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Abstract. A run in a string is a periodic substring which is extendable neither to
the left nor to the right with the same period. Strings containing many runs are of
interest. In this paper, we focus on the series of strings {ψ(φi(a))}i≥0 generated by two
kinds of morphisms, φ : {a, b, c} → {a, b, c}∗ and ψ : {a, b, c} → {0, 1}∗. We reveal a
simple morphism φr plays a critical role to generate run-rich strings. Combined with a
morphism ψ′, the strings {ψ′(φir(a))}i≥0 achieves exactly the same lower bound as the
current best lower bound for the maximum number ρ(n) of runs in a string of length
n. Moreover, combined with another morphism ψ′′, the strings {ψ′′(φir(a))}i≥0 give a
new lower bound for the maximum value σ(n) of the sum of exponents of runs in a
string of length n.
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1 Introduction

Repetitions are one of the most fundamental topics in stringology, and they are also
important for practical areas, such as string processing, data compression and bioin-
formatics. A run (or maximal repetition) in a string is a periodic substring which
is extendable neither to the left nor to the right with the same period. All repeti-
tions in a string can be succinctly represented by runs. Strings containing many runs
(we call them run-rich strings) are of interest to researchers. In 1999, Kolpakov and
Kucherov [12] showed that the maximum number ρ(n) of runs in a string of length n
is ρ(n) ≤ cn for some constant c. Since then, a great deal of efforts have been devoted
to estimate the constant c [8,17,9,18,4,3,10,16,15,19,14,13,2,5], while it is conjectured
that c < 1. The current best upper bound for ρ(n)/n is 1.029 due to Crochemore et

al. [5] in 2011, and the current best lower bound is 0.9445757 due to Simpson [19] in
2010.

The maximum value σ(n) of sum of exponents in runs in a string of length n is
of another concern. Clearly 2ρ(n) ≤ σ(n), since each exponent in a run is at least 2.
The current best upper bound 4.087 and the best lower bound 2.035257 for σ(n)/n
are both given by Crochemore et al. [6] in 2011.

In order to provide lower bounds for ρ(n) and σ(n), various kinds of run-rich
strings are shown in the literature. In 2003, Franek et al. [8,7] defined an ingenious
run-rich strings to show a lower bound 3/(1 +

√
5) = 0.9270509 for ρ(n)/n. In 2008,

Matsubara et al. [15] found a more run-rich string of length 184973 which contains
174719 runs by computer experiments, that provided a better lower bound 0.9445648.
They improved it in [14] to 0.9445756 by defining a series {ti}i≥0 of strings. In 2010,
Simpson [19] provided another series {si}i≥0 of strings based on the modified Padovan
words, that gives the current best lower bound 0.9445757. We note that {ti} also gives
exactly the same bound, assuming that the recurrence formula conjectured in [14] is
correct. In 2011, Crochemore et al. [6] showed the current best lower bound 2.035257
for σ(n)/n by defining the strings {ψc(φ

i
c(a))}i≥0 using two morphisms φc : {a, b, c} →

{a, b, c}∗ and ψc : {a, b, c} → {0, 1}∗.
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φr(a) = abac φr(b) = aac φr(c) = a






h(a) = 101001011001010010110100

h(b) = 1010010110100

h(c) = 10100101

ui = h(φir(a))
ρ(ui)/|ui| → 0.9445757 (i→ ∞)







ψe(a) = 101001010010

ψe(b) = 110100

ψe(c) = 1

vi = ψe(φ
i
r(a))

σ(v12)/|v12| = 2.036982
σ
(

(v12)
k
)

/
∣

∣(v12)
k
∣

∣ → 2.036992 (k → ∞)

Figure 1. Two morphisms φr and ψe we discovered, and the summary of the results.

In this paper, we focus on the strings defined by the same form {ψ(φi(a))}i≥0, and
try to find better ones by computer experiments. We report two morphisms φr and
ψe in Fig. 1 that we discovered. These morphisms are effective for defining run-rich
strings from the following two viewpoints:

1. The strings {h(φi
r(a))}i≥0 achieve exactly the same lower bound for ρ(n)/n with the

current best lower bound 0.9445757. Here, h is the morphism proposed by Simp-
son [19] to define the run-rich strings {h(pi)}i≥0 based on the modified Padovan

words {pi}i≥0, and {h(pi)}i≥0 are the very strings that achieve the current best
lower bound.

