Degenerate String Reconstruction from Cover
Arrays
(Extended Abstract)

Dipankar Ranjan Baisya, Mir Md. Faysal, and M. Sohel Rahman

AZEDA Group
Department of Computer Science and Engineering (CSE)
Bangladesh University of Engineering and Technology (BUET)
Dhaka 1000
Bangladesh
msrahman@cse.buet.ac.bd

Abstract. Regularities in degenerate strings have recently been a matter of interest
because of their use in the fields of molecular biology, musical text analysis, cryptanaly-
sis and so on. In this paper, we study the problem of reconstructing a degenerate string
from a cover array. We present two efficient algorithms to reconstruct a degenerate
string from a valid cover array one using an unbounded alphabet and the other using
minimum sized alphabet.

Keywords: degenerate strings, string reconstruction, algorithms

1 Introduction

A degenerate string (also referred to as an indeterminate string in the literature) is
a generalization of a (regular) string, in which each position contains either a sin-
gle character or a nonempty set of characters. The problems of degenerate pattern
matching [G-11,135] and finding regularities in degenerate strings [1, 2,4, 8, 14] have
been addressed with great enthusiasm over the last decade. Authors in [4] described
the way of finding all covers of an indeterminate string in O(n) time on average.
Another interesting avenue for research is to explore the problem of inferring a string
given some arbitrary data structure (e.g., array, tree etc.) related to some of these
regularities. However, despite several results on regular string inference in the litera-
ture [B-7,14] the problem of degenerate string inference is yet to be explored exten-
sively. To the best of our knowledge the only work on this topic is the recent work of
Nazeen et al. [i13] where the authors presented string inference algorithms considering
border arrays of degenerate strings. The authors in [13] mentioned that similar in-
ference algorithms for cover arrays of degenerate strings could be worth-investigating
as a future research topic. Inspired by the future research direction mentioned there,
in this paper, we first present an algorithm for degenerate string reconstruction from
an input cover array using an unbounded alphabet. Then we modify this algorithm
such that it uses a least sized alphabet. Notably, the problem of inferring (regular)
strings from cover arrays has already been tackled in [12].

The rest of this paper is organized as follows. Section 2 presents some defini-
tions and notations. Section B discusses some important properties of a cover array
and extends those in the context of degenerate strings. In Section 4 we describe the
algorithms and related results. Finally, we briefly conclude in Section §.

Dipankar Ranjan Baisya, Mir Md. Faysal, M. Sohel Rahman: Degenerate String Reconstruction from Cover Arrays, pp. 191-205.
Proceedings of PSC 2013, Jan Holub and Jan Zdarek (Eds.), ISBN 978-80-01-05330-0 (© Czech Technical University in Prague, Czech Republic

192 Proceedings of the Prague Stringology Conference 2013

2 Preliminaries

A string is a sequence of zero or more symbols from an alphabet Y. The set of all
strings over X is denoted by X*. The length of a string X is denoted by |X|. The
empty string, the string of length zero, is denoted by €. The i-th symbol of a string
X is denoted by X[i]. A string W € X*, is a substring of X if X = UWV, where
U,V € X*. Conversely, X is called a superstring of W. We denote by X[i..j] the
substring of X that starts at position ¢ and ends at position j. A string W € Y is a
prefiz (suffic) of X if X = WY (X = YW), for Y € X*. A string W is a subsequence
of X (or X a supersequence of W) if W is obtained by deleting zero or more symbols
at any positions from X. For example, ace is a subsequence of abcabbcde. For a given
set S of strings, a string W is called a common subsequence of S if W is a subsequence
of every string in S.

A string U is a period of X if X is a prefix of U* for some positive integer k, or
equivalently if X is a prefix of UX. The period of X is the shortest period of X. For
example, if X = abcabcab, then abc, abcabe and the string X itself are periods of X,
while abc is the period of X.

A degenerate string is a sequence X = X[1]X[2]--- X[n], where X[i] C X for
all 7, and X' is a given alphabet of fixed size. A position of a degenerate string may
match more than one elements from the alphabet X'; such a position is said to have
a non-solid symbol. If in a position we have only one element of Y, then we refer to
this position as solid. The definition of length for degenerate strings is the same as for
regular strings: a degenerate string X has length n, when X has n positions, where
each position can be either solid or non-solid. We represent non-solid positions using
[..] and solid positions omitting [..]. The example in Table I; identifies the solid and
non-solid positions of a degenerate string.

