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Abstract. Kolpakov and Kucherov proposed a variant of the Lempel-Ziv factorization,
called the reversed Lempel-Ziv (RLZ) factorization (Theoretical Computer Science,
410(51):5365–5373, 2009). In this paper, we present an on-line algorithm that computes
the RLZ factorization of a given string w of length n in O(n log2 n) time using O(n log σ)
bits of space, where σ ≤ n is the alphabet size. Also, we introduce a new variant of the
RLZ factorization with self-references, and present two on-line algorithms to compute
this variant, in O(n log σ) time using O(n log n) bits of space, and in O(n log2 n) time
using O(n log σ) bits of space.
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1 Introduction

The Lempel-Ziv (LZ) factorization of a string [21] is an important tool of data com-
pression, and is a basis of efficient string processing algorithms [9,4] and compressed
full text indices [11]. In the off-line setting where the string is static, there exist ef-
ficient algorithms to compute the LZ factorization of a given string w of length n,
running in O(n) time and using O(n log n) bits of space, assuming an integer alpha-
bet. See [1] for a survey, and [8,5,7,6] for more recent results in this line of research.
In the on-line setting where new characters may be appended to the end of the string,
Okanohara and Sadakane [16] gave an algorithm that runs in O(n log3 n) time using
n log σ + o(n log σ) + O(n) bits of space, where σ is the size of the alphabet. Later,
Starikovskaya [18] proposed an algorithm running in O(n log2 n) time using O(n log σ)

bits of space, assuming log
σ
N

4
characters are packed in a machine word. Very recently,

Yamamoto et al. [20] developed a new on-line LZ factorization algorithm running in
O(n log n) time using O(n log σ) bits of space.

In this paper, we consider the reversed Lempel-Ziv factorization (RLZ in short1)
proposed by Kolpakov and Kucherov [10], which is used as a basis of computing
gapped palindromes. In the on-line setting, the RLZ factorization can be computed
in O(n log σ) time using O(n log n) bits of space, utilizing the algorithm by Blumer et
al. [3]. We present a more space-efficient solution to the same problem, which requires
only O(n log σ) bits of working space with slightly slower O(n log2 n) running time.

We also introduce a new, self-referencing variant of the RLZ factorization, and
propose two on-line algorithms; the first one runs in O(n log σ) time and O(n log n)
bits of space, and the second one in O(n log2 n) time and O(n log σ) bits of space. A

1 Not to be confused with the relative Lempel-Ziv factorization proposed in [12].
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key to achieve such complexity is efficient on-line computation of the longest suffix
palindrome for each prefix of the string w.

As an independent interest, we consider the relationship between the number of
factors in the RLZ factorization of a string w, and the size of the smallest grammar
that generates only w. It is known that the number of factors in the LZ factorization
of w is a lower bound of the smallest grammar for w [17]. We show that, unfortunately,
this is not the case with the RLZ factorization with or without self-references.

2 Preliminaries

2.1 Strings and model of computation

Let Σ be the alphabet of size σ. An element of Σ∗ is called a string. For string
w = xyz, x is called a prefix, y is called a substring, and z is called a suffix of w,
respectively. The sets of substrings and suffixes of w are denoted by Substr(w) and
Suffix (w), respectively. The length of string w is denoted by |w|. The empty string ε
is a string of length 0, that is, |ε| = 0. For 1 ≤ i ≤ |w|, w[i] denotes the i-th character
of w. For 1 ≤ i ≤ j ≤ |w|, w[i..j] denotes the substring of w that begins at position
i and ends at position j. Let wrev denote the reversed string of s, that is, wrev =
w[|w|] · · ·w[2]w[1]. For any 1 ≤ i ≤ j ≤ |w|, note w[i..j]rev = w[j]w[j − 1] · · ·w[i].

A string x is called a palindrome if x = xrev. The center of a palindromic substring
w[i..j] of a string w is i+j

2
. A palindromic substring w[i..j] is called the maximal

palindrome at the center i+j

2
if no other palindromes at the center i+j

2
have a larger

radius than w[i..j], i.e., if w[i − 1] 6= w[j + 1], i = 1, or j = |w|. In particular, a
maximal palindrome w[i..|w|] is called a suffix palindrome of w.