2. The strings {ψe(φ
i
r(a))}i≥0 give a new lower bound 2.036992 for σ(n)/n; that is

better than the current best lower bound 2.035257.

Therefore, the simple morphism φr plays a critical role to generate run-rich strings,
both for the number ρ(n) of runs and the sum σ(n) of exponents of runs. Another
attractive feature of φr is its simplicity, compared to the definition of the modified
Padovan words.

The rest of this paper is organized as follows. In Section 2, we introduce some
notations on runs. Section 3 reviews three series of strings that appeared in the lit-
erature [14,19,6], that give the current best lower bounds for ρ(n) and σ(n). We
then explain in Section 4, a simple search strategy based on enumerations for finding
good morphisms. In Section 5, for the strings ui = h(φi

r(a)), we prove ρ(ui)/|ui| →
0.9445757, that exactly equals to the current best lower bound for ρ(n)/n. In Sec-
tion 6, we show that the lower bound for σ(n)/n is improved to be 2.036992 by the
string ψe(φ

12
r (a)). Section 7 concludes and discusses some future work. In Appendix,

we supply some lemmas and remarks easily verified by Mathematica, for convenience.

2 Preliminaries

Let Σ be an alphabet. We denote by Σn the set of all strings of length n over Σ,
and |w| denotes the length of a string w. We denote by w[i] the ith letter of w, and
w[i..j] is a substring w[i]w[i+ 1] · · ·w[j] of w.

For a string w of length n and a positive integer p ≤ n, we say that p is a period

of w if w[i] = w[i+ p] holds for any 1 ≤ i ≤ n− p. A string may have several periods.
For instance, string abaababa has three periods 5, 7 and 8. A string w is primitive if
w cannot be written as w = uk by any string u and any integer k ≥ 2. A run (also
called a maximal repetition) in a string w is an interval [i..j], such that:

(1) the smallest period p of w[i..j] satisfies 2p ≤ j − i+ 1,
(2) either i = 1 or w[i− 1] 6= w[i+ p− 1],



K. Kusano et al.: On Morphisms Generating Run-Rich Strings 37

(3) either j = n or w[j + 1] 6= w[j − p+ 1].

That is, run is a maximal repetition which is extendable neither to the left nor to
the right. The (fractional) exponent of the run [i..j] is defined as j−i+1

p
. We often

represent the run [i..j] by a triplet 〈i, j−i+1, p〉 of the initial position, length, and
the shortest period, for convenience. We denote by Run(w) the set of all runs in
string w. For instance, let us consider a string w = aabaabababab. It contains 4 runs;
Run(w) = {〈1, 2, 1〉, 〈4, 5, 1〉, 〈1, 7, 3〉, 〈5, 12, 2〉}. On the other hand, 〈1, 6, 3〉 is not a
run in w since the repetition can be extended to the right. Neither is 〈5, 12, 4〉, since
the smallest period of w[5..12] is 2, but not 4.

We denote by ρ(w) the number of runs contained in string w, and by σ(w) the
sum of exponents of all runs in string w.

Example 1. For a string w = aabaabaaaacaacac, we have

Run(w) = {〈1, 2, 1〉, 〈4, 2, 1〉, 〈7, 4, 1〉, 〈12, 2, 1〉, 〈13, 4, 2〉, 〈1, 8, 3〉, 〈9, 7, 3〉}.

Thus, ρ(w) = 7, and σ(w) = 2
1
+ 2

1
+ 4

1
+ 2

1
+ 4

2
+ 8

3
+ 7

3
= 17.

For a non-negative integer n, we denote by ρ(n) the maximum number of runs in
a string of length n, and by σ(n) the maximum value of the sum of exponents of runs
in a string of length n. That is,

ρ(n) = max{ρ(w) | w ∈ Σn} and σ(n) = max{σ(w) | w ∈ Σn}.