Index12 3 4 5 6789 10 111213 14 15 16
X = aalabcjalaclbcaalac] b a ¢ [abc] a [bc]

Table 1. An example of a degenerate string

Table 1; presents a degenerate string having non-solid symbols at Positions 3, 5, 10,
14 and 16. The rest of the positions contain solid symbols. Let A;, |A;] > 2,1 < i < s,
be pairwise distinct subsets of X. We form a new alphabet X = X U A, Aa, ..., Ay
and define a new relation match (=) on ' as follows:

Type 1. for every pq, o € X, 1 =~ po if and only if g = po;
Type 2. for every pn € X and every A € X' — X, ~ X if and only if p € \;
Type 3. for every \;, \; € &' — X, \; = \; if and only if \; N A; # 0.

Observe that the relation match (=) is reflexive and symmetric but not necessarily
transitive. For example, if A = [a, b], then we have a &~ A and b &~ \. But clearly a # b.

From the example in Table 1}, we have a Type 1 match between Positions 2 and
4, as both positions are solid and contain the letter a. Positions 3 and 6 give a match
of Type 2 as the letter b is contained in the non-solid symbol [abc]. A match of Type
3 can be found between Positions 3 and 5, as the symbols at these two positions have
a and ¢ common. Although Positions 5 and 3 match and Positions 3 and 6 match,
Positions 5 and 6 do not match, illustrating the non-transitivity of the matching
operation for degenerate strings.

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 193

Cover is an interesting regularity in strings that in some sense generalizes the
concept of quasiperiodicity [3]. We say that a string S covers a string U if every letter
of U is contained in some occurrence of S as a substring of U. Then S is called a
cover of U. Clearly, S must be a (proper) substring of to be a (proper) cover of U.
Although a string can be considered to be a cover of itself, we follow the convention
in the literature and consider only the proper covers. The cover array C' of a regular
string X [1..n], is a data structure used to store the length of the longest proper cover
of every prefix of X. So for all i € {1..n}, C][i] stores the length of the longest proper
cover of X[1..i] or 0. In fact, since every cover of any cover of X is also a cover of X,
it turns out that, the cover array C' compactly describes all the covers of every prefix
of X. For every prefix X[1..i] of X, the following sequence

Ci), C?[i),...,C™i] (1)

is well defined and monotonically decreasing to C™[i] = 0 for some m > 1 and this
sequence identifies every cover of X[1..i]. Here, C*[i] is the length of the kth longest
cover of X[1..7], for 1 <k < m.

Index1234567891011121314151617 1819
X =abaababaab a a b ab a a b a
C=00000303056 056 0 8 91011

Table 2. Cover array of abaababaabaababaaba

From Table 2 we can see that, cover array of X, has the entries C[19] = 11, C[11] =
6, C[6] = 3 and C[3] = 0 representing the three covers of X having length 11, 6 and
3 respectively.

The definition for cover is the same for both regular and degenerate strings. How-
ever, the definition of the cover array for a degenerate string changes. For a degenerate
string, Ci] stores the list of the lengths of the covers of X[1..i]. More elaborately,
each C[i] is a list (CP[i]) such that 1 < p < |C[i]|, where C?[i] denotes the pth largest
cover of X[1..i]. As the matching operations of degenerate strings are not transitive,
cover array algorithms for regular strings cannot be readily extended to degenerate
strings.

Index123 4 5 6
X = abalab] [ab] a
C=0002 3 4
23
Table 3. Cover array of aba[ab][abla

Also, Sequence 1, does not fully apply to the covers of degenerate strings. From
Table 2 and Sequence 1}, the degenerate string X should have two covers of length 4
and 2, as C[6] contains 4 and C[4] contains 2. However, as can be seen from Table 2,
X has covers of length 4 and 3, but not of length 2. So for covers of degenerate
strings Sequence i gives wrong information. Note that, the space requirement for
representing the cover array of a degenerate string of length n is O(n?).

3 Basic Validation of a cover array

In this section, we discuss some basic properties of a valid cover array. The properties
discussed here are mostly in the context of reconstruction of a (degenerate) string

194 Proceedings of the Prague Stringology Conference 2013

from a given cover array while we scan/proceed one position at a time from left to
right. i.e., in an online fashion. Further validation properties will be discussed in the
following section where we describe the algorithms. For ¢ > 2, we say an integer
j is a candidate-length (i.e., “candidate” to be the length) of a cover of X[1..i], if
j €{1,...,i—1}. Thus candidate-lengths of covers of X[1..i] is m; = {1,2,...,i—1}.
We say that an array C[l..n] is a valid cover array if and only if it is the cover array
of at least one degenerate string X with n positions (i.e., having length n). We also
use the notion of an equivalence of strings based on their cover arrays as follows. We
say that two strings X;[1..n] and Xs[l..n| are C-FEquivalent if and only if both of
them have the same cover array C[1..n]. Given a degenerate string X of length n on
alphabet X', we define X; C X' to be the set of symbols used by the prefix X[1..i].
Further we say that a symbol ¢ € X; — X, is required by Ci].