The default base of logarithms will be 2. Our model of computation is the unit
cost word RAM with the machine word size at least ⌈log n⌉ bits. We will evaluate
the space complexities in bits (not in words). For an input string w of length n over

an alphabet of size σ ≤ n, let r = log
σ
n

4
= logn

4 log σ
. For simplicity, assume that log n

is divisible by 4 log σ, and that n is divisible by r. A string of length r, called a
meta-character, fits in a single machine word. Thus, a meta-character can also be
transparently regarded as an element in the integer alphabet Σr = {1, . . . , n}. We
assume that given 1 ≤ i ≤ n− r + 1, any meta-character A = w[i..i + r − 1] can be
retrieved in constant time. We call a string on the alphabet Σr of meta-characters, a
meta-string. Any string w whose length is divisible by r can be viewed as a meta-string
w of length m = n

r
. We write 〈w〉 when we explicitly view string w as a meta-string,

where 〈w〉[j] = w[(j − 1)r + 1..jr] for each j ∈ [1,m]. Such range [(j − 1)r + 1, jr]
of positions will be called meta-blocks and the beginning positions (j − 1)r + 1 of
meta-blocks will be called block borders. For clarity, the length m of a meta-string
〈w〉 will be denoted by ‖〈w〉‖. Note that m log n = n log σ.

2.2 Suffix Trees and Generalized Suffix Tries

The suffix tree [19] of string s, denoted STree(s), is a rooted tree such that

1. Each edge is labeled with a non-empty substring of s, and each path from the root
to a node spells out a substring of s;

2. Each internal node v has at least two children, and the labels of distinct out-going
edges of v begin with distinct characters;
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Figure 1. STree(w) with w = abbaaaabbbac.

3. For each suffix x of w, there is a path from the root that spells out x.

The number of nodes and edges of STree(s) is O(|s|), and STree(s) can be represented
using O(|s| log |s|) bits of space, by implementing each edge label y as a pair (i, j)
such that y = s[i..j].

For a constant alphabet, Weiner’s algorithm [19] constructs STree(srev) in an on-
line manner from left to right, i.e., constructs STree(s[1..j]rev) in increasing order of
j = 1, 2, . . . , |s|, in O(|s|) time using O(|s| log |s|) bits of space. It is known that the
tree of the suffix links of the directed acyclic word graph [3] of s forms STree(srev).
Hence, for larger alphabets, we have the following:

Lemma 1 ([3]). Given a string s, we can compute STree(srev) on-line from left to

right, in O(|s| log σ) time using O(|s| log |s|) bits of space.
In our algorithms, we will also use the generalized suffix trie for a set W of strings,

denoted STrie(W ). STrie(W ) is a rooted tree such that

1. Each edge is labeled with a character, and each path from the root to a node spells
out a substring of some string w ∈ W ;

2. The labels of distinct out-going edges of each node must be different;
3. For each suffix s of each string w ∈ W , there is a path from the root that spells

out s.

2.3 Reversed LZ factorization

Kolpakov and Kucherov [10] introduced the following variant of LZ77 factorization.

Definition 2 (Reversed LZ factorization without self-references). The re-

versed LZ factorization of string w without self-references, denoted RLZ (w), is a

sequence (f1, f2, . . . , fm) of non-empty substrings of w such that

1. w = f1 · f2 · · · fm, and
2. For any 1 ≤ i ≤ m, fi = w[k..k + ℓmax − 1], where k = |f1 · · · fi−1| + 1 and

ℓmax = max({ℓ | 1 ≤ ∃t < k − ℓ+ 1, (w[t..t+ ℓ− 1])rev = w[k..k + ℓ− 1]} ∪ {1}).
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Figure 2. Let k = |f1 · · · fi−1| + 1. fi is the longest non-empty prefix of w[k..n] that is also a
substring of (w[1..k − 1])rev if such exists.

Assume we have f1, . . . , fi−1, and let k = |f1 · · · fi−1|+1. The above definition implies
that fi is the longest non-empty prefix of w[k..n] that is also a substring of (w[1..k−
1])rev if such exists, and fi = w[k] otherwise. See also Figure 2.

Example 3. For string w = abbaaaabbbac, RLZ (w) consists of the following factors:
f1 = a, f2 = b, f3 = ba, f4 = a, f5 = aabb, f6 = ba, and f7 = c.

