
Two Squares Canonical Factorization⋆

Haoyue Bai1, Frantisek Franek1, and William F. Smyth1,2

1 Department of Computing and Software

McMaster University, Hamilton, Ontario, Canada

{baih3,franek,smyth}@mcmaster.ca
2 School of Computer Science & Software Engineering

University of Western Australia

Abstract. We present a new combinatorial structure in a string: a canonical factor-

ization for any two squares that occur at the same position and satisfy some size

restrictions. We believe that this canonical factorization will have application to re-

lated problems such as the New Periodicity Lemma, Crochemore-Rytter Three Squares

Lemma, and ultimately the maximum-number-of-runs conjecture.

Keywords: string, primitive string, square, double square, factorization

1 Introduction

In 1995 Crochemore and Rytter [2] considered three distinct squares, all prefixes of a
given string x, and proved the Three Squares Lemma stating that, subject to certain
restrictions, the largest of the three was at least the length of the sum of the other two.
In 2006 Fan et al. [4] considered a special case of such two squares prefixes of x with a
third square possibly offset some distance to the right; they proved a New Periodicity
Lemma describing conditions under which the third square could not exist. Since
that time there has been considerable work done [1,5,6,8] in an effort to specify more
precisely the combinatorial structure of the string in the neighbourhood of such two
squares.

In this paper we present a unique canonical factorization into primitive strings
of what we call double squares – i.e. two squares starting at the same position and
satisfying some size restrictions. The notion of double squares and their unique fac-
torization can be traced to Lam [7]. A version of the factorization for more specific
double squares was presented in [3]. Here we present it in full generality. In conclusion
we indicate how this result can be applied to the proof of New Periodicity Lemma.

2 Preliminaries

In this section we develop the basic combinatorial tools that will be used to determine
a canonical factorization for a double square. Chief among these are the Synchroniza-
tion Principle (see Lemma 2), and the Common Factor Lemma (see Lemma 3), that
lead to the main result, the Two Squares Factorization Lemma (see Lemma 6).

A string x is a finite sequence of symbols, called letters, drawn from a (finite or
infinite) set Σ, called the alphabet. The length of the sequence is called the length

of x, denoted |x|. Sometimes for convenience we represent a string x of length n as
an array x[1..n]. The string of length zero is called the empty string, denoted ε. If
a string x = uvw, where u, v, w are strings, then u (respectively, v, w) is said to

⋆ This work was supported by the Natural Sciences and Engineering Research Council of Canada

Haoyue Bai, Frantisek Franek, William F. Smyth: Two Squares Canonical Factorization, pp. 52–58.

Proceedings of PSC 2014, Jan Holub and Jan Žd’árek (Eds.), ISBN 978-80-01-05547-2 c© Czech Technical University in Prague, Czech Republic

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 53

be a prefix (respectively, substring, suffix) of x; a proper prefix (respectively,
proper substring, proper suffix) if |u| < |x| (respectively, |v| < |x|, |w| < |x|).
A substring is also called a factor. Given strings u and v, lcp(u,v) (respectively,
lcs(u,v)) is the longest common prefix (respectively, longest common suffix)
of u and v.

If x is a concatenation of k ≥ 2 copies of a nonempty string u, we write x = uk

and say that x is a repetition ; if k = 2, we say that x = u2 is a square ; if there
exist no such integer k and no such u, we say that x is primitive. If x = v2 has
a proper prefix u2, |su| < |v| < 2|u|, we say that x is a double square and write
x = DS(u,v). A square u2 such that u has no square prefix is said to be regular.

For x = x[1..n], 1 ≤ i < j ≤ j+k ≤ n, the string x[i+k..j+k] is a right cyclic

shift by k positions of x[i..j] if x[i] = x[j+1], . . . , x[i+k−1] = x[j+k]. Equivalently,
we can say that x[i..j] is a left cyclic shift by k positions of x[i+k..j+k]. When it
is clear from the context, we may leave out the number of positions and just speak
of a cyclic shift.

Strings uv and vu are conjugates, written uv ∼ vu. We also say that vu is the

|u|th rotation of x, written R|u|(x), or the −|v|th rotation of x, written R−|v|(x),
while R0(x) = R−|x|(x) = x is a primitive rotation. Similarly as for the cyclic
shift, when it is clear from the context, we may leave out the number of rotations and
just speak of a rotation. Note that all cyclic shifts are conjugates, but not the other
way around.

In the following lemma, the symbol | denotes divisibility, i.e. a | b means that a is
divisible by b.

