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Abstract. A deterministic BSP algorithm for constructing the suffix array of a given
string is presented, based on a technique that we call accelerated sampling. It runs
in optimal O(n

p
) local computation and communication, and requires a near optimal

O(log log p) supersteps. The algorithm provides an improvement over the synchronisa-
tion costs of existing algorithms, and reinforces the importance of the sampling tech-
nique.
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1 Introduction

Suffix arrays are a fundamental data structure in the string processing field and have
been researched extensively since their introduction by Manber and Myers [11,14].

Definition 1. Given a string x = x[0] · · · x[n − 1] of length n ≥ 1, defined over an

alphabet Σ, the suffix array problem is that of constructing the suffix array SAx =
SAx[0] · · ·SAx[n−1] of x, which holds the ordering of all the suffixes si = x[i] · · · x[n−
1] of x in ascending lexicographical order; i.e. SAx[j] = i iff si is the jth suffix of x

in ascending lexicographical order.

1.1 Notation, Assumptions and Restrictions

We assume zero-based indexing throughout the paper, and that the set of natural
numbers N includes zero. For any i, j ∈ N, we use the notation [i : j] to denote
the set {a ∈ N | i ≤ a ≤ j}, and [i : j) to denote {a ∈ N | i ≤ a < j}. This
notation is extended to substrings by denoting the substrings of string x, of size n,
by x [i : j) = x[i] · · · x[j − 1], for i ∈ [0 : n) and j > i.

The input to the algorithms to be presented in this paper is restricted to strings
defined over the alphabet Σ = [0 : n), where n is the size of the input string. This
allows us to use counting sort [3] throughout when sorting characters, in order to
keep the running time linear in the size of the input. We also use counting sort in
conjunction with the radix sorting technique [3].

The end of any string is assumed to be marked by an end sentinel, typically
denoted by ‘$’, that precedes all the characters in the alphabet order. Therefore, to
mark the end of the string and to ensure that any substring x [i : j) is well defined,
we adopt the padding convention x[k] = −1, for k ≥ n.
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Note that the suffix array construction algorithms to be presented in Sections 3
and 5 can also be applied to any string X, of size n, over an indexed alphabet Σ ′

[14,16], which is defined as follows:

– Σ ′ is a totally ordered set.
– an array A can be defined, such that, ∀σ ∈ Σ ′, A[σ] can be accessed in constant
time.

– |Σ ′| ≤ n.

Commonly used indexed alphabets include the ASCII alphabet and the DNA
bases. It should also be noted that any string X, of size n, over a totally ordered
alphabet can be encoded as a string X ′, of size n, over integers. This is achieved by
sorting the characters of X, removing any duplicates, and assigning a rank to each
character. The string X ′ is then constructed, such that it is identical to X except
that each character of X is replaced by its rank in the sorted array of characters.
However, sorting the characters of X could require O(n log n) time, depending on the
nature of the alphabet over which X is defined.

Let x1 ⊙ x2 denote the concatenation of strings x1 and x2. Then, for any set of
integers A,

⊙

i∈A xi is the concatenation of the strings indexed by the elements of A,
in ascending index order. Throughout the paper we use |b| to denote the size of an
array or string b. To omit ⌈·⌉ operations, we assume that real numbers are rounded
up to the nearest integer.

1.2 Problem Overview

As previously stated, the suffix array problem is that of constructing the suffix array
of a given string. The example in Table 1 shows the suffix array of string X, of size
12, over an indexed alphabet of a subset of the ASCII characters, written as string
X ′ over Σ = [0 : 12).

0 1 2 3 4 5 6 7 8 9 10 11 12
X = a c b a a c e d b b e a $

X ′ = 0 2 1 0 0 2 4 3 1 1 4 0 −1
SAX = 11 3 0 4 2 8 9 1 5 7 10 6

Table 1. Suffix array of a string X over an indexed alphabet, written as string X ′ over Σ = [0 : 12)

The problem is, by definition, directly related to the sorting problem. In fact, if
all the characters of the input string are distinct, then the suffix array is obtained
by sorting the strings’ characters and returning the indices of the characters in their
sorted order. In general, if the characters of the string are not distinct, the naive
solution is to radix sort all the suffixes, which runs in O(n2) time if counting sort
is used to sort the characters at each level of the radix sort. However, numerous
algorithms exist that improve on this. The first such algorithm was presented by
Manber and Myers [11] and required O(n log n) time. The running time was reduced
to O(n) through three separate algorithms by Kärkkäinen and Sanders [4], Kim et
al. [7], and Ko and Aluru [8]. A number of other algorithms exist with a higher
theoretical worst case running time but faster running time in practice, as discussed
in [14]. However, the study of these is beyond the scope of this work.

The idea behind the algorithms having linear theoretical worst case running time
is to use recursion as follows:
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1. Divide the indices of the input string x into two nonempty disjoint sets. Form
strings x′ and y′ from the characters indexed by the elements of each set. Recur-
sively construct SAx′ .

2. Use SAx′ to construct SAy′ .
3. Merge SAx′ and SAy′ to obtain SAx.

The aim of this paper is to investigate the suffix array problem in the Bulk Syn-
chronous Parallel (BSP) model, on a p processor distributed memory system. As in
the sequential setting, the naive solution to the problem is to radix sort all the suf-
fixes of the string. Shi and Shaeffer [15] provide a comparison based parallel sorting
algorithm, using a technique known as regular sampling that is then adapted by Chan
and Dehne [1] for integer sorting. However, using such a technique to sort the suffixes

of a given string of size n leads to a parallel algorithm with O(n
2

p
) local computation

cost, which is clearly inefficient.
Kärkkäinen et al. [5] give a brief overview of a BSP suffix array construction algo-

rithm having optimal O(n
p
) local computation and communication costs and requiring

O(log2 p) supersteps. They also present similar algorithms for various computation
models including the PRAM model. Kulla and Sanders [9] show that the BSP al-
gorithm presented in [5] requires O(log p) supersteps and discuss their experimental
evaluation of the algorithm.