3 Previously Known Series of Run-Rich Strings

This section briefly reviews three series of strings containing many runs, which are
defined by recursions,

The first one is due to Simpson [19], which gives the current best lower bound for
the maximum number ρ(n) of runs in a string of length n.

Definition 2 ([19]). The modified Padovan words {pi} are defined by

p1 = b, p2 = a, p3 = ac, p4 = ba, p5 = aca, and pi = R(f(pi−5)) for i > 5,

where R(w) is the reverse of w, and f : {a, b, c} → {a, b, c}∗ is a morphism

f(a) = aacab, f(b) = acab, f(c) = ac.

Simpson’s words {si} are defined by si = h(pi), where h : {a, b, c} → {0, 1}∗ is a

morphism

h(a) = 101001011001010010110100,

h(b) = 1010010110100, (1)

h(c) = 10100101.

Theorem 3 ([19]). lim
n→∞

ρ(n)

n
≥ lim

i→∞

ρ(si)

|si|
= η > 0.9445757,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. Simpson [19] proved that limi→∞
ρ(si)
|si| = 11κ2+7κ−6

11κ2+8κ−6
, where κ is the real root of

z3 − z − 1 = 0. We can verify 11κ2+7κ−6
11κ2+8κ−6

= η easily (Lemma 16 in Appendix). ⊓⊔
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The second one is proposed by Matsubara et al. [14].

Definition 4 ([14]). Matsubara et al.’s words {ti} are defined by

t0 = 1001010010110100101,

t1 = 1001010010110,

t2 = 100101001011010010100101,

tk = tk−1 tk−2 (k mod 3 = 0, k > 2),

tk = tk−1 tk−4 (k mod 3 6= 0, k > 2).

Interestingly, these strings {ti} give exactly the same lower bound as {si} for ρ(n).

Theorem 5 ([14]1). lim
n→∞

ρ(n)

n
≥ lim

i→∞

ρ(ti)

|ti|
= η > 0.9445757,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify that the value limi→∞ ρ(ti)/|ti| shown in the proof of Theorem 6
in the paper [14] is exactly equal to η (Lemma 17 in Appendix). ⊓⊔

The third one is introduced by Crochemore et al. [6], which gives the current best
lower bound for the maximum value σ(n) of the sum of exponents of runs.

Definition 6 ([6]). Crochemore et al.’s words {ci} are defined by ci = ψc(φ
i
c(a))

using two morphisms φc : {a, b, c} → {a, b, c}∗ and ψc : {a, b, c} → {0, 1}∗ such that

φc(a) = baaba, φc(b) = ca, φc(c) = bca,

ψc(a) = 01011, ψc(b) = ψc(c) = 01001011.

Theorem 7 ([6]). lim
n→∞

σ(n)

n
≥ σ(c10)

|c10|
≥ 10599765.15

5208071
> 2.035257.

4 Searching for Better Morphisms

Inspired by a simple and elegant definition of Crochemore’s words, we are interested
in finding other series of strings defined by similar recursions, that hopefully contain
more runs or larger sum of exponents.

We focus on the series {wi} of strings defined by wi = ψ(φi(a)) using two mor-
phisms φ : {a, b, c} 7→ {a, b, c}∗ and ψ : {a, b, c} 7→ {0, 1}∗, and try to find good pair
of φ and ψ, in the sense that either ρ(wi) or σ(wi) is large enough.

Various approaches are possible to search for good pairs. For instance, even a
simple random search might be usable. We chose the following two-phase strategy, as
the search space is huge (needless to say, infinite) and we observed that inappropriate
choices of ψ would never succeed to find good φ’s.

In the first phase, we search for φ by fixing ψ to h defined in Eq. (1) in Definition 2.
We enumerate every possible morphism φ in increasing order with respect to the sum
|φ(a)| + |φ(b)| + |φ(c)|, and compute all runs in the string h(φi(a)) whose length is
reasonably long. If a good φ yielding many runs is found, report it. A pseudo-code
is shown in Algorithm 1. At this point, we succeeded to find a good morphism φr,