Lemma 1 [9, Lemma 1.4.2] Let x be a string of length n and minimum period
π ≤ n, and let j = 1, . . . , n−1 be an integer. Then Rj(x) = x if and only if x is not
primitive (π < n, π | n) and j | π.

The following results (Lemmas 2–6) are based on the development given in [3].
Though Lemmas 2 and 3 are folklore, we include their proofs.

Lemma 2 (Synchronization Principle) The primitive string x occurs exactly p
times in x2x

px1, where p is a nonnegative integer and x1 (respectively, x2) is a
proper prefix (respectively, proper suffix) of x.

Proof. From Lemma 1 a rotation Rj(x) of x can equal x only if x is not primitive.
Since here x is primitive, the only occurrences of x are exactly those determined by
xp. ⊓⊔

Lemma 3 (Common Factor Lemma) Suppose that x and y are primitive strings,
where x1 (respectively, y1) is a proper prefix and x2 (respectively, y2) a proper suffix
of x (respectively, y). If for nonnegative integers p and q, x2x

px1 and y2y
qy1 have

a common factor of length |x|+|y|, then x ∼ y.

Proof. First consider the special case x1 = x2 = y1 = y2 = ε, where xp, yq have a
common prefix f of length |x|+|y|. We show that in this case x = y.

Observe that f has prefixes x and y, so that if |x| = |y|, then x = y, as required.
Therefore suppose WLOG that |x| < |y|. Note that y 6= xk for any integer k ≥ 2,
since otherwise y would not be primitive, contradicting the hypothesis of the lemma.

54 Proceedings of the Prague Stringology Conference 2014

Hence there exists k ≥ 1 such that k|x| < |y| and (k+1)|x| > |y|. But since f = yx,
it follows that

R|y|−k|x|(x) = x,

again by Lemma 1 contrary to the assumption that x is primitive. We conclude that
|x| 6< |y|, hence that |x| = |y| and x = y, as required.

Now consider the general case, where f of length |x|+|y| is a common factor of
x2x

px1 and y2y
qy1. Then x2x

px1 = ufu′ for some u and u′. If |u| ≥ |x|, then
f is a factor of x1x

p−1x2, and so we can assume WLOG that |u| < |x|. Setting
x̃ = R|u|(x), we see that f is a prefix of x̃p.

Similarly, by setting y2y
qy1 = vfv′, we can assume that |v| < |y|, hence that

f is also a prefix of ỹq for ỹ = R|v|(y). But this is just the special case considered
above, for which x̃ = ỹ. Since x ∼ x̃ and y ∼ ỹ, the result follows. ⊓⊔

Note that Lemma 3 could be equivalently stated in a more general form:

Lemma 4 Suppose that x and y are strings where x1 (respectively, y1) is a proper
prefix and x2 (respectively, y2) a proper suffix of x (respectively, y). If for nonnegative
integers p and q, x2x

px1 and y2y
qy1 have a common factor of length |x|+|y|, then

the primitive root x of x and the primitive root y of y are conjugates.

The Common Factor Lemma gives rise to the following useful corollary:

Lemma 5 Suppose that x and y are primitive strings, and that p and q are positive
integers.

(a) If xp = yq, then x = y and p = q.
(b) If x1 (respectively, y1) is a proper prefix of x (respectively, y) and xpx1 = yqy1

for p ≥ 2, q ≥ 2, then x = y, x1 = y1 and p = q.

Proof. For (a), first consider p = 1, thus x = yq. Since x is primitive, therefore q = 1
and x = y, as required. Similarly for q = 1. Suppose then that p, q ≥ 2. This means
that xp and yq = xp have a common factor of length p|x| = q|y| ≥ |x|+|y|, so that
by Lemma 3 x ∼ y. Hence |x| = |y| and so x = y.

For (b), since again p ≥ 2, q ≥ 2, it follows as in (a) that xpx1 = yqy1 has a
common factor of length at least |x|+|y|, hence the result. ⊓⊔

Note that in Lemma 5(b) the requirement p ≥ 2, q ≥ 2 is essential. For instance,
x = aabb, x1 = aa and p = 2 yields xpx1 = aabbaabbaa, identical to yqy1 produced
by y = aabbaabba, y1 = a and q = 1 — but of course x 6= y.

3 Main Result – Two Squares Factorization Lemma

The next lemma specifies the structure imposed by the occurrence of two squares at
the same position in a string. This structure has been described before, see [3,4,5,6,7],
but not as precisely and with more assumptions required; above all, Lemma 6 estab-
lishes the uniqueness of the breakdown.