In this paper we reduce the number of supersteps required to a near optimal
O(log log p), while keeping the local computation and communication costs optimal.
The algorithm is based on a technique that we call accelerated sampling. This tech-
nique was introduced (without a name) by Tiskin [18] for the parallel selection prob-
lem. An accelerated sampling algorithm is a recursive algorithm that samples the
data at each level of recursion, changing the sampling frequency at a carefully chosen
rate as the algorithm progresses.

1.3 Paper Structure

The rest of the paper is structured as follows. The next section provides an overview
of the concept of difference covers. A description of the sequential suffix array con-
struction algorithm presented in [5] is given in Section 3. This is a generalised version
of the algorithm of [4], which is known as the DC3 algorithm. An overview of the
BSP model is provided in Section 4. In Section 5 we present our parallel suffix ar-
ray construction algorithm, based on the accelerated sampling technique, building on
top of the detailed algorithm description given in Section 3. A detailed description is
given since, as opposed to the parallel DC3 algorithms of [5,9], we do not assume a
fixed input parameter v = 3 in all the levels of recursion, so a more general version
of the algorithm is required. A detailed analysis of our proposed parallel suffix array
construction algorithm in the BSP model is then presented. The last section offers
some concluding views and discusses possible future work.

2 Difference Covers

The suffix array construction algorithms to be presented in this paper make use of
the concept of difference covers [2,6,13]. Given a positive integer v, let Zv denote the
set of integers [0 : v). A set D ⊆ Zv can be defined such that for any z ∈ Zv, there
exist a, b ∈ D such that z ≡ a − b (mod v). Such a set D is known as a difference
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v 5 . . . 13 14 . . . 73 74 . . . 181 182 . . . 337 338 . . . 541 . . . 1024 . . . 2048 . . .
|Dv| 4 10 16 22 28 40 58

Table 2. Size of the difference cover obtained using the algorithm in [2] for various values of v

cover of Zv, or difference cover modulo v. For example, {0, 1, 2}, {0, 1, 3}, {0, 2, 3}
and {1, 2, 3} are valid difference covers of Z4 while no other proper subset of Z4 is.

Colbourn and Ling [2] present a method for obtaining, for any v, a difference cover

D of Zv in time O(
√
v), where |D| = 6r+4, r = −36+

√
48+96v

48
. Hence, |D| ≤

√
1.5v+6.

Note that, in general, for any v and any difference cover D of Zv, |D| ≥ 1+
√
4v−3
2

,
since we must have |D|(|D| − 1) + 1 ≥ v. Therefore, the size of the difference cover
obtained by using the algorithm in [2] is optimal up to a multiplicative constant.

For technical reasons, discussed in Section 3, the algorithms to be presented in
this paper require that 0 6∈ D. This does not represent a restriction since, for any v

and difference cover D of Zv, for all z ∈ Zv the set D′ = {(d − z) mod v | d ∈ D} is
also a difference cover of Zv (see e.g. [13]).

Furthermore, we require that |D| < v. Since the minimum size of a difference
cover constructed using the method of [2] is 4, we only use this method for v ≥ 5. For
v = 3 and v = 4 we use the difference covers {1, 2} and {1, 2, 3} respectively. Table 2
shows the size of the difference cover obtained using the algorithm of [2] for various
values of v.

The following simple lemma is also required to ensure the correctness of the algo-
rithms to be presented.

Lemma 2. [5] If D is a difference cover of Zv, and i and j are integers, then there

exists l ∈ [0 : v) such that (i+ l) mod v and (j + l) mod v are both in D.

For any difference cover D of Zv and integer n ≥ v, a difference cover sample is
defined as C = {i ∈ [0 : n) | i mod v ∈ D}. The index set C is a v-periodic sample
of [0 : n), as defined in [5]. The fact that difference cover samples are periodic allows
them to be used for efficient suffix sorting on a given string.

3 Sequential Algorithm

Kärkkäinen and Sanders [4] present a sequential recursive algorithm that constructs
the suffix array of a given string x, of size n, using the difference cover {1, 2} of Z3,
in time O(n). This algorithm is generally known as the DC3 algorithm. Kärkkäinen
et al. [5] then generalise the DC3 algorithm such that the suffix array of x can be
constructed using a difference cover D of Zv, for any arbitrary choice of v ∈ [3 : n],
in time O(vn). Clearly, setting v = 3 results in a running time of O(n), with a
small multiplicative constant. As v approaches n the running time approaches O(n2),
and when v = n the algorithm is simply a complex version of the naive suffix array
construction algorithm. However, by initially letting v = 3 and increasing the value of
v at a carefully chosen rate in every subsequent level of recursion, we can reduce the
total number of recursion levels required for the algorithm to terminate, while still
keeping the total running time linear in the size of the input string. This technique
can be used to decrease the number of supersteps required by the parallel suffix array
construction algorithm in the BSP model. This is discussed further in Section 5. The
detailed sequential algorithm presented in [5] proceeds as follows:
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Algorithm 1. Sequential Suffix Array Construction

Parameters: integer n; integer v ∈ [3 : n].

