n}.

Actually, Gw[h] is the maximal value j − i such that h < i < j and w[i] = w[j].
The array Gw can be computed in time and space O(n + σ), processing positions

of w from right to left (see Figure 4).

ComputeG(w, n)
1 Gw[n] ← 0
2 for a ∈ Σ do

3 T [a] ← 0
4 for h ← n to 1 do

5 if T [w[h]] = 0 then

6 T [w[h]] ← h
7 Gw[h − 1] ← Gw[h]
8 else d ← T [w[h]] − h
9 T [w[h]] ← h

10 Gw[h − 1] ← max{Gw[h], d}
11 return Gw

Figure 4. Algorithm computing the Gw array.

Proposition 11. Let w be a word of length n on alphabet Σ. Let 0 6 h 6 ⌊(n−1)/2⌋.
If h < p < max{Mw[h], ⌊(Gw[h] + 1)/2⌋} then (h, p) is not an Abelian period of w.

Proof. From the definition of Mw[h], it directly follows that if p < Mw[h], then (h, p)
cannot be an Abelian period of w.

Given h, let a ∈ Σ be such that there exists 1 6 i < n and selecta(w, i + 1) −
selecta(w, i) = Gw[h]. Let j = selecta(w, i) and j′ = selecta(w, i + 1). If p < ⌊(Gw[h] +
1)/2⌋, k = min{k′ | h + k′p > j} then h + (k + 1)p < j′ and |w[k + kp + 1. . h + (k +
1)p]|a = 0. Thus (h, p) cannot be an Abelian period of w (see Figure 5). ⊓⊔



Gabriele Fici et al.: Computing Abelian Periods in Words 189

j

a no a

j′

a

h h + kp h + (k + 1)p

no a

p

< 2p

p
Figure 5. If the distance between two consecutive a’s in w is greater than 2p then (h, p) cannot be
an Abelian period of w for any h < p.

Arrays Mw and Gw give us, for every head length h, a minimal value for a possible
p such that (h, p) can be an Abelian period of w. This allows us to skip a number of
values for p that cannot give an Abelian period.

The following lemma shows how to check if (h, p) is indeed an Abelian period of
w (except for the tail).

Lemma 12. Let w be a word of length n on alphabet Σ. Let H = Pw(1, h) and
P = Pw(h + 1, p). Let i = h + kp such that 0 < k, p 6 n − i and (h, p) is an Abelian
period of w[1. . i] (with an empty tail). Then the following two points are equivalent:

1. (h, p) is an Abelian period of w[1. . i + p].
2. for all a ∈ Σ

selecta(w,H[ind(a)] +

(

1 +

⌊

i

p

⌋)

× P[ind(a)]) 6 i + p.

Proof. Since (h, p) is an Abelian period of w[1. . i] with i = h + kp for some k > 0
then |w[1. . i]|a = H[ind(a)] + k × P[ind(a)] for each letter a ∈ Σ. Notice that since
h < p then k = ⌊i/p⌋.
(1 ⇒ 2). The fact that (h, p) is an Abelian period of w[1. . i + p] implies that, for all
a ∈ Σ, |w[1. . i + p]|a = H[ind(a)] + (k + 1) ×P[ind(a)]. Thus, by definition of select,
selecta(w,H[ind(a)] + (1 + ⌊i/p⌋) × P[ind(a)]) 6 i + p.
(2 ⇒ 1). The fact that selecta(w,H[ind(a)] + (1 + ⌊i/p⌋)×P[ind(a)]) 6 i + p implies
that |w[1. . i + p]|a = H[ind(a)] + (k + 1) × P[ind(a)]. We know that |w[1. . i]|a =
H[ind(a)]+k×P[ind(a)]. By difference, |w[i+1. . i+p]|a = P [ind(a)]. Since it is true
for all a ∈ Σ, Pw(i+1, p) = P and then (h, p) is an Abelian period of w[1. . i+p]. ⊓⊔

Figure 6 presents the algorithm AbelianPeriod-Shift based on the previous
lemma.

Proposition 13.AlgorithmAbelianPeriod-Shift(h, p, w, n,Cw, Sw) returns true
iff (h, p) is an Abelian period of the prefix of length n− ((n− h) mod p) of w in time
O(n

p
× σ) and space O(σ).

