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Abstract. We design an efficient algorithm computing the number of distinct cubes
in a standard Sturmian word given by its directive sequence (the special type of recur-
rences). The algorithm runs in linear time with respect to the size of the compressed
representation (recurrences) describing the word, though the explicit size of the word
can be exponential with respect to this representation. We give the explicit compact
formula for the number of cubes in any standard word derived from the structural
properties of runs (maximal repetitions). Fibonacci words are the most known subclass
of standard Sturmian words. It is known that the ratio of the number of cubes to the
size for Fibonacci words is asymptotically equal to 1

φ3 ≈ 0.2361, where φ =
√

5+1

2
. We

show a class of standard Sturmian words for which this ratio is much higher and equals
3φ+2

9φ+4
≈ 0.36924841. An extensive experimentation suggests that this value is optimal.
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1 Introduction

Problems related to finding repetitions in strings are fundamental in combinatorics
on words and have many practical applications (data compression, computational
biology, pattern matching, etc.), see for instance [5], [8], [12] and [13]. The structure
of repetitions is almost completely understood for the class of Fibonacci words, see
[10], [11], [16], however it is not well understood for general words.

The most important type of repetitions are runs (maximal repetition), which form
a compact representation of all repetitions in a word. Formally, a run in a word w is
an interval α = [i..j] such that w[i..j] = ukv (k ≥ 2) is a nonempty periodic subword
of w, where u is of the minimal length and v is a proper prefix (possibly empty)
of u, that can not be extended (neither w[i − 1..j] nor w[i..j + 1] is a run with the
period |u|).

In this paper we consider cubes: the nonempty words of the form α = x3. The
length of x is called the base of the cube and denoted by base(α). A number i is a
period of the word w if w[j] = w[i+ j] for all i with i+ j ≤ |w|. The minimal period
(min-period, in short) of w will be denoted by period(w).
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Example 1. Let α = (abab)3 be a cube. In this case we have:

base(α) = 4, period(α) = 2.
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Figure 1. The structure of distinct cubes in the example binary word
w = ababaabababaabababaabababaababaab

Observe that two different runs could correspond to the identical subwords, if we
disregard their positions. Hence runs are also called the maximal positioned repeti-
tions. In this paper we are interested in counting distinct cubes, hence we identify
cubes with the same base, but perhaps multiple occurrences.

Example 2. Let w be as in Figure 1. There are 9 cubes:

ab · ab · ab, ba · ba · ba, ababaab · ababaab · ababaab,

babaaba · babaaba · babaaba, abaabab · abaabab · abaabab,

baababa · baababa · baababa, aababab · aababab · aababab,

abababa · abababa · abababa, bababaa · bababaa · bababaa.

The standard Sturmian words are extensively studied in combinatorics on words.
They are enough complicated to have many interesting properties and at the same
time they are highly compressible. Due to their regularity, many problems are much
easier for such strings compared with the general case. There are known exact formulas
for the number of runs, cubic runs (i.e. runs in which the period repeats at least
three times) and squares in standard words along with their density ratio (i.e. the
asymptotic quotient of the maximal number of considered repetitions by the length
of the word). See [2], [15] and [14] for details.

This paper is devoted to the investigation of the structure and the number of
cubes in standard Sturmian words. Denote by cubes(w) the number of cubes in a
word w. We present exact formulas for cubes(w) in any standard word w. We show
also the algorithm, which computes the number of cubes in any standard word in
linear time with respect to the size of its compressed representation – the directive
sequence – hence in time logarithmic with respect to the length of the word. We show
also a class of standard words reach in cubes and prove that for this class of strings
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the density ratio of distinct cubes equals 3φ+2
9φ+4

≈ 0.36924841, where φ =
√
5+1
2

. An

extensive computer experimentation suggests that this value is optimal.

Some useful applets related to problems considered in this paper can be found on
the web site: http://www.mat.umk.pl/~martinp/stringology/applets/

2 Standard Sturmian words

Standard Sturmian words (standard words in short) are one of the most investigated
class of strings in combinatorics on words, see for instance [1], [4], [6], [12], [17],
[18], [19] and references therein. They have very compact representations in terms of
sequences of integers, which has many algorithmic consequences.

The directive sequence is the integer sequence: γ = (γ0, γ1, . . . , γn), where γ0 ≥ 0
and γi > 0 for i = 1, 2, . . . , n. The standard word corresponding to γ, denoted by
Sw(γ), is described by the recurrences of the form:

x−1 = b, x0 = a, . . . , xn = x
γn−1

n−1 xn−2, xn+1 = xγn
n xn−1 (1)

where Sw(γ) = xn+1. For simplicity we denote qi = |xi|.