Input: string x = x[0] · · · x[n− 1] over alphabet Σ = [0 : n).

Output: suffix array SAx = SAx[0] · · ·SAx[n− 1].

Description:

Recursion base

We sort x using counting sort, in time O(n). If all the characters of x are distinct
we return, for each character, in the sorted order, the index of the character in x, i.e.
SAx. Otherwise, the following stages are performed:

Stage 0 - Sample construction and initialisation

Construct the difference cover D of Zv as discussed in Section 2. Then, for each
k ∈ [0 : v), define the set Bk = {i ∈ [0 : n) | i mod v = k}. This partitions the set
of indices of x into v sets of size about n

v
. The difference cover sample C =

⋃

k∈D Bk

is then constructed. For i ∈ C, we call the characters x[i] sample characters and the
suffixes si sample suffixes. We denote by Sk, k ∈ [0 : v), the set of suffixes si, i ∈ Bk.

Furthermore, an array rank of size n+ v is declared and initialised by rank[0] =
. . . = rank[n + v − 1] = −1. This array will be used to store the rank of the sample
suffixes of x in the suffix array returned by the recursive call made later in Stage 1.
While only |C| elements of rank will be used, and in fact a smaller array could be
used to hold these values. However, we use a larger array to avoid complex indexing
schemes relating elements in rank to characters in x.

Stage 1 - Sort the sample suffixes

Let Σ be an alphabet of super-characters, which are defined to be in 1-1 corre-
spondence with the distinct substrings of x of length v, i.e. super-character x [i : i+ v)
corresponds to the substring x [i : i+ v), for all i ∈ C. Therefore, Σ ⊆ (Σ ∪ {−1})v.
Recall from Section 1 that, due to the padding convention, any substring x [i : j) is

well-defined, for i ∈ [0 : n) and j > i, and, therefore, any super-character x [i : j) is
also well-defined.

For each k ∈ D, we now define a string of super-characters Xk over Σ, where Xk =
⊙

i∈Bk
x [i : i+ v) and |Xk| = n

v
. Then, we construct the string of super-characters

X =
⊙

k∈D Xk, with |X| = |D|n
v
. Note that for each k, the suffixes of Xk correspond

to the set of suffixes Sk. The last super-character of Xk ends with one or more −1
sentinel elements, since 0 is not allowed to be in the difference cover. Therefore, each
suffix of X corresponds to a different sample suffix of x, followed by one or more −1
sentinel characters followed by other characters that do not affect the lexicographic
order of the suffixes of X. Note that, if 0 was allowed in the difference cover and n

was a multiple of v, then the last super-character of Xk would not end with −1.

Recall from Section 1 that since the input to the algorithm is a string over integers,
the string of super-characters X can be encoded as string X ′ over Σ ′ = [0 : |X|) using
radix sorting, in time O(v|X|), where |X ′| = |X| = |D|n

v
. The order of the suffixes of

X, i.e. the suffix array of X, can then be found by recursively calling the algorithm on
the string X ′ over Σ ′, with parameters |X ′| and v′, where v′ can be chosen arbitrarily

from the range
[

3 : min
(

(1− ǫ) v2

|D| , |X ′|
)]

, for some fixed ǫ > 0. Thus, v′ becomes

the value of v in the subsequent recursion level. The bound v′ ≤ (1− ǫ) v2

|D| follows

from the fact that we want the work done in the current level to be greater than the
work done in the subsequent recursion level.
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Recall from Section 2 that we require |D| < v. This ensures that |X| < n, so the
algorithm is guaranteed to terminate, since each recursive call is always made on a
shorter string.

When the recursive call returns with SAX′ , this holds the ordering of all the
suffixes of X ′, i.e. the rank of the sample suffixes of x within the ordered set of
sample suffixes. Then, for i ∈ C, the rank of si in SAX′ is recorded in rank[i]. The
order of the sample suffixes within each set Sk, k ∈ D, is also found from SAX′ .

The total cost of this stage is dominated by the radix sorting procedure required
to encode string X into X ′ over Σ ′ = [0 : |X|), which runs in time O(|D|n).

Note that we can now compare any pair of suffixes by the result of Lemma 2.
However, this is not sufficient to sort the suffixes of x in linear time, since each non-
sample suffix of x would have to be compared to, possibly, all the other suffixes of x
using different values of l. Instead, we perform the following.

Stage 2 - Find the order of the non-sample suffixes within each set Sk,

k ∈ Zv \D
For each k ∈ Zv \D, consider any lk ∈ [1 : v) such that (k + lk) mod v ∈ D. For

every character x[i], i ∈ [0 : n) \ C, define the tuple ti = (x[i], x[i + 1], . . . , x[i + lk −
1], rank[i+ lk]), where k = i mod v. Note that rank[i+ lk] is defined for each i, since
rank[a], for all a ∈ C, has been found in the previous stage and rank[a] = −1 for all
a ≥ n.

Then, for each set Bk, k ∈ Zv \D, construct the sequence of tuples (ti)i∈Bk
. Each

of the v − |D| constructed sequences has about n
v
tuples, with each tuple having less

than v elements. The order of the suffixes within Sk is then obtained by independently
sorting every sequence of tuples (ti)i∈Bk

, using radix sorting.

The total computation cost of this stage is dominated by the cost of radix sorting
all the sequences, i.e. O ((v − |D|)n) = O(vn).

