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Abstract. The factor oracle [3] is a data structure for weak factor recognition. It is
a deterministic finite automaton (DFA) built on a string p of length m that is acyclic,
recognizes at least all factors of p, has m+1 states which are all final, is homogeneous,
and has m to 2m − 1 transitions. The factor storacle [6] is an alternative automaton
that satisfies the same properties, except that its number of transitions may be larger
than 2m−1, although it is conjectured to be linear with an upper bound of at most 3m.
In [14] (among others), we described the concept of a failure automaton i.e. a failure
DFA (FDFA), in which so-called failure transitions are used to reduce the total num-
ber of transitions and thus reduce representation space compared to the use of a DFA.
We modify factor oracle and storacle construction algorithms to introduce failure arcs
during the respective automata’s construction. We thus end up with four deterministic
automata types for weak factor recognition: factor oracle, factor storacle, failure factor
oracle, and failure factor storacle. We compare them empirically in terms of size. The
results show that despite the relative simplicity of (failure) factor (st)oracles, the fail-
ure versions show additional savings of 2–7% in number of transitions, for generated
keywords of length 5–9, and of e.g. 5–9% for English words of lengths around 9–15.
This may already be substantial in memory-restricted settings such as hardware imple-
mentations of automata. The results indicate the gains increase for longer keywords,
which seems promising for applications in DNA processing and intrusion detection.
Furthermore, our results provide a rather negative result on storacles: apart from rare
cases, factor storacles do not have fewer transitions than factor oracles, and similarly
for failure factor storacles versus failure factor oracles.

Keywords: factor oracle, approximate automaton, failure automaton, weak factor
recognition, pattern matching

1 Introduction

The factor oracle is a data structure for weak factor recognition. It is an automaton
built from a string p of length m that (a) is acyclic, (b) recognizes at least all factors
of p, (c) has m + 1 states (which are all final), and (d) has m (at least, one for each
letter in p) to 2m − 1 transitions (cf. [3]). In addition, (e) the resulting automaton
is homogeneous, i.e. for every state, all of its incoming transitions are on the same
symbol. An example factor oracle is given in Figure 1. Factor oracles are introduced
in [3] as an alternative to the use of exact factor recognition in many on-line keyword
pattern matching algorithms. In such algorithms, a window on a text is read backward
while attempting to match a keyword factor. When this fails, the window is shifted
using the information of the longest factor matched and the mismatching character.
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Figure 1: Factor oracle (with initial state 0) recognizing a superset of fact(p) (in-
cluding for example cace 6∈ fact(p)), for p = abcacdace. The automaton has 17
transitions.

Instead of an automaton recognizing exactly all factors of the keyword, it is pos-
sible to use a factor oracle: although it recognizes more strings than just the factors
and thus might read backwards longer than necessary, it cannot miss any matches.
The advantage of using factor oracles is that they are easier to construct and take less
space to represent compared to automata that were previously used in these factor-
based algorithms, such as suffix, factor and subsequence automata. This is due to the
latter automata lacking one or more of the essential properties of the factor oracle.

In [7], we presented an alternative construction algorithm for factor oracles. This
algorithm was based on considering the suffixes of the string p in order of decreasing
length. While being O(m2) and not linear like the algorithm in [3], this construction
is easier to understand. (It also makes some of the factor oracle’s properties imme-
diately obvious, while making some others harder to prove.) An extended version
of [7] appears as [8] and in the Master’s thesis [10, Chapter 4]. In those versions,
some properties of the language of a factor oracle are discussed as well. The thesis
also discusses the implementation of the factor oracle in the SPARE Time toolkit.
A further extended and revised version of the work appears in [9]. The language of
a factor oracle was finally characterized completely in a paper by Mancheron and
Moan [15]. Related to the factor oracle, the suffix oracle—in which only those states
corresponding to a suffix of p are marked final—is introduced in [3]. In [5], the authors
present a statistical average-case analysis on the size of factor and suffix oracles.

In [6] we presented the factor storacle, short for shortest forward transition factor
oracle. The factor storacle is an alternative automaton that satisfies the same prop-
erties as the factor oracle does, except property (d) mentioned earlier: in contrast to
the case of the factor oracle for the same keyword, the factor storacle’s number of
transitions may be larger than 2m−1, although it is conjectured to be linear with an
upper bound of at most 3m. We presented a construction algorithm for factor stora-
cles as well as a limited empirical comparison of factor oracles and factor storacles,
showing the maximum numbers of transitions the factor oracle and factor storacle for
particular string lengths may have, and leading to the conjecture mentioned above.
For certain keywords, the factor storacle has a smaller number of transitions than
the factor oracle, although such cases turn out to be rare, as we empirically show in
this paper. Figure 2 shows an example factor storacle (having one less transition than
the corresponding factor oracle depicted in Figure 1).