The sequence of words {xi}
n+1
i=0 is called the standard sequence. Every word oc-

curring in a standard sequence is a standard word, and every standard word occurs
in some standard sequence. We assume that the standard word given by the empty
directive sequence is a and Sw(0) = b. The class of all standard words is denoted by
S.

Example 3.
Consider the directive sequence γ = (1, 2, 1, 3, 1). We have Sw(γ) = x5, where:

x−1 = b q−1 = 1

x0 = a q0 = 1

x1 = (x0)
1 · x−1 = a · b q1 = 2

x2 = (x1)
2 · x0 = ab · ab · a q2 = 5

x3 = (x2)
1 · x1 = ababa · ab q3 = 7

x4 = (x3)
3 · x2 = ababaab · ababaab · ababaab · ababa q4 = 26

x5 = (x4)
1 · x3 = ababaabababaabababaabababa · ababaab q5 = 33

Without loss of generality we consider here the standard Sturmian words starting
with the letter a, therefore we assume that γ0 > 0. The words starting with the
letter b can be considered similarly.

Remark 4.
The special kind of standard words are well known Fibonacci words. They are formed
by repeated concatenation in the same way that the Fibonacci numbers are formed
by repeated addition. By the definition Fibonacci words are standard words given by
directive sequences of the form γ = (1, 1, . . . , 1) (n-th Fibonacci word Fn corresponds
to a sequence of n ones).

http://www.mat.umk.pl/~martinp/stringology/applets/
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The number N = |Sw(γ)| is the (real) size of the word, while (n + 1) = |γ| can be
thought as its compressed size. Observe that, by the definition of standard words, N is
exponential with respect to n. Each directive sequence corresponds to a grammar-
based compression, which consists in describing a given word by a context-free gram-
mar G generating this (single) word. The size of the grammar G is the total length
of all productions of G. In our case the size of the grammar is proportional to the
length of the directive sequence.

2.1 The structure of cubes in standard words

The main idea of the computation of distinct cubes in a standard word Sw(γ0, . . . , γn)
is the partition of them into separate categories depending on the length of their
periods. In this section we define the concepts of the i-partition of standard words
and the generative run, which will be crucial in cubes enumeration. The following
fact is a direct consequence of recurrent definition of standard words.

Fact 1
Every standard word Sw(γ0, . . . , γn) can be represented as a sequence of concatenated
words xi and xi−1, and has the form:

xα1

i xi−1 x
α2

i xi−1 . . . x
αs

i xi−1 xi or x
β1

i xi−1 x
β2

i xi−1 . . . x
βs

i xi−1,

where αk, βk ∈ {γi, γi + 1}, and xi are as in equation (1).

Such a decomposition of a standard word w is called the i-partition of w. The block
xi is then the repeating block and the block xi−1 – the single block.

Example 5. Recall the word Sw(1, 2, 1, 3, 1) from Example 3. We have then:

Sw(1, 2, 1, 3, 1) ababaabababaabababaabababaababaab

1− partition x2
1 x0 x

3
1 x0 x

3
1 x0 x

3
1 x0 x

2
1 x0 x1

2− partition x2 x1 x2 x1 x2 x1 x
2
2 x1

3− partition x3
3 x2 x3

4− partition x4 x3

See Figure 2 for comparison.

The following facts characterize the possible bases of distinct cubes in standard words.
Their thesis are consequence of the very special structure of the subword graphs
(especially their compacted versions) of those words. For more information on the
subword graphs of standard words see for instance [3] and [17].

Lemma 6 (See [9]).
Let w = Sw(γ0, . . . , γn) be a standard Sturmian word and v be a factor of w such that
|xi| ≤ |v| < |xi+1|, where xi are as in equation (1). Then:

1. There is at most one position in xi (respectively xi−1) such that any occurrence of
v in w which starts in some xi-block (respectively xi−1-block) of the i-partition of
w has to start at this particular position in xi (respectively xi−1).

2. If v can start at position k in xi and at position l in xi−1 (k and l are uniqye
by 1), then we have k = l.
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Lemma 7.
The base of each cube in the standard word Sw(γ0, . . . , γn) has the length k · |xi|, where
0 < k < γi and xi’s are as in equation (1). The min-period of each cube equals qi for
some 0 ≤ i ≤ n.

