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Abstract. Deduplication is a special case of data compression in which repeated
chunks of data are stored only once. For very large chunks, this process may be applied
even if the chunks are similar and not necessarily identical, and then the encoding of
duplicate data consists of a sequence of pointers to matching parts. However, not all
the pointers are worth being kept, as they incur some storage overhead. A linear, sub-
optimal solution of this partition problem is presented, followed by an optimal solution
with cubic time complexity and requiring quadratic space.

1 Introduction and Background

Large backup and storage systems need to process ever increasing amounts of data,
and standard lossless data compression methods may not be able to cope with it.
On the other hand, the use of classical compression may be an overkill, since backup
data has generally the property that only a small fraction of it is changed between
consecutive backup generations. This calls for a special form of data compression,
known as deduplication, which tries to store repetitive data only once. The challenge
is, of course, to locate as much of the duplicated data as possible.

A general paradigm to achieve this goal could be the following. Partition the input
database, which is often called the repository , into fixed or variable sized blocks, called
chunks , apply a cryptographically strong hash function on each of these input chunks,
and store the different hash values, along with the address of the corresponding chunk,
in a fast to access data structure, like a hash table or a B-Tree [6,7]. When a fresh
copy of the data is given, e.g., for a weekly or even daily backup, the new data, often
called a version, is also partitioned into similar chunks, and a chunk is only kept if
the corresponding hash value is not stored yet. Otherwise it is replaced by a pointer
to the already stored copy.

A major dilemma is to decide what the (average) chunk size should be, as if it
is too small, the number of chunks and the accompanying overhead might be too
large; on the other hand, the larger the chunks, the lower is the probability of finding
identical ones, reducing the potential deduplication benefits. Note that systems based
on using hashing functions are generally only able to detect identical chunks, because
most hashing functions are designed with the specific aim that even small changes
in the argument should imply substantive changes in the hashed values. This lead to
the idea of devising deduplication systems based on similarity rather than identity,
thereby allowing the use of considerably larger chunks, as in the IBM ProtecTIER
product, described in [1]. An extension of this similarity based deduplication system
to an environment using small sized chunks has been presented last year at this
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conference [2]. We now focus again on systems using very large chunks, and shall deal
with the following problem implied by it.

While a single pointer is sufficient for the compression of an identical chunk, the
case of similar chunks is more involved. Similarity might imply that most of the data
of the version chunk can be copied from the repository, but the data to be copied
is not necessarily contiguous and might appear in various chunks; moreover, even
if several pointers refer to the same repository chunk, they could point to locations
that are scattered throughout it. In fact, the encoding of a compressed chunk will
be a sequence of various copy items, interspersed with stretches of new data. If one
considers quite long chunks, say, of the order of 16MB, and adds to this the fact that
the new data can be as short as a single byte, the conclusion is that the number of
elements in the encoding of a single chunk may be large.

This situation is aggravated in a typical scenario of a backup system, which stores
several consecutive generations of almost the same data. There might only be minor
changes between adjacent generations, but these changes have a cumulative effect,
leading to chunks that are increasingly fragmented into smaller and smaller copy and
non-copy items. However, storing the data needed to reconstruct a highly fragmented
chunk may itself create a compression problem.

In the next section, we define the specific problem dealt with herein, namely find-
ing an optimal partition of a chunk into matching and non-matching parts. Section 3
then suggests a sub-optimal, yet linear, algorithm, and Section 4 an optimal one,
requiring cubic time. Section 5 brings a few improvements. We opted for suggesting
only a theoretical framework, so there is no experimental section, which is justified
in the conclusion.

2 Definition of the problem

We thus consider applying a filtering stage after having located all the matching
parts, which should eliminate those parts of the compressed data that will ultimately
not be worth being kept, because the required overhead might be larger than the
compression gain. The input to this part of the process is a chunk of data and a list

of matches , each consisting of a pair of pointers, one to the given version chunk, one
into the repository, and the size of the matching substring. The expected output is
a partition of the given chunk into a sequence of mismatching and matching blocks.
The compressed form of the chunk will then consist of a copy of the mismatching
parts, and of pointers describing where the matching parts can be found.

