
Sorting Suffixes of a Text

via its Lyndon Factorization

Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, and Marinella Sciortino

University of Palermo, Dipartimento di Matematica e Informatica, Italy
{sabrina,restivo,giovanna,mari}@math.unipa.it

Abstract. The process of sorting the suffixes of a text plays a fundamental role in
Text Algorithms. They are used for instance in the constructions of the Burrows-
Wheeler transform and the suffix array, widely used in several fields of Computer
Science. For this reason, several recent researches have been devoted to finding new
strategies to obtain effective methods for such a sorting. In this paper we introduce a
new methodology in which an important role is played by the Lyndon factorization,
so that the local suffixes inside factors detected by this factorization keep their mutual
order when extended to the suffixes of the whole word. This property suggests a versatile
technique that easily can be adapted to different implementative scenarios.

Keywords: sorting suffixes, BWT, suffix array, Lyndon words, Lyndon factorization

1 Introduction

The sorting of the suffixes of a text plays a fundamental role in Text Algorithms
with several applications in many areas of Computer Science and Bioinformatics. For
instance, it is a fundamental step, in implicit or explicit way, for the construction
of the suffix array (SA) and the Burrows-Wheeler Transform (bwt). The SA, intro-
duced in 1990 (cf. [19]), is a sorted array of all suffixes of a string, where the suffixes
are identify by using their positions in the string. Several strategies that privilege
the efficiency of the running time or the low memory consumption have been widely
investigated (cf. [22,16]). The bwt, introduced in 1994 (cf. [6]), permutes the letters
of a text according to the sorting of its cyclic rotations, making the text more com-
pressible (cf. [2]). A recent survey on the combinatorial properties that guarantee
such a compressibility after the application of bwt can be found in [25] (cf. also [23]).
Moreover, in the last years the SA and the bwt, besides being important tools in
Data Compression, have found many applications well beyond its original purpose
(cf. [1,13,14,20,26,8,2]).

The goal of this paper is to introduce a new strategy for the sorting of the suffixes
of a word that opens new scenarios of the computation of the SA and the bwt.

Our strategy uses a well known factorization of a word W called the Lyndon
factorization and is based on a combinatorial property proved in this paper, that
allows to sort the suffixes of W (“global suffixes”) by using the sorting of the suffixes
inside each block of the decomposition (“local suffixes”).

The Lyndon factorization is based on the fact that any word W can be written
uniquely as W = L1L2 · · ·Lk, where

– the sequence L1, L2, . . . , Lk is non-increasing with respect to lexicographic order;
– each Li is strictly less than any of its proper cyclic shift (Lyndon words).

Sabrina Mantaci, Antonio Restivo, Giovanna Rosone, Marinella Sciortino: Sorting Suffixes of a Text via its Lyndon Factorization, pp. 119–127.

Proceedings of PSC 2013, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05330-0 c© Czech Technical University in Prague, Czech Republic

120 Proceedings of the Prague Stringology Conference 2013

This factorization was introduced in [7] and a linear time algorithm is due to
Duval [11]. The intuition that the knowledge of Lyndon factorization of a text can
be used for the computation of the suffix array of the text itself has been introduced
in [5]. Conversely, a way to find the Lyndon factorization from the suffix array can
be found in [17].

If U is a factor of a word W we say that the sorting of the local suffixes of U is
compatible with the sorting of the global suffixes of W if the mutual order of two local
suffixes in U is kept when they are extended as global suffixes. The main theorem
in this paper states that if U is a concatenation of consecutive Lyndon factors, then
the local suffixes in U are compatible with the global suffixes. This suggests some
new algorithmic scenarios for the constructions of the SA and the bwt. In fact, by
performing the Lyndon factorization of a word W by Duval’s algorithm, one does
not need to get to the end of the whole word in order to start the decomposition
into Lyndon factors. Since our result allow to start the sorting of the local suffixes
(compatible with the sorting of the global suffixes) as soon as the first Lyndon word
is discovered, this may suggest an online algorithm, that do not require to read the
entire word to start sorting. Moreover, the independence of the sorting of the local
suffixes inside the different Lyndon factors of a text suggests also a possible parallel
strategy to sort the global suffixes of the text itself.