We are interested in on-line computation of RLZ (w). Using Lemma 1, one can
compute RLZ (w) on-line in O(n log σ) time using O(n log n) bits of space [10], where
n = |w|. The idea is as follows: Assume we have already computed the first j factors

f1, f2, . . . , fj , and we have constructed STree(w[1..lj ]
rev), where lj =

∑j

h=1 |fh|. Now
the next factor fj+1 is the longest prefix of w[lj + 1..n] that is represented by a
path from the root of STree(w[1..lj ]

rev). After the computation of fj+1, we update
STree(w[1..lj ]

rev) to STree(w[1..lj+1]
rev), using Lemma 1. In the next section, we will

propose a new space-efficient on-line algorithm which requires O(n log2 n) time using
O(n log σ) bits of space.

We introduce yet another new variant, the reversed LZ factorization with self-
references.

Definition 4 (Reversed LZ factorization with self-references). The reversed

LZ factorization of string w with self-references, denoted RLZS (w), is a sequence

(g1, g2, . . . , gp) of non-empty substrings of w such that

1. w = g1 · g2 · · · gp, and
2. For any 1 ≤ i ≤ p, gi = w[k..k + ℓmax − 1], where k = |g1 · · · gi−1| + 1 and

ℓmax = max({ℓ | 1 ≤ ∃r < k, (w[r..r + ℓ− 1])rev = w[k..k + ℓ− 1]} ∪ {1}).

Since r is at most k − 1 in the above definition, gi is the longest non-empty prefix of
w[k..n] that is also a substring of (w[1..k + |gi| − 2])rev if such exists, and gi = w[k]
otherwise. See also Figure 3.

Example 5. For string w = abbaaaabbbac, RLZS (w) consists of the following factors:
g1 = a, g2 = b, g3 = baaaabb, g4 = ba, and g5 = c.

k!

gi!gi-1!w! "!

gi
rev!

g
1!

Figure 3. Let k = |g1 · · · gi−1| + 1. gi is the longest prefix of w[k..n] that is also a substring of
(w[1..k + |gi| − 2])rev if such exists.
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Note that in Definition 4 the ending position of a previous occurrence of grevi does
not have to be prior to the beginning position k of gi, while in Definition 2 it has to,
because of the constraints “t < k − ℓ + 1”. This is the difference between RLZ (w)
and RLZS (w).

In this paper we propose two on-line algorithms to compute RLZS (w); the first
one runs in O(n log σ) time using O(n log n) bits of space, and the second one does
in O(n log2 n) time using O(n log σ) bits of space.

3 Computing RLZ (w) in O(n log2 n) time and O(n log σ)
bits of space

The outline of our on-line algorithm to compute RLZ (w) follows the algorithm of
Starikovskaya [18] which computes Lempel-Ziv 77 factorization [21] in an on-line
manner and in O(n log2 n) time using O(n log σ) bits of space. The Starikovskaya
algorithm maintains the suffix tree of the meta-string 〈w〉 in an on-line manner, i.e.,
maintains STree(〈w〉[1..k]) in increasing order of k = 1, 2, . . . , n/r, and maintains a
generalized suffix trie for a set of substrings of w[1..kr] of length 2r that begin at
a block border. In contrast to the Starikovskaya algorithm, our algorithm maintains
STree((〈w〉[1..k])rev) in increasing order of k = 1, 2, . . . , n/r, and maintain a general-
ized suffix trie for a set of substrings of w[1..kr]rev of length 2r that begin at a block
border.

Assume we have already computed the first i − 1 factors f1, . . . , fi−1 of RLZ (w)

and are computing the ith factor fi. Let li =
∑i−1

j=1 |fj|. This implies that we have

processed (〈w〉[1..k])rev where k = ⌈li/r⌉, i.e., the kth meta block contains position li.
As is the case with the Starikovskaya algorithm, our algorithm consists of two main
phrases, depending on whether |fi| < r or |fi| ≥ r.

3.1 Algorithm for |fi| < r

For any k (1 ≤ k ≤ n/r), let W rev
k denote the set of substrings of w[1..kr]rev of length

2r that begin at a block border, i.e., W rev
k = {w[tr+1..(t+2)r]rev | 1 ≤ t ≤ (k− 2)}.