Lemma 6 (Two Squares Factorization Lemma) For a double square DS(u,v),
there exists a unique primitive string u1 such that u = u1

e1u2 and v = u1
e1u2u1

e2,
where u2 is a possibly empty proper prefix of u1 and e1, e2 are integers such that
e1 ≥ e2 ≥ 1. Moreover,

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 55

(a) if |u2| = 0, then e1 > e2 ≥ 1;
(b) if |u2| > 0, then v is primitive, and if in addition e1 ≥ 2, then u also is

primitive.

In both cases, the factorization is unique.

Proof. If we have uk, k ≥ 2, we refer to the first copy of u as u[1], to the second
copy of u as u[2] etc.

Let z be the nonempty proper prefix of u[2] that is in addition a suffix z of v[1].
But then z is also a prefix of v[1], hence of v[2]; thus if |u| ≥ 2|z|, it follows that

z2 is a prefix of u. In general, there exists an integer k =
⌊

|u|/|z|
⌋

≥ 1 such that

u = zkz′ for some proper suffix z′ of z. Let u1 be the primitive root of z, so that
z = u1

e2 for some integer e2 ≥ 1. Therefore, for some e1 ≥ e2k and some prefix u2

of u1, u = u1
e1u2 and v = uz = u1

e1u2u1
e2 , as required. To prove uniqueness we

consider two cases:

(i) |u2| = 0
Here u = u1

e1 and v = u1
e1+e2 , so that x = u1

2(e1+e2). Since |v| < 2|u| and e1 ≥
e2, it follows that e1 > e2. The uniqueness of u1 is a consequence of Lemma 5(a).

(ii) |u2| > 0
Suppose the choice of u1 is not unique. Then there exists some primitive stringw1

with proper prefix w2, together with integers f1 ≥ f2 ≥ 1, such that u = w1
f1w2

and v = w1
f1w2w1

f2 . If both e1 ≥ 2 and f1 ≥ 2, it follows from Lemma 5(b)
that u1 = w1 and e1 = f1. If e1 = f1 = 1, we observe that v = uu1 = uw1,
so that again u1 = w1. In the only remaining case, exactly one of e1, f1 equals
1: therefore suppose WLOG that f1 > e1 = 1. Then u = u1u2 = w1

f1w2 and
v = u1u2u1 = w1

f1w2w1
f2 , so that u1 = w1

f2 . But since u1 is primitive, this
forces f2 = 1 and u1 = w1, which, since u1u2 = w1

f1w2 = u1
f1w2, implies that

f1 = 1, a contradiction. Thus all cases have been considered, and u1 is unique.

We now show that v is primitive. Suppose the contrary, so there exists some primitive
w and an integer k ≥ 2 such that v = wk. It follows that |w| ≤ |v|/2 ≤ |u1

e1 |+|u2|.
Note that

w2k = v2 = u1

e1u2u1

e1+e2u2u1

e2 , (1)

so that w2k and u1
e1+e2u2 have a common factor u1

e1+e2u2 of length

(|u1

e1 |+|u2|)+|u1

e2 | ≥ |w|+|u1|.

Thus we can apply Common Factor Lemma 3 to conclude that w ∼ u1, thus by (1)
that w = u1. But (1) then requires that the primitive string u1 = u2u2 aligns with
u2u1, and so u2 is a prefix of u1, in contradiction to Lemma 1. We conclude that v
is primitive.

Now suppose in addition that e2 ≥ 2, but that u is not primitive. Then there
exists some primitive w and some integer k ≥ 2 such that u = wk. Hence |w| ≤
|u|/2 = (|u1

e1 |+ |u2|)/2 < |u1
e1−1|+ |u2|, since e1 ≥ 2 and |u2| > 0. Therefore,

since u1
e1u2 is a prefix of u2 = w2k, and since e2 ≥ 1 by Lemma 6, w2k and

u1
e1+e2 have a common prefix u1

e1u2. Note that |u1
e1u2| ≥ |v|+|u1|, so that again

applying Common Factor Lemma 3, we conclude that u1 = w. This in turn implies
u = u1

e1u2 = u1
k, impossible since 0 < |u2| < |u1|. Therefore u is primitive, as

required.
Finally we remark that since u1 is a uniquely determined primitive string, there-

fore u2, e1 and e2 are also uniquely determined. ⊓⊔

56 Proceedings of the Prague Stringology Conference 2014

The following examples show that the statement of the lemma is sharp:

(a) The second part of Lemma 6(b) requires that e1 ≥ 2. To see that this condition is
not necessary, consider v2 = abaababaab, where u = (ab)a, v = (ab)a(ab), so that
u1 = ab, u2 = a, e1 = e2 = 1, but u is primitive.