In Section 2 we give the fundamental notions and results concerning combina-
torics on words, the Lyndon factorization, the Burrows-Wheeler transform and the
suffix array. In Section 3 we first introduce the notion of global suffix on a text and
local suffix inside a factor of the text. Then we prove the compatibility between the
ordering of local suffixes and the ordering of global suffixes. In Section 4 we describe
an algorithm that uses the above result to incrementally construct the bwt of a text.
Such a method can be also used to explicitly construct the SA of the text. In Section
5 we discuss about some possible improvements and developments of our method,
including implementations in external memory or in place constructions. Finally, we
compare our strategy for sorting suffixes with the method proposed in [12] in which
a lightweight computation of the bwt of a text is performed by partitioning it into
factors having the same length.

2 Preliminaries

Let Σ = {c1, c2, . . . , cσ} be a finite alphabet with c1 < c2 < · · · < cσ. Given a
finite word W = a1a2 · · · an, ai ∈ Σ for i = 1, . . . , n, a factor of W is written as
W [i, j] = ai · · · aj. A factor W [1, j] is called a prefix, while a factor W [i, n] is called
a suffix. In this paper, we also denote by sufW (i) as the suffix of W starting from
position i. We omit W when there is no danger of ambiguity. We say that x, y ∈ Σ∗

are conjugate (or cyclic shift) or y is a conjugate of x if x = uv and y = vu for some
u, v ∈ Σ∗. Recall that conjugacy is an equivalent relation.

A Lyndon word is a primitive word which is also the minimum in its conjugacy
class, with respect to the lexicographic order relation. In [18,11], one can find a linear
algorithm that for any word W ∈ Σ∗ computes the Lyndon word of its conjugacy
class. We call it the Lyndon word of W . Lyndon words are involved in a nice and
important factorization property of words.

Theorem 1. [7] Every word W ∈ Σ+ has a unique factorization W = L1L2 · · ·Lk

such that L1 ≥lex · · · ≥lex Lk is a non-increasing sequence of Lyndon words.

Sabrina Mantaci et al.: Sorting Suffixes of a Text via its Lyndon Factorization 121

We call this factorization the Lyndon factorization of a word and it can be computed
in linear time (see for instance [11,18]). Duval in [11] presents two variants of an
algorithm of factorization of a word into Lyndon words in time linear in the length of
the word. The first variant of the algorithm uses only three variables for a complete
computation and it requires no more than 2n comparisons between two letters. The
second one is slightly faster in that sense that it requires no more than 3n

2
comparisons

but it uses an auxiliary storage of size n
2
. The basis idea for both these variants is

finding each factor of the decomposition of the wordW from left to right by eventually
reading a long enough prefix of the next Lyndon factor.

Lyndon factorization has been realized also in parallel (cf. [3]) and in external
memory (cf. [24]).

One way to define the Burrows-Wheeler Transform (bwt) [6] of a string W of
length n (although not the most efficient way to compute it) is to construct all n
cyclic shifts of W and sort them lexicographically. The output of bwt consists of the
pair (L, I), where L is the sequence of the last character of each rotation in the sorted
list and I is an integer denoting the position of the original word in the list.
Another more efficient way consists in the concatenating at the the input string W
a symbol $ that is smaller than any other letter. In this case, the bwt is intuitively
described as follows: given a word W ∈ Σ∗, bwt(W) is a word obtained by sorting
the list of the suffixes of W$ and by concatenating the symbols preceding in W each
suffix in the sorted list. In both the cases, it is an invertible transform, i.e., one can
recover the original text from its bwt.