A simplistic solution would of course be to build the output by just copying the
input, that is, accept exactly the partition found by listing all the matches. But this
would ignore the fact that at least a part of the matches are not worth being kept,
as they might cause a too high degree of fragmentation. The challenge is therefore to
decide which matches should be kept, and which should be ignored.

 

 

 

 

 

 

 

           

Figure 1. Schematic representation of the partition of a data chunk
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Figure 1 shows a possible partition of a data chunk into alternating areas of non-
matches and matches. The non-matches, represented by the grey rectangles, contain
New data and are indexed N1, N2, . . . , Nk. The Matches, drawn as the white rectan-
gles, contain data that has previously appeared in the repository, and will be stored
by means of pointers of the form (address, length); the matching parts between the
non-matching blocks Ni and Ni+1 are indexedMi,1,Mi,2, . . .Mi,ji . Non-matching parts
cannot be consecutive — this is new data, and any stretch of such new characters
is considered a single new part. The matching parts, on the other hand, may consist
of several different sub-parts that are located in different places on the disk; each
sub-part needs therefore a pointer of its own.

We consider two functions defined on these matching and non-matching parts.
A cost function c() giving the price we incur for storing the pointers in the meta-data;
typically, but not necessarily, all pointers are of fixed length E (in our implementation,
E = 24 bytes), that is c(Ni) = c(Mℓ,j) = 24 for all indexes, so that actually, the cost
for the meta-data depends only on the number of parts, which is k +

∑k
t=1 jt. In

other implementations, the pointers may undergo another layer of compression, e.g.,
Huffman coding, resulting in variable length elements.

The second function s() measures, for each part, the size of the data on the disk.
So we have that s(Ni) will be just the number of bytes of the non-matching part, as
these new bytes have to be stored physically somewhere, and s(Mℓ,j) = 0, since no
new data is written to the disk for a matching part. However, we shall define s(Mℓ,j) =
length for a block Mℓ,j that is stored by means of a pointer (address, length), which
means that the size will be defined as the number of bytes written to the disk in case
we decide to ignore the fact that Mℓ,j has occurred earlier and thus has a matching
part already in the repository.

The compressed data consists of the items written to the disk plus the pointers
in the meta-data, but these cannot necessarily be traded one to one, as storage space
for the meta-data will generally be more expensive. We shall assume that there exists
a multiplicative factor F such that, in our calculations, we can count one byte of
meta-data as equivalent to F bytes of data written to the disk. This factor need not
be constant and may dynamically depend on several run-time parameters. Practically,
F will be stored in a variable and may be updated when necessary, but we shall use
it in the sequel as if it were a constant.

Given the above notations, the size of the compressed file is then

F ·





k
∑

i=1



c(Ni) +
ji
∑

t=1

c(Mi,t)







+
k
∑

i=1

s(Ni),

and in the particular case of fixed length pointers of size E, which we shall assume,
for simplicity, in the sequel:

F · E ·

(

k +
k
∑

t=1

jt

)

+
k
∑

i=1

s(Ni), (1)

whereas the uncompressed file has size

k
∑

i=1



s(Ni) +
ji
∑

t=1

s(Mi,t)



 .

The optimization problem we consider is based on the fact that the partition we
obtain as input may be altered. The non-matching parts Ni can obviously not be
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touched, so the only degree of freedom we have is to decide, for each of the matching
parts Mi,j , whether the corresponding pointer should be kept, or whether we opt to
ignore the match and treat this part as if it were non-matching. There is a priori
nothing to be gained from such a decision: the pointer in the meta-data is changed
from matching to non-matching, but incurs the same cost, and some data has been
added to the disk, so there will always be a loss.