Clearly, the only cover of X[1] is necessarily an empty word. Thus we must have
C[1] = 0, irrespective of any strings. Also, as has been discussed above, the list of
lengths of the nonempty covers C[i] of X[1..7] is taken from ;. We now present the
following useful observation, argument and theorem.

Observation 1 Suppose C[1..n] is the cover array of a string X[1..n]. Then the fol-
lowing hold true.

a. f1eCli, thenleCilV1<j<i—1,i>1.
b. If f € Cli], and f € C[j] such that j > i then j —i < f.
c. If Clkl=0 for1<k<m, thenClm+1] <m—1.

Lemma 1. Suppose C[1..n] is the cover array of a string X|[1..n]. If 1 € C[i], then
{1,2,...,i—1} C C[i], i > L.

Proof. Proof will be provided in the journal version. O

Lemma 2. Suppose we have a cover array C'. Suppose we have correctly reconstructed
a degenerate string Xy of length i—1 based on C[1..i—1]. Also assume that we have also
correctly reconstructed Xo of length i for C[1..i]. Further, suppose that Z = Xx,—Xx,.
Then the following hold true:

a. Suppose, |Z| =1 and Z = {1}. Also, assume that 1 is required for C?[i]. Then 1)
can only be put at the following positions of Xy : {CP[i],2 x CP[i],3 x CP[i]...} to
get Xy

b. Suppose |Z| > 1 and Z = {4n, ..., }. Also, assume that), 1 < j <k is required
for CPii

i. Then iy, s, ..., Yy can only be put at the following positions of X1 : {CPi[i],2x
CPili], 3 x CPi[i],...}

1. Assume that X is the non-solid character containing all letters of Z. We use Ay
to denote the character containing V1, ..., V¥r. So, Ay = 11 and hence is a solid
character and Ny = [11..41]. Further assume that X§ = X{[1..i — 1]\,. We get
Xi[1..i — 1] by placing the new characters 1;, 1; € A\, at the aforementioned
specific Positions of X1. Then all of X4[1..i — 1], 1 <1 < k along with X, are
C — Equivalent.

c. Xy and Xs[1..i — 1] are C' — Equivalent.

Proof. Proof will be provided in the journal version. O

Now we are ready to present and prove the following important theorem.

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 195

i 123456
Cli]012342
123
12
1

Table 4. An example of cover array of Degenerate string

i 12345
X[ilaaaaa

Table 5. Degenerate string of cover array up to Position 5

i 123456
X[ilaaaaab
b b

Table 6. Degenerate string of cover array up to Position 6

Theorem 2 Suppose C[1..n] is an array of n > 1 lists of integers. If the following
condition (Condition 1) is satisfied, then C[1..n] is a cover array of some degenerate
string X[1..n] .

Condition 1

a. C[1] = 0

b. Cli) C{0}Um;, for2<i<n.
i. If X[1..i] has the empty word for its only cover then we have C[i] = {0}
it. If X[1..1] has nonempty covers then C[i] = {j|j € m and X[i] =~ X[j|}

Proof. Proof will be provided in the journal version. O

4 Owur Algorithms

4.1 CrAyDSRUn

Our problem is to reconstruct a degenerate string of length n, given a valid cover
array C. In this section, we focus on an unbounded alphabet and propose an algo-
rithm called CrAyDSRUn (Cover Array Degenerate String Reconstruction from
Unbounded Alphabet) for this problem. Given an array C[1..n], CrAyDSRUn de-
termines whether C[1..n] is a valid cover array for at least one degenerate string and
if so, it constructs one such degenerate string. Before presenting the algorithm, we
first need to present some relevant definitions and notions.

Assume that, we have successfully reconstructed X[1..i — 1]. We use 1; to denote
the new set of characters introduced in X[i], i.e., ¥; = X; — ;1. Now, we want
to extend X[1..i — 1] to get X[1..7] based won C[1..7]. Suppose that a € C]i]. So,
we must have a cover of length a for X[1..7]. Also if we need a new character, we
have to place that it at Position ¢ and other necessary positions of X|[1..i — 1] (See
Lemma). We denote by A’ the set of symbols that are not allowed only at Position
i, ie, A = Ujer,_cp X1i]- On the other hand, we denote by A; the set of symbols

that can be assigned to X[i]. We now have the following lemma.