Note that, in general, the sorting of the conjugates of a word W and the sorting
of the suffixes of a word W$ is different, but, as consequence of the properties of
Lyndon words, when the word W is the Lyndon word, then the two sorting coincide
(cf. [15, Lemma 12]). A study of the combinatorial aspects that connect these two
sorting can be found in [5]. In this study an important role is played by the notion
of Lyndon word.

Given a text W of length n, the suffix array (SA) for W is an array of integers of
range 1 to n+1 specifying the lexicographic ordering of the suffixes of the string W .
It will be convenient to assume that W [n+1] = $, where $ is smaller than any other
letter. That is, SA[j] = i if and only if W [i, n+1] is the j-th suffix of W in ascending
lexicographical order.

SA bwt Suffixes
12 s $
2 m a t h e m a t i c s $
7 m a t i c s $
10 i c s $
5 h e m a t i c s $
4 t h e m a t i c s $
9 t i c s $
1 $ m a t h e m a t i c s $
6 e m a t i c s $
10 c s $
2 a t h e m a t i c s $
8 a t i c s $

Figure 1. The table of the lexicographically sorted suffixes of the word mathematics$ together the
SA(mathematics$) and the bwt(mathematics$).

122 Proceedings of the Prague Stringology Conference 2013

For instance, if W = mathematics then bwt(W$) = smmihtt$ecaa and
SA(W$) = [12, 2, 7, 10, 5, 4, 9, 1, 6, 10, 2, 8]. The table obtained by lexi-
cographically sorting all the suffixes of W$ is depicted in Figure 1.

3 Local and global suffixes of a text

Let W ∈ Σ∗ and let W = L1L2 · · ·Lk be its Lyndon Factorization. For each factor Lr,
we denote by first(Lr) and last(Lr) the position of the first and the last character,
respectively, of the factor Lr in W . Let u be a factor of W . We denote by sufu(i) =
W [i, last(u)] and we call it local suffix at the position i with respect to u. Note that
sufW (i) = W [i, n] and we call it global suffix of W at the position i. We write suf(i)
instead of sufW (i) when there is no danger of ambiguity.

Definition 2. Let W be a word and let u be a factor of W . We say that the sorting
of suffixes of u is compatible with the sorting of suffixes of W if for all i, j with
first(u) ≤ i < j ≤ last(u),

sufu(i) < sufu(j) ⇐⇒ suf(i) < suf(j).

Notice that in general taken an arbitrary factor of a word W , the sorting of its
suffixes is not compatible with the sorting of the suffixes of W . Consider for instance
the wordW = abababb and its factor u = ababa. Then sufu(1) = ababa > a = sufu(5)
whereas suf(1) = abababb < abb = suf(5).

Theorem 3. Let W ∈ Σ∗ and let W = L1L2 · · ·Lk be its Lyndon factorization. Let
u = LrLr+1 · · ·Ls. Then the sorting of the suffixes of u is compatible with the sorting
of the suffixes of W .

Proof. Let i and j be two indexes with i < j both contained in u. We just need to
prove that suf(i) > suf(j) ⇐⇒ sufu(i) > sufu(j). Let x = W [j, last(Ls)] and
y = W [i, i+ |x| − 1].

Suppose that suf(i) > suf(j). Then y ≥ x by the definition of lexicographic
order. If y > x there is nothing to prove. If x = y, then sufu(j) is prefix of sufu(i),
so by the definition of lexicographic order sufu(i) > sufu(j).

Suppose now that sufu(i) > sufu(j). This means that y ≥ x. If y > x there
is nothing to prove. If x = y, the index i + |x| − 1 is in some Lyndon factor Lm

with r ≤ m ≤ s, then Lr ≥ Lm ≥ Ls. We denote z = W [i + |x|, last(Lm)]. Then
suf(i) = xzLm+1 · · ·Lk > xLs+1 · · ·Lk = suf(j), since z > Lm (because Lm is a
Lyndon word) and Lm ≥ Ls+1 (since the factorization is a sequence of non increasing
factors). ⊓⊔

The above theorem states, in other words, that mutual order of the suffixes of W
starting in two positions i and j is the same as the mutual order of the “local” suffixes
starting in i and j inside the block obtained as concatenation of the consecutive
Lyndon factors including i and j.