The following example shows that nevertheless, there can also be a gain in cer-
tain cases. Consider the block M1,2 in Figure 1. If we decide to ignore its matching
counterpart, the data of M1,2 has to be written to the disk, but it is contiguous with
the data of N2. The two parts may therefore be fusioned, which reduces the number
of meta-data entries by one. This will result in a gain if

s(M1,2) < F · E.

Moreover, if indeed we decide to consider M1,2 as a non-matching block, this will leave
M1,1 as a single match between two non-matches. In this case, ignoring the match
may allow to unify the three blocks N1,M1,1, N2, reducing the number of meta-data
entries by two. This will be worthwhile even if

s(M1,1) < 2 F · E.

More generally, any extremal matching blocks (those touching on at least one of their
sides with a non-match) may be candidates for such a fusion, which can trigger even
further unifications like in the example. But these are not the only cases: even non-
extremal blocks may profit from unification. This is not true for a single matching
blocks, whose both neighbors are also matching, like M3,2 in Figure 1, because we add
data to the disk, but do not remove any meta-data, just change one of the entries. But
there might be a stretch of several matching blocks that can profit from unification.

It should be noted that devising a new partition is not only a matter of trading
a byte of meta-data versus F bytes of disk data. Reducing the number of entries in
the meta-data has also an effect of the time complexity, since each entry requires
an additional read operation. Many compression algorithms have to deal with such
time/space tradeoffs, and for our purpose, we shall assume that the factor F already
takes also the time complexity into account, that is, F reflects our estimation of how
many bytes of disk space we are ready to pay in order to save one byte of meta-data,
considering all aspects, including space, CPU and I/O.

The challenge is therefore to come up with an efficient, and if possible, optimal
way to select an appropriate subset of the input partition which minimizes the size
of the compressed file as measured by equation (1).

3 Linear sub-optimal algorithm

The following algorithm is a first solution attempt. The partition it produces is not
necessarily optimal, but the complexity is linear with the number of elements Ni and
Mi,j . The algorithm uses as main data structure a doubly linked list L, the elements
of which represent the matching or non-matching data blocks defined above, so their
initial number is n = k+

∑k
t=1 jt. Each element p of the list L has the following fields:

– status(p) – indicating whether the element pointing p is matching (M), non-matching
(NM), or a sentinel element (S) for smoother programming
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– prev(p) – pointing to the predecessor of p
– succ(p) – pointing to the successor of p
– size(p) – if status(p) = NM, this is the number of non-matching bytes; if status(p) =
M, this is the length of the element to be copied; if status(p) = S, size(p) is not
defined.

– data(p) – defined only if status(p) = NM, in which case it contains the new data
not found in the repository; if status(p) = M, nothing will be stored in data(p), but
we shall refer by DATA(p) to the bytes pointed to by the (address, length) pointer.

 

p p 

p p  

p p 

p p 

before after 

Case 1 

Case 2 

Case 3 

Case 4 

Figure 2. Different cases dealt by the algorithm

We first add sentinel elements at the beginning and end of the list, which avoids the
necessity to check at each step whether successors and predecessors exist. The main
idea is then to scan the list of items with a pointer p and perform local substitutions
according to the contexts, if possible. If the current item is of type NM, it is skipped.
If it is a matching item, we consider 5 disjoint cases.

1. Case 1: The item pointed to by p is surrounded by NM items. In this case, all 3
elements can be merged into one, if appropriate, that is, if size(p)< 2F E.

2. Case 2: The item pointed to by p is preceded by an NM item; it can then be merged
into the preceding item, if appropriate. Note that if several consecutive items can
be merged, this is dealt with in the following iterations.

3. Case 3: The item pointed to by p is followed by an NM item; this case is symmetric
to Case 2 .

4. Case 4: The item pointed to by p is surrounded by M items. We then check
whether two M items can be merged into one NM item. Longer chains of M items
are considered in the following iterations, though then in Case 3.