196 Proceedings of the Prague Stringology Conference 2013

Lemma 3. For every degenerate string X[1..7] the following hold true:
a. If CPli] #0 for 1 <p <|Cli]| then

b. if CP[i] = 0 is the only entry of CP[i], then CP[i| & m;, A; =1 and |A;] = ;] =1

Proof. Proof will be provided in the journal version. O

We note that our string inference algorithm follows a similar approach used in [13]
to reconstruct degenerate strings from border arrays. The main differences lie in ma-
nipulating A;, A}, validity checking of X and placing appropriate characters at ap-
propriate positions. The steps of CrAyDSRUn are formally presented in Algorithm
1 (in Appendix). We assume that, we have an array o representing an unbounded
alphabet from which we take the basic letters i.e., the non-degenerate letters from
the alphabet X. The CrAyDSRUn algorithm takes an array C[l..n] as input. It
first checks the trivial validity condition whether C[1] = 0 or not; subsequently for
every position 2 < i < n, it checks whether C?[i] € m;, i < p < |C[é]|. Algorithm
CrAyDSRUn returns the input cover array as invalid as soon as it finds a violation
of the conditions checked above. As long as the result of the above checking is posi-
tive, Algorithm CrAyDSRUn constructs A, and A; for each position 2 < i < n. To
keep track of the alphabet size of each prefix X[1..i], our algorithm uses an array k
where k[i] = ||

To manipulate A}, we use function getInvalidChar(Position, CoverValue)
that takes two parameters. Position refers to the position of the cover array and
CoverValue refers to one of the values of that position. To manipulate A;, we use
function get ProbableV alidChar(Position, CoverValue). If a CoverValue appears
for the first time in C' at Position 7, then our algorithm will extend the string such
that there is a cover of length equal to CoverValue by putting the characters in
X [covervalue| at X [i] provided that the positions of (X[i — 1] and X [CoverValue —
1)), (X[i — 2] and X[CoverValue — 2]),..., (X[i — (CoverValue — 1)] and X|1])
have at least one common character. Otherwise, the cover array is invalid and the
function returns indicating that (see Lemma 4 later).

If a C'overvalue appears previously in C', then our algorithm uses a variable lastpos
to hold the immediate previous position of CoverValue in the cover array. In this
case, our algorithm will extend the string such that there is a cover of length equal to
CoverValue by putting the common characters in X[CoverValue] and X [lastpos] at
Position i provided that the positions of (X [CoverValue—1|, X[lastpos—1] and X [i—
1)),..., (X[1], X[lastpos — (CoverValue —1)] and X[i — (CoverValue —1)]) have at
least one common character. Otherwise, the cover array is invalid and the function
returns indicating that (see Lemma § later).

Now, we focus our attention on how we can effectively check whether multiple
positions have common characters among them. To find whether there exists common
character at two positions, we use Bit Vector technique [4]. In our algorithm, we
use v to indicate Bit Vector. Although we are reconstructing over an unbounded
alphabet, when we compare between two positions for common characters we have
already placed characters in those positions previously. We will also create the Bit
Vector again if new characters arrive at that position. If two positions have common
characters then we save this record in a two dimensional array H. For example, if

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 197

Positions a and b have common characters then we mark the entry of H|a][b]. We
will update H incrementally. For example, for Position 2, we need to check Position 1
and 2 whether they have common characters or not. Again, for Position 3, we need to
check Positions 1 and 3 and Positions 2 and 3 whether they have common characters
or not. So we can see for Position 3, there are two entries to update in H namely
HI[1][3] and H|[2][3]. It is notable that for any Position 4, all the entries of H[1][1],
H[1][2], ..., H[i — 1][¢ — 1] will remain unchanged. Because even if new character
arrives, it will be placed in the positions stated in Lemma 2 and according to that
lemma X[1..i — 1] will still be C' — Equivalent. Now for Position n, we have at most
n — 1 entries such as H|[1|[n], H[2][n], H[3][n], ..., H[n—1][n] to update. That is how,
we have pre-computed H while placing characters in X. If we need to check whether
there exists common characters between three positions namely a, b, ¢, we need to
AND the Bit Vector of these three positions. If the result of this AND is non-zero
then we can say there exists common character between Positions a, b and c.

In order to place characters of A; in proper positions our algorithm uses function
PlaceCharInProper Position(Position, CoverValue, necessarychar). Here
necessarychar indicates the necessary character to fill the positions of X. Whenever
some C?[i] # 0, CrAyDSRUn puts a character v € A; into X|[i]; v is also included
in X[C?[i]] and X[j] where 2 < j < i and C?[i] € C[j] if v ¢ X;. It is notable that
we have included character set X; — A; — A, at Position i. We can safely add those
characters because they are not invalid at Position . By adding these characters we
make sure that we do not need to add any more characters in the previous positions
of Position ¢ if no new characters arrive. We now report the following Observations
which basically support the correctness of our approach.