We maintain STrie(W rev
k ) in an on-line manner, for k = 1, 2, . . . , n/r. Note that

STrie(W rev
k ) represents all substrings of w[1..kr]rev of length r which do not necessarily

begin at a block border. Therefore, we can use STrie(W rev
k ) to determine if |fi| < r,

and if so, compute fi. An example for STrie(W rev
k ) is shown in Figure 4.

A minor issue is that STrie(W rev
k ) may contain “unwanted” substrings that do

not correspond to a previous occurrence of f rev
i in w[1..li], since substrings w[(k −

2)r + 1..y]rev for any li < y ≤ kr are represented by STrie(W rev
k ). In order to avoid

finding such unwanted occurrences of f rev
i , we associate to each node v representing

a reversed substring xrev, the leftmost ending position of x in w[1..kr]. Assume we
have traversed the prefix of length p ≥ 0 of w[li + 1..n] in the trie, and all the
nodes involved in the traversal have positions smaller than li + 1. If either the node
representing w[li + 1..li + p + 1] stores a position larger than li or there is no node
representing w[li + 1..li + p+ 1], then fi = w[li + 1..li + p] if p ≥ 1, and fi = w[li + 1]
if p = 0.

As is described above, fi can be computed in O(|fi| log σ) time. When li+p > kr,
we insert the suffixes of a new substring w[(k−1)r+1..(k+1)r]rev of length 2r into the

trie, and obtain the updated trie STrie(W rev
k+1). Since there exist σ2r = σ

logn

2 =
√
n
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Figure 4. Let r = 3 and consider string w = bba|aaa|bba|bac, where | represents a block border. The
figure shows STrie(W rev

3
) where W rev

3
= {aaaabb, abbaaa}.

distinct strings of length 2r, the number of nodes in the trie is bounded by O(
√
nr2) =

O(
√
n(logσ n)

2). Hence the trie requires o(n) bits of space. Each update adds O(r2)
new nodes and edges into the trie, taking O(r2 log σ) time. Since there are n/r blocks,
the total time complexity to maintain the trie is O(nr log σ) = O(n log n).

The above discussion leads to the following lemma:

Lemma 6. We can maintain in O(n log n) total time, a dynamic data structure oc-

cupying o(n) bits of space that allows whether or not |fi| < r to be determined

in O(|fi| log σ) time, and if so, computes fi and a previous occurrence of f rev
i in

O(|fi| log σ) time.

3.2 Algorithm for |fi| ≥ r

Assume we have found that the length of the longest prefix of w[li + 1..n] that is
represented by STrie(W rev

k ) is at least r, which implies that |fi| ≥ r.
For any string f and integer 0 ≤ m ≤ min(|f |, r − 1), let strings αm(f), βm(f),

γm(f) satisfy f = αm(f)βm(f)γm(f), |αm(f)| = m, and |βm(f)| = j′r where j′ =
max{j ≥ 0 | m + jr ≤ |f |}. We say that an occurrence of f in w has offset m (0 ≤
m ≤ r − 1), if, in the occurrence, αm(f) corresponds to a suffix of a meta-block,
βm(f) corresponds to a sequence of meta-blocks (i.e. βm(f) ∈ Substr(〈w〉)), and γm(f)
corresponds to a prefix of a meta-block. Let fm

i denote the longest prefix of w[li+1..n]
which has a previous occurrence in w[1..li] with offset m. Thus, |fi| = max0≤m<r |fm

i |.
Our algorithm maintains two suffix trees on meta-strings, STree((〈w〉[1..k −

1])rev) and STree((〈w〉[1..k])rev). Depending on the value of m, we use either
STree((〈w〉[1..k − 1])rev) and STree((〈w〉[1..k])rev).

If li−(k−1)r ≥ m, i.e. the distance between the (k−1)th block border and position
li is not less thanm, then we use STree((〈w〉[1..k])rev) to find fm

i . We associate to each
internal node v of STree((〈w〉[1..k])rev) the lexicographical ranks of the leftmost and
rightmost leaves in the subtree rooted at v, denoted left(v) and right(v), respectively.
Recall that the leaves of STree((〈w〉[1..k])rev) correspond to the block borders 1, r +
1, . . . , (k − 1)r + 1. Hence, αm(f

m
i )βm(f

m
i ) occurs in w[1..li]

rev iff there is a node v
representing βm(f

m
i ) and the interval [left(v), right(v)] contains at least one block
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border b such that w[b−m..b−1] = αm(f
m
i ). To determine γm(f