Stage 3 - Sort all suffixes by first v characters

Note that in the previous stages the order of every suffix within each set Sk,
k ∈ [0 : v), has been found. Now, let Sα be the set of suffixes starting with α, for
α ∈ (Σ ∪ {−1})v. Then, every set Sα is composed of ordered subsets Sα

k , where
Sα
k = Sα

⋂

Sk.

All the suffixes si, i ∈ [0 : n), are partitioned into the sets Sα by representing each
suffix by the substring x [i : i+ v), and sorting these substrings using radix sort in
time O(vn).

Stage 4 - Merge and complete the suffix ordering

For all α ∈ Σv, the total order within set Sα can be obtained by merging the
subsets Sα

k , k ∈ Zv. This comparison-based v-way merging stage uses the fact that
all the suffixes in xα start with the same substring α, in conjunction with Lemma 1.
Due to this lemma, a value l ∈ [0 : v) exists such that for any i, j the comparison
of suffixes si, sj only requires the comparison of rank[i + l] and rank[j + l]. Having
already partitioned the suffixes into sets Sα and found the order of the suffixes within
each set Sk, k ∈ [0, v), the suffix array can be fully constructed through this merging
process in time O(n log v) = O(vn). 2

All the stages of the algorithm can be completed in time O(vn), and the recursive
call is made on a string of size at most 4

5
n, which corresponds to |D| = 4, v = 5.

Note that a smaller difference cover of Z5 exists, but as discussed in section 2 we use
the algorithm presented in [2] to construct the difference cover of Zv for v ≥ 5. This
leads to an overall running time of O(vn).
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4 BSP model

The bulk-synchronous parallel (BSP) computation model [19,12] was introduced by
Valiant in 1990, and has been widely studied ever since. The model was introduced
with the aim of bridging the gap between the hardware development of parallel sys-
tems and the design of algorithms on such systems, by separating the system proces-
sors from the communication network. Crucially, it treats the underlying communi-
cation medium as a fully abstract communication network providing point-to-point
communication in a strictly synchronous fashion. This allows the model to be architec-
ture independent, promoting the design of scalable and portable parallel algorithms,
while also allowing for simplified algorithm cost analysis based on a limited number
of parameters.

A BSP machine consists of p processors, each with its local primary and secondary
memory, connected together through a communication network that allows for point-
to-point communication and is equipped with an efficient barrier synchronisation
mechanism. It is assumed that the processors are homogeneous and can perform an
elementary operation per unit time. The communication network is able to send and
receive a word of data to and from every processor in g time units, i.e. g is the
inverse bandwidth of the network. Finally, the machine allows the processors to be
synchronised every l time units. The machine is fully specified using only parameters
p, g, l, and is denoted by BSP(p, g, l).

An algorithm in the BSP model consists of a series of supersteps, or synchro-

nisation steps. In a single superstep, each processor performs a number of, possibly
overlapping, computation and communication steps in an asynchronous fashion. How-
ever, a processor is only allowed to perform operations on data that was available to
it at the start of the superstep. Therefore, in a single superstep, a processor can send
and receive any amount of data, however, any received data can only be operated on
in the following superstep. At the end of a superstep, barrier synchronisation is used
to ensure that each processor is finished with all of its computation and data transfer.

The cost of a BSP superstep on a BSP(p, g, l) machine can be computed as follows.
Let worki be the number of elementary operations performed by processor π ∈ [0 : p),
in this superstep. Then, the local computation cost w of this superstep is given by
w = maxπ∈[0:p)(workπ). Let h

out
π and hin

π be the maximum number of data units sent
and received, respectively, by processor π ∈ [0 : p), in this superstep. Then, the com-

munication cost h of this superstep is defined as h = maxπ∈[0:p)(h
out
π )+maxπ∈[0:p)(h

in
π ).

Therefore, the total cost of the superstep is w + h · g + l. The total cost of a BSP
algorithm with S supersteps, with local computation costs ws and communication
costs hs, s ∈ [0 : S), is W + H · g + S · l, where W =

∑S−1
s=0 ws is the total local

computation cost and H =
∑S−1

s=0 hs is the total communication cost.
The main principle of efficient BSP algorithm design is the minimisation of the

algorithm’s parameters W , H, and S. These values typically depend on the number
of processors p and the problem size.

5 BSP Algorithm

Along with the sequential suffix array construction algorithm, described in Section
3, Kärkkäinen et al. [5] discuss the design of the algorithm on various computation
models, including the BSP model. They give a brief overview of a parallel suffix
array construction algorithm, running on a BSP(p, g, l) machine, with optimal O(n

p
)



M. F. Pace, A. Tiskin: Parallel Suffix Array Construction by Accelerated Sampling 149

local computation and communication costs and requiring O(log2 p) supersteps. The
algorithm is based on the sequential algorithm described in Section 3 with parameter
v = 3 used in every level of recursion. A number of existing parallel sorting and
merging algorithms are used to achieve this result. Kulla and Sanders [9] show that
this parallel algorithm actually requires O(log p) supersteps, implement it on a 64
dual-core processor machine and discuss the obtained results.

The algorithm described in Section 3 initially solves the suffix array problem on
a sample of the suffixes of the input string, in order to gain information that is then
used to efficiently sort all the suffixes. Sampling techniques are widely used in various
fields ranging from statistics to engineering to computer science. A number of parallel
algorithms exist that use sampling to efficiently solve problems, such as the sorting
[15,1] and convex hull [17] algorithms. In [18], Tiskin presents a BSP algorithm for
the selection problem, in which, not only is the data sampled, but, the sampling
rate is increased at a carefully chosen rate in successive levels of recursion. This
reduces the number of supersteps required by the parallel selection algorithm from
the previous upper bound of O(log p) to a near optimal O(log log p), while keeping
the local computation and communication costs optimal.

