
Swap Matching in Strings

by Simulating Reactive Automata

Simone Faro

Università di Catania, Dipartimento di Matematica e Informatica
Viale Andrea Doria 6, I-95125 Catania, Italy

faro@dmi.unict.it

Abstract. The pattern matching problem with swaps consists in finding all occurrences
of a pattern P in a text T , when disjoint local swaps in the pattern are allowed. In this
paper we introduce a new theoretical approach to the problem based on a reactive au-
tomaton modeled after the pattern, and provide two efficient non standard simulations
of the automaton, based on bit-parallelism. The first simulation can be implemented
by at least 7 bitwise operations, while the second one involves only 2 bitwise operations
to simulate the automaton behavior, when the input pattern satisfies particular condi-
tions. The resulting algorithms achieve O(n) worst-case time complexity with patterns
whose length is comparable to the word-size of the target machine.

Keywords: pattern matching with swaps, nonstandard pattern matching, combina-
torial algorithms on words, bit parallelism

1 Introduction

The string matching problem with swaps (swap matching problem, for short) is a
well-studied variant of the classic string matching problem. It consists in finding all
occurrences, up to character swaps, of a pattern P of length m in a text T of length
n, with P and T sequences of characters drawn from a same finite alphabet Σ of size
σ. More precisely, the pattern is said to swap-match the text at a given location j if
adjacent pattern characters can be swapped, if necessary, so as to make it identical
to the substring of the text ending (or, equivalently, starting) at location j. All swaps
are constrained to be disjoint, i.e., each character can be involved in at most one
swap. Moreover, we make the agreement that identical adjacent characters are not
allowed to be swapped.

This problem is of relevance in practical applications such as text and music retrie-
val, data mining, network security, and many others. Following [18], we also mention
a particularly important application of the swap matching problem in biological com-
puting, specifically in the process of translation in molecular biology, with the genetic
triplets (otherwise called codons). In such application one wants to detect the possible
positions of the start and stop codons of a mRNA in a biological sequence and find
hints as to where the flanking regions are, relative to the translated mRNA region.

In the field of natural language processing the transposition of two adjacent char-
acters in a text is a most common typing error. Thus several algorithms for the
spell-checking problem are designed in order to identify swaps of characters in their
matching engines.

The swap matching problem was introduced in 1995 as one of the open problems
in nonstandard string matching [19]. The first nontrivial result was reported by Amir

et al. [1], who provided a O(nm
1

3 logm)-time algorithm in the case of alphabet sets
of size 2, showing also that the case of alphabets of size exceeding 2 can be reduced

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata, pp. 7–20.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

8 Proceedings of the Prague Stringology Conference 2013

to that of size 2 with a O(log2 σ)-time overhead, subsequently reduced to O(log σ) in
the journal version [2]. Amir et al. [4] studied some rather restrictive cases in which a
O(m log2 m)-time algorithm can be obtained. More recently, Amir et al. [3] solved the
swap matching problem in O(n logm log σ)-time. The above solutions are all based
on the fast Fourier transform (FFT).

In 2008 the first attempt to provide an efficient solution to the swap matching
problem without using the FFT technique has been presented by Iliopoulos and Rah-
man in [18]. They introduced a new graph-theoretic approach to model the problem
and devised an efficient algorithm, based on the bit-parallelism technique [5], which
runs in O((n+m) logm)-time, in the case of short patterns.

In 2009, Cantone and Faro [9,6] presented a new efficient algorithm, named Cross-
Sampling (CS), which simulates a non-deterministic automaton with 2m states and
3m − 2 transitions. The CS algorithm though characterized by a O(nm) worst-case
time complexity, admits an efficient bit-parallel implementation, named Bit-Parallel-
Cross-Sampling (BPCS), which achieves O(n) worst-case time and O(σ) space com-
plexity in the case of short patterns fitting in few machine words.

In this paper we present a new theoretical model to solve the swap matching
problem in strings, based on reactive automata [16,13]. Specifically the automaton
used in our model has only m states and at most 3m − 2 transitions. Moreover it
has 8m − 12 reactive links. We propose also two different non-standard simulations
of the automaton based on bit parallelism. The first approach works by encoding the
transitions of the automaton and leads to an algorithm with linear worst case time
complexity and O(σ)-space complexity, in the case of short patterns. Our second
approach uses a simpler encoding and, under suitable conditions, it turns out to be
very efficient in practice, achieving O(n) worst case time complexity and requiring
O(σ2)-extra space. However in the general case it works as an oracle and needs an
extra verification phase when a candidate occurrence is found. In this case its worst
case time complexity is O(nm).

The paper is organized as follows. In Section 2 we introduce some notions and
definitions. Then in Section 3 we introduce the notion of swap reactive automaton
and propose two non standard simulations of it based on bit parallelism. We draw
our conclusions in Section 5.