m
i ), at each node v of

STree((〈w〉[1..k])rev) we maintain a trie Tv that stores the first meta-characters of the
outgoing edge labels of v. Then, αm(f

m
i )βm(f

m
i )γm(f

m
i ) occurs in w[1..li]

rev iff there
is a node u of Tv representing γm(f

m
i ) and the interval [left(u1), right(u2)] contains

at least one block border b such that w[b−m..b− 1] = αm(f
m
i ), where u1 and u2 are

respectively the leftmost and rightmost children of u in Tv.
If li − (k − 1)r < m, i.e. if the the distance between the (k − 1)th block border

and position li is less than m, then we use STree((〈w〉[1..k − 1])rev) to find fm
i . This

allows us to find only previous occurrences of f rev
i that end before ℓi+1. All the other

procedures follow the case where li − (k − 1)r ≥ m, mentioned above.

Lemma 7. We can maintain in O(n log2 n) total time, a dynamic data structure

occupying O(n log σ) bits of space that allows to compute fi with |fi| ≥ r and a

previous occurrence of f rev
i in O(|fi| log2 n) time.

Proof. Traversing the suffix tree for βm(f
m
i ) takes O(

|fm

i
|

r
log n) = O(|fm

i | log σ) time

since ‖〈βm(f
m
i )〉‖ ≤ |f

m

i

r
|. Also, traversing the trie for γm(f

m
i ) takes O(r log σ) time,

since |γm(fm
i )| < r. To assure βm(f

m
i )γm(f

m
i ) is immediately preceded by αm(f

m
i ),

we use the dynamic data structure proposed by Starikovskaya [18] which is based
on the dynamic wavelet trees [13]. At each node v, the data structure allows us to
check if the interval [left(v), right(v)] contains a block border of interest in O(log2 n)
time, and to insert a new element to the data structure in O(log2 n) time. Thus, fi
can be computed in O(

∑

0≤m≤r−1(|fm
i | log σ + r log σ + |f

m

i

r
| log2 n)) = O(|fi| log2 n).

The position of a previous occurrence of f rev
i can be retrieved in constant time, since

each leaf of the suffix tree corresponds to a block border. Once fi is computed, we
update STree((〈w〉[1..k])rev) to STree((〈w〉[1..k′])rev), such that the k′th block border
contains position li+1 in w. Using Lemma 1, the suffix tree can be maintained in a
total of O(n

r
log σ) = O(n log n) time.

It follows from Lemma 1 that the suffix tree on meta-strings requires O(n
r
log n) =

O(n log σ) bits of space. Since the dynamic data structure of Starikovskaya [18] takes
O(n log σ) bits of space, the total space complexity of our algorithm is O(n log σ)
bits. ⊓⊔

The main result of this section follows from Lemma 6 and Lemma 7:

Theorem 8. Given a string w of length n, we can compute RLZ (w) in an on-line

manner, in O(n log2 n) time and O(n log σ) bits of space.

4 On-line computation of reversed LZ factorization with
self-references

In this section, we consider to compute RLZS (w) for a given string w in an on-line
manner. An interesting property of the reversed LZ factorization with self-references
is that, the factorization can significantly change when a new character is appended
to the end of the string. A concrete example is shown in Figure 5, which illustrates on-
line computation of RLZS (w) with w = abbaaaabbbac. Focus on the factorization of
abbaaaab. Although there is a factor starting at position 5 in RLZS (abbaaaab), there
is no factor starting at position 5 in RLZS (abbaaaabb). Below, we will characterize
this with its close relationship to palindromes.
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Figure 5. A snapshot of on-line computation of RLZS (w) with w = abbaaaabbbac. For each non-
empty prefix w[1..k] of w, | denotes the boundary of factors in RLZS (w[1..k]).

4.1 Computing RLZS(w) in O(n log σ) time and O(n logn) bits of
space

Let w be any string of length n. For any 1 ≤ j ≤ n, the occurrence of substring p
starting at position j is called self-referencing, if there exists j′ such that w[j′..j′ +
|p| − 1]rev = w[j..j + |p| − 1] and j ≤ j′ + |p| − 1 < j + |p| − 1.

For any 1 ≤ k ≤ n, let Lpalw(k) = max{k−j+1 | w[j..k] = w[j..k]rev, 1 ≤ j ≤ k}.
That is, Lpalw(k) is the length of the longest palindrome that ends at position k in
w.

