
BlastGraph: Intensive Approximate Pattern

Matching in Sequence Graphs and de-Bruijn

Graphs

Guillaume Holley1 and Pierre Peterlongo1⋆

Centre de recherche INRIA Rennes - Bretagne Atlantique, IRISA, Campus universitaire de
Beaulieu, Rennes, France

guillaumeholley@gmail.com, pierre.peterlongo@inria.fr

Abstract. Many de novo assembly tools have been created these last few years to
assemble short reads generated by high throughput sequencing platforms. The core of
almost all these assemblers is a sequence graph data structure that links reads together.
This motivates our work: BlastGraph, a new algorithm performing intensive approx-
imate string matching between a set of query sequences and a sequence graph. Our
approach is similar to blast-like algorithms and additionally presents specificity due to
the matching on the graph data structure. Our results show that BlastGraph perfor-
mances permit its usage on large graphs in reasonable time. We propose a Cytoscape
plug-in for visualizing results as well as a command line program. These programs are
available at http://alcovna.genouest.org/blastree/.

Keywords: sequence graph, de-Bruijn graph, string matching, high throughput se-
quencing, next generation sequencing, sequence assembly, Viterbi algorithm

1 Introduction

Compared to traditional Sanger technologies High Throughput Sequencing (HTS)
technologies enable sequencing of biological material (DNA and RNA) at much higher
throughput and a cost that is now affordable by most academic labs. They have
revolutionized the field of genomics and medical research [5]. Sequencing became in a
few years accessible to almost all biological labs while being able to produce sequences
of full complex genomes in a few days.

HTS technologies do not output the entire sequence of a DNA or RNA molecule.
Instead, they return small sequence fragments, called reads, whose length is usually
ranging between 100 to 700 characters although some technologies produce longer
reads. HTS produce overlapping reads, thus making possible to reconstruct the orig-
inal sequence by assembling them. Over the last few years, many assemblers were
created, such as Euler [2,3], Velvet [12] or Soapnovo [7] to cite a few among the most
famous ones. They present different capacities and drawbacks, but all of them make
use of a graph data structure storing sequences for organizing the reads. For assembly,
the most used graph is the de-Bruijn graph, first proposed for assembly purposes by
Pevzner, Tang and Waterman [9]. In a de-Bruijn graph a node represents a length-k
substring (called a k-mer) and an edge connects nodes u and v if the two correspond-
ing k-mers overlap over k−1 positions. Once the graph is created and usually after an
error correction step, a traversal of the graph is performed for generating contiguous
sequences called contigs.

⋆ Corresponding author

Guillaume Holley, Pierre Peterlongo: BlastGraph: Intensive Approximate Pattern Matching in Sequence Graphs and de-Bruijn Graphs, pp. 53–63.

Proceedings of PSC 2012, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05095-8 c© Czech Technical University in Prague, Czech Republic

http://alcovna.genouest.org/blastree/


54 Proceedings of the Prague Stringology Conference 2012

In this paper, we present BlastGraph, a generic approach for aligning a (pos-
sibly large) set of query sequences on a graph storing sequences. The algorithm we
propose applies on two kinds of graphs: 1/ any kind of graph storing sequences, called
Sequence Graphs (SG); 2/ de-Bruijn graphs (DBG). Motivations for this work are
multiple. For developers of assembly tools, it is of great interest to precisely detect
query sequences in the graph, for instance while testing filter algorithms or correc-
tion algorithms. Biologically, checking the presence of approximate copies of a set of
sequences in the graph, enables to detect homologies, to filter contaminants and to
detect the presence of species. Avoiding the full assembly process presents two main
advantages: first it avoids the time consuming contig generation phase, and second
and more important, it avoids the usage of heuristics or statistical choices made while
traversing the graph.

Note that the BlastGraph algorithm applies generically to any directed SG, and
is also adapted to apply to a DBG. Given a directed sequence graph, a set of query
sequences and a maximum edit distance, BlastGraph detects paths in the graph
on which query sequences align at most at the given edit distance. Our approach is a
blast-like algorithm [1]. The graph is indexed using seeds, this enables to decrease the
request execution time. The main originality of our work stands in the fact that both
seeds and mapped query sequences may be spread over several nodes of the graph.