Lemma 4. Given a cover array C[l1..n], suppose C[i] = { (we need to have a cover
of length ¢ at Position i) such that ¢ ¢ {C[1] U C[2] U --- U C[i — 1]} and
X[N X[i—(—=1)#¢, X[2] N X[i—(—2)] #¢,..., X[{—1] N X[i—1] # ¢
then we must include X[¢] — A, at position i. If in any one of the above intersection
returns ¢ then the input cover array is not valid.

Proof. Proof will be provided in the journal version. O

Lemma 5. Given a cover array C[l1..n], suppose Cli] = { (we need to have a cover
of length { at Position i) such that ¢ € {C[1] U C[2] U --- U C[i — 1]} and let
p be the immediate previous position of i where £ € Clp] and 1 < p < (i — 1) and
{X[1] N X[p—(t=1)] n X[i—(-1)]} # ¢, {X[2] N X[p—(£-2)] N X[i—((-2)]} #
Gy {X[0—=1] N X[p—1] N X[i—1]} # ¢, then we must include X[¢] N X [p] — A}
at position ©. If in any one of the above intersection returns ¢ then the input cover
array s invalid. Because if any one of the intersection returns ¢, then we can not
have a cover of length ¢ at Position i.

Proof. Proof will be provided in the journal version. O

Based on the above discussions we have the following theorem.

Theorem 3 Given a valid cover array C[1..n|, the algorithm CrAyDSRUn checks
for its validity at every position and as long as it is valid it reconstructs a degenerate
string X[1..n] on an unbounded alphabet for which C[1..n] is a cover array.

Proof. Proof will be provided in the journal version. O

198 Proceedings of the Prague Stringology Conference 2013

Now we focus on the complexity of algorithm CrAyDSRUn. We start with the
following theorem.

Theorem 4 Algorithm CrAyDSRUn runs in O(N |X|) time, where N is the prod-
uct of string length and mazximum list length of cover array C.

Proof. Proof will be provided in the journal version. O
Theorem 5 Algorithm CrAyDSRUn runs in linear time on average.

Proof. Proof will be provided in the journal version. O

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays

199

Algorithm 1 CrAyDSRUn(Cn)

1:

50:
51:
52:
53:

if C[1] # {0} then
return C invalid at index 1
end if
X[« {af1]}
k1]« 1
for i «< 2ton do
kli] < k[i—1]
A+ ¢
X[i] «+ ¢
w4 {l.i—1}
Al ¢
for all k&, # — C[i] do
getInvalidChar(i, k)
end for
probablevalidchar < ¢
for j <+ 1 to |C[i]| do
if CI[i] # {0} then
if CI[i] ¢ m; then
return invalid at index i
end if
if 1 € C[i] then

if Observation Ja & Lemma :l: not satisfied then

return invalid at index i
end if
end if

r
if Observation QE not satisfied at position i then

return invalid at index i
end if

if Observation QE not satisfied at position ¢ then

return invalid at index i
end if
get ProbableV alidChar(i, CI[i])
A « probablevalidchar — A
if A # ¢ then

X[i] + X[fU A

if E,‘fAifA;;é¢>then

Add X; — Ay — Al at position i

end if
update v position i
else
k[i] « kli—1]+1
A {alk{)} |
placecharacterinproperposition(i, C?[i], A)
end if
else
kli] < k[i—1]+1
A {alkll]}

X[i]+ X[FUA
update v at postition i
end if
end for
end for
return X

200 Proceedings of the Prague Stringology Conference 2013

1: function GETINVALIDCHAR(position, covervalue)
2: d <+ covervalue — 1
3: k < position — 1
4: flag + 0
5: flag2 + 0
6: lastpos <— 0
7 lastpos < find tmmediate previous position i of position where covervalue € c[i]& 1 < i < position — 1
8: if covervalue =1 then
9: if covervalue € c[k] then
10: Al AL U X[covervalue]
11: return A/
12: else
13: return false
14: end if
15: else if lastpos = 0 then
16: for i + 1 to covervalue — 1 do
17: p— ¢
18: b < position%covervalue
19: p+ X[NX[i+0b
20: if p = ¢ then
21: flag + 1
22: break
23: end if
24: end for
25: else if lastpos # 0 then
26: k < position — covervalue + 1
27: j+ 1
28: for ¢ «+ lastpos — covervalue + 1 to lastpos — 1 do
29: D ¢
30: p+ X[i]NX[k] N X[j]
31: Jj++
32: k4 +
33: if p = ¢ then
34: flag2 + 1
35: break
36: end if
37: end for
38: end if
39: if lastpos = 0& flag = 0 then
40: Al AL U X[covervalue]
41: return A/
42: else if lastpos = 0&flag = 1 then
43: return false
44 end if
45: if lastpos # 0& flag2 = 0 then
46: Al AL U (X[covervalue] N X[lastpos])
47: return A/
48: else if lastpos # 0& flag2 = 1 then
49: return false
50: end if