In [14], we described the concept of a failure automaton i.e. a failure DFA (FDFA).
In such an automaton so-called failure transitions are used to reduce the total number
of transitions compared to a DFA for the same language. This is done to reduce the
space needed to represent the automaton compared to the space usage of a DFA
representation. Björklund et al. in [4] recently showed that even without changing the
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Figure 2: Factor storacle (with initial state 0) recognizing a superset of fact(p)
(including e.g. abce 6∈ fact(p)), for p = abcacdace. The automaton has 16 transitions.

state set from DFA to FDFA, the problem of minimizing the number of transitions
by replacing symbol transitions by failure transitions is unfortunately NP-complete,
although it can be approximated efficiently within a factor of 2

3
.

The concepts of factor oracle and factor storacle serve to reduce memory usage
compared to a factor automaton, while the concept of an FDFA does the same for
the general DFA case, albeit in different ways. It is therefore of interest to combine
the basic ideas and empirically investigate the results. In the current paper, we thus
combine the ideas of factor oracle and storacle on the one hand, and failure automata
on the other hand. We modify the factor oracle and factor storacle construction
algorithms to introduce failure arcs during the respective automata’s construction.
We thus end up with four kinds of deterministic automata for weak factor recognition:
the factor oracle, factor storacle, failure factor oracle, and failure factor storacle. We
compare them empirically in terms of size, using both randomly generated keywords
as well as English dictionary keywords for the construction process.

After discussing preliminaries, we consider suffix-based factor oracle and factor
storacle construction in Section 2. We present our previously existing construction
algorithms for these two cases. In Section 3 we present our modified algorithms, di-
rectly constructing the failure factor oracle and the failure factor storacle respectively,
and we discuss the properties of these two automata types. Section 4 presents and
analyses our preliminary benchmarking results in comparing the four resulting auto-
mata types; these results focus on size of the resulting automata in terms of number
of (symbol and failure) transitions. Section 5 provides concluding remarks as well as
a discussion of ideas for future research in this subject area.

2 Suffix-based Construction of the Factor Oracle and Factor
Storacle

Formally, a string p = p1 · · · pm of length m is a sequence of characters from an
alphabet V . A string u is a factor (resp. prefix, suffix ) of a string v if v = sut (resp.
v = ut, v = su), for s, t ∈ V ∗. We will use pref(p), suff(p) and fact(p) for the set
of prefixes, suffixes and factors of p respectively. A prefix (resp. suffix or factor) is a
proper prefix (resp. suffix or factor) of a string p if it does not equal p.

In Algorithm 1 the factor oracle construction algorithm given in [7,9] is repeated.
In steps 1 to 4 the algorithm constructs a ‘skeleton’ automaton for p—recognizing
pref(p). In steps 5 to 8, it then considers, in decreasing order of length, each proper
suffix pi · · · pm of p. For each such suffix, it determines the longest prefix recognised by
the automaton to date—i.e. the longest path starting from state 0 and ending in some
state j that spells out pi · · · pk (i − 1 ≤ k ≤ m). If such a suffix pi · · · pm is already
recognized (i.e. if k = m), then no transition needs to be constructed. If on the other
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hand the complete suffix is not yet recognized—i.e. if pi · · · pk is the longest prefix
recognised where k < m) and if the recognition path ends at state j—then a transition
is inserted from state j to state k + 1. It can be easily shown that the language
recognised by the resulting automaton is a superset of pref(suff(p)) = fact(p).

Algorithm 1 Build Oracle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i

3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell out

pi · · · pk (i− 1 ≤ k ≤ m)
7: if k 6= m then
8: Build a new transition from j to k + 1 on symbol pk+1

This algorithm is O(m2). The factor oracle on p built using this algorithm is
referred to as Oracle(p) and the language recognized by it as factoracle(p).