As particular case, the theorem is also true when the two suffixes start in the same
Lyndon factor.

We recall that, if l1 and l2 denote two sorted lists of elements taken from any
well ordered set, the operation merge(l1, l2) consists in obtaining the sorted list of
elements in l1 and l2

A consequence of previous theorem is stated in the following proposition.

Sabrina Mantaci et al.: Sorting Suffixes of a Text via its Lyndon Factorization 123

Proposition 4. Let sort(L1L2 · · ·Ll) and sort(Ll+1Ll+2 · · ·Lk) denote the sorted
lists of the suffixes of L1L2 · · ·Ll and the suffixes Ll+1Ll+2 · · ·Lk, respectively. Then
sort(L1L2 · · ·Lk) = merge(sort(L1L2 · · ·Ll), sort(Ll+1Ll+2 · · ·Lk)).

This proposition suggests a possible strategy for sorting the list of the suffixes of
some word W :

– find the Lyndon decomposition of W , L1L2 · · ·Lk;
– find the sorted list of the suffixes of L1 and, separately, the sorted list of the
suffixes of L2;

– merge the sorted lists in order to obtain the sorted lists of the suffixes of L1L2;
– find the sorted list of the suffixes of L3 and merge it to the previous sorted list;
– keep on this way until all the Lyndon factors are processed;

This kind of strategy could have several advantages: first of all, one can work
online, i.e. one can start sorting suffixes as soon as the first Lyndon factor is individ-
uated. This also allow to integrate the sorting process with the Duval’s Algorithm for
Lyndon decomposition that outputs Lyndon factors online as well.

The second advantage is that this kind of strategy allows parallelization, since
every Lyndon factor can be processed separately for sorting its suffixes. These kind of
application would require an efficient algorithm to perform the merging of two sorted
lists.

A detailed algorithmic description of this method in order to obtain the bwt of a
text is given in next section.

4 An incremental algorithm to sort suffixes of a text

In this section we propose an algorithm that incrementally constructs the suffix array
SA and the Burrows-Wheeler transform bwt of the text W by using its Lyndon fac-
torization. In particular, here we detail the construction of the bwt but an analogous
reasoning can be done in order to obtain the suffix array. We assume that L1L2 · · ·Lk

is the Lyndon factorization of the word W [1, n]. So L1 ≥ L2 ≥ · · · ≥ Lk. Such an
hypothesis, although strong, is not restrictive because one can obtain the Lyndon fac-
torization of any word in linear time (cf. [11,18]). As shown in previous section, the
hypothesis that W is factorized in Lyndon words suggests to connect the problem to
the sorting of the local suffixes of W to the lexicographic sorting of the global suffixes
of W .

Our algorithm, called Bwt Lynd, considers the input text W [1, n] as logically
partitioned into k blocks, where each block corresponds to a Lyndon word, and com-
putes incrementally the bwt(W$) via k iterations, one per block of W . Each block is
examined from right to left so that at iteration i we compute bwt(L1 · · ·Li$) given
bwt(L1 · · ·Li−1$), bwt(Li$) and SA(Li$). Remark that the positions in SA(Li$) range
in [first(Li), Last(Li) + 1]. This means that we sum the amount |L1 · · ·Li−1| to the
values of the usual suffix array of Li$.

The key point of the algorithm comes from Theorem 3, because the construction
of bwt(L1 · · ·Li$) from bwt(L1 · · ·Li−1$) requires only the insertion of the characters
of Li in bwt(L1 · · ·Li−1$) in the same mutual order as they appear in bwt(Li$). Note
that the character $ that follows Li is not considered in this operation.