Proof. Let w = Sw(γ0, . . . , γn) be a standard word and v = u3 be a cube in w such
that |xi| ≤ |u| < |xi+1|. We denote v = u(1) · u(2) · u(3) to be able to refer to each
occurrence of u in v. Due to Lemma 6, the factors u(1), u(2) and u(3) start at the same
(within the block) position l of some blocks of the i-partition of w. The distance
between two consecutive l position could be either k · |xi| or k · |xi| + |xi−1|. Recall
that every occurrence of xi−1 block is separated by γi or γi + 1 occurrences of the
xi block. Since |v| < |xi+1| and |xi+1| = γi|xi| + |xi−1| we have k < γi and the only
possible base of v is |u| = k · |xi|, for 0 < k < γi. Moreover, every standard word xi

is primitive, hence the minimal period of v has the length |xi| = qi.

We say that a cube is of type i if its min-period equals qi. The number of distinct
cubes of the type i in the word Sw(γ) is denoted by πi(γ).

Example 8. Let Sw(1, 2, 1, 3, 1) = ababaabababaabababaabababaababaab be a standard
word. We have 2 cubes of the type 1 and 7 cubes of type 3, see Figure 1 and Example 2
for comparison.

For each 0 ≤ i ≤ n let gen-run(i) be the value (as a word) of the longest run with
minimal period equal to qi. It is called a generative run of type i (see Figure 2 for an
example).

①✷ ①✷ ①✷ ①✷ ①✷①✶ ①✶ ①✶ ①✶

①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶①✶ ①✵ ①✵ ①✵ ①✵①✵

❛ ❛ ❛ ❛ ❛❜ ❜ ❜ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

❣�✁✂✄☎✁✆✟✞

Figure 2. The 1-partition (above) and 2-partition (below) of the word Sw(1, 2, 1, 3, 1). We have
gen-run(1) = x3

1xo, gen-run(2) = x2
2x1. The first generative run produces two different cubes, the

second produces no cubes

Lemma 9 (See [3]).
Each generative run of the type i is of the form:

gen-run(i) = (xi)
α · y,

where y is a proper prefix of xi.

Example 10. Let w = Sw(1, 2, 1, 3, 1) (see Figure 1). The generative run of type 1 has
the form gen-run(1) = (x1)

3x0 and generates two cubes (ab)3 and (ba)3. On the other
hand the generative run of type 2 has the form gen-run(2) = (x2)

2x1 and does not
generate any cube.
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3 Formula and algorithm for counting the number of cubes

In this section we present and prove formulas for the number of distinct cubes in any
standard word, that depend only on its compressed representation – the directive
sequence. The following zero-one function for testing the value of the remainder of
the division by 3 of a nonnegative integer x will be useful to simplify those formulas:

3k(x) =




1 if x mod 3 = k

0 if x mod 3 6= k
.

Recall that qi = |xi| and πi is the number of cubes of the type i in the word Sw(γ).

Theorem 11 (Main-Formulas).
The number of cubes in standard word Sw(γ0, γ1, . . . , γn) is given by the formula:

cubes(γ0, γ1, . . . , γn) =
n∑

i=0

πi(γ0, γ1, . . . , γn),

where:

(1) ( i ∈ [0, n− 3] ) ⇒ πi(γ) =
⌊γi + 1

3

⌋
qi + 31(γi) ·

(
qi−1 − 1

)

(2) πn−2(γ) =





⌊
γn−2 + 1

3

⌋
qn−2 + 31(γn−2) ·

(
qn−3 − 1

)
if γn > 1

⌊
γn−2

3

⌋
· qn−2 + 32(γn−2) ·

(
qn−3 + 1

)
if γn = 1

(3) πn−1(γ) =

⌊
γn−1

3

⌋
· qn−1 + 32(γn−1) ·

(
qn−2 − 1

)

(4) πn(γ) =

⌊
γn − 1

3

⌋
· qn + 30(γn) ·

(
qn−1 + 1

)

The proof of the above theorem is a matter of Section 4. Let us see some examples.

Example 12. Let Sw(1, 2, 1, 3, 1) be a standard word. Using formulas from Theorem 11
we have:

π0(1, 2, 1, 3, 1) = π2(1, 2, 1, 3, 1) = π4(1, 2, 1, 3, 1) = 0

π1(1, 2, 1, 3, 1) = 2 π3(1, 2, 1, 3, 1) = 7

and finally
cubes(1, 2, 1, 3, 1) = 9.