This work presents similarities with the famous Viterbi algorithm [11]. In a few
words, Viterbi is a dynamic programming algorithm for finding the most likely path
in a rooted graph while reading a query sequence. The major fundamental differences
with this work stand in the fact that:

– Viterbi nodes are composed by a unique symbol while in the BlastGraph frame-
work, nodes store a full sequence, and their reverse complement in the DBG frame-
work;

– In the Viterbi framework, the alignment is global: the full query sequence is aligned
to the whole graph, starting from the root node, while in the BlastGraph al-
gorithm, the alignment is semi global: the whole query sequence is aligned to any
un-rooted sub-graph.

The next Section introduces preliminaries and definitions. In Section 3 we expose
the BlastGraph algorithm when applied on a SG, while in Section 4 we show how
BlastGraph is modified to apply on a DBG. We present some practical results in
section 5.

2 Preliminaries

A sequence is composed by zero or more symbols from an alphabet Σ. A sequence s of
length n on Σ is denoted also by s[0]s[1] · · · s[n−1], where s[i] ∈ Σ for 0 ≤ i < n. The
edit distance between two sequences is the minimal number of insertions, deletions
and substitutions to transform one into the other. The length of s is denoted by |s|.
We denote by s[i, j] the substring s[i]s[i + 1] · · · s[j] of s. In this case, we say that
the substring s[i, j] occurs at position i in s. We call k-mer a sequence of length k.
If s = u · v for u and v ∈ Σ∗, we say that v is a suffix of s and that u is a prefix
of s, the symbol “·” designating the concatenation between two sequences. Let s[i..]
denote the suffix of s starting at position i (i.e. s[i..] = s[i, |s| − 1]).

The symbol “k̊” designates the concatenation of two sequences, removing the
first k symbols of the second. Formally, uk̊v = u · v[k..] . In the DNA context, Σ =



Guillaume Holley and Pierre Peterlongo: BlastGraph 55

{A,C,G, T}, and, given s ∈ Σ∗, s designates the reverse complement of s, that is s,
read from right to left, switching characters A and T , and C and G.

2.1 Sequence Graphs (SG)

In a directed sequence graph G, each node N stores a sequence s, denoted by S(N).
A node N1 linked to a node N2 denotes the fact that the sequence S(N1).S(N2) is
stored in G. Example of a directed sequence graph is given Figure 1a.

2.2 De-Bruijn Graphs (DBG)

DBGs were first used in the context of genome assembly in 2001 by Pevzner et
al. [9]. In 2007, Medvedev et al. [8] modified the definition to better model DNA
as a double stranded molecule. In this context, given a fixed k value, a DBG is a
bi-directed multigraph, each node N storing a k-mer s and its reverse complement
s. The sequence s, denoted by F (N), is the forward sequence of N , while s, denoted
by R(N), is the reverse complement sequence of N . An arc exists from node N1 to
node N2 if the suffix of length k − 1 of F (N1) or R(N1) overlaps perfectly with the
prefix of F (N2) or R(N2). Each arc is labelled with a string in {FF,RR, FR,RF}.
The first letter of the arc label indicates which of F (N1) or R(N1) overlaps F (N2)
or R(N2), this latter choice being indicated by the second letter. Because of reverse
complements, there is an even number of arcs in the DBG: if there is an arc from N1

to N2 then, necessarily, there is an arc from N2 to N1 (e.g. if the first arc has label
FF then the second has label RR).

A DBG can be compressed without loss of information by merging simple nodes.
A simple node denotes a node linked to at most two other nodes. Two adjacent simple
nodes are merged into one by removing the redundant information. A valid path (see
Definition 2) composed by i > 1 simple nodes is compressed into one node storing
a sequence of length k + (i − 1) as each node adds one new character to the first
node. Figure 1b represents a DBG (upper) and the corresponding compressed DBG
(lower). In the remainder of the paper, we denote by cDBG a compressed DBG.

Definition 1 (Active strand of a node in a DBG). The active strand of a node
N in a DBG denotes which strand of the node, forward or reverse, is considered while
traversing N .

Definition 2 (Valid path). The traversal of a node N is said to be valid if the
rightmost label (F or R) of the arc used for entering the node is equal to the leftmost
label of the arc used for leaving the node.

A path in the graph is valid if for each node involved in the path, its traversal is
valid, that is, each pair of adjacent arcs in the path are labelled, respectively, XY and
Y Z with X, Y, Z ∈ {R,F}.