Moreover, such an operation does not modify the mutual order of the characters
already lying in bwt(L1 · · ·Li−1$).

124 Proceedings of the Prague Stringology Conference 2013

For each block Li with i ranging from 1 to k, the algorithm Bwt Lynd executes
the following steps:

1. Compute the bwt(Li$) and SA(Li$).
2. Compute the counter array G[1, |Li|+1] which stores in G[j] the number of suffixes

of the string L1 · · ·Li−1$ which are lexicographically smaller than the j-th suffix
of Li$.

3. Merge bwt(L1 · · ·Li−1$) and bwt(Li$) in order to obtain bwt(L1 · · ·Li−1Li$).

Example 5. Let W = aabcabbaabaabdabbaaabbdc. The Lyndon factorization of W is
L1L2L3, where L1 = aabcabb > L2 = aabaabdabb > L3 = aaabbdc. Figure 2 illustrates
how Step 3 of the algorithm works. Note that the positions of the suffixes in L2$ (i.e. in
SA(L2$)) are shifted of |L1| = 7 positions. Notice that in the algorithm Bwt Lynd

we do not actually compute the sorted list of suffixes, but we show it in Figure 2
to ease the comprehension of the algorithm. Moreover, the algorithm can be simply
adapt to compute the suffix array of W , so in Figure 2 the suffix arrays are also
shown.

L1$
SA bwt Sorted Suffixes

8 b $
1 $ aabcabb$
5 c abb$
2 a abcabb$
7 b b$
6 a bb$
3 a bcabb$
4 b cabb$

L2$
G SA bwt Sorted Suffixes

0 11+7=18 b $

0 1+7=8 $ aabaabdabb$

2 4+7=11 b aabdabb$

2 2+7=9 a abaabdabb$

2 8+7=15 d abb$

4 5+7=12 a abdabb$

4 10+7=17 b b$

5 3+7=10 a baabdabb$

5 9+7=16 a bb$

7 6+7=13 a bdabb$

8 7+7=14 b dabb$

⇒

L1L2$
SA bwt Sorted Suffixes

18 b $

8 b aabaabdabb$

1 $ aabcabbaabaabdabb$
11 b aabdabb$

9 a abaabdabb$

15 d abb$

5 c abbaabaabdabb$
2 a abcabbaabaabdabb$
12 a abdabb$

17 b b$

7 b baabaabdabb$
10 a baabdabb$

16 a bb$

6 a bbaabaabdabb$
3 a bcabbaabaabdabb$
13 a bdabb$

4 b cabbaabaabdabb$
14 b dabb$

Figure 2. Iteration 2 of the computation of the bwt of the text W = aabcabb|aabaabdabb|aaabbdc on
the alphabet {a, b, c, d}. The two columns represent the bwts before and after the iteration. Note that
the first row (the underlined letter) in the table relative to L1$ and the second row (the underlined
suffix) in the table relative to L2$ flow into the second row in the table relative to L1L2$. Indeed,
the suffix aabaabdabb$ is preceded by the symbol b in L1L2$. We use distinct style fonts for each
Lyndon word.

Step 1 can be executed in linear time O(|Li|), if bwt(Li$) and SA(Li$) are stored
in internal memory (see [22,16]).

During Step 2, the algorithm uses the functions C and rank described as follows.
For any character x ∈ Σ, let C(u, x) denote the number of characters in u that are
smaller than x, and let rank(u, x, t) denote the number of occurrences of x in u[1, t].
Such functions have been introduced in [13] for the FM-index. For sake of simplicity
we can firstly construct the array A[1, |Li| + 1] which stores in A[j] the number of

Sabrina Mantaci et al.: Sorting Suffixes of a Text via its Lyndon Factorization 125

suffixes of the string L1 · · ·Li−1$ which are lexicographically smaller than the suffix
of Li$ starting at the position j. Remark that we set A[1] = 0 because Li[1, |Li|]$
has the same rank of $ between the suffixes of L1 · · ·Li−1$ and it is preceded by the
same symbol Li−1(|Li−1|) in L1 · · ·Li−1Li$. Consequently, in our algorithm considers
the suffixes Li[1, |Li|]$ and the suffix $ (of the string L1 · · ·Li−1$) as the same suffix.
It is easy to prove that the value A[|Li|+ 1] is 0. The array A is computed from the
position |Li| to 2 by using Proposition 6.