Lemma 9. For any string w of length n and 1 ≤ k ≤ n, let RLZS (w[1..k − 1]) =
g1, . . . , gp. Let ℓq =

∑q

h=1 |gh| for any 1 ≤ q ≤ p. Then

RLZS (w[1..k]) =










g1, . . . , gpw[k] if gpw[k] ∈ Substr(w[1..ℓp−1]
rev) and ℓp−1 + 1 ≤ dk,

g1, . . . , gp, w[k] if gpw[k] /∈ Substr(w[1..ℓp−1]
rev) and ℓp−1 + 1 ≤ dk,

g1, . . . , gj, w[ℓj + 1..k] otherwise,

where dk = k − Lpalw(k) + 1 and j is the minimum integer such that ℓj ≥ dk.

Proof. By definition of Lpalw(k) and dk, w[dk..k] is the longest suffix palindrome of
w[1..k]. If ℓp−1 + 1 ≤ dk, w[ℓp−1 + 1..k] cannot be self-referencing. Hence the first
and the second cases of the lemma follow. Consider the third case. Since ℓj ≥ dk,
w[ℓj+1..k] is self-referencing. Since RLZS (w[1..ℓj]) = g1, . . . , gj, the third case follows.

⊓⊔

See Figure 5 and focus on RLZS (abbaaaab), where g1 = a, g2 = b, g3 = ba, and
g4 = aaab. Consider to compute RLZS (abbaaaabb). Since the longest suffix palin-
drome bbaaaabb intersects the boundary between g3 and g4 of RLZS (abbaaaab), the
third case of Lemma 9 applies. Consequently, the new factorization RLZS (abbaaaabb)
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consists of g1 = a and g2 = b of RLZS (abbaaaab), and a new self-referencing factor
g3 = baaaabb.

Theorem 10. Given a string w of length n, we can compute RLZS (w) in an on-line

manner, in O(n log σ) time and O(n log n) bits of space.

Proof. Suppose we have already computed RLZS (w[1..k− 1]), and we are computing
RLZS (w[1..k]) for 1 ≤ k ≤ n.

Assume ℓp−1 + 1 ≤ dk. We check whether gpw[k] ∈ Substr(w[1..ℓp−1]
rev) or not

using STree(w[1..ℓp−1]
rev). If the first case of Lemma 9 applies, then we proceed to

the next position k + 1 and continue to traverse the suffix tree. If the second case of
Lemma 9 applies, then we update the suffix tree for the reversed string, and proceed
to computing RLZS (w[1..k + 1]).

Assume ℓp−1 + 1 > dk, i.e., the third case of Lemma 9 holds. For every j < e ≤ p,
we remove ge of RLZS (w[1..k−1]), and the last factor of RLZS (w[1..k]) is w[ℓj+1..k].
We then proceed to computing RLZS (w[1..k + 1]).

As is mentioned in Section 2.3, in a total of O(n log σ) time and O(n log n) bits of
space, we can check whether the first or the second case of Lemma 9 holds, as well as
maintain the suffix tree for the reversed string on-line. In order to compute Lpalw(k)
in an on-line manner, we can use Manacher’s algorithm [14] which computes the
maximal palindromes for all centers in w in O(n) time and in an on-line manner. Since
Manacher’s algorithm actually maintains the center of the longest suffix palindrome
of w[1..k] when processing w[1..k], we can easily modify the algorithm to also compute
Lpalw(k) on-line. Since Manacher’s algorithm needs to store the length of maximal
palindromes for every center in w, it takes O(n log n) bits of space.

Finally, we show the total number of factors that are removed in the third case
of Lemma 9. Once a factor that begins at position j is removed after computing
RLZS (w[1..k]) for some k, for any k ≤ k′ ≤ n, RLZS (w[1..k′]) never contains a factor
starting at position j. Hence, the total number of factors that are removed in the
third case is at most n. This completes the proof. ⊓⊔

4.2 Computing RLZS(w) in O(n log2 n) time and O(n log σ) bits of
space

In this subsection, we present a space efficient algorithm that computes RLZS (w)
on-line, using only O(n log σ) bits of space. Note that we cannot use the method
mentioned in the proof of Theorem 10, as it requires O(n log n) bits of space. Instead,
we maintain a compact representation of all suffix palindromes of each prefix w[1..k]
of w, as follows.