2 Notations and Definitions

Given a string P = p0p1 · · · pm−1 of length m ≥ 0, we represent it as a finite array
P [0 ..m− 1]. In particular, for m = 0 we obtain the empty string ε. We denote by pi
(or P [i]) the (i+1)-st character of P , for 0 ≤ i < m, and by P [i .. j] the substring of P
contained between the (i+1)-st and the (j+1)-st characters of P , for 0 ≤ i ≤ j < m.
For any two strings P and P ′ we say that P ′ is a prefix of P if P ′ = P [0 .. i− 1], for
some 0 ≤ i ≤ m. We denote by Pi the nonempty prefix P [0 .. i] of P of length i + 1,
for 0 ≤ i < m.

Definition 1. A swap permutation for a string P of length m is a permutation π :
{0, ...,m− 1} → {0, ...,m− 1} such that:

(a) if π(i) = j then π(j) = i (characters at positions i and j are swapped);
(b) for all i, π(i) ∈ {i− 1, i, i+ 1} (only adjacent characters can be swapped);
(c) if π(i) 6= i then P [π(i)] 6= P [i] (identical characters can not be swapped).

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 9

For a given string P and a swap permutation π for P , we write π(P) to denote
the swapped version of P , namely π(P) = P [π(0)] · P [π(1)] · · ·P [π(m− 1)].

Definition 2. Given a text T of length n and a pattern P of length m, P is said
to swap-match (or to have a swapped occurrence) at location j ≥ m − 1 of T if
there exists a swap permutation π of P such that π(P) matches T at location j, i.e.,
π(P) = T [j −m+ 1 .. j]. In such a case we write P ∝ Tj.

It can be proved [7] that if P has a swap occurrence at location j of the text T ,
then the permutation π such that π(P) matches T at location j, is unique.

A finite automaton (FA) is a 5-tuple A = (Q,Σ, δ, q0, F), where Q is a set of
states, q0 ∈ Q is the initial state, F ⊆ Q is the collection of final states, Σ is an
alphabet, and δ ⊆ (Q×Σ ×Q) is the transition relation.

Definition 3 (Switch Reactive Transformation). Let δ ⊆ (Q × Σ × Q) be the
transition relation of an automaton A and let ϕ ⊆ δ. Let T+, T− be two subsets of
δ × δ. A transformation δ → δϕ, for ϕ ⊆ δ, is defined as follows

δϕ = (δ \ {γ | γ ∈ δ and ∃ τ ∈ ϕ such that (τ, γ) ∈ T−})
∪ {γ | γ ∈ δ and ∃ τ ∈ ϕ such that (τ, γ) ∈ T+}

The reactive links are intended to be applied simultaneously.

Definition 4 (Switch Reactive Automaton). A reactive automaton is an ordi-
nary non-deterministic automaton with a switch reactive transformation, i.e. a triple
R = (A, T+, T−) which defines the switch reactive transformation above.

Definition 5 (Nondeterministic Run). Let S = s0s1 · · · sn−1 be a word on the al-
phabet Σ and let R = (A, T+, T−) be a reactive automaton, where A = (Q, q0, Σ, F, δ).
The nondeterministic run over S is a sequence of pairs (Qk, δk), for k = 0, . . . , n, with
Qk ⊆ Q is the set of active states, and δk ⊆ δ is the set of active transitions. It can
be formally defined as follows:

(Qk, δk) =

{

({q0}, δ) if k = 0
({q | (r, sk−1, q) ∈ δk−1 with r ∈ Qk−1}, δ

ϕ
k−1) if k > 0

where ϕ = {(r, sk−1, q) | (r, sk−1, q) ∈ δk−1 and r ∈ Qk−1}.

We say that the string S is accepted by the reactive automaton if the nondeter-
ministic run 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 over S is such that Qn ∩ F 6= ∅.

Finally, we recall the notation of some bitwise infix operators on computer words,
namely the bitwise and “&”, the bitwise or “|”, and the left shift “≪” operator
(which shifts its first argument to the left by a number of bits equal to its second
argument). We say that a bit is set to indicate that its value is equal to 1.

10 Proceedings of the Prague Stringology Conference 2013

3 A New Algorithm Based on Reactive Automata

Reactive automata [16,13] are used to reduce dramatically the number of states in
both deterministic and the non-deterministic automata. As stated by Definition 3
and Definition 4, a reactive automaton has extra links whose role is to change the
behavior of the automaton itself. In this section we present a new solution for the
swap matching problem in strings based on reactive automata.

In particular, we show in Section 3.1 how to construct a reactive automaton which
recognizes all swap occurrence of a given input pattern and prove its correctness. Then
we give two non-standard approach to simulate such automaton in Section 3.2 and
in Section 3.3.

3.1 The Swap Reactive Automaton

The automaton which we use in our solution is called swap reactive automaton. It is
defined as follows.