In this section we make use of this technique, which we call accelerated sampling, to
achieve the same synchronisation costs for our parallel suffix array construction algo-
rithm, while, again, keeping the local computation and communication costs optimal.
In contrast with [18], in our algorithm the sampling frequency has to be decreased,
rather than increased, in successive levels of recursion. This is achieved by increasing
the parameter v in successive levels of recursion. Since, as opposed to the previous
work in [5,9], the presented algorithm does not assume a fixed parameter v = 3 the
algorithm is described in great detail in order to cater for this generality, building on
the description given in Section 3.

The algorithms to be presented in this section are designed to run on a BSP (p, g, l)
machine. We denote the sub-array of an array a assigned to processor π ∈ [0 : p) by
aπ and extend this notation to sets, i.e. we denote by Aπ the subset of a set A assigned
to processor π.

In the suffix array construction algorithm to be presented, we make extensive use
of the parallel integer stable sorting algorithm introduced in [1]. This algorithm is
based on the parallel sorting by regular sampling algorithm [15], but uses radix sorting
to locally sort the input, removing the extra cost associated with comparison sorting.
Given an array y having m distinct integers, such that each integer is represented
by at most κ digits, the algorithm returns all the elements of y sorted in ascending
order. Since the presented suffix array construction algorithm runs on strings over
Σ = N∪{−1}, then we can use the same algorithm, which we refer to as the parallel
string sorting algorithm, to sort an array of m strings or tuples, each of fixed length
κ. In this case, the algorithm has O(κm

p
) local computation and communication costs

and requires O(1) supersteps.

Algorithm 2. Parallel String Sorting

Parameters: integer m ≥ p3; integer κ.
Input: array of strings y = y[0] · · · y[m − 1], with each string of size κ over Σ =
N ∪ {−1}.
Output: array y ordered in ascending lexicographical order.
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Description:
The input array y is assumed to be equally distributed among the p processors,

with every processor π ∈ [0 : p− 2], assigned the elements y
[

m
p
π : m

p
(π + 1)

)

, and

processor p − 1 assigned elements y
[

m
p
(p− 1) : m

)

. Note that each processor holds
m
p
elements, except the last processor p− 1, which may hold fewer elements. We call

this type of distribution of elements among the p processors a block distribution.
Each processor π first locally sorts sub-array yπ, using radix sorting, and then

chooses p+1 equally spaced samples from the sorted sub-array, including the minimum
and maximum values of yπ. These samples, which we call primary samples, are sent
to processor 0. Having received (p+1)p primary samples, each of which is a string of
length κ, processor 0 locally sorts these samples, using radix sorting, and chooses p+1
sub-samples, including the minimum and maximum values of the primary samples.
These chosen sub-samples, which we call secondary samples, partition the elements of
y into p blocks Y0, . . . , Yp−1. The secondary samples are broadcast to every processor,
and each processor π then uses the secondary samples to partition its sub-array yπ into
the p sub-blocks Y0,π, . . . , Yp−1,π. Each processor π collects the sub-blocks Yπ,χ from
processors χ ∈ [0 : p), i.e. all the elements of Yπ, and locally sorts these elements using
radix sorting. The array y is now sorted in ascending lexicographic order, however, it
might not be equally distributed among the processors, so an extra step is performed
to ensure that each processor has m

p
elements of the sorted array. Note that each

primary and secondary sample also has the index of the sample in y attached to it,
so that any ties can be broken. Also note that the size of each block is bounded by
O(p) so the partitioning of the elements among the processors is balanced.2

The parallel suffix array construction algorithm presented below requires that
the input string x of size n be equally distributed among the p processors, using a
block distribution, prior to the algorithm being called. We denote by Iπ the subset

of the index set [0 : n) that indexes xπ, π ∈ [0 : p), i.e. Iπ =
[

n
p
π : n

p
(π + 1)

)

, for

π ∈ [0 : p− 2], and Ip−1 =
[

n
p
(p− 1) : n

)

. Finally, we use the same indexing for a

and aπ, i.e. a[i] = aπ[i]. The algorithm is initially called on string x of length n, with
parameters n and v = 3.
Algorithm 3. Parallel Suffix Array Construction

Parameters: integer n ≥ p4; integer v ∈ [3 : n].
Input: string x = x[0] · · · x[n− 1] over alphabet Σ = [0 : n).
Output: suffix array SAx = SAx[0] · · ·SAx[n− 1].
Description:
Recursion base

Recall that if all the characters of x are distinct, then SAx can be obtained by
sorting the characters of x in ascending order. Therefore, we call Algorithm 2 on
string x with parameters m = n and κ = 1. When the algorithm returns with the
sorted array of characters, which we call x′, each processor π holds the sub-array x′

π,
of size n

p
, and checks for character uniqueness in its sub-array. If all the characters

in each sub-array are distinct, then, each processor π ∈ [0 : p− 2], checks with its
neighbour π + 1 to ensure that x′[n

p
(π + 1) − 1] 6= x′[n

p
(π + 1)]. If every character is

distinct then each character in the sorted array x′ is replaced by its index in x and
x′ is returned. However, if at any point in this process identical characters are found,
then the following stages are performed:
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Stage 0 - Sample construction and initialisation

Every processor π, constructs the difference cover D of Zv as discussed in Section
2. Then, each processor π, for each k ∈ [0 : v), defines the subset Bkπ = {i ∈ Iπ |
i mod v = k}. This partitions each set of indices Bk into p subsets of size about n

pv
.