See Example 8 and Figure 1 for comparison.
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The number of cubes in Fibonacci words is given by the formula

cubes(Fn) = fn−3 − n+ 2,

where fk denotes the k-th Fibonacci number (see [7] for the proof). As the next
example we derive this formula using results from Theorem 11.

Example 13. Recall that the n-th Fibonacci word Fn is defined as:

Fn = Sw(1, 1, . . . , 1︸ ︷︷ ︸
n

).

Hence
(γ0, γ1, . . . , γn−1) = (1, 1, . . . , 1),

and for each i = 0, 1, . . . , n− 4, we have

πi(1, 1, . . . , 1) = fi−1 − 1.

Moreover

πn−3(1, 1, . . . , 1) = πn−2(1, 1, . . . , 1) = πn−1(1, 1, . . . , 1) = 0.

Taking into account the identity

k∑

i=−1

fi = fk+2 − 1

we have

cubes(1, . . . , 1︸ ︷︷ ︸
n

) =
n−4∑

i=0

(fi−1 − 1) =
n−5∑

i=−1

(fi − 1)

= fn−3 − 1− (n− 3) = fn−3 − n+ 2

Theorem 14.
The number of cubes in a standard word Sw(γ) can be computed in linear time with
respect to the length of the directive sequence γ (which is at least logarithmically
smaller than the real length of the whole word Sw(γ)).

Proof.
The formulas for the number of cubes in a standard word Sw(γ) depend directly on
the components of the directive sequence γ and the numbers qi (namely |xi|), see
Theorem 11. Recall that, by the equation (1), we have

qi+1 = γi · qi + qi+1,

hence every number qi can be computed by iteration of the equation (1) i times.
We can compute the numbers q0, q1, . . . , qn consecutively and at each step i of the
computation remember the number of cubes related to the value of qi. The number
of iterations performed by the algorithm corresponds directly to the length of the
directive sequence, hence it has the time complexity O(|γ|). See Algorithm 1 for
details.



96 Proceedings of the Prague Stringology Conference 2012

Algorithm 1: Cubes(Sw(γ))

1 cubes ←− 0;

2 q−1 ←− 1;
3 q0 ←− 0;

4 for k := 0 to n do

5 qk ←− γk qk−1 + qk−2 ;
6 update cubes depending on the value of γk;

7 return cubes;

4 Proof of Theorem 11

Let us denote by ŵ the word w with two last letters removed and by w̃ the word w

with two last letters exchanged.

The following fact will be useful in proofs and can be shown by a simple induction,
see for instance [12].

Lemma 15.
Let xi be as in equation (1) and i > 1. Then:

(a) xi−1 · xi = xi · x̃i−1

(b) The length of the longest prefix of xi−1xi with period qi equals |xix̂i−1|.

Example 16. Recall the word Sw(1, 2, 1, 3, 1) from Example 3. We have x2 = ababa,
x1 = ab and x̃1 = ba. Therefore

x1 · x2 = ab · ababa = ababa · ba = x2 · x̃1.

Let us fix throughout this section a standard word w = Sw(γ0, γ1, . . . , γn). We show
each point of Theorem 11 separately.

①✷①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✶①✶ ①✶

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 3. The illustration of Lemma 17: the structure of gen-run(2) and cubes of type 2 in the word
Sw(1, 2, 4, 1, 2)

Lemma 17.

(a) i ≤ n− 3 =⇒ gen-run(i) = (xi)
γi+2 · x̂i−1

(b) The point (1) from Theorem 11 is correct.
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Proof.

Point (a)
Let w = Sw(γ0, γ1, . . . , γn) be a standard word. Due to Fact 1 its i-partition has
the form:

xα1

i xi−1 x
α2

i xi−1 . . . x
αs

i xi−1 xi or x
β1

i xi−1 x
β2

i xi−1 . . . x
βs

i xi−1,

where αk, βk ∈ {γi, γi + 1}. Let us consider the inner factor

v = (xi)
γi+1 · xi−1 · xi.

Due to Lemma 15 the longest periodic prefix of v with period of the length |xi|
(namely the generative run of type i) has the form:

(xi)
γi+2 · x̂i−1

and this concludes the proof of this point.

Point (b)
It is obvious that every cube of type i must be derived from the generative run

of type i. Therefore, we have cubes with the bases: qi, 2 · qi, . . . ,
⌊
γi+1
3

⌋
· qi. Each

of them could be shifted to the right qi − 1 times producing altogether qi distinct
cubes with the same base.