Definition 6 (Swap Reactive Automaton). Let P be a pattern of length m over
an alphabet Σ. The Swap Reactive Automaton (SRA) for P is a Reactive Automaton
R = (A, T+, T−), with A = (Q,Σ, δ, q0, F), such that

– Q = {q0, q1, . . . , qm} is the set of states;
– q0 is the initial state;
– F = {qm} is the set of final states;
– δ is the transition relation defined as

δ = {(qi, pi, qi+1) | 0 ≤ i < m} ∪ no swaps
{(qi, pi+1, qi+1) | 0 ≤ i < m− 1 and pi 6= pi+1} ∪ start of a swap
{(qi, pi−1, qi+1) | 1 ≤ i < m and pi 6= pi−1} ∪ end of a swap
{(q0, Σ, q0)} self loop

– T+ is the set of (switch on) reactive links defined as

T+ = {((qi, pi, qi+1), (qi, pi−1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1, } ∪
{((qi, pi+1, qi+1), (qi, pi−1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1} ∪
{((qi, pi−1, qi+1), (qi, pi, qi+1)) ∈ (δ × δ) | 0 < i < m− 1} ∪
{((qi, pi−1, qi+1), (qi, pi+1, qi+1)) ∈ (δ × δ) | 0 < i < m− 1}

– T− is the set of (switch off) reactive links defined as

T− = {((qi, pi, qi+1), (qi+1, pi, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 1} ∪
{((qi, pi−1, qi+1), (qi+1, pi, qi+2)) ∈ (δ × δ) | 1 ≤ i < m− 1} ∪
{((qi, pi+1, qi+1), (qi+1, pi+1, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 1} ∪
{((qi, pi+1, qi+1), (qi+1, pi+2, qi+2)) ∈ (δ × δ) | 0 ≤ i < m− 2}

The swap reactive automaton of a pattern P of length m has exactly m+1 states, (at
most) 3m− 2 transitions and (at most) 8m− 12 reactive links.

To simplify the notation we will use the symbol τ(i, j) to indicate the standard
transition starting from state qi and labeled by character pj, i.e. τ(i, j) = (qi, pj , qi+1).
Since all standard transitions of the automaton starting from state qi, reach the state
qi+1, the notation defined above is not ambiguous.

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 11

Figure 1. The general structure of a swap reactive automaton. Standard transitions in δ are repre-
sented with solid lines, reactive links in T− are represented with dashed lines, while reactive links
in T+ are represented with dotted lines.

q0 q1 q2 q3 q4 q5 q6
a g c c t c

a g c t

g c t c

Figure 2. The swap reactive automaton for the pattern P = agcctc. Standard transitions are rep-
resented with solid lines while reactive links in T− are represented with dashed lines. Reactive links
in T+ are not represented.

Figure 1 shows the general structure of a portion (from state qi−1 to state qi+2)
of the swap reactive automaton, while Figure 2 shows the swap reactive automaton
constructed for the pattern P = agcctc. Each state has 3 standard transitions to
the next state, with the exception states q0 and qm−1. Specifically state qi, for 0 <
i < m − 1, has transitions to state qi+1 labeled by characters pi−1, pi and pi+1,
respectively. Transitions labeled by character pi are not involved in any swap, those
labeled by character pi+1 start a new swap, while transitions labeled by character
pi−1 end a previously started swap. Due to its external positions, state q0 has only 2
transitions reaching state q1. Similarly state qm−1 has only two transitions reaching
state qm.

When a new swap starts (with a transition from qi to qi+1 labeled by pi+1) two
reactive links switch off the next transitions from state qi+1 with the exception of the
transition which ends the swap. Otherwise, when a swap ends (following a transition
labeled by pi−1) or no swap is involved in the current transition (following a transition
labeled by pi) a reactive link switches off the next transition which ends a swap.

The reactive links in T+ allows all transitions from qi to qi+1 to be active after any
step. The self loop of the initial state allows an occurrence of the pattern to begin at
any position of the text.

12 Proceedings of the Prague Stringology Conference 2013

The two following properties of an SRA trivially follows by Definition 6.

Property 7. There is no state qi ∈ Q, with 0 ≤ i < m, such that τ(i, i) and τ(i, i+ 1)
are both in δ, and pi = pi+1.

Property 8. There is no state qi ∈ Q, with 0 ≤ i < m, such that τ(i, i) and τ(i, i− 1)
are both in δ, and pi = pi−1.

In what follows we assume that P = p0p1p2 · · · pm−1 is a string of length m and
T = t0t1t2 · · · tn−1 is a string of length n, both over the alphabet Σ. Moreover we
assume that R = (A, T+, T−) is the SRA of P .

Lemma 9. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the SRA
R over the string T . If state qi ∈ Qj, with i > 0, then only one of the following
relations holds

(a) τ(i, i) /∈ δj and τ(i, i+ 1) /∈ δj, or
(b) τ(i, i− 1) /∈ δj

Proof. Without loose in generality, we suppose that pi, pi−1 and pi−2 are all different
characters.

If qi ∈ Qj then it has been reached from state qi−1 through one of three transitions
starting from qi−1, i.e. τ(i − 1, i − 2), τ(i − 1, i − 1) or τ(i − 1, i). Since both (τ(i −
1, i− 2), τ(i, i− 1)) and (τ(i− 1, i− 1), τ(i, i− 1)) are the only reactive links in T−

starting from τ(i− 1, i− 2) and τ(i− 1, i− 1), it follows that if qi is reached through
transitions label by pi−2 or pi−1 we have that τ(i− 1, i− 1) /∈ δj. Moreover τ(i, i) and
τ(i, i+ 1) are both in δ.