Definition 3 (Sequence stored in a cDBG). A valid path in a cDBG composed
by ordered nodes N0, N1, . . . , Nl, stores two sequences as following:

1. s = F/R(N0)̊kF/R(N1)̊k · · ·̊k F/R(Nl), the choice between R or F for node N0 is
equal the first label of the edge going from N0 to N1, while for i ∈ [1, l], the choice
between R or F for node Ni is equal the second label of the edge going from Ni−1

to Ni.
2. s.



56 Proceedings of the Prague Stringology Conference 2012

(a) SG (b) DBG

Figure 1: (a) Directed sequence graph. (b) Uncompressed (upper) and compressed
(lower) de-Bruijn Graphs with k = 5. For each node, lower sequence is the reverse
complement of the upper sequence, it should be read from right to left. Boxes both
on (a) and (b): example of a seed of length 7 (TCTACGC) spread over 2 nodes. In
the de-Bruijn Graph, the k− 1 first characters of the second node are pruned due to
overlap, and the reverse part of the second node is considered as the edge between
the first (left) and the second (central) node is FR

For instance, the arrowed path on the cDBG presented Figure 1b, stores the
sequences

s = CATCTk̊ATCTCCGCAk̊CGCAG

= CATCT.CCGCA.G

= CATCTCCGCAG

and

s = CTGCGGAGATG

2.3 Approximate pattern matching in a graph (SG or cDBG)

Definition 4 (Approximate pattern matching in a graph). Given a query Q,
a graph G (SG or cDBG), and a parameter d, approximate pattern matching consists
in finding all occurrences of Q in sequences stored in G within an edit distance of at
most d.

3 The BlastGraph algorithm

Blast like seed-based heuristics rest on the idea that if two sequences share some
similarities, then there exists (at least) a common word (a seed) between these two
sequences. Such algorithms consist in, first, anchoring the detection of similarities by
exact matching of short sub-sequences, the seeds, and then, performing the similarity
distance computation once sequences are anchored. The algorithm we propose applies
these ideas between a graph (the bank) and a string (the query). It is divided into
four main stages:

1. Index all seeds present in the graph G.



Guillaume Holley and Pierre Peterlongo: BlastGraph 57

2. Anchor query sequences to nodes of G using seeds. In the case of genomic data,
reverse complement of query sequences may also be used as queries.

3. Align anchored query sequences on the left and right of the matched seeds.
4. Merge left and right alignments.

In the four following sections, we provide some more details for each of these four
stages simply considering the graph as a SG. Then, in Section 4, we describe the
modifications needed for applying the algorithm on a cDBG.

3.1 Stage 1: Indexing the seeds

Let n denote the length of the seeds. Each word of length n of the sequence of each
node of G as well as those spread over several linked nodes are indexed using a hash
table. The index contains for each seed a set of its occurrence positions.

Occurrence position in a graph: An occurrence position in the graph is defined as a
couple (node identifier N , position on S(N)) indicating the starting position of the
occurrence.

Seeds spread over more than one node: Any seed starting at less than n positions to
the end of the sequence of a node is spread over more than one node. For instance, the
seed TCTACGC starting at position 2 on the leftmost node of Figure 1a, is spread
over two distinct nodes. Seeds spread over more than one node are detected thanks
to a depth first algorithm recursive approach.

In order to make a light index, the BlastGraph algorithm only stores the start-
ing position of a seed (node identifier N , position on S(N)) and not all possible nodes
over which the seed is spread.

3.2 Stage 2: Anchoring query sequences to sequences of the graph

Figure 2: Value rel(Q,N) while anchoring a query sequence Q on a node N with a
seed

For each query sequence Q, all overlapping words of length n (seeds) are read. Let
s be such a seed occurring at position p on Q, also having at least one occurrence in
the graph. Then the index provides a set of couples (node N , position on S(N)). For
each such couple, the query Q is anchored on the sequence S(N), giving a relative
position rel(Q,N) of Q on S(N). More precisely, rel(Q,N) = p−position on S(N)
(see Figure 2) is the position where Q aligns to S(N). Note that rel(Q,N) could be
< 0 if a prefix of S(N) is not aligned to Q. This is the case of S(Q,L1) in the example
presented Figure 3.