Proposition 6. Let j be a integer ranging from |Li| to 2 and let A[j + 1] be the
number of suffixes of L1 · · ·Li−1$ lexicographically smaller than Li[j + 1, |Li|]$. Let c
be the first symbol of the suffix Li[j, |Li|]$. Then,

A[j] = C(bwt(L1 · · ·Li−1$), c) + rank(bwt(L1 · · ·Li−1$), c, A[j + 1]).

Proof. Since c is the first symbol of the suffix Li[j, |Li|]$, then Li[j, |Li|]$ = cLi[j +
1, |Li|]$. All the suffixes of L1 · · ·Li−1$ starting with a symbol smaller than c are
lexicographically smaller than Li[j, |Li|]$. The number of such suffixes is given by
C(bwt(L1 · · ·Li−1$), c). Let us count now the number of suffixes that starting with c
and are smaller than Li[j, |Li|]$. This is equivalent to counting how many c’s occur in
bwt(L1 · · ·Li−1$)[1, A[j+1]]. Such a value is given by rank(bwt(L1 · · ·Li−1$), c, A[j+
1]). ⊓⊔

It is easy to verify that we can obtain the array G by using the array A and the
suffix array SA(Li$), i.e. G[i] = A[SA(Li$)[i]]. Note that the array G contains the
partial sums of the values of the gap array used in [9,12]. However, we could directly
compute the array G by using the notion of inverse suffix array ISA1. Step 2 could
be realized in O(

∑
j=1,...,i |Lj|) time because we can build a data structure supporting

O(1) time rank queries over bwt(L1 · · ·Li−1$). The same time complexity is obtained
if the rank queries are executed over bwt(Li$).

Step 3 uses G to create the new array bwt(L1 · · ·Li$) by merging bwt(Li$) with the
bwt(L1 · · ·Li−1$) computed at the previous iteration. Such a step implicitly constructs
the lexicographically sorted list of suffixes starting in L1 · · ·Li−1 and extending up to
end of Li together with the suffixes of Li. In order to do this we keep the mutual order
between the suffixes of L1 · · ·Li−1$ and Li$ thanks to Theorem 3. From the definition
of the array G, it follows that the first two positions of the array bwt(L1 · · ·Li$) are
the first symbol of bwt(Li$) and the first symbol of bwt(L1 · · ·Li−1$), respectively.
For j = 3, . . . , |Li| we copy G[j] values from bwt(L1 · · ·Li−1$) followed by the value
bwt(Li$)[j]. It is easy to see that the time complexity of Step 3 is O(

∑
j=1,...,i |Lj|),

too.

From the description of the algorithm and by proceeding by induction, one can
prove the following proposition.

Proposition 7. At the end of the iteration k, Algorithm Bwt Lynd correctly com-
putes bwt(L1 · · ·Lk$). Each iteration i runs in O(

∑
j=1,...,i |Lj|) time. The overall time

complexity is O(k2M), where M = maxi=1,...,k(|Li|).

1 The inverse suffix array ISA of a word W$ is the inverse permutation of SA, i.e., ISA[SA[i]] = i

for all i ∈ [1, |w| + 1]. The value ISA[j] is the lexicographical rank of the suffix starting at the
position j.