5. Case 5: No substitution is possible, just advance p to its successor.

The four first cases are schematically represented in Figure 2, where as before, NM
items appear in grey and M items in white. As part of the actions to be performed
in each case, the pointer p has to be repositioned. In the first 2 cases, p will point to
the item following the newly merged block, so the next iteration will take us to Case
2, and in the last 2 cases, p will point to the item preceding the newly merged block,
so the next iteration will take us to Case 3.

It therefore follows that the main pointer of the procedure may also move back-
wards, which could result in an unbounded number of iterations. But in each iteration,
either the pointer is advanced by one step, or the overall number of items is reduced
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p ←− succ(TOP)
while succ(p) 6= NULL

if status(p) 6= M then
p ←− succ(p)

else

if status(prev(p)) = NM and status(succ(p)) = NM and size(p) < 2 F E then
// Case 1

q ←− prev(p)
size(q) ←− size(q) + size(p) + size(succ(p))
q ←− succ(succ(p))
delete succ(p) from L
delete (p) from L
p ←− q

else if status(prev(p)) = NM and size(p) < F E then
// Case 2

q ←− prev(p)
size(q) ←− size(q) + size(p)
q ←− succ(p)
delete (p) from L
p ←− q

else if status(succ(p)) = NM and size(p) < F E then
// Case 3

q ←− succ(p)
size(q) ←− size(q) + size(p)
q ←− prev(p)
delete (p) from L
p ←− q

else if status(prev(p)) 6= NM and status(succ(succ(p))) 6= NM
and size(p) + size(succ(p)) < F E then

// Case 4
status(p) ←− NM
size(p) ←− size(p) + size(succ(p))
q ←− prev(p)
delete succ(p) from L
p ←− q

else
p ←− succ(p)

Figure 3. Linear sub-optimal algorithm
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by one, which bounds the global complexity to be at most 2n iterations, each requir-
ing O(1) commands. Note, however, that this solution is not necessarily optimal, as
sequences of consecutive blocks are substituted greedily by pairs. It may happen that
3 consecutive M items could be merged, but considered as two pairs, none of them
will result in a substitution. The formal algorithm is given in Figure 3.

4 Optimal solution of the partition problem

We now turn to an optimal solution of the partition problem. The solution will be ap-
plied individually on each sequence of consecutive M-items, surrounded on both ends
by NM-items, since these cannot be altered, and the only possible transformation is to
declare matching blocks as if they were non-matching. Therefore the originally given
NM-items will appear also in the final optimal solution, so we can concentrate on each
sub-part on its own. Consider then the (matching) elements as indexed 1, 2, . . . , n,
and the non-matching delimiters as indexed 0 and n+ 1.

Notation: we shall return the required partition in the form of a bit-string of
length n, with the bit in position i being set to 1 if the i-th element should be of
type NM, and set to 0 if the i-th element should be of type M. This notation implies
immediately that the number of possible solutions is 2n, so that an exhaustive search
of this exponential number of alternatives is ruled out.

The basis for a non-exponential solution is the fact that the optimal partition
can be split into sub-parts, each of which has to be optimal for the corresponding
subranges. We can thus get the solution for a given range by trying all the possible
splits into, say, two sub-parts. Such recursive definitions call for resolving them by
means of dynamic programming [4]. The tricky part here is that the optimal solution
for the range (i, j), might depend on whether its bordering elements, indexed i − 1
and j + 1, are of type matching or non-matching, so the optimal solution for range
(i, j) might depend on the optimal solution on the neighboring ranges.