1 Strictly speaking, the general formula of ρ(ti) in the paper is derived from a recurrence formula,
which is verified for i = 0, 1, . . . , 14, but not formally proved.
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i |ui| ρ(ui) ρ(ui)/|ui| i |si| ρ(si) ρ(si)/|si|
0 24 16 0.66666 2 24 16 0.66666
1 69 56 0.81159 7 93 79 0.84946
2 218 193 0.88532 12 380 345 0.90789
3 667 616 0.92353 17 1552 1450 0.93427
4 2057 1925 0.93582 22 6333 5963 0.94157
5 6333 5963 0.94157 27 25837 24383 0.94372
6 19504 18400 0.94340 32 105405 99538 0.94433
7 60064 56711 0.94417 37 430010 406149 0.94451
8 184973 174693 0.94442 42 1754267 1657007 0.94455
9 569642 538041 0.94452 47 7156700 6760011 0.94457
10 1754267 1657005 0.94455

Table 1. Comparison of ui = h
(

φir(a)
)

with Simpson’s words si = h (pi). Rows holding the same
lengths are highlighted in bold, for clarity.

which achieves the same lower bound for ρ(n) as the current best one. We will fully
explain it in Section 5.

In the second phase, we fix φ to the best φr found in the first phase, and enumerate
every ψ in the same way (see Algorithm 2 for a pseudo-code). We finally found a good
morphism φe so that σ(ψe(ψ

8
r(a)))/|ψe(ψ

8
r(a))| = 2.03632 clearly exceeds the current

best lower bound 2.035257 for σ(n)/n. We will describe the new lower bounds in
Section 6.

5 Simpler Morphism Achieving the Current Best Lower
Bound for ρ(n)

We obtained the following morphism φr : {a, b, c} → {a, b, c}∗,
φr(a) = abac, φr(b) = aac, φr(c) = a. (2)

Combined with the morphism h in Definition 2, we now have another good series {ui}
of run-rich strings, defined by ui = h(φi

r(a)). Table 1 compares {ui} with Simpson’s
words {si} with respect to the length and the number of runs. While the definition
of our strings {ui} is much simpler than that of Simpson’s words {si}, the numbers
of runs are almost the same; note that it is not exactly the same, since |u10| = |s42| =
1754267 and ρ(u10) = 1757005 < 1757007 = ρ(s42). More interestingly, however, the
asymptotic value of the ratio ρ(ui)/|ui| exactly coincides with that of ρ(si)/|si|, as we
will see in Theorem 10.

We begin by obtaining a general formula representing the length |ui|.
Lemma 8. Let L(z) =

∑∞
i=0 |ui|zi be the ordinary generating function of the sequence

{|ui|}i≥0 of lengths of ui’s. Then

L(z) =
−8z2 − 21z − 24

z3 + 3z2 + 2z − 1
.

Proof. Let |w|a denote the number of occurrences of a in string w. Then for any
w ∈ {a, b, c}∗, the length |w| is calculated by the sum |w|a + |w|b + |w|c. Let M be
the incidence matrix (see e.g. Chapter 8.2 in [1]) of the morphism φr defined by

M =





|φr(a)|a |φr(b)|a |φr(c)|a
|φr(a)|b |φr(b)|b |φr(c)|b
|φr(a)|c |φr(b)|c |φr(c)|c



 =





2 2 1
1 0 0
1 1 0



 .
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Then for any string w ∈ {a, b, c}∗, it holds that




|φr(w)|a
|φr(w)|b
|φr(w)|c



 =M





|w|a
|w|b
|w|c



 ,

which induces the recurrence formula |ui| = 2|ui−1|+3|ui−2|+|ui−3| for i ≥ 3, since the
characteristic polynomial of M is −x3 +2x2 +3x+1. Taking into account the initial
values |u0| = 24, |u1| = 69 and |u2| = 218, we obtain the generating function L(z) of
the sequences |ui|’s as we stated (see e.g. [11] for handling generating functions). See
also Remark 18 in Appendix. ⊓⊔

Lemma 9. Let R(z) =
∑∞

i=0 ρ(ui) z
i be the ordinary generating function of the se-

quence {ρ(ui)}i≥0 of the numbers of runs in ui’s. Then

R(z) =
−16− 8z + 7z2 − 5z3 − 3z4 − z5 + z6

(1− z)2(1 + z)(−1 + 2z + 3z2 + z3)
.