Similarly, if qi is reached through transitions label by pi, since the reactive links
(τ(i−1, i), τ(i, i)) and (τ(i−1, i), τ(i, i+1)) are the only in T− starting from τ(i−1, i),
we have that τ(i, i) /∈ δj and τ(i, i+ 1) /∈ δj, while τ(i, i− 1) ∈ δj. ⊓⊔

The following two technical results prove that the swap reactive automaton given
in Definition 6 recognizes all and only the strings ending with an occurrence of P .

Lemma 10. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If state qi+1 ∈ Qj+1, for 0 < i < m and 0 < j < n,
then one of the following relations holds

(a) Pi ∝ Tj, or
(b) Pi−1 ∝ Tj−1 and pi+1 = tj

Proof. We prove this result by induction on the value of i.
When i = 0 we have that q1 ∈ Q1, i.e. q1 is active after we read character tj of

the text. Thus it must be tj = p0 (in which case condition (a) holds) or tj = p1 (in
which case condition (b) holds).

Suppose now that the result holds for values less than i and prove it for i > 0.
Since qi+1 is active after we read tj it follows that qi has been active after we read
character tj−1. This because qi+1 can be reached only from state qi.

It implies by induction that

(1) Pi−1 ∝ Tj−1 or
(2) Pi−2 ∝ Tj−2 and pi = tj−1.

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 13

q
i−1

q
i

q
i+1

q
i−1

q
i

q
i+1

Case A Case B

p
i−1 p

i
p

i−1 p
i

p
i−2

p
i−1

p
i−2

p
i−1

p
i

p
i+1

p
i

p
i+1

Figure 3. Two different conditions described in Lemma 10. Active transitions are represented in
black lines, while switched off transitions are represented in light gray lines.

If (1) holds (see Figure 3 Case A) then state qi has been reached through the
transition labeled by pi−1 or through the transition labeled by pi−2. Since both reactive
links (τ(i − 1, i − 2), τ(i, i − 1)) and (τ(i − 1, i − 1), τ(i, i − 1)) are in the set T−, it
turns out that transition τ(i, i− 1) /∈ δj−1, before reading tj. As a consequence, state
qi+1 can be reached only through the transition labeled by character pi (in which case
condition (a) holds) or through transition labeled by character pi+1 (in which case
condition (b) holds).

Otherwise, if condition (2) holds (see Figure 3 Case B), it follows that state qi
has been reached through transition labeled by character pi. Since both reactive links
(τ(i− 1, i), τ(i, i)) and (τ(i− 1, i), τ(i, i+ 1)) are in T−, it turns out that transitions
τ(i, i) and τ(i, i+1) are switched off. As a consequence state qi+1 can be reached only
through transition τ(i, i− 1), in which case condition (a) holds. ⊓⊔

Corollary 11. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If state qm ∈ Qj+1 then P ∝ Tj.

Proof. Observe that state qm can be reached only by state qm−1, through the transi-
tion labeled by character pm−1 (no swap involved) or through the transition labeled
by character pm−2 (end of a swap). The result follows by such observation and by
Lemma 10. ⊓⊔

Lemma 12. Let 〈(Q0, δ0), (Q1, δ1), . . . , (Qn, δn)〉 be a nondeterministic run of the
SRA R over the string T . If Pi ∝ Tj then qi+1 ∈ Qj+1.

Proof. We prove the lemma by induction on the value of i. For the base case, observe
that if P0 ∝ Tj then we have p0 = tj. Since q0 is always active, due to the self loop,
and (q0, p0, q1) ∈ δ, it follows that q1 is active after we read tj.

Suppose now that i > 0 and assume that the result holds for values less than i.
The condition Pi ∝ Tj implies that

(1) Pi−2 ∝ Tj−2, pi−1 = tj and pi = tj−1, or
(2) Pi−1 ∝ Tj−1 and pi = tj.

If condition (1) holds then, by induction, state qi−1 is active after we read char-
acters tj−2. This implies that the transition τ(i− 1, i) is switched on. Since tj−1 = pi,
after we read character tj−1 state qi is active. Finally, observe that the reactive link
(τ(i−1, i), τ(i, i−1)) is not in T−. Thus the transition τ(i, i−1) is switched on before

14 Proceedings of the Prague Stringology Conference 2013

BPSRA(P,m, T, n)
1. for c ∈ Σ do
2. M [c]← 0
3. for i← 0 to m− 1 do
4. M [pi]←M [pi] | (1≪ i)
5. F ← 1≪ (m− 1)
6. A← 0
7. B ← 0m−11 & M [t0]
8. C ← 0m−11 & M [t1]
9. for i← 1 to n− 1 do

10. H ← (A≪ 1) | (M ≪ 1) | 1
11. A← (C ≪ 1) & M [tj]
12. B ← H & M [tj]
13. C ← H & M [tj+1]
14. if ((A | B) & F) then
15. output(i−m+ 1)

Figure 4. The Bit Parallel Swap Reactive Automaton Matcher for swap matching.

reading character tj. Since tj = pi−1, we can conclude that after we read character tj
the state qi+1 is active.