Moreover, if γi mod 3 = 1, the subword v = (xi)
γi+2 is also a cube. According to

the structure of the generative run, v could be shifted to the right qi−1 − 2 times
producing altogether qi−1 − 1 distinct cubes with the same base. See Figure 3 for
an example of this case.

Finally the number of cubes of type i is given as:

πi(γ) =
⌊γi + 1

3

⌋
· qi + 31(γi) ·

(
qi−1 − 1

)
.

This completes the proof of the lemma.

Lemma 18.

(a) gen-run(n− 2) =




(xn−2)

γn−2+2 · x̂n−3 for γn > 1

(xn−2)
γn−2+1 · xn−3 for γn = 1

(b) The point (2) from Theorem 11 is correct.

Proof.

Point (a)
The case of γn > 1 folows the same argumentation as in proof of Lemma 17, hence
we can assume γn = 1. The standard word w = Sw(γ0, . . . , γn−1, 1) has the form:

w =

γn−1︷ ︸︸ ︷
(xn−2 · · · xn−2︸ ︷︷ ︸

γn−2

·xn−3) · · · (xn−2 · · · xn−2︸ ︷︷ ︸
γn−2

·xn−3) ·xn−2 · (xn−2 · · · xn−2︸ ︷︷ ︸
γn−2

·xn−3).

The longest run with the period of the length qi (namely the generative run of
type i) is the suffix of w:

(xn−2)
γn−2+1 · xn−3

and this concludes the proof of this point.
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Point (b)
Similarly as in the proof of Point (a) we assume γn = 1. Every cube of type n− 2
is derived from the generative run of type n − 2. Therefore we have qn−2 cubes
for each base length: qi, 2 · qi, . . . , ⌊

γn−2

3
⌋ · qi. Moreover, if γn−2 mod 3 = 2, the

factor (xn−2)
γn−2+1 is also a cube, which could be shifted qn−3 times. Hence we

have qn−3 + 1 additional cubes with the base γn−2+1
3
· qn−2. See Figure 4 for an

example of this case.

Finally we have

πn−2(γ) =

⌊
γn−2

3

⌋
· qn−2 + 32(γn−2) ·

(
qn−3 + 1

)

and the proof is complete.

①✷ ①✷ ①✷ ①✷ ①✷ ①✷ ①✷①✶ ①✶ ①✶

❛ ❛ ❜ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛ ❛❜ ❜ ❜ ❜ ❜ ❜ ❜ ❜❜
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Figure 4. The illustration of the Lemma 18: the structure of gen-run(2) and cubes of the type 2
(i.e. type n− 2) in the word Sw(2, 1, 2, 2, 1)

Lemma 19.

(a) gen-run(n− 1) = (xn−1)
γn−1+1 · x̂n−2

(b) The point (3) from Theorem 11 is correct.

Proof.

Point (a)
By definition the word w = Sw(γ0, γ1, . . . , γn) has the form:

w =

γn︷ ︸︸ ︷
(xn−1 · · · xn−1︸ ︷︷ ︸

γn−1

·xn−2) · (xn−1 · · · xn−1︸ ︷︷ ︸
γn−1

·xn−2) · · · (xn−1 · · · xn−1︸ ︷︷ ︸
γn−1

·xn−2) ·xn−1.

Due to Lemma 15 the longest periodic factor of w with period of the length |xn−1|
(namely the generative run of type n− 1) has the form:

(xn−1)
γn−1+1 · x̂n−2

and this concludes the proof of this point.
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Point (b)
According to the structure of gen-run(n − 1) we have qn−1 cubes for each base
length: qn−1, 2 · qn−1, . . . , ⌊

γn−1

3
⌋ · qn−1. Moreover, if γn−1 mod 3 = 2, the factor

(xn−1)
γn−1+1 is also a cube, which could be shifted qn−1 − 2 times. Hence we have

qn−2− 1 additional cubes with the base γn−1+1
3
· qn−1. See Figure 5 for an example

of this case.

Finally we have

πn−1(γ0, γ1, . . . , γn) =

⌊
γn−1

3

⌋
· qn−1 + 32(γn−1) ·

(
qn−2 − 1

)
.

and this concludes the proof.

①✸ ①✸ ①✸
①✷

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛❜❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 5. The illustration of the Lemma 19: the structure of gen-run(3) and cubes of the type 3
(i.e. type n− 1) in the word Sw(1, 1, 2, 2, 1)

Lemma 20.