Proof. By observing the sequence ρ(u0), ρ(u1) , . . . , ρ(u10), we found a recurrence
formula would hold, as in Table 2:

ai+2 − ai = 25, (i ≥ 1), (3)

a1 = 58, a2 = 72,

where ai is defined
2 by

ai = ρ(ui+3)− 2ρ(ui+2)− 3ρ(ui+1)− ρ(ui) . (4)

Assuming that Eq. (3) holds for any i ≥ 1 (in this sense, the proof is incomplete yet),
we can get the general term of ai as

ai =
3

4
(−1)i +

25i

2
+

185

4
(i ≥ 1),

a0 = 46.

Combined with Eq. (4), we get the generating function R(z) of ρ(ui) as stated. See
Remark 18 in Appendix. ⊓⊔

Theorem 10. lim
i→∞

ρ(ui)

|ui|
= η,

where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. By Lemma 8 and 9, we have the generating functions L(z) and R(z) for |ui|
and ρ(ui), respectively. Lemma 19 in Appendix completes the rest. ⊓⊔

2 Based on the fact that the characteristic polynomial of M is −x3 + 2x2 + 3x+ 1.
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i ρ(ui) ai ai+2 − ai ai+1 − ai

0 16 46 26 12
1 56 58 25 14
2 193 72 25 11
3 616 83 25 14
4 1925 97 25 11
5 5963 108 25 14
6 18400 122 11
7 56711 133
8 174693
9 538041
10 1657005

Table 2. Observation on the series {ρ(ui)} for ui = h
(

φir(a)
)

. If we define ai as in Eq. (4), the
difference sequence ai+2−ai of order 2 seems to be a constant 25 except the initial value a2−a0 = 26.
Note also that the difference sequence ai+1 − ai of order 1 has alternating values 14 and 11.

6 New Lower Bounds for σ(n)

In the second phase of search, we obtained the morphism ψe : {a, b, c} → {0, 1}∗,

ψe(a) = 101001010010, ψe(b) = 110100, ψe(c) = 1.

Combined with the morphism φr in Eq. (2), let us define vi = ψe(φ
i
r(a)). In this

section, we will show that the strings {vi} give a better lower bound of the maximum
sum σ(n) of exponents of runs.

Table 3 shows the length |vi|, the number ρ(vi) of runs, and the sum σ(vi) of
exponents, together with their ratios to the length. First let us notice that the strings
{vi} do not contain so many runs. In fact, we can verify limi→∞ ρ(vi)/|vi| = 0.923118
assuming that a similar recurrence relation as Eqs. (3), (4) holds (see Lemma 20 in
Appendix for confidence), that is strictly inferior to the current best lower bound
limi→∞ ρ(ui)/|ui| = 0.9445757.

However, on the other hand, the sum σ(vi) of exponents of runs in the string vi
is very large. Figure 2 illustrates the comparison of our words vi = ψe (φ

i
r(a)) with

Crochemore et al.’s words ci = ψc (φ
i
c(a)). Apparently, σ(vi) for i ≥ 8 exceeds the

current best lower bound σ(c10) = 2.035257.

Theorem 11. There exist infinitely many strings w such that:

σ(w)

|w| > 2.03698.

Proof. In Table 3, we see that σ(v12)/|v12| = 15389914.96/7555252 > 2.03698. Thus,
for any string w = (v12)

k, k ≥ 1, we have

σ(w)

|w| =
σ
(

(v12)
k
)

|(v12)k|
≥ k ·σ(v12)

k ·|v12|
> 2.03698,

since σ(xy) ≥ σ(x) + σ(y) holds for any strings x and y. ⊓⊔

In the rest of this section, we further push up the lower bound for σ(n) by esti-
mating the behavior of σ(vi) more carefully. It would be preferable to get a general
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i |vi| ρ(vi)
ρ(vi)
|vi|