51: end function

1: function GETPROBALEVALIDCHAR(position, covervalue)
2: d <+ covervalue — 1
3 k < position — 1
4: lastpos < 0
5: flag < 0
6: flag2 <0
7 lastpos <+ find immediate previous position ¢ of position where covervalue € cil& 1 < i < position — 1
8 if covervalue =1 then
9 if covervalue € c[k] then
10: probablevalidchar < probablevalidchar U X [covervalue]
11: return
12: else
13: return invalid at position
14: end if
15: else if lastpos = 0 then
16: for i + 1 to covervalue — 1 do
17: P o
18: b < position%covervalue
19: p <+ X[NX[i+0b]

20: if p = ¢ then

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays

21:
22:
23:
24
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:

10:

12:
13:
14:

flag <1
break
end if
end for
else if lastpos # 0 then
k < position — covervalue + 1
g1
for i < lastpos — covervalue + 1 to lastpos — 1 do
P ¢
p+ X[i]NX[k]NX[j]
Jj++
k++
if p = ¢ then
flag2 <+ 1
break
end if
end for
end if
if lastpos = 0& flag = 0 then
probablevalidchar < probablevalidchar U X [covervalue]
return probablevalidchar
else if lastpos = 0& flag = 1 then
return invalid at position
end if
if lastpos # 0& flag2 = 0 then
probablevalidchar < probablevalidchar U (X [covervalue] N X [lastpos])
return probablevalidchar
else if lastpos # 0& flag2 = 1 then
return invalid at position
end if
end function

function PLACECHARINPROPERPOSITION(position, covervalue, necessarychar)
b + position%covervalue
if b # 0 then
for (i < covervalue; 1 < position; i < i+ b) do
X[i] « X[i] Unecessarychar
update v at position i
end for
else if b =0 then
for (i < covervalue; © < position; i < i + covervalue) do
X[i] « X[i] Unecessarychar
update v at position i
end for
end if
end function

Table 7 shows an example run of the algorithm.

4.2 CrAyDSRin

201

Now we present a modified version of algorithm CrAyDSRUn that reconstructs
a degenerate string using a minimum sized alphabet. We call this algorithm
CrAyDSRin (Cover Array Degenerate String Reconstruction from Minimal Alpha-
bet). As before, suppose we are reconstructing a degenerate string X = X[1..n| from
a cover array C[l..n] and assume that we have successfully reconstructed X[1..i — 1].
Now, we want to extend X|[1..i — 1] to get X|[l..7] based on C[l..i]. Recall from
Section 4.1 that, we use A} and A; to denote the set of symbols that, respectively,
are not allowed and allowed to be assigned to X[i]. Now we present an extended
version of Lemma 8.5 below.

Lemma 6. For every degenerate string X|[1..i], if CP[i] = 0 is the only entry in C|i],
then CPli]| & m; and A; = ;U (X1 — Al).

Proof. Proof will be provided in the journal version.

202 Proceedings of the Prague Stringology Conference 2013

Algorithm 2 CrAyDSRIn(Cjn)
1: if C[1] # {0} then

2: return C invalid at index 1
3: end if

4: X[1] + {a[1]}

5 k1] + 1

6: fori < 2ton do

7 k[i] + k[i—1]

8: Ao

9: X[i] + ¢
10: w4+ {l.i—1}
11: Al — ¢
12: for all k, # — C[i] do
13: getInvalidChar(i, k)

14: end for
15: probablevalidchar <+ ¢
16: for j < 1to |C[i]| do

17: if CI[i] # {0} then

18: if CI[i] ¢ m; then

19: return invalid at index i

20: end if

21: if 1 € C[i] then

22: if Observation :1:1: & Lemma :]: not satisfied then
23: return invalid at index i
24: end if

25: end if .

26: if Observation QE not satisfied at position i then
27: return invalid at index i

28: end if .