Proof. The correctness comes directly from Lemma 12. The while loop in line 3 is
executed n/p times and the for loop in line 4 is executed σ times, thus the time
complexity is O(n

p
× σ). This algorithm only requires the storage of the two Parikh

vectors Pw(1, h) and Pw(h + 1, p). These vectors can be stored in space O(σ) under
the standard assumption that log n fits in a computer word. ⊓⊔
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AbelianPeriod-Shift(h, p, w, n,Cw,Sw)
1 (H,P) ← (Pw(1, h),Pw(h + 1, p))
2 i ← h + p
3 while i + p 6 n do

4 for a ∈ Σ do

5 s ← selecta(w,H[ind(a)] + (1 + ⌊i/p⌋) × P[ind(a)])
6 if s is undefined or s > i + p then

7 return false
8 i ← i + p
9 return true

Figure 6. Algorithm checking whether (h, p) is an Abelian period of the prefix of length n − ((n −
h) mod p) of w.

AbelianPeriod-Select(w, n)
1 (Cw,Sw) ← ComputeSelect(w, n)
2 Mw ← ComputeM(w, n,Cw,Sw)
3 Gw ← ComputeG(w, n)
4 h ← 0
5 while h 6 ⌊(n − 1)/2⌋ and Mw[h] 6= −1 do

6 p ← max(Mw[h], ⌊(Gw[h] + 1)/2⌋)
7 while h + p 6 n do

8 if AbelianPeriod-Shift(h, p, w, n,Cw,Sw) then

9 t ← (n − h) mod p
10 if Pw(n − t + 1, t) ⊂ Pw(h + 1, p) then

11 Output(h, p)
12 p ← p + 1
13 h ← h + 1

Figure 7. Algorithm computing all the Abelian periods of word w of length n, based on the select

function.

Using Proposition 11 and Proposition 13, algorithm AbelianPeriod-Select,
given in Figure 7, computes all the Abelian periods of a word w of length n.

Theorem 14. Algorithm AbelianPeriod-Select computes all the Abelian periods
of word w of length n in time O(n2 × σ) and space O(n + σ).

Proof. The correctness of the algorithm comes from Proposition 11 and Proposi-
tion 13.

The select function and the arrays Mw and Gw can be computed in O(n + σ)
time and space. According to Proposition 11, the value of p computed in line 6 is the
minimal value such that (h, p) can be an Abelian period of w. The AbelianPeriod-
Shift function, called in line 8, simply verifies that (h, p) is an Abelian period of w in
time O(n

p
×σ). The test in line 10 is done in O(p) time. The complexity of the while

loop in line 7 is O(
∑n

p=h+1
n
p
) = O(n). Consequently, algorithm AbelianPeriod-

Select computes all the Abelian periods of w in time O(n2 ×σ) and space O(n+σ)
(output periods are not stored). ⊓⊔

4 On-line algorithms

We now propose two on-line algorithms to compute all the Abelian periods of a word
w using dynamic programming. When processing w[i], in the first algorithm, using
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a two dimensional array, we inspect all the possible values (h, p); in the second one,
using heaps, we inspect the Abelian periods of w[1. . i− 1] by groups built depending
upon the tail length of the periods.

The following proposition states that if (h, p) is not an Abelian period of a word
w, with h + p 6 n = |w|, then it cannot be an Abelian period of any word having w
as prefix.

Proposition 15. Let w be a word of length n and let h, p such that h + p 6 n. If
(h, p) is not an Abelian period of w, then (h, p) is not an Abelian period of wa for
any symbol a ∈ Σ.

Proof. If (h, p) is not an Abelian period of w, at least one of the following three cases
holds:

1. Pw(1, h) 6⊂ Pw(h + 1, p);
2. there exist two distinct indices h 6 i, i′ 6 |w| − p+ 1 such that i = kp+h+ 1 and

i′ = k′p + h + 1 with k and k′ two integers and Pw(i, p) 6= Pw(i′, p);
3. t = (|w| − h) mod p and Pw(|w| − t + 1, t) 6⊂ Pw(|w| − p − t + 1, p).

If case 1 holds then Pwa(1, h) 6⊂ Pwa(h + 1, p) and (h, p) is not an Abelian period of
wa. If case 2 holds then Pwa(i, p) 6= Pwa(i

′, p) and (h, p) is not an Abelian period of
wa. If case 3 holds then Pwa(|w| − t + 1, t + 1) * Pwa(|w| − p− t + 1, p) and (h, p) is
not an Abelian period of wa. ⊓⊔

4.1 Two dimensional array

We now propose an algorithm that uses a two dimensional array and Proposition 15 to
compute all the Abelian periods of an input word w in an on-line manner. It processes
the positions of w in increasing order. When processing position i, T [h, p] = j iff
w[1. . j] is the longest prefix of w[1. . i] having Abelian period (h, p). Thus if j = i− 1
the algorithm checks whether w[1. . i] has Abelian period (h, p) and updates T [h, p]
accordingly.