σ(vi)
σ(vi)
|vi|

σ(v3

i )−σ(v2

i )
|vi|

0 12 7 0.583333 14.90 1.24166 1.70238
1 31 23 0.741935 49.70 1.60322 1.94014
2 99 83 0.838384 180.88 1.82707 1.99612
3 303 268 0.884488 590.11 1.94756 2.02682
4 934 849 0.908994 1869.94 2.00208 2.03278
5 2876 2638 0.917246 5818.98 2.02329 2.03581
6 8857 8158 0.921079 17997.22 2.03197 2.03657
7 27276 25157 0.922313 55509.41 2.03510 2.03686
8 83999 77518 0.922844 171049.01 2.03632 2.03694
9 258683 238768 0.923014 526871.76 2.03674 2.03697
10 796639 735364 0.923083 1622679.68 2.03690 2.03698
11 2453326 2264678 0.923105 4997332.12 2.03696 2.03699152
12 7555252 15389914.96 2.03698 2.03699251

Table 3. Numbers of runs, and sums of exponents in runs in strings vi = ψe

(

φir(a)
)

2.020

2.025

2.030

2.035

2.040

1,000 10,000 100,000 1,000,000 10,000,000

su
m

 o
f 

ex
o
p

n
e
n

ts
/l

e
n

g
th

length of the string

this paper

Crochemore et al.

Figure 2. Comparison of the sum of exponents of runs in vi = ψe(φ
i
r(a)) and Crochemore et al.’s

ci = ψc(φ
i
c(a))

formula of σ(vi), as similar to ρ(ui) in Section 5. Unfortunately, however, we failed
to guess recurrence formulas on σ(vi) up to now. A part of the difficulty comes from
the fact that σ(vi) is a fractional number, while ρ(ui) is an integer.

As an alternative approach, we consider a series of strings {wk}k≥1 of a run-rich
string w, and compute a simple general formula for σ

(

wk
)

. We first recall a property

on runs in a string of the form wk.

Lemma 12 ([15]). Let r = 〈i, l, p〉 be a run in a string wk for k ≥ 3. If l ≥ 2|w|,
then i = 1 and l = kn, that is, r = wk.

Lemma 13. For any string w and any k ≥ 2,

σ
(

wk
)

=
(

σ
(

w3
)

− σ
(

w2
))

· k −
(

2σ
(

w3
)

− 3σ
(

w2
))

.

Proof. By Lemma 12, for any k ≥ 3, the set Run
(

wk
)

consists of a single long run

〈1,
∣

∣wk
∣

∣, p〉 that covers the whole wk, and many (possibly zero) short runs whose

lengths are at most 2|w|. Thus, we can verify that σ
(

wk+1
)

−σ
(

wk
)

= σ(w3)−σ(w2)

for any k ≥ 2. By solving it, we get the general formula of σ
(

wk
)

as stated. ⊓⊔
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Theorem 14. For any string w and any ε > 0, there exists a positive integer N such

that for any n ≥ N ,
σ(n)

n
>
σ(w3)− σ(w2)

|w| − ε.

Proof. By Lemma 13, σ
(

wk
)

= A · k − B, where A = σ(w3) − σ(w2) and B =

2σ(w3) − 3σ(w2). For any given ε > 0, we choose N > A+B
ε

. For any n ≥ N , let k

be the integer satisfying k > n
|w| ≥ k − 1. Notice that k > n

|w| ≥ N
|w| >

A+B
|w|ε . Since

σ(i+ 1) ≥ σ(i) for any i, and
∣

∣wk−1
∣

∣ = |w|(k − 1), we have

σ(n)

n
>
σ(|w|(k − 1))

|w|k ≥ σ
(

wk−1
)

|w|k =
A(k − 1)−B

|w|k =
A

|w| −
A+ B

|w|k >
A

|w| − ε.

⊓⊔

We now have a slightly better lower bound for σ(n) compared to Theorem 11.

Theorem 15. For any ε > 0 there exists a positive integer N such that

for any n ≥ N ,
σ(n)
n

> 2.036992− ε

Proof. From Theorem 14 and the fact shown in Table 3, we have the bound. ⊓⊔

7 Concluding Remarks

We provided a new lower bound 2.036992n for the maximum value σ(n) of the sum
of exponents in runs in a string of length n, by exhibiting the series {ψe(φ

i
r(a))}i≥0 of

strings. Moreover, we also showed that the current best lower bound 0.9445757n for
the number ρ(n) of runs in a string of length n can be achieved by yet another series
{h(φi

r(a))}i≥0 of strings than Simpson’s words {si}i≥0 and Matsubara et al.’s words
{ti}i≥0.