126 Proceedings of the Prague Stringology Conference 2013

5 Discussions and conclusions

The goal of this paper is to propose a new strategy to compute the bwt and the SA of
a text by decomposing it into Lyndon factors and by using the compatibility relation
between the sorting of its local and global suffixes. At the moment, the quadratic
cost of the algorithm could make it impractical. However, from one hand, in order to
improve our algorithm, efficient dynamic data structure for the rank operations and
for the insertion operations could be used. Navarro and Nekrich’s recent result [21]
on optimal representations of dynamic sequences shows that one can insert symbols
at arbitrary positions and compute the rank function in the optimal time O(log n

log logn
)

within essentially nH0(s) + O(n) bits of space, for a sequence s of length n. On the
other hand, our technique, differently from other approaches in which partitions of
the text are performed, is quite versatile so that it easily can be adapted to different
implementative scenarios.

For instance, in [12] the authors describe an algorithm, called bwte, that logically
partitions the input text W of length n into blocks of the same length m, i.e. W =
Tn/mTn/m−1 · · ·T1 and computes incrementally the bwt of W via n/m iterations, one
per block of W . Text blocks are examined from right to left so that at iteration h+1,
they compute and store on disk bwt(Th+1 · · ·T1) given bwt(Th · · ·T1). In this case
the mutual order of the suffixes in each block depends on the order of the suffixes
of the next block. Our algorithm Bwt Lynd builds the bwt of a text or its SA by
scanning the text from left to right and it could run online, i.e. while the Lyndon
factorization is realized. One of the advantages is that adding new text to the end
does not imply to compute again the mutual order of the suffixes of the text analyzed
before, unless for the suffixes of the last Lyndon word that could change by adding
characters on the right. Moreover, as described in the previous section, the text could
be partitioned into several sequences of consecutive blocks of Lyndon words, and the
algorithm can be applied in parallel to each of those sequences. Furthermore, also
the Lyndon factorization can be performed in parallel, as shown in [3]. Alternatively,
since we read each symbol only once, also an in-place computation could be suggested
by the strategy proposed in [10], in which the space occupied by text W is used to
store the bwt(W).

Finally, in the description of the algorithm we did not mention the used workspace.
In fact, it could depend on the time-space trade-off that one should reach. For in-
stance, the methodologies used in [4,12] where disk data access are executed only
via sequential scans could be adapted in order to obtain a lightweight version of the
algorithm. An external memory algorithm for the Lyndon factorization can be found
in [24]. We remark that that the method proposed in [12] could be integrated into
Bwt Lynd in the sense that one can apply bwte to compute at each iteration the
bwt and the SA of each block of the Lyndon partition.

In conclusion, our method seems lay out the path towards a new approach to the
problem of sorting the suffixes of a text in which partitioning the text by using its
combinatorial properties allows it to tackle the problem in local portions of the text
in order to extend efficiently solutions to a global dimension.

References

1. M. Abouelhoda, S. Kurtz, and E. Ohlebusch: The enhanced suffix array and its applica-
tions to genome analysis, in Algorithms in Bioinformatics, vol. 2452 of LNCS, Springer Berlin
Heidelberg, 2002, pp. 449–463.

Sabrina Mantaci et al.: Sorting Suffixes of a Text via its Lyndon Factorization 127

2. D. Adjeroh, T. Bell, and A. Mukherjee: The Burrows-Wheeler Transform: Data Com-
pression, Suffix Arrays, and Pattern Matching, Springer Publishing Company, Incorporated,
first ed., 2008.

3. A. Apostolico and M. Crochemore: Fast parallel lyndon factorization with applications.
Mathematical systems theory, 28(2) 1995, pp. 89–108.

4. M. J. Bauer, A. J. Cox, and G. Rosone: Lightweight algorithms for constructing and
inverting the BWT of string collections. Theoretical Computer Science, 483(0) 2013, pp. 134–
148.

5. S. Bonomo, S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: Suffixes, Conjugates
and Lyndon words, in DLT, vol. 7907 of LNCS, Springer, 2013, pp. 131–142.