58 Proceedings of the Prague Stringology Conference 2012

Computing an alignment only once: If a node N and a sequence Q share more than
one seed for the same alignment, each of them generate the same value {rel(Q,N)}.
As this is a very usual case, in order to avoid computing several times the same
alignments, while aligning sequence Q, the value {rel(Q,N)} is stored in memory.
Thus, the same alignment anchored at position {rel(Q,N)} is computed only once.

Figure 3: Overview of the alignment process. Anchoring: Using a seed, a query se-
quence Q is anchored to the node N . Right alignment: edit distance is computed
between Q[rel(Q,N) + i + k..] and S(N)[i + k..] (right dotted square in node N),
then between Q[rel(Q,A0)..] and S(A0), between Q[rel(Q,B0)..] and S(B0), between
Q[rel(Q,B1)..] and S(B1), and so on. In this example, path using node A1 presents
an edit distance higher than the threshold; its children are not explored. Left Align-
ment: the same procedure is applied on the sequence on the left of the seed (left
dotted square in node N), then on parents L0, L1 of node N , and so on. . .

3.3 Stage 3: Alignment between query sequence and sequence graph
nodes

Given a query sequence Q anchored at position {rel(Q,N)} in a node N of the graph,
this stage computes all possible alignments (based on edit distance) between Q and
all paths readable from node N (see Figure 3 for an example).

Computing the edit distance between two strings is a dynamic programming pro-
cedure that involves the usage of a matrix of size the product of the string lengths.
However, in the particular case of this work, the user restricts the maximum edit
distance for having a match. Consequently, the matrix computation is limited to a
diagonal (see Figure 4 for an example) of width

⌊

maximum edit distance
cost indel

⌋

×2. Outside the
diagonal, number of insertions or deletions becomes bigger than maximum number
of insertions or deletions accepted equal to

⌊

maximum edit distance
cost indel

⌋

. Thus during this
stage, the time and memory complexity for aligning query Q to one path of the graph
is in O (|Q|) considering maximum edit distance and cost indel as fixed parameters.

Right alignments The alignment is done between Q and S(N) on the right of the
matched seed. Additionally, as shown Figure 3, right extremity of the query sequence
may finish after S(N). In such a case the alignment has to be done on children
A0, A1, . . . , An of node N . On each child Ai, the right extremity of the query se-
quence may finish after the S(Ai), in this case, alignment continues on its children
B0, B1, . . . , Bn′ , and so on. Thus, right part of sequence Q (starting after the anchored
seed), may be aligned to S(N · Ai · Bj . . . ). This is done via a recursive depth-first
traversal of the graph, starting from N as long as the full right part of S is not aligned.
An alignment between the sequence of a node and Q is never computed twice. For in-
stance (Figure 3), if the alignment between Q and S(N · A0 · B0) was computed,



Guillaume Holley and Pierre Peterlongo: BlastGraph 59

(a) (b)

Figure 4: Dynamic programming matrix. Only the shadowed diagonal is computed.
(a) distance computed between the query sequence S and S(N.Ai). (b) distance
computed between S and S(N.Ai+1). Lighter lines are not recomputed for computing
matrix (b) if matrix (a) was already computed

the computation between Q and S(N · A0 · B1) starts from the last full line of the
alignment of Q with S(N ·A0). Thus the alignment between Q and S(N) and S(A0)
is never recomputed.

Left alignments Aligning the part of the sequence Q on the left of the seed to the
graph is done using almost the same approach as the one previously described for
right alignments. However, there are two main differences: 1) Sequences both from Q
and from the nodes are reversed (read from right to left); 2) when the reversed query
sequence is longer than the reversed sequence of a node N , the parents L0, L1, ... of
N are explored in depth first search approach (see Figure 3 for an example).

3.4 Joining left and right alignments

For a given aligned query sequence, each left alignment is compared to each right
alignment. For each such couple whose sum of the cost of the alignments is below or
equal the user defined maximum edit distance, the full alignment is reported.

4 BlastGraph on compressed de-Bruijn graphs

The three main differences between the SG and the cDBG are:

1. In the cDBG, the sequences of two connected nodes overlaps over k−1 characters.
Thus, whatever the stage, the concatenation of the sequences of two nodes of the
cDBG, has to be done removing the k − 1 overlapping characters using the “k̊”
concatenation instead of the classical “·” one.