Suppose now that condition (2) holds. Then we can state, by induction, that qi is
active after we read charactre tj−1. This implies that the transition τ(i, i) is switched
on. Since tj = pi, after we read character tj state qi+1 is active. ⊓⊔

The following Theorem 13 trivially follows by Corollary 11 and Lemma 12

Theorem 13 (Correctness). The swap reactive automaton R recognizes all and
only the strings S over Σ such that P ∝ S. ⊓⊔

3.2 A Bit Parallel Simulation

In this section we show how to simulate the swap reactive automaton of an input
pattern P , as given in Definition 6, by using bit-parallelism [5].

The bit-parallelism technique takes advantage of the intrinsic parallelism of the bit
operations inside a computer word, allowing to cut down the number of operations
that an algorithm performs by a factor of at most w, where w is the number of
bits in the computer word. It has been extensively used in the field of exact string
matching [14] for efficiently simulating non-deterministic automata. However it has
also been efficiently used in the field field of multiple pattern matching [10,11,12] and
approximate string matching [8,17].

In contrast with standard bit-parallel simulation of non-deterministic automata,
where states of the automaton are represented by bits in a bit vector, we use bits to
represent transitions of the automaton. In this context an active transition which has
been just crossed during the last step is represented by a bit set to 1, while all other
transitions are represented by a bit set to 0.

Let P = p0p1p2 · · · pm−1 be a pattern of length m and let T = t0t1t2 · · · tn−1 be
a text of length n over Σ. Moreover let R = (A, T+, T−) be the SRA of P . The

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 15

representation of R uses an array M of σ bit-vectors, each of size m, where the i-th
bit of M [c] is set if pi = c.

Automaton configurations are then encoded using 3 bit-vectors of m bits. A bit
vector A encodes transitions from qi to qi+1 labeled by character pi−1, a bit vector B
encodes transitions from qi to qi+1 labeled by character pi, while another bit vector
C encodes transitions from qi to qi+1 labeled by character pi+1. Specifically we have
that the i-th bit of A is set iff (qi, pi−1, qi+1) is switched on and qi+1 is active, the i-th
bit of B is set iff (qi, pi, qi+1) is switched on and qi+1 is active and, finally, the i-th bit
of C is set iff (qi, pi+1, qi+1) is switched on and qi+1 is active.

When a search starts, the configurations of the 3 bit-vectors are initialized as
A = 0m, B = (0m−11 & M [t0]) and C = (0m−11 & M [t1]).

Then, the text T is scanned, character by character, from left to right and the
automaton configuration is updated accordingly. Specifically transitions on character
tj are simulated by performing the following bitwise operations

(i) A = (C ≪ 1) & M [tj−1]
(ii) B = ((A≪ 1) | (B ≪ 1) | 1) & M [tj]
(iii) C = ((A≪ 1) | (B ≪ 1) | 1) & M [tj+1]

Operation (i) ends a swap and indicates that transition τ(i, i− 1) can be crossed
only if τ(i − 1, i) has been crossed in the previous step and tj = pi−1. Operations
(ii) and (iii) indicates that transitions τ(i, i) and τ(i, i + 1) can be crossed only if
τ(i− 1, i− 1) or τ(i− 1, i− 2) have been crossed at the previous step and, moreover,
tj = pi or tj = pi+1, respectively.

The simulation showed above uses 7 bitwise operations for each text character
scanned during the searching phase.

After we perform transition on character tj, state qm is active if and only if the
rightmost bit in A, or in B, is active. Specifically if the test ((A | B) & 10m−1) 6= 0
is true, then an occurrence has been found ending at position j of the text.

The resulting algorithm is named Bit Parallel Swap Reactive Automaton Matcher
(BPSRA). Its pseudocode is shown in Figure 4.

The preprocessing phase of the BPRSA Matcher (lines 1–5) has a O(m+ σ)-time
complexity. Its searching phase (lines 6–15) has a O(n)-time complexity, if m ≤ w.
When m > w we need to represent the whole automaton by using 3⌈n/m⌉ computer
words, so that the worst case time complexity is O(n⌈n/m⌉).

3.3 A More Efficient Simulation

In this section we propose a more efficient simulation of the swap reactive automaton
of an input pattern P , by using bit parallelism.

As before, let P = p0p1p2 · · · pm−1 and T = t0t1t2 · · · tm−1 be two strings of length
m over the alphabet Σ. Moreover let R = (A, T+, T−) be the SRA of P .

Before entering into details it’s convenient to give the following definition of a
string with disjoint triplets, which we will use in the following discussion.

Definition 14 (String With Disjoint Triplets). A string S = s0s1s2 · · · sm−1, of
length m, over an alphabet Σ, is a string with disjoint triplets (SDT) if si 6= si+2, for
i = 0, . . . ,m− 3.

The above definition implies that in the SRA of S the standard transitions from
state qi to qi+1, for i = 0, . . . ,m− 1, are labeled by different characters.