The optimal partition will thus be built by means of a two-dimensional dynamic
programming table C[i, j], and the optimal partition will be stored in a similar table
PS, so that PS[i, j] holds the optimal partition for the given parameters, which is a
bit-string of length j − i + 1. For 1 ≤ i ≤ j ≤ n, we define C[i, j] as the global cost
of the optimal partition of the sub-sequence of elements i, i + 1, . . . , j − 1, j, when
the surrounding elements i − 1 and j + 1 are of type NM. This cost will be given
in bytes and reflects the size of the data on disk for NM-items, plus the size of the
meta-data for all the elements, using the equivalence factor explained above, that is,
each meta-data entry incurs a cost of FE bytes. Once the table is filled up, the cost
of the optimal solution we seek is stored in C[1, n] and the corresponding partition is
given in PS[1, n].

The basis of the calculation will be the individual items themselves stored in the
main diagonal of the matrix, C[i, i] for 1 ≤ i ≤ n, as well as the elements just below
the diagonal, C[i, i − 1]. The following iterations will then be ordered by increasing
difference between i and j. We shall thus first deal with all sequences of two adjacent
elements, then 3, etc. When calculating the optimal solution for a sequence of ℓ
adjacent elements, we can use our knowledge of the optimal solutions for all shorter
sub-sequences. If fact, for a sequence of length ℓ = j − i + 1, we only need to check
the sum of the costs of all possible partitions of this range into two subranges, that
is the cost for (i, k− 1) plus that of (k+ 1, j) for i < k < j. We initialize the cost for
each subrange by the possibility of leaving all the n elements of type matching.
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More specifically, the formal algorithm is given in Figure 4 and the line numbers
below refer to this figure. Lines 1 and 3 initialize the table for ranges of size 0, that
is, of type [i + 1, i], giving them a cost 0. The corresponding bit-string are Λ, which
denotes the empty string. Lines 4–7 deal with singletons of type [i, i]. Since we assume
that the surrounding elements are both of type NM, we have to compare the size s(i)
of the matching element with the cost of defining it as non-matching, and letting it be
absorbed by the neighboring NM items. In that case, two elements of the meta-data
can be saved, which is checked in line 4.

1 C[n+ 1, n] ←− 0 PS[n+ 1, n] ←− Λ
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 PS[i, i− 1] ←− Λ
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE PS[i, i] ←− ’1’
6 else
7 C[i, i] ←− FE PS[i, i] ←− ’0’
8 end for i

9 for diff ←− 1 to n− 1
10 for i ←− 1 to n− diff

11 j ←− i+ diff

12 C[i, j] ←− (diff+ 1)FE
13 PS[i, j] ←− ’000· · ·0’ //(length diff+ 1)

14 OK ←− 0
15 for k ←− i to j
16 if k = j then
17 L ←− 1
18 else
19 L ←− left(PS[k + 1, j])
20 if k = i then
21 R ←− 1
22 else
23 R ←− right(PS[i, k − 1])

24 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE
25 if newcost < C[i, j]
26 C[i, j] ←− newcost
27 OK ←− k
28 end for k

29 if OK > 0 then
30 PS[i, j] ←− PS[i, OK − 1] ‖ ′1′ ‖ PS[OK + 1, j]
31 end for i
32 end for diff

Figure 4. Optimal algorithm
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The main loop starts then on line 9. The table is filled primarily by diagonals,
each corresponding to a constant difference diff = j− i, and within each diagonal, by
increasing i. Line 11 redefines j just for notational convenience.

In lines 12–13, the table entries are given default values, corresponding to the
extreme case of all diff + 1 elements in the range between and including i and j
remaining matching as initially given in the input. This corresponds to a bitstring of
diff + 1 zeroes ‘000· · ·0’ in PS. As to the cost of the default partition, we have to
store diff+ 1 meta data blocks, at the total price of (diff+ 1)FE.

