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The well known Chomsky classification concerns the classification of grammars and
automata. It is sketched in the following table.

Type of grammars Type of automata

regular grammars finite automata
context-free grammars pushdown automata
context-sensitive grammars linear bounded automata
unrestricted grammars Turing machines

Algorithm processing some nonlinear structure (tree, matrix, n-dimensional array,
graph, . . . ), contains, in some form, a statement like this:

Do traversing the structure and perform the following operations. . .

Such statement leads to a linearisation of the structure in question. There is a
possibility to divide such process into two parts:

1. Creating a linear notation of the structure.
2. Processing the linear notation of the structure.

The question which can be asked is about properties of linear notations of some
type of structures. Some of properties of such linear notations can be used for design of
algorithms for their processing. The following table shows types of automata suitable
as models for processing linear notations of different types of graphs.

Type of graphs Type of automata Discipline

“linear” graphs finite automata stringology
trees pushdown automata arbology
directed acyclic graphs linear bounded automata dagology
general graphs Turing machines ?

“Linear” graphs are representations of texts. The use of finite automata for this
case has been described in many publications [3].

Linear notations of trees are context-free languages. Therefore, pushdown auto-
mata can serve as good models for algorithms in arbology [1,2]. Next examples show
how to transfer the knowledge from stringology to arbology.

Example 1. Pattern matching
Given string t = a2a2a0a1a0a1a0. The nondeterministic finite automaton for

matching the string t has the transition diagram depicted in Figure 1.
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Figure 1. Transition diagram of nondeterministic finite automaton for string t from Example 1

Example 2.

String t from Example 1 is in fact the prefix notation of the tree depited in Figure 2.
The transition diagram of nondeterministic subtree matching automaton is shown in
Figure 3.
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Figure 2. Tree t from Example 2 and its prefix notation
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a0|ε 7→ S
a1|S 7→ S
a2|SS 7→ S

a0|ε 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S a0|ε 7→ S a1|S 7→ S a2|SS 7→ S

Figure 3. Transition diagram of the pushdown automaton from Example 2

Example 3.

It can be seen that shapes of transition diagrams of both automata, finite and push-
down ones, in Figures 1 and 3 are the same. They differ by pushdown operations con-
tained in pushdown automata. The pushdown atomaton from Figure 3 is input-driven
and therefore it can be determinised in the same way as finite automaton. Figure 4
shows transition diagrams of both, determistic finite and deterministic pushdown
automata.

Next example shows the similarity of shapes of factor automaton and subtree
pushdown automaton accepting all factors of a string and all subtrees of a tree,
respectively.

Example 4. Factor and subtree automata
Figure 5 shows transition diagrams of nondeterministic factor automaton and non-
deterministic subtree automaton for string t = a2a2a0a1a0a1a0 which is the prefix
notation of tree from Figure 2.
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a2|S 7→ SS a2|S 7→ SS a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε

a0|S 7→ ε
a1|S 7→ S a2|S 7→ SS

a2|S 7→ SS

a1|S 7→ S
a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a0|S 7→ ε

a1|S 7→ S

a1|S 7→ S
a0|S 7→ ε

a2|S 7→ SS
a2|S 7→ SS

a2|S 7→ SS
a2|S 7→ SS

Figure 4. Transition diagrams of deterministic finite and pushdown automata from Example 2
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a0|S 7→ ε a1|S 7→ S a0|S 7→ ε a1|S 7→ S a0|S 7→ ε
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Figure 5. Transition diagram of nondeterministic factor and subtree pushdown automata for tree t

in prefix notation pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 4
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Transition diagrams of deterministic factor and deterministic subtree pushdown
automata are depicted in Figures 6 and 7.
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Figure 6. Transition diagram of deterministic suffix automaton for string a2 a2 a0 a1 a0 a1 a0
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Figure 7. Transition diagram of deterministic subtree PDA Mdps(t1) for tree in prefix notation
pref(t1) = a2 a2 a0 a1 a0 a1 a0 from Example 5

There is a difference between these two deterministic automata. The factor au-
tomaton accepts all factors without any additional conditions. On the other hand,
the subtree automaton accepts linear notations of subtrees only. Therefore transitions
from states [3, 5, 7] and [5, 7] to states [4, 6] and [6] for input symbol a1, respectively,
are omitted in the subtree automaton. The reason is that linear notations of subtrees
are either a0 or a1a0 in these cases. If they are exteded by any symbol, they are no
more linear notations of subtrees. The end of linear notation of a subtree is found
using pushdown automaton by empty pushdown store.

Next example shows how to represent a matrix as an acyclic directed graph.
Moreover, a linear representation of of this graph is shown which can be processed
by linear bounded automaton. The principle can be easily extended to n-dimensional
arrays [4].

Example 5. Representation of a matrix
A matrix is represented as a directed acyclic graph using relations to the right neigh-
bour and lower neighbour. The next step is the construction of the spanning tree of
this graph and adition of some pointers instead of missing edges.
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Figure 8. Representation of a matrix: A matrix is represented as a directed acyclic graph using
relations to the right neighbour and lower neighbour. The next step is the construction of the
spanning tree of this graph and adition of some pointers instead of missing edges
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