16 Proceedings of the Prague Stringology Conference 2013

Text 4 8 16 32

Genome Sequence 0.6080 0.2140 0.0170 0.0010

Protein Sequence 0.8420 0.6160 0.3140 0.1170

English Text 0.9380 0.8440 0.6820 0.4380

Italian Text 0.9130 0.7630 0.5100 0.2500

French Text 0.9230 0.7910 0.5930 0.3250

Chinese Text 0.9860 0.9510 0.8990 0.7750

Table 1. Relative Frequency of SDT in different text buffers.

SDT are very common strings in real data, especially in such cases where the size
of the alphabet is large. For instances they are common in natural language texts
where it’s not common to find words with equal characters with a distance of one
character. Table 1 shows the relative frequency of SDT in different text buffers and in
particular on a genome sequence, on a protein sequence and on four natural language
texts. For each text buffer data have been collected by extracting 10.000 random
patterns of different length (ranging from 4 to 32) from the text, and computing the
corresponding frequency of SDT.

With the exception of biological sequences, where an SDT is generally uncommon
due to the small size of the corresponding alphabet, in the case of natural language
texts the percentage of SDT are often over 70%. In particular it turns out that English
and Chinese texts have the largest percentage of SDT.

In the following we propose an efficient simulation of the swap reactive automaton
of a pattern P which works properly when P is a SDT. Conversely, if P is not a SDT,
then the simulation works as an oracle, i.e. it may recognize also strings which are
not swap occurrences of the pattern. In this last case an additional naive verification
must be performed. The actual advantage in using this new simulation is that it can
be performed by only 2 bitwise operations for each iteration of the algorithm. This
is a significant improvement compared with previous simulations where at least 7
bitwise operations are needed for each iteration of the algorithm.

In the new proposed simulation the representation of R uses an array B of σ2 bit-
vectors, each of size m, where the i-th bit of B[c1, c2] (which we indicate as B[c1, c2]i)
is defined as

B[c1, c2]i =

{

1 if τ(i, 1), τ(i+ 1, 2) ∈ δ and (τ(i, 1), τ(i+ 1, 2)) /∈ T−

0 otherwise
(1)

for c1, c2 ∈ Σ, and 0 6 i < m. Roughly speaking, the matrix M encodes the couples
of admissible consecutive transitions in R.

Automaton configurations are then encoded as a bit-vector D of m bits (the initial
state does not need to be represented), where the i-th bit of D is set if and only if
the state qi+1 is active.

When a search starts, the configurationD is initialized to B[t0, t1]. Then, while the
string T is read from left to right, the automaton configuration is updated accordingly
for each text character.

Suppose the last transition has been performed on character tj−1, with 0 < j <
n−1, leading to a configuration vector D of the SRA. Then a transition on character

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 17

tj can be implemented by the bitwise operations

D(j) =

{

B[t0, t1] if j = 1
(D(j−1) ≪ 1) & B[tj−1, tj] otherwise

(2)

It turns out that, if P is a SDT, then the simulation of the SRA described above
works properly, as stated by the following lemma.

Lemma 15. Let P be a SDT of length m and let T be a text of length n. Suppose the
matrix B is initialized according to (1) and suppose to scan the string T , from right
to left, and to perform transitions according to (2). After we read character tj of the
text the leftmost bit of D(j) is set if and only if P ∝ Tj.

Proof. Let R be the SRA of P . By Theorem 13 we know that R recognizes all and
only the prefix of T ending with a swap occurrence of P . We prove that, after we
read text character tj, state qi is active if and only if the i-th bit in D(j) is set. This
will prove the thesis.

We prove it by induction on i. The base case is when i = 1. If state q2 is active
after we scan the first two characters of T then one of the following relations holds:

(1) t0t1 = p0p1,
(2) t0t1 = p1p0, or
(3) t0t1 = p0p2.

Observe that if p0 = p1 only transition τ(0, 0) is in δ, otherwise both τ(0, 0) and
τ(0, 1) are in δ. Moreover we have also

– (τ(0, 0), τ(1, 1)) /∈ T−, thus the 2nd bit of B[p0, p1] is set;
– if τ(0, 1) ∈ δ then (τ(0, 1), τ(1, 0)) /∈ T−, thus the 2nd bit of B[p1, p0] is set;
– (τ(0, 0), τ(1, 2)) /∈ T−, thus the 2nd bit of B[p0, p2] is set;

Thus after the initialization D(1) = B[t0, t1], the second bit of D(1) is set, proving the
base case.

Conversely, if the second bit of B[t0t1] is set then, by equation 1, it follows that
both τ(0, 0) and τ(1, 1) are in δ and (τ(0, 0), τ(1, 1)) /∈ T−. Thus state q2 is active
after we scan t0t1.

Suppose now that the result holds for values less than i and prove it for i. If
state qi is active after we scan character tj, then state qi−1 is active just before
reading character tj−1 and, by induction, the (i− 1)-th bit of D(j−1) is active before
reading character tj−1. It follows that both (qi−2, tj−2, qi−1) and (qi−1, tj−1, qi) are
in δ and that transition (qi−1, tj−1, qi) is not switched off when qi−1 is active. Thus
((qi−2, tj−2, qi−1), (qi−1, tj−1, qi)) is not in T− and we can conclude that the k-th bit of
B[tj−2, tj−1] is set.