After having initialized the table, the loop starting in line 15 tries to partition the
range (i, j) into two sub-pieces. The idea is to consider two possibilities for the optimal
partition of the range [i, j]: either all the diff+1 elements should remain matching, as
we assume in the default setting initializing the C[i, j] value in line 12, or there is at
least one element k, with i ≤ k ≤ j, which in the optimal partition should be turned
into an NM-element. The optimal solution is then obtained by solving the problem
recursively on the remaining sub-ranges (i, k − 1) and (k + 1, j). The advantage of
this definition is that the surrounding elements of the sub-ranges, i − 1 and k for
(i, k− 1), and k and j+1 for (i, k− 1), are again both of type NM, so the same table
C can be used.

 

 

 i j k k+1 

L R 

k-1 

Figure 5. Schematic representation of a partition of a sub-range

However, to combine the optimal solutions of the sub-ranges into an optimal
solution for the entire range, one needs to know whether the elements adjacent to the
separating element indexed k are of type M or NM. For if one or both of them are NM,
they can be merged with the separating element itself, so the meta-data decreases by
one or two elements, reducing the price by FE or 2FE. Let L denote the leftmost
element of the right range [k + 1, j], and R the rightmost element of the left range
[i, k − 1]. These values are assigned in lines 16–23, including extremal values. The
general case is depicted in Figure 5. We thus need a function f(L,R), giving the
number of additional meta-data elements needed as function of the type 0 or 1,
corresponding to M or NM, of the bordering elements L and R. This function should
give values according to Table 1. A possible function is thus f(L,R) = 1 − L − R,
which explains the definition of the newcost in line 24.

L R f(L,R)
1 1 -1
0 1 0
1 0 0
0 0 1

Table 1. Values for f(L,R)

We check the sum of the costs of the optimal solutions of the sub-problems plus the
cost of the separating element, and keep the smallest such sum, over all the possible
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partition points k, in the table entry C[i, j]. In other words,

C[i, j]← min







(diff+ 1)FE,

min
i≤k≤j

(C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE) .

OK stores the value of k for which the optimal partition has been found, i.e., that
with minimum cost. If the default value has been changed, the optimal solution,
expressed as a bitstring of length diff + 1, is obtained in line 30 by concatenating
the bitstrings corresponding to the optimal solutions of the subranges and between
them the string ′1′ corresponding to the element indexed k. The operator ‖ denotes
concatenation.

The complexity of evaluating the table is dominated by the loops starting at line 9.
There are three nested loops, and the loop on k goes from i to j − 1 = i + diff − 1,
so it is executed diff times for each possible value of diff and i. The total number of
iterations is therefore

n−1
∑

i=1

i(n− i) =

[

n
n(n− 1)

2
−

(n− 1)n(2n− 1)

6

]

=
1

6
(n3 − n).

Such a cubic number of iterations might be prohibitive, even though the coefficient
of n3 is at most 0.17. Recall that n, the input parameter of the number of consecutive
blocks dealt with in each call to the program for the optimal partition, is the number
of consecutive matching items between two non-matching ones. In terms of our bit-
string notation: the result of applying the deduplication algorithm of a large input
chunk is a sequence of matching or non-matching items, which we denoted by a bit-
string of the form, e.g., 1001000101110000000100. . . The optimal partition algorithm
is then invoked for each of the 0-bit runs, which, on the given example, are of lengths
2, 3, 1, 0, 0, 7, etc. There is of course no need to call the procedure when n = 0.

5 Improvements

5.1 Reducing the time complexity

If certain values of n are too large, one may try to reduce the complexity a priori by
applying a preliminary filtering heuristic that will not impair the optimal solution.
For example, one could consider the maximal possible gain from declaring a matching
item (0) to be non-matching (1). This happens if the two adjacent blocks are non-
matching themselves, and then all 3 items could be merged into a single one. The
savings would then be equivalent to 2FE bytes, which have to be counterbalanced by
the loss of s(i) bytes that are not referenced anymore, so have to be stored explicitly.
Thus, if s(i) > 2FE, the ith M-element will surely not be transformed into an NM-
element. It follows that s(i) > 2FE is a sufficient condition for keeping the value of
the ith bit in the optimal partition as 0.