The subset Cπ of the difference cover sample C is then constructed by every processor
π, such that Cπ = ∪k∈DBkπ. We denote by Skπ, k ∈ [0 : v) and π ∈ [0 : p), the set of
suffixes si, i ∈ Bkπ.

To ensure that each processor is able to locally construct its subset of super-
characters in the next stage, we require that every processor π ∈ [1 : p) sends the first
v − 1 characters of xπ to processor π − 1.

Finally, every processor π also declares the array rankπ, of size
n
p
+ v for π ∈

[0 : p− 2], and size n− n
p
(p−1)+v for π = p−1. Each element of rankπ is initialised

by -1. Note that the size of each rankπ, π ∈ [0 : p− 2], allows each processor to store
a copy of the first v elements of rankπ+1 in order to be able to locally construct the
tuples associated with all the non-sample characters in xπ.
Stage 1 - Sort the sample suffixes

For every processor π, we define, for each k ∈ D, the substring of super-characters
Xkπ =

⊙

i∈Bkπ
x [i : i+ v), such that the size of Xkπ is about n

pv
. Note that every

substring x [i : i+ v) is locally available for all i ∈ Cπ, due to the padding conven-
tion and the distribution of x among the processors. Then, construct the string of
super-characters X, as discussed in Section 3. This string is distributed among the p
processors using a block distribution, with each processor having around |D| n

pv
super-

characters. Note that it is not necessary to actually construct X, since the position of
each Xkπ, and, therefore, the index of each super-character x [i : i+ v), i ∈ C, in X

can be calculated by every processor π. However, this is done for simplicity. Algorithm
2 is then called on string X with parameters m = |D|n

v
and κ = v. After sorting,

a rank is assigned to each super-character in its sorted order, with any identical
super-characters given the same rank, and the string X ′ is constructed as discussed
in Section 3. Note that X ′ is already equally distributed among the processors.

The algorithm is then called recursively on the string X ′ with parameters n = |X ′|
and v′ = v

5/4, where v′ is the value of v in the subsequent recursion level. If |X ′| ≤ n
p
,

then X ′ is sent to processor 0, which calls the sequential suffix array algorithm on
X ′ with parameters n = |X ′| and v = 3. A detailed discussion on the assignment
v′ = v

5/4 and its impact on the synchronisation costs of the algorithm is given later
in this section.

When the recursive call returns with SAX′ , the rank of each si in SAX′ , i ∈ Ckπ,
π ∈ [0 : p), is recorded in rankπ. Also, a copy of the first v elements of rankπ, for
π ∈ [1 : p), is kept in rankπ−1. The order of each suffix si within each set Sk, k ∈ D,
is stored by each processor π, for i ∈ Iπ.
Stage 2 - Find the order of the non-sample suffixes within each set Sk,

k ∈ Zv \D
For each k ∈ Zv \D, consider any lk ∈ [1 : v) such that (k + lk) mod v ∈ D. We

define the tuple ti = (x[i], x[i + 1], . . . , x[i + lk − 1], rank[i + lk]), for each character
x[i], i ∈ Iπ \Cπ, π ∈ [0 : p) and k = i mod v. Note that every character in the tuple
ti, i ∈ Iπ, is locally available on processor π.

Then, every processor π ∈ [0 : p) constructs the subsequence of tuples (ti)i∈Bkπ
,

for each subset Bkπ, k ∈ Zv\D. Therefore, each sequence (ti)i∈Bk
is the concatenation

of the subsequences (ti)i∈Bkπ
in ascending order of π. Recall from Section 3, that the
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number of sequences (ti)i∈Bk
to be sorted is v−|D|, and that each sequence contains n

v
tuples, of length at most v; i.e. each processor holds about n

vp
tuples of each sequence.

Each sequence is then sorted independently using Algorithm 2 with parameters
m = n

v
and κ being the length of the tuples in the sequence, which is at most v. After

each sequence is sorted, the order of each non-sample suffix si, i ∈ Iπ, within each set
Sk, k ∈ Zv \D, is stored by each processor π.

Stage 3 - Sort all suffixes by first v characters

Let each suffix si, i ∈ [0 : n), of x be represented by the substrings x [i : i+ v).
These substrings are stably sorted using Algorithm 2 with parameters m = n and
κ = v. After sorting, the suffixes of x will have been partitioned into the sets Sα,
α ∈ (Σ ∪ {−1})v, as discussed in Section 3.

Stage 4 - Merge and complete the suffix ordering

Recall from Section 3 that each set Sα, α ∈ (Σ ∪ {−1})v, is partitioned into at
most v subsets Sα

k , k ∈ [0 : v), and that the order of the suffixes within each such
subset has been found in the previous stages. Ordering a set Sα is achieved through
a v-way merging procedure based on Lemma 2. For every two subsets Sα

k′ and Sα
k′′ ,

k′, k′′ ∈ [0 : v), we choose any l ∈ [0 : v) such that (k′ + l) mod v and (k′′ + l) mod v

are both in D. Then, comparing two suffixes si ∈ Sk′ and sj ∈ Sk′′ only requires the
comparison of rank[i+ l] and rank[j + l].

Therefore, in order to sort Sα we require, for each element of Sα, the rank of the
element within the sorted subset Sk it belongs to and at most |D| values from the
array rank. Hence, at most (|D|+ 1)n

p
values need to be received by each processor.

Note that the rank of each suffix si, i ∈ [0 : n), within the set Sk, i mod v = k, is
stored on processor π, i ∈ Iπ, as is rank[i+ l], for all l ∈ [0 : v).