Our factor storacle construction algorithm, presented in [6], is similar to our factor
oracle construction algorithm. It is reproduced in Algorithm 2. It also constructs a
‘skeleton’ automaton for p—recognizing pref(p)—and then also constructs a path for
each of the proper suffixes of p in order of decreasing length, such that eventually at
least pref(suff(p)) = fact(p) is recognized. If such a suffix of p is already recognized,
no transition needs to be constructed. If on the other hand the complete suffix is not
yet recognized there is a longest prefix of such a suffix that is recognized.

A transition on the next, non-recognized symbol is then created, from the state
in which this longest prefix of the suffix is recognized. Instead of creating such a
transition to the unique state from which the remainder of that suffix is known to
be recognized, as is done in the factor oracle construction above, this transition is
constructed to go to the next state from the current state onward that has an incoming
transition on the non-recognized symbol. That is, the factor storacle construction
algorithm in such a case constructs the shortest forward transition that keeps the
automaton homogeneous. This procedure of creating transitions is repeated while the
complete suffix is not yet recognized.

Algorithm 2 Build Storacle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i

3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell out

pi · · · pk (i− 1 ≤ k ≤ m)
7: while k 6= m do
8: Let the first state from state j onward that has an incoming transition on pk+1 be state l

(j < l <= k + 1)
9: Build a new transition from j to l on symbol pl(= pk+1)
10: Let the longest path from state 0 that spells a prefix of pi · · · pm end in state j and spell

out pi · · · pk (i− 1 ≤ k ≤ m)
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This algorithm is O(m3), although that is a coarse upper bound. The factor stor-
acle on p built using this algorithm is referred to as Storacle(p) and the language
recognized by it as factstoracle(p).

As stated in [6], the difference between this algorithm and the O(m2) factor oracle
construction algorithm originates from the choice of the target of the first (if any)
newly created transition for each proper suffix:

– In this algorithm, that newly created transition leads to the next state (from a
particular state onward) that has an incoming transition on the non-recognized
symbol. This procedure may then need to be repeated for further symbols of the
suffix to be recognized.

– In the case of the factor oracle construction, the newly created transition leads to
the unique state from which the remainder of the suffix leads to the last state of the
automaton—thus immediately guaranteeing that the entire suffix is recognized.

We summarize the most important properties of factor oracles and factor storacles.
All of these were known before; some proofs are therefore omitted or sketched, and
can be found in e.g. [3,7,9,6]. The first properties mentioned correspond to properties
(a)–(c) and (e) from the introduction, and hold for factor oracles and factor storacles.

Property 1. Oracle(p) and Storacle(p) are acyclic automata.
Proof idea: For the factor oracle, it is obvious that transitions created are always
forward ones; for the factor storacle, it can be shown that the transitions created
may be different from those created for the factor oracle, but are still forward ones.

Property 2. fact(p) ⊆ factoracle(p) and fact(p) ⊆ factstoracle(p).

Property 3. For p of length m, Oracle(p) and Storacle(p) each have exactly m + 1
states.

Property 4 (Homogeneousness). All transitions reaching a state i of Oracle(p) and
Storacle(p) are labeled by pi.

Furthermore, factor oracles and factor storacles satisfy the following obvious property:

Property 5 (Weak determinism). For each state of Storacle(p) or Oracle(p), no two
outgoing transitions of the state are labeled by the same symbol.

As stated before, property (d), the remaining property enumerated in the introduc-
tion, only holds for factor oracles, while a weaker property holds for factor storacles.

Property 6. For p of length m, Oracle(p) has between m and 2m− 1 transitions.

Since the factor storacle construction algorithm we presented might create multiple
transitions per proper suffix of the keyword, this property does not hold for factor
storacles. [6] showed the following very coarse upper bound on the total number of
transitions of the factor storacle:

Property 7. For p of length m, Storacle(p) has between m and m(m+1)/2 transitions.
Proof: The lower bound follows from the second for-loop of the algorithm. Disregard-
ing any properties of the keyword and alphabet used (except for the keyword’s length
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m), an upper bound of m(m + 1)/2 can be proven in at least two ways. Firstly, the
sum of the lengths of all the suffixes of a keyword of length m, including the keyword
itself, equals m(m+ 1)/2. Secondly, since all transitions are forward transitions, and
the factor storacle is kept homogeneous, there can be at most one transition between
each pair of states, hence at most (|Q|− 1)|Q|/2 in total, and this equals m(m+1)/2
since m = |Q| − 1. ⊓⊔

[6] also conjectured a linear upper bound on the number of transitions of the factor
oracle, based on empirical evidence; experiments generating all keywords of length m
out of an alphabet of size |m| (modulo renaming of alphabet symbols) showed that
the upper bound increases from at most 2m for lengths up to m = 7 to 2m + 5 for
length m = 12, i.e. grows linearly in the range of the experiments.