2. In the cDBG, each node N stores a sequence (F (N)) and its reverse complement
(R(N)).

3. Label of edges have to be considered while traversing the graph. Thus, in the
cDBG, the general rule is the following: a node N is always traversed either as



60 Proceedings of the Prague Stringology Conference 2012

forward (F (N)) or as reverse complement (R(N)), with F or R being its “active
strand” (see Definition 1).
In the first case (resp. second case), accessing the children of the node is done
following edges starting with the letter F (resp. R).
While following an edge, the active strand of the targeted node F (resp. R) is the
second letter of the label of the edge.

Seeding in a DBG: The seeding approach is the same than the one applied on the
SG. By convention, all seeds start on forward sequence of each node. This is done
without loss of information as each query is considered both in its forward and its
reverse complement directions.

Right extension in a DBG: The right extension in a DBG is the same as the one
described for a SG. However, the algorithm takes into account some DBG specificities:

– query sequence is mapped on F (N) (seeds are indexed only on forward strands);
– children of a node N are reached using only outgoing edges whose label first
character corresponds to the active strand of N , and, once a child is reached, its
active strand is the one corresponding to the second character of this label;

– concatenation of sequences of two linked nodes is done pruning the overlapping
k − 1 characters.

Left extension in a DBG: Left extensions in the DBG are done by right extending
the reverse complement Q of the sequence Q to the DBG, starting from the reverse
strand of the node N : R(N).

5 Results

Two prototype versions of this algorithm are implemented. Under the CeCILL Li-
cense, they can be downloaded here: http://alcovna.genouest.org/blastree.
A Java version is implemented in a Cytoscape plug-in. Cytoscape [10] is an open-
source platform for visualization and interaction with complex graph, especially in
bioinformatics. The second version is implemented in C and can be run under Unix
platforms. In the two prototypes, while working on nucleotides, characters are coded
in two bits.

The next section proposes a use case of the Java version, while section 5.2 proposes
some results over the C prototype.

5.1 Use case

We present in this section a use case, on a toy example. We created a sequence graph
containing five nodes (Figure 5). We searched for the sequence

ggcgT tcagac/cTatacgcatacgcagcagact/agCctacg,

spread over 3 nodes of this graph and containing two mismatches and one insertion.
To help the reader, we indicated here substitutions and indel with an upper case
letter and we indicated separations between nodes with a ‘/’ character. Of course
the practical query sequence is a raw un-annotated sequence. We fixed the cost of
a mismatch to 1, the cost of an indel to 2 and the maximum edit distance to 4.
BlastGraph (Cytoscape plug-in version)) found the correct path, as presented in
Figure 5 where selected nodes are those in which alignment is found between the
query and the graph.

http://alcovna.genouest.org/blastree


Guillaume Holley and Pierre Peterlongo: BlastGraph 61

Figure 5: Cytoscape view of the selected nodes (green) in the sequence graph after
the research of query sequence

5.2 Performances on DBG

We present results obtained in a typical use case while applying BlastGraph on a
DBG graph. Results were obtained on a 64 bit 2× 2.5GHz dual-core computer with
3MB cache and 4GB RAM memory. From the NCBI Sequence Read Archive (SRA,
http://www.ncbi.nlm.nih.gov/Traces/sra), we downloaded the DRR000096 Illu-
mina run containing approximately 4 million reads and approximately 150 million
nucleotides.

Increasing graph sizes Subsets of different sizes were generated by randomly sam-
pling DRR000096 reads. For each subset, we constructed the de-Bruijn graph using
k = 31. Table 1 reports the total number of nodes and nucleotides stored in some of
these graphs.

No Reads No Nodes No nucleotides
10K 59K 1833K
100K 573K 17774K
150K 849K 26306K

Table 1: Total number of nodes and nucleotides stored in the graph with respect to
the number of reads

Figure 6: Time and memory consumption with respect to the number of nucleotides
stored in the graph

http://www.ncbi.nlm.nih.gov/Traces/sra


62 Proceedings of the Prague Stringology Conference 2012

On each graph, we applied the C version of BlastGraph, aligning a set of 10000
query sequences derived from the initial read set. We used seeds of length 19, a
mismatch cost equal to 1 and an indel cost equal to 2 and a maximum edit distance
equal to 5. We report in Figure 6 time and memory needed both for constructing the
index and for performing the 10000 queries.