6. M. Burrows and D. J. Wheeler: A block sorting data compression algorithm, tech. rep.,
DIGITAL System Research Center, 1994.

7. K. T. Chen, R. H. Fox, and R. C. Lyndon: Free differential calculus. IV. The quotient
groups of the lower central series. Ann. of Math. (2), 68 1958, pp. 81–95.

8. A. J. Cox, T. Jakobi, G. Rosone, and O. B. Schulz-Trieglaff: Comparing DNA
sequence collections by direct comparison of compressed text indexes, in WABI, vol. 7534 LNBI
of LNCS, Springer, 2012, pp. 214–224.

9. A. Crauser and P. Ferragina: A theoretical and experimental study on the construction of
suffix arrays in external memory. Algorithmica, 32(1) 2002, pp. 1–35.

10. M. Crochemore, R. Grossi, J. Kärkkäinen, and G. Landau: Constant-Space
Comparison-Based Algorithm for Computing the Burrows-Wheeler Transform, in CPM, LNCS,
Springer, 2013, In press.

11. J.-P. Duval: Factorizing words over an ordered alphabet. Journal of Algorithms, 4(4) 1983,
pp. 363–381.

12. P. Ferragina, T. Gagie, and G. Manzini: Lightweight Data Indexing and Compression in
External Memory. Algorithmica, 63(3) 2012, pp. 707–730.

13. P. Ferragina and G. Manzini: Opportunistic data structures with applications, in FOCS
2000, IEEE Computer Society, 2000, pp. 390–398.

14. P. Ferragina and G. Manzini: An experimental study of an opportunistic index, in SODA
2001, SIAM, 2001, pp. 269–278.

15. R. Giancarlo, A. Restivo, and M. Sciortino: From first principles to the Burrows and
Wheeler transform and beyond, via combinatorial optimization. Theoret. Comput. Sci., 387(3)
2007, pp. 236–248.

16. R. Grossi: A quick tour on suffix arrays and compressed suffix arrays. Theoretical Computer
Science, 412(27) 2011, pp. 2964–2973.

17. C. Hohlweg and C. Reutenauer: Lyndon words, permutations and trees. Theoretical
Computer Science, 307(1) 2003, pp. 173–178.

18. M. Lothaire: Applied Combinatorics on Words (Encyclopedia of Mathematics and its Appli-
cations), Cambridge University Press, New York, NY, USA, 2005.

19. U. Manber and G. Myers: Suffix arrays: a new method for on-line string searches, in Proceed-
ings of the first annual ACM-SIAM symposium on Discrete algorithms, SODA ’90, Philadelphia,
PA, USA, 1990, SIAM, pp. 319–327.

20. S. Mantaci, A. Restivo, G. Rosone, and M. Sciortino: A new combinatorial approach
to sequence comparison. Theory Comput. Syst., 42(3) 2008, pp. 411–429.

21. G. Navarro and Y. Nekrich: Optimal dynamic sequence representations, in Proc. 24th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 2013, pp. 865–876.

22. S. J. Puglisi, W. F. Smyth, and A. H. Turpin: A taxonomy of suffix array construction
algorithms. ACM Comput. Surv., 39 2007.

23. A. Restivo and G. Rosone: Balancing and clustering of words in the Burrows-Wheeler
transform. Theoret. Comput. Sci., 412(27) 2011, pp. 3019–3032.

24. K. Roh, M. Crochemore, C. S. Iliopoulos, and K. Park: External memory algorithms
for string problems. Fundam. Inf., 84(1) 2008, pp. 17–32.

25. G. Rosone and M. Sciortino: The Burrows-Wheeler Transform between Data Compression
and Combinatorics on Words, in CiE, vol. 7921 of LNCS, Springer, 2013, In press.

26. J. T. Simpson and R. Durbin: Efficient construction of an assembly string graph using the
FM-index. Bioinformatics, 26(12) 2010, pp. i367–i373.