29: if Observation ll:é not satisfied at position i then
30: return invalid at index i

31: end if

32: getProbableV alidChar (i, CI[i])

33: A+ probablevalidchar — Al

34: if A # ¢ then

35: X[i] + X[{u A

36: if X; — A; — A} # ¢ then

37: Add ¥; — A; — A at position i
38: end if

39: update v position @

40: else

41: if j =1 then

42: kli] < kli—1]+1

43: A + {alk[z]]}

44 else

45: for m <+ 1toj—1do

46: if C7[i] € C[C™]i]] then
47: A+ AU (X[C™M[i]] — AL)
48: break

49: end if

50: end for

51: if m = j then

52: Eli] « k[i] +1

53: A <« {akli]]}

54: end if

95: end if

56: placecharainproperposition(i, CI[i], A)
5T: end if

58: else

59: A afl.k[i]] — AL

60: if A= ¢ then

61: Eli] < k[i] +1

62: A <+ {alk[i]]}

63: end if

64: X[i] + X[{UA

65: update v at position i

66: end if

67: end for

68: end for

69: return X

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 203

Itni 123456789 k[¢] Explanation

0 Xli]a k[1]=1
1 Xlijaa k[2]=1 7 = {1}
A/2 :qj), A2 = {CL}
2 X[ijaaa k[3]=1m3 = {1,2}
Aé :¢7 A3 = {CL}
3 X[iaaaa k[4)]=1 my = {1,2,3},
Aﬁl :(ﬁ, A4 = {a}
4 Xlilaaaaa k[5]=1m5 = {1, 2, 3,4},
Ag :¢, A5 = {a}
5 X[ijaaaaab k[6]=3 6 = {1,2,3,4,5}, Ay ={a}
b ¢ for ¢'[6] = 4 place new symbol b’ in position 4, and 6
c ¢ for ¢2[6] = 2 place new symbol ¢’ in position 2,4, and 6
Ag = b6 = {b, c}
6 X[ijaaaaaba k[7)=3 m; = {1,2,3,4,5,6}, AL =¢
b ¢b A7:{a}, E7—A7—A/7={b,c}
c ¢ c

7 Xlijaaaaabab k[8]=3ms=1{1,2,3,4,5,6,7}, A; ={c},
c b cha Ag = {b}, Xs — As — Ay = {a}
c <

8 X[ilaaaaababdk[9]=4m ={1,2,3,4,5,6,7}, Ay ={a,b,c}
¢c b cha Ag = g = {d}
c ¢

Table 7. An example run of algorithm CrAyDSRUn

The algorithm CrAyDSRin is formally presented in Algorhitm 2. CrAyDSRin
algorithm works exactly like CrAyDSR Un algorithm except for that it computes A;
slightly differently. In particular, it computes A; following Lemmas 8.8 and § (instead
of Lemma 3.5).

Lemma 7. Let X[1..n] be a degenerate string and k[1..n] be the array computed by
the algorithm CrAyDSRin given a valid cover array C. Then, for 1 < i < n we
have k’[l] = |EZ‘_1 U A,| = k’[l — 1] + |A,| — |Ei_1 N A,|

Proof. The proof immediately follows from the algorithm CrAyDSRin and Lemma §.
0

Lemma 8. Suppose given a valid cover array C[l..n], the algorithm CrAyDSRin
returns an degenerate string X [1..n] and computes the array k[1..n]. Then, the mini-
mum cardinality of an alphabet required to build each prefiz X[1..1] is equal to k[i].

Proof. Proof will be provided in the journal version. O

The above discussion can be summarized in the following theorem.

204 Proceedings of the Prague Stringology Conference 2013

Theorem 6 Given a cover array C[1..n] the algorithm CrAyDSRin checks for its
validity at every position and as long as it is valid it reconstructs an indeterminate
string X [1..n] on a minimum sized alphabet for which C[1..n| is a cover array.

The runtime analysis of algorithm CrAyDSRin follows readily from the analysis
of algorithm CrAyDSRUn. The only extra work the former does is the calculation
of X;_1 — Al which can be done in O(m|X|) time. Therefore we have the following
results.

Theorem 7 Algorithm CrAyDSRin runs in O(N|X|) time, where N is the the

product of string length and mazimum list length of the cover array C'.

Corollary 9. Algorithm CrAyDSRin runs in linear time on average.

Itn i 123456789k[:] Explanation

0 X[{a K[1]=1
1 X[i]aa k[2]=1 w2 = {1}
Alz :¢a A2 = {a’}
2 X[ijaaa k[3]=1 w3 = {1,2}
Al =¢, A3 = {a}
3 X[iJaaaa k[4]=1 my ={1,2,3}
Ail :¢7 A4 = {a}
4 Xl[ilaaaaa k[5]=1 m5 = {1,2, 3,4}
Ay =¢, A5 ={a}
5 X[iJaaaaab k[6]=2 m¢ = {1,2,3,4,5}, Aj ={a}
b b for c'[6] = 4 place new symbol ’b’ in position 4 and 6
for ¢2[6] =2, ¢2[6] € c[c'[6]]
Ap = tpe = {b}
6 X[ilaaaaaba k[7]=2 m7 = {1,2,3,4,5,6}, A, =¢
b b b Az = {a}, Y7 — A7 — AL = {b}
7 X[iJaaaaabac k[8=3ms={1,23,4,56,7}, Af ={b},
b b cbha for c¢![8] = 6 place new symbol ’c’ in position 6 and 8
c for c2[8] = 2, c2[8] € c[c}[8]]

Ag =g = {c}, Xs — Ag — Ay = {a}

8 X[iJaaaaabacck[9=3m ={1,2,3,4,5,6,7,8}, Ay ={a,b}
b b cha Ag ={a,b,c} — {a,b} ={c}
c

Table 8. An example run of algorithm CrAyDSin

Table & shows an exzample run of CrAyDSRin Algorithm.