After the sorting procedure in the previous stage, the suffixes of a set Sα, α ∈ Σv,
are contiguous and can be either contained within a single processor, or span two or
more processors. If Sα is contained within one processor, then all the subsets of Sα

are locally merged. If the set spans two processors π′, π′′ ∈ [0 : p), then, for each of
the suffixes si ∈ Sα, i ∈ [0 : n), on processor π′′, the values required to merge the
suffixes into the ordered set Sα are sent to processor π′, which then constructs the
order set. Otherwise, if Sα spans more than two processors, the following procedure,
based on the parallel sorting by regular sampling technique, is performed.

The set Sα is block distributed among the p processors. Again, note that the actual
suffixes si ∈ Sα, i ∈ [0 : n), are not communicated, but only the values required by the
merging process are, i.e. at most |D|+ 1 values for each suffix in Sα. Each processor
locally sorts its assigned elements of Sα, using the v-way merging procedure, and
chooses p + 1 equally spaced primary samples from the sorted elements, including
the minimum and maximum elements. Every primary sample is sent to one of the
p processors that is chosen as the designated processor. Therefore, this designated
processor receives (p + 1)p primary samples, which it sorts locally using the v-way
merging procedure. It then chooses p+ 1 equally spaced secondary samples from the
merged primary samples, including the minimum and maximum primary samples,
that partition Sα into p blocks. These secondary samples are broadcast to the p

processors such that each processor can partition its assigned elements into p sub-
blocks. Every processor then collects all the sub-blocks that make up a unique block
and locally merges the received elements. Finally, send the ordered set Sα back to
the processors it originally spanned. Note that the size of each block is bounded by
O(p) so the partitioning of the elements among the processors is balanced.



M. F. Pace, A. Tiskin: Parallel Suffix Array Construction by Accelerated Sampling 153

Round i vi |Di| ni Total Work =
O(vi · ni)

0 v O
(
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1

2
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1 v
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4 O

(
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v
5

4

)
1

2

)

O
(

v
1

2 · v−1 · n
)

= O
(

v−
1

2 · n
)

O
(

v
3

4 · n
)

2 v(
5

4 )
2

O
(

(v(
5

4 )
2

)
1

2

)

O

(

(

v(
5

4 )
)

1

2 · v− 5

4 · v− 1

2 · n
)

= O
(

v−
9

8 · n
)

O
(

v
7

16 · n
)

i v(
5

4 )
i

O
(

v(
5

4 )
i

( 1

2 )
)

O
(

v−2( 5

4 )
i

+2 · n
)

O
(

v−(
5

4 )
i

+2 · n
)

log 5

4

(

logv p
1

2 + 1
)

v · p 1

2 O
(

v
1

2 · p 1

4

)

O
(

p−1 · n
)

O
(

v · p− 1

2 · n
)

Table 3. Algorithm analysis

After all the sets Sα have been sorted, all the suffixes of x have been ordered and
the suffix array is returned. 2

5.1 Algorithmic Analysis

The presented suffix array construction algorithms are recursive, and the number of
levels of recursion required for the algorithms to terminate depends on the factor by
which the size of the input string is reduced in successive recursive calls. While the
number of levels of recursion does not influence the running time of the sequential
algorithm, in BSP this determines the synchronisation costs of the algorithm, and,
therefore, we want to reduce it to a minimum. Before detailing the costs of each stage
of the algorithm we explain how changing the sample size at each subsequent level of
recursion results in O(log log p) levels of recursion.

We refer to the ith level of recursion of the algorithm as round i, i ≥ 0. Then, we
denote by ni, vi and Di the size of the input string, the parameter v and the difference
cover D of Zvi , respectively, in round i.

Recall from Section 2 that the maximum size of a difference cover D of Zv, for
any positive integer v, that can be found in time O(

√
v) is

√
1.5v + 6, i.e. |D| =

O(v1/2). Therefore, for the sake of simplicity, in our cost analysis we assume that
|Di| = O

(

vi
1/2
)

.
Changing the parameter v in successive recursive calls affects the sampling rate

and the size of the input string. Let v0 and n0 be the parameters v and n given in the
initial call to the algorithm, while |D0| = O

(

v0
1/2
)

. Then, in round i ≥ 1, vi = vi−1
5/4,

|Di| = O
(

|Di|
5/4
)

and ni = ni−1v
(−1/2)(5/4)i−1

. Note that ni = nv
∑i

k=1
−1/2(5/4)k−1

, i.e.

the exponent of the term v is a geometric series with a = −1
2
and r = 5

4
. The

analysis given in Table 3 illustrates how these values change in successive recursion
levels. Recall from Section 3 that, the cost of each level of recursion in the sequential
algorithm is O(vini). Therefore, the table also shows that the order of work done
decreases in subsequent recursive levels.

The results in Table 3 clearly show that if the algorithm is initially called on
a string of size n, with parameter v = 3, on a BSP (p, g, l) machine, then the size
of the input converges towards n

p
super-exponentially. In fact, after log5/4(log3 p

1/2 +

1) = O(log log p) levels of recursion, the size of the input string is O(n
p
), and in the

subsequent level of recursion the suffix array is computed sequentially on processor 0.
Note that the value 5

4
as a power of v is not the only one possible. In fact, any value

1 < a < 3
2
can be used, but a = 5

4
is used for simplicity.
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Finally, recall that in Section 3 we require vi ≤ ni for the sequential algorithm.
However, in our parallel algorithm, since we require that n0 > p4 and we set v0 = 3,
this will always be the case in the first O(log log p) levels of recursion, at which point
the algorithm is called sequentially on a single processor. Therefore, this bound is not
required in our parallel algorithm.