Conjecture 8. For p of length m, Storacle(p) has a linear number of transitions,
bounded above by 3m.

3 Suffix-based Construction of the Failure Factor Oracle
and Failure Factor Storacle

In [14], we give a general algorithm for constructing a failure deterministic finite
automaton (FDFA) based on a given deterministic finite automaton (DFA). The
algorithm ensures that the constructed FDFA is language-equivalent to the given
DFA. Such an FDFA in essence forms a generalization of the failure function Aho-
Corasick automaton [2,17]: from a finite set of keywords (as in normal Aho-Corasick),
to the general/arbitrary regular language case. In essence, an FDFA is a DFA, but
may have so-called failure transitions apart from normal symbol transitions. Such
transitions are introduced to save space: under certain conditions, a single failure
transition can be used as default instead of multiple symbol transitions. These failure
transitions are represented by the function f in the definition below.

Definition 9 (FDFA [14]). F = (Q,Σ, δ, f, F, s) is an FDFA if f : Q → Q is a
possibly partial function and D = (Q,Σ, δ, F, s) is a DFA.

As with a DFA, a simple string recognition algorithm can be used to determine
whether or not a given string is part of the FDFA’s language. The algorithm cor-
responds to that of a DFA by consuming an input symbol and moving to a next
state if there is an out-transition from the current state on the current input symbol.
However, if there is no such out-transition, but a failure transition, then the failure
transition determines the new state, but the current input symbol is not consumed.

The above FDFA definition may lead to complications in the presence of certain
types of cycles in the failure function. More precisely, cycles in which, for one or
more symbols, no state in the cycle has an out-transition labeled by this symbol are
problematic for the associated FDFA string recognition algorithm. [14] called these
divergent failure cycles, and ensured that the FDFA construction algorithm presented
simply does not create such divergent failure cycles. In the present setting, no failure
cycles are created at all, circumventing the potential complications altogether.

In [14], FDFAs were created by taking (complete) DFAs and transforming them.
Here, we introduce failure transitions during construction of weak factor automata.
We do so by slight modifications of the factor oracle and factor storacle construction
algorithms presented before. These modifications lead to construction algorithms for
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what we call the failure factor oracle and the failure factor storacle respectively. It
should be noted that the resulting automata are not necessarily language-equivalent
to the original factor oracle or factor storacle respectively, but we are not concerned
with such language-equivalence here: what matters is that the resulting automata
recognize at least all factors of the given keyword.

Algorithm 3, the failure factor oracle construction algorithm, is similar to the
factor oracle one, Algorithm 1. The main differences are in lines 6 and 8–11: in line 6,
from state j processing continues with (0 or more) existing failure transitions leading
to a state j′, to prevent constructing a failure transition (in line 9) from a state
that already has an outgoing failure transition. (Note that the recognition path that
leads to state j may also contain failure transitions—another implicit difference to
Algorithm 1.) In line 9, in case k > j′, instead of a symbol transition from j to k+ 1
on symbol pk+1, a failure transition from j′ to k is constructed. Note that a transition
on symbol pk+1 from state k to state k+1 will exist, due to lines 1–4 of the algorithm,
and hence processing of pi · · · pkpk+1 will have the automaton end up in state k + 1,
just as it would in the original factor oracle.

Our initial version of the algorithm did not have the inner if -statement, assuming
k > j′ to always hold inside the outer if -statement, and therefore always building a
new failure transition from j′ to k, keeping the automaton acyclic. For the large data
sets we used in the experiments reported further on in this paper, this holds true, but
it is not true in general: with increasing keyword length, it becomes possible in rare
cases for k > j′ not to hold. In some such cases, cycles of failure transitions arise,
which in some cases lead to divergent failure cycles and even live-lock of the con-
struction algorithm. The else-case of lines 10–11 ensures that this does not happen,
by creating an appropriate non-forward symbol transition instead of a non-forward
failure transition. The failure factor oracle in general thus does not have the acyclicity
property of the factor oracle, but our initial experiments with sets of longer keywords
(on a DNA alphabet) show such cases to be rare (< 0.001% of 749920 keywords tested
of length 16 rising to ca. 1% of 5935 keywords tested of length 1024).