5 Conclusion

In this paper, we have presented efficient algorithms for inferring a degenerate string
given a valid cover array. We have presented two algorithms both of which returns
a degenerate string from a given cover array, if the cover array is valid. Our first
algorithm infers a degenerate string on an unbounded alphabet satisfying the cover
array and our second algorithm infers a degenerate string on a least size. Future
research may be carried out for devising similar reconstruction algorithms for degen-
erate strings considering other data structures (e.g., seed array).

Dipankar Ranjan Baisya et al.: Degenerate String Reconstruction from Cover Arrays 205

References

1.

10.

11.

12.

13.

14.

15.

P. AnTonIOU, M. CROCHEMORE, C. S. ILIOPOULOS, I. JAYASEKERA, AND G. M. LANDAU:
Conservative string covering of indeterminate strings. Proceedings of the Prague Stringology
Conference 2008, 2008, pp. 108-115.

P. AxToniou, C. S. ILiorouLos, I. JAYASEKERA, AND W. RYTTER: Computing epetitive
structures in indeterminate strings. Proceedings of the 3rd TAPR International Conference on
Pattern Recognition in Bioinformatics (PRIB 2008), 2008, pp. 108-115.

A. AposTOLICO AND A. EHRENFEUCHT: Efficient detection of quasiperiodicities in strings. tcs,
119(2) 1993, pp. 247-265.

M. F. BARr1, M. S. RAHMAN, AND R. SHAHRIYAR: Finding all covers of an indeterminate string
in O(n) time on average, in Proceedings of the Prague Stringology Conference 2009, J. Holub
and J. Zdarek, eds., Czech Technical University in Prague, Czech Republic, 2009, pp. 263-271.
M. CROCHEMORE, C. S. ILiopPOULOS, S. P. Pissis, AND G. TISCHLER: Cover array string
reconstruction, in CPM’10, 2010, pp. 251-259.

J.-P. DuvAaL, T. LECROQ, AND A. LEFEBVRE: Border array on bounded alphabet. Journal of
Automata, Languages and Combinatorics, 2005, pp. 51-60.

F. FrRANEK, S. GAo, W. Lu, P. J. Ryan, W. F. SMYTH, Y. SUN, AND L. YANG: Verifying
a border array in linear time. J. Comb. Math. Comb. Comput, 42 2000, pp. 223-236.

J. HoLuB AND W. F. SMYTH: Algorithms on indeterminate strings. Miller, M., Park, K. (eds.):
Proceedings of the 14th Australasian Workshop on Combinatorial Algorithms AWOCA’03, 2003,
pp- 36-45.

J. HoLuB, W. F. SMYTH, AND S. WANG: Fuast pattern-matching on indeterminate strings.
Journal of Discrete Algorithms, 6(1) 2008, pp. 37-50.

C. S. IiopouLos, M. MOHAMED, L. MOUCHARD, K. G. PERDIKURI, W. F. SMYTH, AND
A. K. TSAKALIDIS: String reqularities with don’t cares. Nordic Journal of Computing, 10(1)
2003, pp. 40-51.

C. S. IiopouLos, L. MOUCHARD, AND M. S. RAHMAN: A new approach to pattern matching
in degenerate DNA/RNA sequences and distributed pattern matching. Mathematics in Computer
Science, 1(4) 2008, pp. 557-569.

T. M. MoosA, S. NAZEEN, M. S. RAHMAN, AND R. REAZ: Linear time inference of strings
from cover arrays using a binary alphabet — (extended abstract), in WALCOM’12; 2012, pp. 160—
172.

S. NAZEEN, M. S. RAHMAN, AND R. REAZ: Indeterminate string inference algorithms. J.
Discrete Algorithms, 2012, pp. 23-34.

W. F. SMYTH AND S. WANG: New perspectives on the prefiz array, in SPIRE, A. Amir,
A. Turpin, and A. Moffat, eds., vol. 5280 of Lecture Notes in Computer Science, Springer, 2008,
pp. 133-143.

W. F. SMYTH AND S. WANG: An adaptive hybrid pattern-matching algorithm on indeterminate
strings. Int. J. Found. Comput. Sci., 2009, pp. 985-1004.

