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Abstract. Counting the number of types of squares rather than their occurrences,
we consider the problem of bounding the maximum number of distinct squares in a
string. Fraenkel and Simpson showed in 1998 that a string of length n contains at
most 2n distinct squares and indicated that all evidence pointed to n being a natural
universal upper bound. Ilie simplified the proof of Fraenkel-Simpson’s key lemma in
2005 and presented in 2007 an asymptotic upper bound of 2nΘ(log n). We show that
a string of length n contains at most ⌊11n/6⌋ distinct squares for any n. This new
universal upper bound is obtained by investigating the combinatorial structure of FS-
double squares (named so in honour of Fraenkel and Simpson’s pioneering work on
the problem), i.e. two rightmost-occurring squares that start at the same position,
and showing that a string of length n contains at most ⌊5n/6⌋ FS-double squares.
We will also discuss a much more general approach to double-squares, i.e. two squares
starting at the same position and satisfying certain size conditions. A complete, so-
called canonical factorization of double-squares that was motivated by the work on the
number of distinct squares is presented in a separate contributed talk at this conference.
The work on the problem of the number of distinct squares is a joint effort with Antoine
Deza and Adrien Thierry.

At the time of the presentation of this talk, the slides of the talk are also available at

http://www.cas.mcmaster.ca/~franek/PSC2014/invited-talk-slides.pdf
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