The heuristic will then scan all the input items and check this condition for each
0-item. If the condition holds, the element can be declared to remain of type 0, which
partitions the rest of the elements into two parts. For example, if the middle element
of n is thereby declared as keeping its 0-status, we have split the n elements into

two parts of size n/2 each, so the complexity is reduced from 1

6
n3 to 21

6

(

n
2

)3

=
1

24
n3. Returning to the example bit-string above 1001000101110000000100. . ., if the



138 Proceedings of the Prague Stringology Conference 2013

boldfaced elements are those fixed by the heuristic in their 0-status, the algorithm
will be invoked with lengths 1, 1, 1, 1, 3, 2, etc. Theoretically, the worst case didn’t
change, even after applying this heuristic, but in practice, the largest values of n
might be much smaller.

There remains a technical problem: the optimal partition evaluated in C[i, j] is
based on the assumption that the surrounding elements i− 1 and j + 1 were of type
1, and if the above heuristic is applied, this assumption is not necessarily true. Two
approaches are possible to confront this problem. We could use the value of C[i, j]
and the corresponding partition in PS[i, j] and adapt it locally to the cases if one of
the surrounding elements is 0. For example, if the rightmost bit in PS[i, j] is 0, and
bit j+1 is also 0, then no adaptation is needed; but if the rightmost bit in PS[i, j] is
1, and bit j + 1 is 0, then the optimal value C[i, j] took into account that elements j
and j +1 were merged, which is not true in our case, so the value of C[i, j] has to be
increased by one meta-data element, that is by FE. A similar adaptation is needed
for the left extremity, element i − 1. Such an adaptation is not necessary optimal,
since it might be possible that, had we known that the surrounding elements are not
both 1, an altogether different solution will be optimal.

As a second approach, we could extend the definitions of the C[i, j] and PS[i, j]
tables to be 4-dimensional, with C[i, j, L,R] being the cost of the optimal partition
of the elements i, i + 1, . . . , j, under the assumption that the bordering elements
i − 1 and j + 1 are of type L and R, respectively, where L,R ∈ {0, 1}. Similarly,
PS[i, j, L,R] will hold the optimal partition for the given parameters. There are only
four possibilities for L and R: LR ∈ {00, 01, 10, 11}, and the total size of each table
is therefore only 2n2.

As above, one tries to partition the range (i, j) into two pieces, just without
a separating element as before. The ranges will be (i, k) and (k + 1, j), for some
i ≤ k < j. L and R still denote the elements to the left of i and to the right of
j, respectively, but we also need the bordering elements of the subranges, which
again can be of type M or NM, denoted by 0 or 1, respectively. We therefore need to
iterate on the possible internal left and right values IL and IR. It might be easiest
to understand the notation by referring to the schema in Figure 7. The left subrange,
(i, k), is delimited on its left by L and on its right by IL, whereas the right subrange,
(k + 1, j), is delimited on its left by IR and on its right by R. The notation thus
refers each bordering element to the position of the corresponding subrange, rather
than to its own position, which is why IL appears in the figure to the right of IR.

Iterating of the four possibilities for (IL, IR), we have to check for consistency.
Suppose, for example, that we consider IL = 0. That means that we are looking for
the optimal partition of the left range (i, k), under the condition that the bordering
elements are L and IL = 0. But we have also to check that the complementing
optimal solution of the right range (k + 1, j) is such that its leftmost bit is indeed
0. A similar consistency check verifies that the optimal solution for the right range
(k + 1, j) is taken for the given value of IR and that indeed, the rightmost bit of
the string corresponding to the left range (i, k) is consistent with this IR value. If
there is consistency, we check the sum of the costs of the optimal solutions of the
sub-problems, and keep the smallest such sum, over all the possible partition points
k. If there is no consistency for any k, the default value of keeping all bits as 0 is
chosen. We omit here the formal algorithm and the details.
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1 C[n+ 1, n] ←− 0 LT [n+ 1, n] ←− 1 RT [n+ 1, n] ←− 1
2 for i ←− 1 to n
3 C[i, i− 1] ←− 0 LT [i, i− 1] ←− 1 RT [i, i− 1] ←− 1
4 if s(i)− FE < FE then
5 C[i, i] ←− s(i)− FE S[i, i] ←− i
6 LT [i, i] ←− 1 RT [i, i] ←− 1
7 else
8 C[i, i] ←− FE
9 LT [i, i] ←− 0 RT [i, i] ←− 0
10 end for i