When T [h, p] = i it means that w[1. . i] is the longest prefix of w that has (h, p) as
an Abelian period. Thus when T [h, p] = n it means that (h, p) is an Abelian period
of w.

Example 16. For w = abaababa the algorithm computes the following array T :

h\p 1 2 3 4 5 6 7 8
0 1 3 8 6 8 8 8 8
1 8 6 8 8 8 8
2 8 8 8 8
3 8 8

Cells T [h, p] = |w| correspond to pairs (h, p) output by algorithm AbelianPeriod-
BruteForce of example 4. Empty cells on the left part of the array correspond
to cases where h ≥ p and empty cells on the right part correspond to cases where
h + p > |w|.

In order to improve the space complexity of this algorithm, the Abelian periods
can be stored in a list instead of an array: When processing position i one only stores
pairs (h, p) such that w[1. . i] has Abelian period (h, p); these pairs correspond to all
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the cells of array T , computed by the previous algorithm, such that T [h, p] = i. At
the end of this process, when i = n, this list contains all the Abelian periods of w,
and only them.

The above algorithms computes all the Abelian periods of a word of length n on
an alphabet of size σ in O(n3 × σ) time using O(n2) space.

4.2 Heaps

The following proposition shows that the set of Abelian periods of a prefix of a word
can be partitioned into subsets depending of the length of the tail. In some cases
all the periods of a subset can be processed at once by inspecting only the smallest
period of the subset.

Proposition 17. Let w have s Abelian periods (h1, p1) < (h2, p2) < · · · < (hs, ps)
such that (|w| − hi) mod pi = t > 0 for 1 6 i 6 s. If (h1, p1) is an Abelian period of
wa for any symbol a ∈ Σ then (h2, p2), . . . , (hs, ps) are also Abelian periods of wa.

a

a

a

z

z

z

us,ks−1

u2,k2−1

u1,k1−1

...

Figure 8. w = ui,0ui,1 · · ·ui,ki−1ui,ki
, ui,ki

= z for 1 6 i 6 s. If Pza ⊆ Pu1,k1−1
then Pza ⊆ Pui,ki−1

for every 2 6 i 6 s.

Proof. Since (h1, p1) < (h2, p2) < · · · < (hs, ps) are Abelian periods of w, w =
ui,0ui,1 · · ·ui,ki−1ui,ki

with |ui,0| = hi, |ui,j| = pi and |ui,ki
| = t for 1 6 i 6 s and

1 6 j 6 ki. If (h1, p1) is an Abelian period of wa, Pu1,k1
a ⊆ Pu1,k1−1

. Since |u1,k1
| =

|ui,ki
| and |u1,k1−1| 6 |ui,ki−1| we have that Pui,ki

a ⊆ Pui,ki−1
for 2 6 i 6 s. Thus

(h2, p2), . . . , (hs, ps) are Abelian periods of wa (see Figure 8). ⊓⊔

The algorithm given in Figure 9 uses Proposition 17 for computing all the Abelian
periods by gathering all the ongoing periods (h, p) with the same tail length together
in a heap where the element at the root of the heap is the smallest period.

When processing w[i], the algorithm processes every heap H for the different tail
lengths:

– if the period (h, p) at the root of H is a period of w[1. . i] then by Proposition 17
all the elements of H are Abelian periods of w[1. . i]. If the tail length becomes
equal to p then (h, p) is removed from the current heap and is moved into a new
heap corresponding to the empty tail.

– if the period (h, p) at the root of H is not a period of w[1. . i] then it is removed
from H and the same process is applied until a pair (h′, p′) is an Abelian period
of w[1. . i] or the heap becomes empty.
In the former case, by Proposition 17, all the remaining elements of H are Abelian
periods of w[1. . i]. This is realized by function ExtractUntilOK in line 8.

Then all the degenerate cases (h, p) such that h < p and h+p = i have to be inserted
in the heap corresponding to the empty tail (lines 12 to 15).