Algorithm 3 Build Failure Oracle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i

3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

7: if k 6= m then
8: if k > j′ then
9: Build a new failure transition from j′ to k

10: else
11: Build a new symbol transition on symbol pk+1 from j′ to k + 1

This algorithm is O(m2). The failure factor oracle on p built using this algorithm
is referred to as FailureOracle(p). It is easy to show that, apart from acyclicity, the
properties of the factor oracle mentioned previously do hold for the failure version.

The failure factor storacle construction algorithm, Algorithm 4, is similar to the
factor storacle construction algorithm, Algorithm 2. The main differences are in lines
6 and 8–13: on lines 6 and 13, as for the failure factor oracle construction above,
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processing continues with existing failure transitions, to prevent constructing one
from a state that already has an outgoing failure transition; on lines 9 and 10, instead
of a symbol transition from j to l on symbol pk+1, a failure transition from j′ to l− 1
(j′ < l <= k+1) is constructed. Note that a path (possibly using failure transitions)
to process symbol pk+1 from that state l may not exist, and processing of the current
suffix thus has to continue, as in Algorithm 2. As with Algorithm 3, an else-case is
added to prevent divergent failure cycles from arising in case k ≤ j′.

Algorithm 4 Build Failure Storacle(p = p1p2 · · · pm)

1: for i from 0 to m do
2: Create a new final state i

3: for i from 0 to m− 1 do
4: Create a new transition from i to i+ 1 on symbol pi+1

5: for i from 2 to m do
6: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

7: while k 6= m do
8: if k > j′ then
9: Let the first state from state j′ onward that has an incoming transition on pk+1 be state

l (j′ < l <= k + 1)
10: Build a new failure transition from j′ to l − 1
11: else
12: Build a new symbol transition on symbol pk+1 from j′ to k + 1
13: Let the longest recognized prefix of pi · · · pm be recognized in state j and spell out pi · · · pk

(i− 1 ≤ k ≤ m), and let the longest failure transition path from j end in state j′

This algorithm is O(m3), although that is a coarse upper bound. The failure factor
storacle on p built using this algorithm is referred to as FailureStoracle(p).

Figure 3 depicts an example of a failure factor oracle and a failure factor storacle
in one: for this particular keyword, the automata happen to be equivalent. Figures 4a
and 4b depict the case of keyword abcaab, for which the automata differ.
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Figure 3: Failure factor oracle and failure factor storacle (with initial state 0) rec-
ognizing a superset of fact(p) (including for example cace 6∈ fact(p), and acace not
recognized by Oracle(p)), for p = abcacdace. The automaton has 14 transitions.
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(a) Failure factor oracle (with initial state 0).
The automaton has 9 transitions.
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(b) Failure factor storacle (with initial state 0).
The automaton has 10 transitions.

Figure 4: Failure factor oracle and failure factor storacle for p = abcaab.
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As with the factor oracle and its failure version, the properties of the factor storacle
other than acyclicity can easily be shown to hold for the failure factor storacle.

4 Empirical results

We implemented the four construction algorithms in Java, and ran benchmarks on
an 1.7 GHz Intel Core i5 with 4 GB of 1333 MHz DDR3 RAM, running OS X 10.8.3.
Two sets of data were used for the benchmarks, one consisting of generated strings
of certain lengths, and one consisting of English words of widely varying lengths.

The first set consists of all generated strings of length m over an alphabet of size
m, for values of m in the range of 4..9. (Strings of length < 4 are not considered, as
for every string of such length the factor oracle and factor storacle do not differ.)

Figure 5 shows the distributions of the number of transitions for the first data set,
for m = 4..9. As can be seen from the figure, the number of automata for particular
numbers of transitions may vary drastically, from near 0 to almost mm. Note that
absent bars indicate values of 0 (i.e. no automata/keyword result in automata of a
particular type with the given number of transitions), while bars represented by a
flat line (i.e. bars seemingly of height 0) in fact indicate small but non-0 numbers
of keywords/automata having the given number of transitions. As keyword length
grows, it becomes easier to see that storacle versions of the automata are typically
outperformed by oracle versions of the automata in terms of number of transitions.
The graphs also show the average number of transitions per automata type for each
of m = 4..9 (using dashed vertical lines). The average number of transitions for factor
oracle and factor storacle on the one hand, and for their failure versions on the other
hand, are fairly close, particularly for small word lengths, causing the dotted lines to
overlap in the figures. Closely looking at the graph for e.g. m = 8 or m = 9 however
shows that in fact four average lines are represented in each graph. The averages for
factor oracles on the one hand and failure factor oracles on the other hand show that
the use of failure version may lead to savings increasing from 1.5% for m = 4 up
to 6.4% for m = 9, and suggest such savings may (sublinearly) increase further for
longer keywords.