(b) On the other hand, consider v2 = abaabaabaababaabaabaab, where u = (aba)2 =
(abaab)a, v= (abaab)a(abaab), so that u1 = abaab, u2 = a, e1 = e2 = 1, where
now u1 is not primitive.

Lemma 6 gives credence to the following definition of terminology and notation:

Definition 7 For a double square DS(u,v) we call the unique factorization v2 =
u1

e1u2u1
e1+e2u2u1

e2 guaranteed by Lemma 6, the canonical factorization of
DS(u,v) and denote it by DS(u,v) = (u1,u2, e1, e2). The symbol u2 denotes the
suffix of u1 such that u1 = u2u2.

Lemma 6 also gives rise to a number of important observations:

Observation 8 In Lemma 6, |u2| > 0 if any one of the following conditions holds:

(a) v is primitive;
(b) u is primitive;
(c) there is no other occurrence of u2 farther to the right in v2 (u2 is rightmost);
(d) u2 is regular.

Moreover:

(e) |u2| > 0 if and only if v is primitive;
(f) If u2 is regular, then e1 = e2 = 1 and u1 is regular.

Proof.

(a) |u2| = 0 implies v not primitive.
(b) |u2| = 0 implies u not primitive.
(c) |u2| = 0 implies u2 = u1

2e1 , which occurs twice in v2 = u1
2(e1+e2), in particular

as a suffix.
(d) Since u2 is regular, therefore u is primitive, so that by (b), |u2| > 0.
(e) By (a), primitive v implies |u2| > 0; by Lemma 6, |u2| > 0 implies that v is

primitive.
(f) By (d), regular u2 implies |u2| > 0, so that u = u1

e1u2, which is regular only if
e1 = e2 = 1 and u1 is regular. ⊓⊔

In the context of Observation 8(f), consider the double square DS(u,v) where u =
aabaa, v = aabaaaab. In this case, we find u1 = aab, u2 = aa, e1 = e2 = 1, but
observe that u has prefix a2, so u2 is not regular. Thus the condition e1 = 1 is more
general than the requirement that u2 be regular.

Now, following [3], consider the case |u2| > 0 of Lemma 6 and set u1 = u2u2.
Thus v2 becomes

v2 = (u2u2)
e1u2(u2u2)

e1+e2u2(u2u2)
e2

= (u2u2)
e1−1u2(IF)(u2u2)

e1+e2−2u2(IF)(u2u2)
e2−1 (2)

where IF = u2u2u2u2 = R|u2|(u1)u1 is called the inversion factor.

Lemma 9 Consider a double square DS(u,v) = (u1,u2, e1, e2) with a non-empty u2.
Then the inversion factor IF have exactly two occurrences in v2 exactly a distance of
|v| apart as shown in (2).

H. Bai, F. Franek, W. F. Smyth: Two Squares Canonical Factorization 57

Proof. If IF occurs elsewhere in v2, by the Synchronization principle its subfactor
u2u2 must align with an occurrence of u2u2 as it is primitive. Thus, its subfactor
u2u2 must align with u2u2, contradicting the primitiveness of u2u2, see Lemma 1.

⊓⊔

The quantity lcs(u2u2,u2u2) gives the maximal number of positions the struc-
tures (u2u2)

e1+e2 and (u2u2)
e2 can be cyclically shifted to the left in v2, while

lcp(u2u2,u2u2) gives the maximal number of positions the structures (u2u2)
e1 and

(u2u2)
e1+e2 can be cyclically shifted to the right. In [3], the following lemma limiting

the size of lcs(u2u2,u2u2)+lcp(u2u2,u2u2) was given.

Lemma 10 ([3]) Considering u1
e1u2u1

e1+e2u2u1
e2, where u1 is primitive and u2

is a non-empty proper prefix of u1, e1 ≥ e2 ≥ 1, and u2 a suffix of u1 so that
u1 = u2u2, then lcs(u2u2,u2u2)+lcp(u2u2,u2u2) ≤ |u1|−2.

In fact, in [3] the inversion factor is defined more generally as any factor wwww

of v2 such that |w| = |u2| and |w| = |u2| and a stronger result is given (re-phrased
in the terminology of this paper):

Lemma 11 ([3]) Consider a double square DS(u,v) = (u1,u2, e1, e2) with a non-
empty u2 and let p = lcp(u2u2,u2u2) and s = lcs(u2u2,u2u2). Then any inversion
factor in v2 is either Ri(IF) or R−j(IF) for some i ∈ 0, . . . , p or some j ∈ 0, . . . , s.
Moreover, every Ri(IF) or R−j(IF) appear exactly twice in v2 exactly a distance |v|
apart for every i ∈ 0, . . . , p and every j ∈ 0, . . . , s.