The function Root(H) returns the smallest element of the heap H, the func-
tion Insert(H, e) inserts element e in the heap H, while the function Remove(H)
removes the smallest element of the heap H.
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AbelianPeriod-heap(w, n)
1 L ← list with one heap containing (0, 1)
2 for i ← 2 to n do

3 NewHeap ← ∅
4 for all H ∈ L do

5 (h, p) ← Root(H)
6 t ← p − ((i − h) mod p)
7 if Pw(i − t + 1, t) 6⊆ Pw(i − t − p + 1, p) then

8 ExtractUntilOK(H)
9 else if t = p then

10 Remove(H)
11 Insert(NewHeap, (h, p))
12 h ← 0
13 while h < ⌊(i + 1)/2⌋ and Pw(1, h) ⊂ Pw(h + 1, i − h) do

14 Insert(NewHeap, (h, i − h))
15 h ← h + 1
16 L ← L ∪ NewHeap
17 return L

Figure 9. On-line algorithm for computing all the Abelian periods of a word w of length n using
heaps.

Theorem 18. The algorithm AbelianPeriod-heap computes all the Abelian peri-
ods of a given word of length n in time O(n2 × (n log n) × σ) and space O(n2).

Proof. The correctness of the algorithm comes from Proposition 17. The maximum
number of heaps is n/2 and the total number of elements of all the heaps is O(n2)
(Lemma 2). The space complexity for the list L is O(n2). The time complexity of
the algorithm is due to the two for loops of lines 2 and 4 and the different calls
to ExtractUntilOK in line 8 and Insert and Remove. The maximum number
of heaps is n/2, and the maximum number of elements in a single heap is n. Thus,
the total complexity for the calls to ExtractUntilOK, Insert and Remove in a
single run of the for loop of line 4 is O(n log n). ⊓⊔

5 Experimental results

To compare practical performances of the different algorithms, they have been im-
plemented in C in a homogeneous way and run on test sets of random words (1000
words each) of different lengths (from 10 to 2000) on different alphabet sizes (2, 3, 4,
8 and 16).

Tests were performed on a computer running Mac OS X with a 2.2 GHz processor
and 2 GB RAM.

Figure 10 presents average running times over 1000 random words on alphabet size
16 of the algorithms AbelianPeriod-BruteForce, AbelianPeriod-Select and
AbelianPeriod-Heaps. Corresponding values are given Figure 11. The results show
that, as expected, the off-line algorithm using select function is indeed faster than the
other ones. Moreover, our tests show that, for long words, the on-line algorithm using
heaps becomes faster than the Brute-Force one. One can notice that the difference
of running times between the three algorithms increases as the word length grows.
Results for other alphabet sizes, natural languages texts or genomic sequences are
not shown since they are similar to these ones.
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Figure 10. Average running times (in ms) over 1000 random words, of the Brute-Force, select-based
and heaps-based algorithms on alphabet size 16.

algo\|w| 10 20 30 40 50 100 250 500 750 1000 1250 1500 1750 2000
Brute-Force 0 0 0 0 0 4 43 286 836 1984 3952 6527 10636 15560
Select 0 0 0 0 0 2 25 221 599 1519 3267 5270 9009 13334
Heaps 0 0 0 0 0 3 32 260 752 1746 3592 5901 9643 14372

Figure 11. Values of average running times (in ms) of the Brute-Force, select-based and heaps-based
algorithms on alphabet size 16.

6 Conclusion and perspectives

In this paper we presented different algorithms to compute all the Abelian periods
of a word. This is the first attempt to give algorithms for computing all the Abelian
periods of a word. In particular, we give a O(n2×σ) time off-line algorithm requiring
O(n + σ) space, thus reducing the space complexity compared to the Brute-Force
algorithm. Moreover, in practice, this algorithm appears to be faster. It is even faster
when one wants to compute Abelian periods (h, p) of a word w with at least two
consecutive factors of length p having the same Parikh vector, i.e. h + 2p 6 |w| (see
Figure 12).

Cutting positions of an Abelian period (h, p) of a word w can be defined as follows:

Cutw(h, p) = {k = h + jp | 1 6 k 6 |w| and 0 6 j}.

An Abelian period (h, p) of w is non-deducible if there does not exist another Abelian
period (h′, p′) of w such that Cutw(h, p) ⊂ Cutw(h′, p′). In order to improve algorithm
complexities, one way would consist in reporting only non-deducible Abelian periods.

It remains to obtain a bound on the minimal Abelian period given a word length
and an alphabet size. Simple modifications of the presented algorithms would allow
one to compute the minimal Abelian period of each factor of a word. This could
have practical applications in areas such as bioinformatics and more precisely in the
detection of DNA regions of homogeneous compositions.
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Figure 12. Average running times (in ms) over 1000 random words, of the Brute-Force and select-
based algorithms on alphabet size 16, in the case where h + 2p 6 |w|. See the difference with
Figure 10.
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