(a) gen-run(n) = (xn)
γn · xn−1

(b) The point (4) from Theorem 11 is correct.

Proof.

Point (a)
By definition the word w = Sw(γ0, γ1, . . . , γn) has the form:

w = xn · xn · · · xn︸ ︷︷ ︸
γn

·xn−1.

Since xn−1 is the prefix of xn, the value of generative run of type n is the whole
word w.

Point (b)
According to the structure of gen-run(n) we have qn cubes for each base length:
qn, 2 · qn, . . . , ⌊

γn−1
3
⌋ · qn. Moreover, if γn mod 3 = 0, the factor (xn)

γn is also a
cube, which could be shifted qn−1 times. Hence we have qn−1 +1 additional cubes
with the base γn

3
· qn. See Figure 6 for an example of this case.

Finally we have

πn(γ0, γ1, . . . , γn) =

⌊
γn − 1

3

⌋
· qn + 30(γn) ·

(
qn−1 + 1

)

and this completes the proof.
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①✸ ①✸ ①✸
①✷

❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜ ❛ ❜ ❛ ❛ ❜ ❛ ❛ ❜

❣�✁✂✄☎✁✆✝✞

Figure 6. The illustration of Lemma 20: the structure of gen-run(3) and cubes of the type 3
(i.e. type n) in the word Sw(1, 1, 2, 3)

Proof (of Theorem 11).
The sets of distinct cubes of type i and distinct cubes of type j are disjoint for i 6= j.
Therefore, the thesis of Theorem 11 follows by summing up the formulas for number
of cubes of all types from Lemma 17, Lemma 18, Lemma 19 and Lemma 20.

5 Standard words with large number of cubes

In this section we show the family of standard words rich in cubes. Experimental evi-
dence shows that asymptotically this family achieves the highest ratio of the number
of cubes to the length of the word.

Theorem 21.
Let γk = (1, . . . , 1︸ ︷︷ ︸

k

, 2, 3, 1) be a directive sequence and wk = Sw(γk) be a standard

word. We have:

lim
k→∞

cubes(wk)

|wk|
=

3φ+ 2

9φ+ 4
≈ 0.36924841 . . .

where φ =
√
5+1
2

.

Proof. Denote by fk the k-th Fibonacci numer:

f−1 = 1; f0 = 1; f1 = 2; f2 = 3; f4 = 5; . . .

By definition of standard words we have

|Sw(γk)| = 9fk + 4fk−1.

According to Theorem 11 we have

πi = fi−1 − 1 for i = 0, . . . , k − 1,

πk = fk−1 + 1, πk+1 = 2fk + fk−1, πk+2 = 0.

Taking into account the well known identity

k∑

i=−1

fk = fk+2 − 1
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we obtain
k−1∑

i=0

(fi−1 − 1) =
k−2∑

i=−1

(fi − 1) = fk − k − 1.

Altogether we have

cubes
(
Sw(γk)

)
= 3fk + 2fk−1 − k.

Denote by

βk =
fk

fk−1

.

Then we have
lim
k→∞

βk = φ.

Therefore

lim
k→∞

cubes(wk)

|wk|
= lim

k→∞

3fk + 2fk−1 − k

9fk + 4fk−1

= lim
k→∞

3βk + 2−O(1)

9βk + 4

=
3φ+ 2

9φ+ 4

≈ 0.36924841 . . .

Remark 22. The extensive experimentation strongly suggests that the coefficient 3φ+2
9φ+4

from the last theorem equals also the upper bound for the asymptotic ratio between
the number of cubes and size of a standard words, see Table 1 for some examples.

Directive sequence Length Cubes Ratio

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1) 46368 10926 0.2356366459

(3, 3, 3, 3, 3, 3, 3, 3, 3, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 138069388 50878017 0.3684959985

(5, 5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 1028890 379883 0.3692163399

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 1) 125574 46349 0.3690971061

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 2) 222491 50529 0.2271058155

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1) 96917 28637 0.2954796372

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 4, 1) 154231 46349 0.3005167573

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1) 81790 28637 0.3501283775

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 3, 1) 169358 61475 0.3629884623

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 4, 3, 1) 213142 72421 0.3397781761

(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, . . . , 1, 1, 1, 1, 1, 1, 1︸ ︷︷ ︸
40

, 2, 3, 1) 3073549228 1134903130 0.3692483985

Table 1. The example standard words with the number of cubes and cubes density
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