
Correctness-by-Construction in Stringology

Bruce W. Watson

FASTAR Research Group
Stellenbosch University

South Africa
bruce@fastar.org

Correctness-by-construction (CbC) is an algorithm derivation technique in which
the algorithm is co-developed with its correctness proof. Starting with a specification
(most often as a pre- and post-condition), ‘derivation steps’ are made towards a
final algorithm. Critically, each step in the derivation is a correctness-preserving one,
meaning that the composition of the derivation steps is the correctness proof.

In this talk, I will present several stringological derivations to illustrate the use-
fulness of CbC – with a particular focus on exploratory algorithmics1 (see [10] for
an example of a new CbC-derived algorithm) and weak points of other algorithm
derivations.

Correctness proofs in stringology algorithms (and in related fields such as com-
pression and arbology) are particularly important for a few reasons:

– Many stringology problems arise in so-called infrastructure software, such as net-
work routers, security, operating systems, compilers, computational linguistics,
etc. All of these areas, are performance- and correctness-critical, with a low toler-
ance for bugs – unlike many user-level or web-applications.

– For many stringology algorithms, the devil is in the details: correctly defining,
using and precomputing various lookup tables often proceeds via case analysis –
a technique which is not always convincing or water-tight.

– The broad usefulness of these algorithms makes them ideal and central to many
computing science curricula – where convincing correctness proofs are important.

– The multitude of stringology algorithms (take, for example, exact keyword pattern
matching) is difficult to oversee (though several works successfully present the
breadth of the field [7,1]) and taxonomies play an important role in bringing
order.

For showing an algorithm’s correctness, CbC has significant advantages over other
approaches, namely:

– Testing: Edsger Dijkstra famously said “Testing shows the presence, not the ab-
sence of bugs”. It follows that testing is a poor replacement for proper correctness
proofs.

– A postiori proof: The majority of new algorithms are presented first and followed
by a correctness proof. This usually leaves a large gap between the algorithm (how
was it arrived at?) and the proof, or the proof remains just a sketch, where the
correctness of some parts of the algorithm are left for the reader to work out.

1 Exploratory algorithmics is the invention of new algorithms by exploring gaps and previously
unexplored options amongst the existing algorithms for a field.

Bruce W. Watson: Correctness-by-Construction in Stringology, pp. 1–2.

Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic



2 Proceedings of the Prague Stringology Conference 2012

– Automated proof: Alongside the algorithm itself, a model of the algorithm is cre-
ated; the model is then verified (using an automated theorem prover or a model-
checker). This, of course, depends on a close correspondence between the algorithm
and its model. Very few stringology derivations use this technique.

In CbC, at every derivation point there are often several possible derivation steps
– which begs the question of how to choose the right step? Good derivations have an
aspect of beauty and simplicity to them – properties which very often lead to the most
efficient algorithms [3] – though writing down a good derivation requires practice and
is an iterative process. Additionally, in many cases there are several possible ‘next
steps’, making CbC an ideal technique for deriving entire families of algorithms.
Such multiple-derivations can function both as a taxonomy (useful in teaching, for
illustrating the commonalities and differences between related algorithms) and also
for exploratory algorithmics in which new algorithms are invented [8,9].

CbC was ‘invented’ by Edsger Dijkstra in the late 1960’s [2] with no small amount
of input from his contemporaries such as Tony Hoare, Robert Floyd, Niklaus Wirth
and Donald Knuth and also Dijkstra’s colleagues in Eindhoven and Austin. Sev-
eral Turing Awards (in particular Dijkstra’s) were awarded for CbC-related research.
David Gries and Carroll Morgan wrote two of the best follow-on text-books in the
1980’s [4,6]. Despite the fact that some of those books are out of print, CbC remains
alive and well as a successful and appropriate techniques for inventing and deriving
new algorithms. The most recent book on this topic is by Kourie & Watson [5].

Acknowledgement: I would like to thank Nanette Watson-Saes and Derrick Kourie
for proof-reading this extended abstract.

References

1. M. A. Crochemore and W. Rytter: Jewels of Stringology, World Scientific Publishing
Company, 2003.

2. E. W. Dijkstra: A Discipline of Programming, Prentice Hall, 1976.
3. W. Feijen, A. van Gasteren, D. Gries, and J. Misra, eds., Beauty is Our Business,

Springer-Verlag, 1990.
4. D. Gries: The Science of Computer Programming, Springer-Verlag, second ed., 1980.
5. D. G. Kourie and B. W. Watson: The Correctness-by-Construction Approach to Program-

ming, Springer-Verlag, 2012.
6. C. Morgan: Programming from Specifications, Prentice Hall, second ed., 1998.
7. W. F. Smyth: Computing Patterns in Strings, Addison-Wesley, 2003.
8. B. W. Watson: Taxonomies and Toolkits of Regular Language Algorithms, PhD thesis, Faculty

of Computing Science, Eindhoven University of Technology, the Netherlands, Sept. 1995.
9. B. W. Watson: Algorithms for Constructing Minimal Acyclic Deterministic Finite Automata,

PhD thesis, Department of Computer Science, University of Pretoria, South Africa, 2011.
10. B. W. Watson, D. G. Kourie, and T. Strauss: A sequential recursive implementation of

dead-zone single keyword pattern matching, in Proceedings of the International Workshop on
Combinatorial Algorithms (IWOCA), 2012.