For any string w of length n ≥ 1, let Spals(w) denote the set of the beginning
positions of the palindromic suffixes of w, i.e.,

Spals(w) = {n− |s|+ 1 | s ∈ Suffix (w), s is a palindrome}.

Lemma 11 ([2,15]). For any string w of length n, Spals(w) can be represented by

O(log n) arithmetic progressions.

The above lemma implies that Spals(w) can be represented by O(log2 n) bits of space.

Lemma 12. We can maintain O(log2 n)-bit representation of Spals(w[1..k]) on-line
for every 1 ≤ k ≤ n in a total of O(n log n) time.
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Figure 6. Illustration of Lemma 12. Let w[t− 1] = c, w[t+ q − 1] = a, and w[k] = b. w[t− 1..k] is
a suffix palindrome of w[1..k] iff c = b, and w[t+ iq − 1..k] is a suffix palindrome of w[1..k] for any
1 ≤ i < m iff a = b.

Proof. We show how to efficiently update Spals(w[1..k − 1]) to Spals(w[1..k]). Let
S be any subset of Spals(w[1..k − 1]) which is represented by a single arithmetic
progression 〈t, q,m〉, where t is the first (minimum) element, q is the step, and m is
the number of elements of the progression. Let sj be the jth smallest element of S,
with 1 ≤ j ≤ m. By definition, sj is a suffix palindrome of w[1..k − 1] for any j.
In addition, if m ≥ 3, then it appears that, for any 1 ≤ j < m, sj has a period q.
Therefore, we can test whether the elements of S correspond to the suffix palindromes
of w[1..k], by two character comparisons: w[t−1] = w[k] iff t−1 ∈ Spals(w[1..k]), and
w[t+q−1] = w[k] iff t+iq−1 /∈ Spals(w[1..k]) for any 1 ≤ i < m. (See also Figure 6.) If
the extension of only one element of S becomes an element of Spals(w[1..k]), then we
check if it can be merged to the adjacent arithmetic progression that contains closest
smaller positions. As above, we can process each arithmetic progression in O(1) time.
By Lemma 11, there are O(log n) arithmetic progressions in Spals(w[1..k]) for each
prefix of w[1..k] of w. Consequently, for each 1 ≤ k ≤ n we can maintain O(log2 n)-bit
representation of Spals(w[1..k]) in a total of O(n log n) time. ⊓⊔

The main result of this subsection follows:

Theorem 13. Given a string w of length n, we can compute RLZS (w) in an on-line

manner, in O(n log2 n) time and O(n log σ) bits of space.

Proof. Assume that we are computing a new factor that begins at position ℓ of w.
First, we use the algorithm of Theorem 8 and obtain the longest prefix f of w[ℓ..n]
such that f rev has an occurrence in w[1..ℓ− 1]. Then we apply Lemma 9 for w[1..ℓ+
|f |−1], and if the third case holds, then we compute the self-reference factor. We use
Lemma 12 to compute Lpalw(k) for any given position k. After computing the new
factor, then we update the suffix tree of the meta-string, and proceed to computing
the next factor. Overall, the algorithm takes O(n log2 n) time and O(n log σ+log2 n) =
O(n log σ) bits of space. ⊓⊔

5 Reversed LZ factorization and smallest grammar

For any string w, the number of the LZ77 factors [21] (with/without self-references)
of w is known to be a lower bound of the smallest grammar that derives only w [17].
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Here we briefly show that this is not the case with the reversed LZ factorization (for
either with or without self-references).

Theorem 14. For σ = 3, there is an infinite series of strings for which the smallest

grammar has size O(log n) while the size of the reversed LZ factorization is O(n).

Proof. Let w = (abc)
n

3 . Then, RLZ (w) = RLZS (w) = a, b, c, a, b, c, . . . , a, b, c, con-
sisting of exactly n factors. On the other hand, it is easy to see that there exists a
grammar of size O(log n) that generates only w. This completes the proof. ⊓⊔

The above theorem applies to any constant alphabet of size at least 3. When
σ = 1, the size of the smallest grammar and the number of factors in RLZ (w) are
both O(log n), while the number of factors in RLZS (w) is O(1). The binary case
where σ = 2 is open.
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