11 for diff ←− 1 to n− 1
12 for i ←− 1 to n− diff

13 j ←− i+ diff

14 C[i, j] ←− (diff+ 1)FE
15 LT [i, j] ←− 0 RT [i, j] ←− 0

16 OK ←− 0
17 for k ←− i to j
18 L ←− LT [k + 1, j]
19 R ←− RT [i, k − 1]

20 newcost ←− C[i, k − 1] + C[k + 1, j] + s(k) + (1− L−R)FE

21 if newcost < C[i, j]
22 C[i, j] ←− newcost
23 OK ←− k
24 end for k

25 S[i, j] ←− OK

26 if OK > 0 then
27 LT [i, j] ←− LT [i, OK − 1] RT [i, j] ←− RT [OK + 1, j]
28 end for i
29 end for diff

Figure 6. Optimal algorithm with reduced space complexity
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right(PS[i,k,L,IL]) left(PS[k+1,j,IR,R]) 

Figure 7. Schematic representation of an alternative partition of a sub-range

5.2 Reducing the space complexity

While the time complexity is θ(n3), the C[i, j] table needs only n2 space. But the
strings stored in the PS[i, j] table are of length j− i+1, so that the space for PS[i, j]
is also θ(n3). We can reduce this and store only O(1) for each entry at the cost of
not giving the optimal partition explicitly, but providing enough information for the
optimal partition to be built in linear time, similarly to what has been done in [5].

The key to this reduction is storing in PS[i, j] (which we call now S[i, j] to avoid
confusions) not the string itself, but the value OK at which the range [i, j] has been
split in an optimal way (line 27), or leaving it undefined, if no such value OK exists.
Since the string PS[i, j] served also to provide information on its extremal elements
(left and right in lines 19 and 23 of the algorithm in Figure 4), these elements have
now to be saved in tables LT and RT on their own. The updated algorithm is given
in Figure 6.

To build the optimal solution, we initialize a vector A with n zeros, and then
change selected values according to the values in the S[i, j] matrix, using the recursive
procedure Fill Sol, given in Figure 8. It will be invoked by Fill Sol(A, 1, n). The total
running time of the recursion is clearly bounded by n.

1 Fill Sol(A, i, j)
2 if j ≥ i and S[i, j] is defined
3 k ←− S[i, j]
4 A[k] ←− 1
5 Fill Sol(A, i, k − 1)
6 Fill Sol(A, k + 1, j)

Figure 8. Construction of the optimal solution

6 Conclusion

Papers presenting new compression schemes usually contain experimental sections
reporting on tests of the suggested algorithms. But while there are well established test
cases which have been agreed upon in the compression community, like the Calgary or
the Canterbury [3] corpora, there is no equivalent for deduplication tests. The reason
is mainly that the performance does not depend on the nature of the files, but rather
on the their repetitiveness. Thus even a file containing random data, which cannot
be compressed, may still profit from deduplication if it appears more than once in
the repository.
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There is therefore no possibility to find data that could be deemed to be repre-
sentative, which is why we have preferred to leave this article on the theoretic level.
We nevertheless collect statistics on the performance of the new methods when ap-
plied on a large deduplication system. The experimental results will be presented as
examples only, without claiming that one could extrapolate from them information
on the performance in general. These results will be presented in an extended version
of this paper.
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