It is noteworthy that (for keyword lengthsm = 5..9) only the factor storacle breaks
the upper bound of 2m−1 transitions established for the factor oracle; neither failure
version breaks this barrier—and the failure factor oracle cannot for any keyword
length, as it has the same transition set upper bound as the factor oracle. However,
it is likely that the failure factor storacle will break the 2m − 1 barrier as keyword
length increases.

To make the experimental results more insightful, Figure 6 shows histograms for
the difference in the number of transitions between factor oracles on the one hand
and factor storacles, failure factor oracles or failure factor storacles on the other
hand, again for all words of lengths m = 4..9 over alphabets of size m. For ease of
understanding and comparison, the scale used here is a logarithmic one, and labels
are in terms of percentages of all (automata for) keywords of a given length.

A number of interesting observations can be made from Figure 6:

– Comparing factor oracles and factor storacles, it turns out that in most cases, they
are the same size. In a reasonable number of cases, growing to ca. 13% for m = 9,
does the factor oracle have one or more transitions less than the factor storacle.
What is remarkable is that only in rare cases does the factor storacle beat the
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Figure 5: Distribution of number of transitions for the four automaton types, for all
words of lengths m = 4..9 over alphabets of size m.
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Figure 6: Distribution of difference in number of transitions for factor oracle versus
each of the other three automaton types, for all words of lengths m = 4..9 over
alphabets of size m.

factor oracle in size: no such cases occur for lengths m = 4..8, and it only happens
in 0.006244% of cases for m = 9. As recollected in [6], the factor storacle was
originally found by accident for p = abcacdace, for which it is smaller than the
corresponding factor oracle. It thus turns out that this was somewhat of a lucky
encounter as such cases are very rare. This also means that the use of a factor
storacle is probably not advisable in general, compared to using a factor oracle.

– Comparing factor oracles and failure factor oracles, the experiments indicate that
the failure version never performs worse than the original in terms of size, and
frequently helps to reduce automaton size by 1 or 2 transitions for the keyword
lengths considered. Larger savings seem to occur less frequently, although it is
expected this will improve for longer keywords.

– Comparing failure factor oracles and failure factor storacles, the observation made
for the non-failure cases above seem to hold true: it appears that failure factor
oracles are preferable to failure factor storacles.

The second data set was obtained from [1]:

“A list of 109582 English words compiled and corrected in 1991 from lists
obtained from the Interociter bulletin board. The original read.me file said
that the list came from Public Brand Software. This word list includes inflected
forms, such as plural nouns and the -s, -ed and -ing forms of verbs.”

As for the set of generated strings, words of length < 4 were ignored. Figure 7 shows
the distribution of the set (including words of length < 4).

Figure 8 shows the distribution of factor oracle and failure factor oracle sizes
for the English words for the cases of words of lengths m = 5, 7, 9, 11, 13, and 15.



L. Cleophas et al.: Weak Factor Automata: Comparing (Failure) Oracles and Storacles 187

1 3 5 7 9 11 13 15 17 19 21 23 28

0

0.5

1

1.5

2

·104

Word length

N
u
m
b
er

of
w
or
d
s

Figure 7: Distribution of lengths of the list of English words. No words of lengths
24−27 or of length over 28 occur. Words of length< 4 were not used for benchmarking.

7 8 9

0

2,000

4,000

6,000

Number of transitions

N
u
m
b
er

of
ke
y
w
or
d
s

m = 5

9 10 11 12 13

0

0.5

1

·104

Number of transitions

N
u
m
b
er

of
ke
y
w
or
d
s

m = 7

13 14 15 16 17

0

0.5

1

·104

Number of transitions

N
u
m
b
er

of
ke
y
w
or
d
s

m = 9

15 16 17 18 19 20 21

0

2,000

4,000

Number of transitions

N
u
m
b
er

of
ke
y
w
or
d
s

m = 11

19 20 21 22 23 24 25

0

500

1,000

1,500

Number of transitions

N
u
m
b
er

o
f
ke
y
w
or
d
s

m = 13

212223242526272829

0

200

400

Number of transitions

N
u
m
b
er

o
f
ke
y
w
or
d
s

m = 15

Factor oracle Failure factor oracle

Figure 8: Distribution of number of transitions for the factor oracle and failure factor
oracle automaton types, for English words of lengths m = 5 (6919 words), 7 (16882
words), 9 (16693 words), 11 (8374 words), 13 (3676 words), and 15 (1159 words).