We can observe that memory footprint and both indexation and query execu-
tion times increase linearly with the quantity of information contained in the graph.
While memory usage is the main bottleneck of this approach, the indexation and
query time are acceptable. Even on the biggest tested graph (containing more than
26 million characters stored in approximately 849000 distinct nodes), indexation is
done in 26 seconds and the 10000 queries are performed in less than 52 seconds.

Increasing number of queries In order to measure the impact of the number of
queries on the execution time, we used the graph composed of 100000 reads from
the DRR000096 data set using k = 31. We ran BlastGraph using queries dataset
composed of 500, 1000, . . . , 10000 reads taken from the 100000 reads used for creating
the graph. We report the query time (not including the indexation time) Figure 7. We
note that, as expected, the query time increases slowly and linearly with the number
of queries.

Figure 7: Query time with respect to the number of queries. Note that reported time
do not include the indexation time equal to 16 seconds independently of the number
of queries

6 Conclusion

We presented BlastGraph, a new algorithm for performing intensive approxim-
ate string matching between a set of query sequences and a directed sequence graph
including the application to de-Bruijn graphs. This blast-like algorithm presents nov-
elties with respect to “classical” blast-like approaches as seeds and alignments may
be spread over several nodes and as the algorithm takes into account double stranded
de-Bruijn graph features. Results showed that BlastGraph performances permit
its usage on quite large graphs in reasonable time.



Guillaume Holley and Pierre Peterlongo: BlastGraph 63

The main bottleneck of the approach comes from the memory footprint. Stor-
ing in memory graphs containing hundreds of millions of nucleotides together with
seed index is challenging. Future work will include either an adaptation of Blast-

Graph to extremely light DBG representation [4] or a non indexed version of the
algorithm, for instance based on KMP [6] algorithm. This will increase the query
time, while decreasing the memory usage. Possible applications will exceed the fron-
tiers of the current work as this problem is central in many algorithms associated to
high throughput sequencing problems.

7 Acknowledgements

Authors warmly thank Vincent Lacroix and François Coste for their participation to
discussions. This work was born from and supported by the Inria “action de recherche
collaborative” ARC Alcovna http://alcovna.genouest.org/.

References

1. S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman: Basic local

alignment search tool. Journal of Molecular Biology, 215(3) 1990, pp. 403–410.
2. M. J. Chaisson, D. Brinza, and P. A. Pevzner: De novo fragment assembly with short

mate-paired reads: Does the read length matter? Genome Research, 19(2) 2009, pp. 336–346.
3. M. J. Chaisson and P. A. Pevzner: Short read fragment assembly of bacterial genomes.

Genome Research, 18(2) 2008, pp. 324–330.
4. R. Chikhi and G. Rizk: Space-efficient and exact de Bruijn graph representation based on a

Bloom filter, in WABI, 2012, p. to appear.
5. S. Feature: Next-generation sequencing transforms today’s biology. Most, 5(1) 2008, pp. 16–18.
6. D. E. Knuth, J. James H. Morris, and V. R. Pratt: Fast pattern matching in strings.

SIAM Journal on Computing, 6(2) 1977, pp. 323–350.
7. R. Li, H. Zhu, J. Ruan, W. Qian, X. Fang, Z. Shi, Y. Li, S. Li, G. Shan, K. Kristiansen,

S. Li, H. Yang, J. Wang, and J. Wang: De novo assembly of human genomes with massively

parallel short read sequencing. Genome Research, 20(2) 2010, pp. 265–272.
8. P. Medvedev, K. Georgiou, G. Myers, and M. Brudno: Computability of models for

sequence assembly, in WABI, 2007, pp. 289–301.
9. P. A. Pevzner, H. Tang, and M. S. Waterman: An Eulerian path approach to DNA

fragment assembly. Proceedings of the National Academy of Sciences of the United States of
America, 98(17) Aug. 2001, pp. 9748–53.

10. M. E. Smoot, K. Ono, J. Ruscheinski, P.-L. Wang, and T. Ideker: Cytoscape 2.8: new

features for data integration and network visualization. Bioinformatics, 27(3) 2011, pp. 431–432.
11. A. Viterbi: Error bounds for convolutional codes and an asymptotically optimum decoding

algorithm. Information Theory, IEEE Transactions on, 13(2) april 1967, pp. 260 –269.
12. D. R. Zerbino and E. Birney: Velvet: Algorithms for de novo short read assembly using de

Bruijn graphs. Genome Research, 18(5) 2008, pp. 821–829.

http://alcovna.genouest.org/