Conversely, suppose that the i-th bit of B[tj−2, tj−1] is set. Thus just before reading
character tj−1 the (i−1)-th bit ofD(j−1) is set and, by induction, state qi−1 is active. It
follows that the i-th bit of B[tj−2, tj−1] is set, which implies that both (qi−2, tj−2, qi−1)
and (qi−1, tj−1, qi) are in δ and the active link ((qi−2, tj−2, qi−1), (qi−1, tj−1, qi)) is not
in T−. We can conclude that after we read character tj−1, state qi is active. ⊓⊔

The resulting algorithm is named Bit Parallel Swap Reactive Oracle (BPSRO). Its
pseudocode is shown in Figure 5. The BPSRO algorithm works as the original Shift-
And algorithm [5] for the exact string matching problem. During the preprocessing

18 Proceedings of the Prague Stringology Conference 2013

BPSRO(P,m, T, n)
1. for c1, c2 ∈ Σ do B[c1, c2]← 0
2. for i = 1 to m− 1 do
3. B[pi−1, pi]← B[pi−1, pi] | (1≪ i)
4. B[pi, pi−1]← B[pi, pi−1] | (1≪ i)
5. if (i < m− 1) then
6. B[pi−1, pi+1]← B[pi−1, pi+1] | (1≪ i)
7. if (i > 1) then
8. B[pi−2, pi]← B[pi−2, pi] | (1≪ i)
9. if (i < m− 1) then

10. B[pi−2, pi+1]← B[pi−2, pi+1] | (1≪ i)
11. F ← 1≪ (m− 1), D ← 0
12. for i← 1 to n− 1 do
13. D ← ((D ≪ 1) | 1) & B[ti−1, ti]
14. if (D & F) then
15. if (P is a SDT) then output(i−m+ 1)
16. else check occurrence at position (i−m+ 1)

Figure 5. The Bit Parallel Swap Reactive Oracle Matcher for swap matching.

phase the algorithm computes the matrix B of bit masks. The preprocessing phase
(lines 1–11) has a O(m+ σ2)-time complexity and requires O(σ2) space.

During the searching phase the algorithm reads characters of the text, one by one,
and simulates transitions on the SRA, accordingly. If the leftmost bit of D is set after
we read character tj, i.e. if (D&10m−1) 6= 0, then an occurrence is reported at position
j −m + 1. The searching phase (lines 12–16) has a O(n)-time complexity, if m ≤ w
and P is an SDT. Assuming that P is an SDT, when m > w we need to represent
the whole automaton by using 3⌈n/m⌉ computer words, so that the worst case time
complexity is O(n⌈n/m⌉). In addition, when P is not an SDT, the algorithm works as
an oracle and an additional verification phase is needed in order to check all candidate
occurrences. Such a naive verification (line 16) takes O(m)-time, so that the overall
worst case time complexity of the algorithm is O(nm).

4 Experimental Results

In this section we briefly present experimental evaluations in order to understand the
performances of the newly presented algorithms.

Specifically we compared the Bit Parallel Swap Reactive Automaton algorithm
(BPSRA) and the Bit Parallel Swap Reactive Oracle algorithm (BPSRO) against
the Bit Parallel Cross Sampling algorithm (BPCS) [9,6], which is one of the most
efficient linear algorithm present in literature. Other practical algorithms are known
in literature [7] for the swap matching problem, which show a sub-linear behavior in
practical cases, however they use a backward scan of the text, an efficient technique
which can be applied to almost all automata based algorithm (including ours) and
which is out of the scope of the present paper.

All algorithms have been implemented in the C programming language and have
been tested using the Smart tool1, which have been provided for testing exact string

1 The Smart tool is available online at: http://www.dmi.unict.it/~faro/smart/

http://www.dmi.unict.it/~faro/smart/

Simone Faro: Swap Matching in Strings by Simulating Reactive Automata 19

m 2 4 8 16 32

BPCS 16.0 15.9 15.9 16.0 15.9

BPSRA 15.4 15.3 15.3 15.2 15.2

BPSRO 20.4 13.7 11.4 11.2 11.2

(A) genome sequence

2 4 8 16 32

15.9 15.9 16.1 16.1 16.2

15.3 15.8 15.4 15.3 15.3

12.0 11.2 11.4 11.3 11.3

(B) protein sequence

2 4 8 16 32

16.0 15.9 16.1 16.3 16.0

15.3 15.4 15.3 15.3 15.3

12.8 11.5 11.5 11.3 11.3

(C) natural language text

Table 2. Experimental results on (A) a genome sequence, (B) a protein sequence and (C) a natural
language text.

matching algorithm [14] but allows to be adapted also for approximate string match-
ing algorithms. The experiments were executed locally on an MacBook Pro with 4
Cores, a 2 GHz Intel Core i7 processor, 4 GB RAM 1333 MHz DDR3, 256 KB of L2
Cache and 6 MB of Cache L3. Algorithms have been compared in terms of running
times, including any preprocessing time.

For the evaluation we use a genome sequence, a protein sequence and a natural
language text (English language), all sequences of 4MB. The sequences are provided
by the Smart research tool. In all cases the patterns were randomly extracted from
the text and the value m was made ranging from 2 to 32. For each case we reported
the mean over the running times of 500 runs.