4 Possible application to New Periodicity Lemma

Some years ago a New Periodicity Lemma was published [4], showing that the oc-
currence of two special squares at a position i in a string, necessarily precludes the
occurrence of other squares of specific period in a specific neighbourhood of i. The
proof of this lemma was complex, breaking down into 14 subcases, and required a
very strong condition that the shorter of the two squares be regular.

Lemma 12 ([4], New Periodicity Lemma) Let x = DS(u,v), where we require
that u2 be regular and that v be primitive. Then for all integers k and w such that
0 ≤ k < |v|−|u| and |v|−|u| < w < |v|, w 6= |u|, x[k+1..k+2w] is not a square.

First note that by Observation 8, the requirement that v be primitive is redundant;
the fact that u2 is regular necessarily forces the primitivness of v. Also note that the
regularity of u2 necessarily implies that in the canonical factorization of DS(u,v) =
(u1,u2, e1, e2), e1 = e2 = 1.

Consider DS(u,v) = (u1,u2, 1, 1). Let u2 be a suffix of u1 such that u1 = u2u2.
The canonical factorization thus has the form

(u2u2)u2(u2u2)(u2u2)u2(u2u2).

Let us consider a square w2 such that |u1| < |w| < |v| and |w| 6= |u|. We want to
show that this is not possible.

If for instance w starts in the first u2 and ends in the fourth u2, then w contains
fully the IF, so the second w has to as well, and so |w| ≥ |v|, a contradiction.
If w ends in the second u2 we cannot argue using IF, but still knowing that u2u2 is

58 Proceedings of the Prague Stringology Conference 2014

primitive and also all its rotations are primitive, using the Synchronization principle
can be applied to obtain a contradiction.

Almost all possible cases for w2 except two can be easily shown impossible using only
the properties of the canonical factorization. Thus, we believe, and it is our immediate
goal for future research, that the canonical factorization will not only provide us with
a significantly simplified proof of New Periodicity Lemma, but will also allow us to
significantly reduce the conditions on u2 from u being regular to just being primitive.
We also believe that the canonical factorization in the same way will not only provide
a simpler proof of Crochemore-Rytter Three Squares Lemma, but will extend the
applicability of the lemma to three squares when any of the squares is primitive (the
original lemma requires that the smallest square be primitive).

5 Conclusion and future work

We presented a unique factorization of a double square, i.e. a configuration of two
squares u2 and v2 starting at the same position and satisfying |u| < |v| < 2|u|. We
call this factorization the canonical factorization. It has very strong combinatorial
properties as it is an almost periodic repetition of a primitive string. We indicated
that we would like to use this new insight into the structure of double squares in
improving the New Periodicity Lemma [4] and Crochemore-Rytter’s Three Squares
Lemma [2] and simplifying their proofs. As of preparing this final version of the
Prague Stringology Conference 2014 proceedings, we are happy to report that the
canonical factorization presented here indeed greatly simplified and generalized both.
The follow-up work will focus on presenting of these results in a near future.

References

1. W. Bland and W. F. Smyth: Overlapping squares: the general case characterized & applica-
tions. submitted for publication, 2014.

2. M. Crochemore and W. Rytter: Squares, cubes, and time-space efficient string searching.
Algorithmica, 13 1995, pp. 405–425.

3. A. Deza, F. Franek, and A. Thierry: How many double squares can a string contain?
submitted for publication, 2013.

4. K. Fan, S. Puglisi, W. F. Smyth, and A. Turpin: A new periodicity lemma. SIAM Journal

on Discrete Mathematics, 20 2006, pp. 656–668.

5. F. Franek, R. C. G. Fuller, J. Simpson, and W. F. Smyth: More results on overlapping
squares. Journal of Discrete Algorithms, 17 2012, pp. 2–8.

6. E. Kopylova and W. F. Smyth: The three squares lemma revisited. Journal of Discrete

Algorithms, 11 2012, pp. 3–14.

7. N. H. Lam: On the number of squares in a string. AdvOL-Report 2013/2, McMaster University,
2013.

8. J. Simpson: Intersecting periodic words. Theoretical Computer Science, 374 2007, pp. 58–65.

9. B. Smyth: Computing Patterns in Strings, Pearson Addison-Wesley, 2003.