We note that the proof for Lemma 9 is incomplete for the moment, because
the recurrence formula Eq. (3) is not formally proved yet for i ≥ 6, in Table 2.
We are also interested in obtaining a general formula of σ(ψe(φ

i
r(a))), which will

yield a slightly better lower bound for σ(n). Recall that for the standard Sturmian
words, the number of runs in them can be exactly and directly computed from their
directive sequences [3]. Similarly, it would be wonderful if we could develop a general
technique to evaluate ρ(ψ(φi(a))) and σ(ψ(φi(a))) directly from the definition of ψ
and φ. A natural extension of our experimental approach is to enlarge the domain of
the morphism φ. For instance, can we get more run-rich strings {ψ(φi(a))}i≥0 if we
consider φ : {a, b, c, d} → {a, b, c, d}∗?
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Algorithm 1 find good morphism φ : {a, b, c} → {a, b, c}∗ by enumeration
maxNum := 0
maxExp := 0
for N := 3 to ∞ do

for ℓa := 1 to N − 2 do

for ℓb := 1 to N − ℓa − 1 do

ℓc := N − ℓa − ℓa
for na := 0 to 3ℓa − 1 do

for na := 0 to 3ℓb − 1 do

for na := 0 to 3ℓc − 1 do

Let xa (resp. xb, xc) be the ternary representation of na (resp. nb, nc)
in ℓa (resp. ℓb, ℓc) digits over {a, b, c}

Let φ(a) = xa, φ(b) = xb and φ(c) = xc
Let w be the prefix of h(φk(a)) of length 10000,
where k is the minimum integer satisfying

∣

∣h(φk(a))
∣

∣ ≥ 10000
if ρ(w) > maxNum then

maxNum := ρ(w) and report φ

if σ(w) > maxExp then

maxExp := σ(w) and report φ

Algorithm 2 find good morphism ψ : {a, b, c} → {0, 1}∗ by enumeration
maxNum := 0
maxExp := 0
for N := 3 to ∞ do

for ℓa := 1 to N − 2 do

for ℓb := 1 to N − ℓa − 1 do

ℓc := N − ℓa − ℓb
for na := 0 to 2ℓa − 1 do

for nb := 0 to 2ℓb − 1 do

for nc := 0 to 2ℓc − 1 do

Let ya (resp. yb, yc) be the binary representation of na (resp. nb, nc)
in ℓa (resp. ℓb, ℓc) digits over {0, 1}.

Let ψ(a) = ya, ψ(b) = yb and ψ(c) = yc
Let w be the prefix of ψ(φkr (a)) of length 10000,
where k is the minimum integer satisfying

∣

∣ψ(φkr (a))
∣

∣ ≥ 10000
if ρ(w) > maxNum then

maxNum := ρ(w) and report ψ

if σ(w) > maxExp then

maxExp := σ(w) and report ψ
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A Appendix

We note some lemmas and remarks verified by Mathematica 9.0.1.

Lemma 16. (11κ2 + 7κ− 6)/(11κ2 + 8κ− 6) = η, where κ is the real root of

z3 − z − 1 = 0, and η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify it as follows.

kappa = Solve[z∧3− z − 1 == 0, z][[1]]kappa = Solve[z∧3− z − 1 == 0, z][[1]]kappa = Solve[z∧3− z − 1 == 0, z][[1]]
{

z → 1
3

(

27
2
− 3

√
69
2

)1/3

+
( 1

2(9+
√
69))

1/3

32/3

}

FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]FullSimplify[(11z∧2 + 7z − 6)/(11z∧2 + 8z − 6)/.kappa]
Root

[

−2357 + 7379#1− 7714#12 + 2693#13&, 1
]

⊓⊔

Lemma 17. The real root η of 2693z3 − 7714z2 + 7379z − 2357 = 0 is

7714− 109145 3

√

2
−27669823+9298929

√
69

+ 3

√

−27669823+9298929
√
69

2

8079
= 0.9445757124

Proof. We can easily verify it as follows.

eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]eta = Solve[2693x∧3− 7714x∧2 + 7379x− 2357 == 0][[1]]
{

x→ 7714−109145
(

2

−27669823+9298929
√
69

)1/3
+( 1

2(−27669823+9298929
√
69))

1/3

8079

}

N [%, 10]N [%, 10]N [%, 10]
{x→ 0.9445757124}

⊓⊔

Remark 18. The following instructions would give a confidence that L(z) (resp. R(z))
in Lemma 8 (resp. Lemma 9) is a generating function of |ui| (resp. ρ(ui)) in Table 1.

Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),Table[ SeriesCoefficient[(−8z∧2− 21z − 24)/(z∧3 + 3z∧2 + 2z − 1),
{z, 0, n}], {n, 0, 10}]{z, 0, n}], {n, 0, 10}]{z, 0, n}], {n, 0, 10}]
{24, 69, 218, 667, 2057, 6333, 19504, 60064, 184973, 569642, 1754267}

Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/Table[SeriesCoefficient[(−16− 8z + 7z∧2− 5z∧3− 3z∧4− z∧5 + z∧6)/
((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]((1− z)∧2 ∗ (1 + z) ∗ (−1 + 2z + 3z∧2 + z∧3)), {z, 0, n}], {n, 0, 10}]
{16, 56, 193, 616, 1925, 5963, 18400, 56711, 174693, 538041, 1657005}
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Lemma 19. Assume that

∞
∑

i=0

|ui|zi =
−8z2 − 21z − 24

z3 + 3z2 + 2z − 1
, and

∞
∑

i=0

ρ(ui) z
i =

−16− 8z + 7z2 − 5z3 − 3z4 − z5 + z6

(1− z)2(1 + z)(−1 + 2z + 3z2 + z3)
.

Then lim
i→∞

ρ(ui)

|ui|
= η, where η is the real root of 2693z3 − 7714z2 + 7379z − 2357 = 0.

Proof. We can verify it as follows.

leng[n ]:=SeriesCoefficient
[

−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]

leng[n ]:=SeriesCoefficient
[

−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]

leng[n ]:=SeriesCoefficient
[

−24−21z−8z2

−1+2z+3z2+z3
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−16−8z+7z2−5z3−3z4−z5+z6

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]
{24, 69, 218, 667, 2057, 6333, 19504, 60064, 184973, 569642, 1754267}

Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]
{16, 56, 193, 616, 1925, 5963, 18400, 56711, 174693, 538041, 1657005}

FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]
Root

[

−2357 + 7379#1− 7714#12 + 2693#13&, 1
]

⊓⊔

Lemma 20. Assume

∞
∑

i=0

|vi|zi =
−12− 7z − z2

−1 + 2z + 3z2 + z3
, and

∞
∑

i=0

ρ(vi) z
i =

−7− 2z − 8z3 − 8z4 − 2z5 + z6 + z7

(−1 + z)2(1 + z) (−1 + 2z + 3z2 + z3)
.

Then lim
i→∞

ρ(vi)

|vi|
= 0.9231182492 . . . is the real root of 175z3−344z2+397z−211 = 0.

Proof. We can easily verify it as follows.

leng[n ]:=SeriesCoefficient
[

−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]

leng[n ]:=SeriesCoefficient
[

−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]

leng[n ]:=SeriesCoefficient
[

−12−7z−z2

−1+2z+3z2+z3
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

run[n ]:=SeriesCoefficient
[

−7−2z−8z3−8z4−2z5+z6+z7

(−1+z)2(1+z)(−1+2z+3z2+z3)
, {z, 0, n}

]

Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]Table[leng[n], {n, 0, 10}]
{12, 31, 99, 303, 934, 2876, 8857, 27276, 83999, 258683, 796639}

Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]Table[run[n], {n, 0, 10}]
{7, 23, 83, 268, 849, 2638, 8158, 25157, 77518, 238768, 735364}

FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]FullSimplify[Limit[run[n]/leng[n], n→ Infinity]]
Root

[

−211 + 397#1− 344#12 + 175#13&, 1
]

N [%, 10]N [%, 10]N [%, 10]
0.9231182492

⊓⊔