Table 4 shows experimental results on the three different sequences. Running times
are expressed in thousands of seconds. Best times have been boldfaced.

From the experimental results it turns out that the BPSRA algorithm has almost
the same performance of the BPCS algorithm, but is slightly better in all practical
cases. Both the BPCS and the BPSRA show a linear behavior. The BPSRO shows
instead a decreasing trend, which is much evident for the case of short patterns. This
behavior is due to the presence of a larger number of verification tests which must
be run when the pattern is short and is not an SNR. It turns out moreover that in
almost all cases the BPSO is faster than the other algorithms, due to its less complex
simulation engine.

5 Conclusions

In this paper we have presented a new theoretical approach to solve the swap matching
problem in strings. The new approach uses a reactive automaton with only m states
and (at most) 3m−2 transitions. We propose also two different approaches to simulate
the automaton by using bit-parallelism.

As in the case of the Cross Sampling algorithm the new proposed approach can
be extended to obtain more efficient solution by scanning the text from right to left.
Our future works will consider such improvements.

References

1. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein: Pattern
matching with swaps, in IEEE Symp. on Foundations of Computer Science, 1997, pp. 144–153.

2. A. Amir, Y. Aumann, G. M. Landau, M. Lewenstein, and N. Lewenstein: Pattern
matching with swaps. Journal of Algorithms, 37(2) 2000, pp. 247–266.

3. A. Amir, R. Cole, R. Hariharan, M. Lewenstein, and E. Porat: Overlap matching.
Inf. Comput., 181(1) 2003, pp. 57–74.

4. A. Amir, G. M. Landau, M. Lewenstein, and N. Lewenstein: Efficient special cases of
pattern matching with swaps. Inf. Proc. Letters, 68(3) 1998, pp. 125–132.

20 Proceedings of the Prague Stringology Conference 2013

5. R. Baeza-Yates and G. H. Gonnet: A new approach to text searching. Commun. ACM,
35(10) 1992, pp. 74–82.

6. M. Campanelli, D. Cantone, and S. Faro: A new algorithm for efficient pattern match-
ing with swaps, in IWOCA 2009: 20th International Workshop on Combinatorial Algorithms,
vol. 5874 of Lecture Notes in Computer Science, Springer, 2009, pp. 230–241.

7. M. Campanelli, D. Cantone, S. Faro, and E. Giaquinta: Pattern matching with swaps
in practice. International Journal of Foundation of Computer Science, 23(2) 2012, pp. 323–342.

8. D. Cantone, S. Cristofaro, and S. Faro: Efficient string-matching allowing for non-
overlapping inversions. Theor. Comput. Sci., 483 2013, pp. 85–95.

9. D. Cantone and S. Faro: Pattern matching with swaps for short patterns in linear time, in
SOFSEM 2009: Theory and Practice of Computer Science, 35th Conference on Current Trends
in Theory and Practice of Computer Science, vol. 5404 of Lecture Notes in Computer Science,
Springer, 2009, pp. 255–266.

10. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach, in Combinatorial Pattern Matching, vol. 6129 of
Lecture Notes in Computer Science, 2010, pp. 288–298.

11. D. Cantone, S. Faro, and E. Giaquinta: A compact representation of nondeterministic
(suffix) automata for the bit-parallel approach. Inf. Comput., 213 2012, pp. 3–12.

12. D. Cantone, S. Faro, and E. Giaquinta: On the bit-parallel simulation of the nondeter-
ministic aho-corasick and suffix automata for a set of patterns. J. Discrete Algorithms, 11 2012,
pp. 25–36.

13. M. Crochemore and D. M. Gabbay: Reactive automata. Inf. Comput., 209(4) Apr. 2011,
pp. 692–704.

14. S. Faro and T. Lecroq: The exact online string matching problem: A review of the most
recent results. ACM Comput. Surv., 45(2) 2013, p. 13.

15. S. Faro and M. O. Külekci: Fast multiple string matching using streaming SIMD extensions
technology, in String Processing and Information Retrieval - 19th International Symposium,
SPIRE 2012, vol. 7608 of Lecture Notes in Computer Science, Springer, 2012, pp. 217–228.

16. D. M. Gabbay: Pillars of computer science, Springer-Verlag, 2008, ch. Introducing reactive
Kripke semantics and arc accessibility, pp. 292–341.

17. S. Grabowski, S. Faro, and E. Giaquinta: String matching with inversions and transloca-
tions in linear average time (most of the time). Inf. Process. Lett., 111(11) 2011, pp. 516–520.

18. C. S. Iliopoulos and M. S. Rahman: A new model to solve the swap matching problem and
efficient algorithms for short patterns, in SOFSEM 2008, vol. 4910 of Lecture Notes in Computer
Science, Springer, 2008, pp. 316–327.

19. S. Muthukrishnan: New results and open problems related to non-standard stringology, in
Combinatorial Pattern Matching, CPM 95, vol. 937 of Lecture Notes in Computer Science,
Springer, 1995, pp. 298–317.