Having determined the number of recursive calls required by the algorithm, the
cost of each stage is now analysed. In the recursion base, the costs are dominated by
those of Algorithm 2, i.e. O(ni

p
) local computation and communication cost.

In stage 0, constructing the difference coverDi has local computation costsO(
√
vi),

while constructing the subsets Cπ, independently for each processor π ∈ [0 : p), has
O(|Di| ni

pvi
) local computation cost. Passing the first v−1 characters of xπ, π ∈ [1 : p),

from processor π to π − 1 has O(v) local computation and communication costs. Fi-
nally, initialising rankπ requires O(ni

p
+ vi) work. Only O(1) supersteps are required.

In stage 1, the costs are dominated by the construction of the string of super-
characters X and the call to Algorithm 2, leading to O(|Di|ni

p
) local computation

and communication costs and requires O(1) supersteps.
In stage 2, the costs are again dominated by the call to Algorithm 2 for each

sequence of tuples. The number of sequences to be sorted is vi−|Di|, which is always
less than p. Therefore, we can use a different designated processor for each call to
Algorithm 2. The size of each sequence is ni

vi
, and the size of each tuple is at most vi.

Therefore, each processor has O( ni

vip
) tuples from each sequence, i.e. O(ni

p
) tuples in

total. Therefore, sorting all these tuples independently for each sequence has O(vi
ni

p
)

local computation and communication costs and requires O(1) supersteps.
The cost of stage 3 is simply the cost of Algorithm 2 on a string of size ni with

κ = vi, i.e. O(vi
ni

p
) local computation and communication costs and O(1) supersteps.

In stage 4, obtaining, for each suffix of x, the information required to sort each
set Sα using a v-way merging procedure has O(|Di|ni

p
) local computation and com-

munication costs. Then, sorting a set Sα that is contained on a single processor has
O(|Sα|vi) local computation costs, and no communication is required. Note that in
this case |Sα| < ni

p
. If Sα spans two processors, then we send all the elements of

the set to one of the two processors. Therefore, since each processor has ni

p
suffixes,

then, 2 ≤ |Sα| ≤ 2ni

p
, and the costs of sorting this set are O(vi

ni

p
) local computation,

O(|Di|ni

p
) communication and O(1) supersteps.

Finally, if a set Sα spans more than 2 processors, then |Sα| > ni

p
. Therefore, the

number of such sets is less than p. In this case a technique based on parallel sorting
by regular sampling on p processors is performed, choosing a different designated
processor for each such set Sα. In fact, the only difference between the two techniques
is that v-way merging is used, instead of radix sorting, to locally sort the suffixes.
Since the v-way merging procedure on n elements has the same asymptotic costs as
the radix sorting procedure on an array of n strings each of size v, over an alphabet
Σ = N∪{−1}, then the local computation cost for this procedure is O(vi

ni

p
) and the

communication cost is O(|Di|ni

p
). Since each such set can be merged independently

in parallel, then a constant number supersteps is required. Note that we could merge
any set spanning p′ > 2 processors on the p′ processors instead of distributing the set
across all the p processors, however we choose not to do this for the sake of simplicity.

In the ith level of recursion, each stage has O(vi
ni

p
) local computation and com-

munication costs and requires O(1) supersteps. The presented parallel suffix array
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construction algorithm is initially called on a string of size n with parameter v = 3,
so the local computation and communication costs are O(n

p
) in round 0. In round

log5/4(log3 p
1/2 +1) these costs are O( n

p3/2 ). Note that after this round the algorithm is

called sequentially on a string of length less than n
p
. Also note that, as shown in ta-

ble 3, O(vini) decreases super-exponentially in each successive level of recursion, and,
therefore, the order of work done in each such level also decreases super-exponentially.
Therefore, the algorithm has O(n

p
) local computation and communication costs and

requires O(log log p) supersteps.
Finally, recall that Algorithm 2 requires slackness, m ≥ p3. Since in the critical

round Algorithm 2 is called in stage 2 on O(p
1

2 ) sequences of size n
p3/2 , we require that

n ≥ p4. Note that this slackness can be reduced by sorting the sequences locally if
each sequence fits on a separate processor, however, such detail is beyond the scope
of this paper and will be given in a full version of this paper.

6 Conclusion

In this paper we have presented a deterministic BSP algorithm for the construction
of the suffix array of a given string. The algorithm runs in optimal O(n

p
) local com-

putation and communication, and requires a near optimal O(log log p) supersteps.
The method of regular sampling has been used to solve the sorting [15,1], and

2D and 3D convex hulls [17] problems. Random sampling has been used to solve
the maximal matching problem and provide an approximation to the minimum cut
problem [10] in a parallel context. An extension of the regular sampling technique,
which we call accelerated sampling, was introduced by Tiskin [18] to improve the
synchronisation upper bound of the BSP algorithm for the selection problem. The
same technique was used here to improve the synchronisation upper bounds of the
suffix array problem. Accelerated sampling is a theoretically interesting technique,
allowing, in specific cases, for an exponential factor improvement in the number of
supersteps required over existing algorithms.

It is still an open question whether the synchronisation cost of the suffix array
problem and the selection problem can be reduced to the optimal O(1) while still
having optimal local computation and communication costs. Another open question
is whether further applications of the sampling technique, whether regular, random
or accelerated, are possible.
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