Figure 9 shows the distribution of the difference in the number of transitions between
the two automata kinds for the same data set. In that figure, the scale used is again
a logarithmic one, and labels are in terms of percentages of all the (automata for)
English words of a given length. (Results for the storacles versions are omitted, as
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Figure 9: Distribution of difference in number of transitions for factor oracles versus
failure factor oracles, for English words of lengths m = 5 (6919 words), 7 (16882
words), 9 (16693 words), 11 (8374 words), 13 (3676 words), and 15 (1159 words).

the discussion of results for the sets of generated strings indicated these automata are
unlikely to be smaller than the corresponding oracle versions.) Comparing the results
with those for the sets of generated strings, the following observations can be made:

– As was the case with the sets of generated strings, the use of failure transitions
saves transitions compared to the non-failure automata versions. Comparing fail-
ure factor oracles to factor oracles, the savings are 1.07% on average for length 5,
4.932% for length 9, and 8.913% for length 15. Contrasting this with the results
on the set of generated strings, the savings for a given word length are smaller,
but as was the case there, the percentage of savings increases with increasing word
length. This indicates that the use of failure transitions in weak factor automata
may show particular promise in pattern matching for DNA processing and network
intrusion detection, where longer patterns are typically being used.

– Compared to the results on the sets of generated strings, the results show fewer or
no cases where the number of transitions is fairly close to the lower bound of m.
This makes sense, as a language such as English has relatively few words with lots
of repetition, while the generated sets contained many such strings, e.g. aaaaaaa,
abcabcabc, abccabccc etc.

– As before for the sets of generated strings, the failure factor oracle for a given
word never has more transitions, and often has fewer transitions than the corre-
sponding factor oracle does. The distributions of differences also clearly show that
with increasing word length, the distribution shifts further from a difference of 0,
i.e. for longer words, the savings in number of transitions by the use of failure arcs
increases.
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5 Conclusions and Future Work

We have presented two new kinds of weak factor automata, based on modifications of
two algorithms for constructing factor oracles and factor storacles. These new kinds of
automata combine the use of failure transitions with the concept of the factor oracle
and storacle, respectively.

Our experimental evaluation, with both generated strings of lengths up to 9 and
English words of various lengths, showed that factor storacles and their failure versions
are rarely competitive to factor oracles and their failure versions respectively. The
results also show that with increasing word length, the savings in using failure factor
oracles instead of factor oracles increase, to roughly between 5–9% for English words of
lengths 9 and 15. Although not substantial, in restricted memory settings such savings
may be useful. The increase in savings with increasing keyword length suggests more
substantial savings may occur in the setting of DNA processing or intrusion detection,
where patterns are typically longer than in natural languages.

A number of open questions w.r.t. the failure factor (st)oracles remain:

– What is the upper bound on the number of transitions for the failure factor oracle
and failure factor storacle?

– How does the use of failure transitions in the failure automata constructions
change the language accepted by the underlying non-failure automata construc-
tions? Preferably the language accepted should not become much larger, as the use
of weak factor automata in pattern matching applications becomes less efficient
when more non-factors are accepted by such automata.

– While [3] introduced factor oracles for use in a particular pattern matching al-
gorithm, it would be interesting to see how factor (st)oracles and failure factor
(st)oracles can be used in a very different algorithm skeleton, such as the efficient
dead-zone algorithm [16,18].

– The four types of oracle automata discussed here potentially accept more than
just the factors of p, making them a type of super automaton. An alternative
general technique for constructing super automata is discussed in [12,13,11]. How
would a super automaton for the factors of p, constructed with those generalized
techniques, perform against the (failure) factor (st)oracle of this paper?

– Language-preserving FDFA construction algorithms such as those in [14] and [4]
could be applied to the constructed factor (st)oracles. Would the resulting failure
factor (st)oracles differ significantly from those discussed in the present research?
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