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Abstract. We consider a compression scheme for natural-language texts and genetic
data. The method encodes characters with variable-length codewords of k-bit base
symbols. We present a new search algorithm, based on the SBNDM2 algorithm, for
this encoding. The results of practical experiments show that the method supersedes
the previous comparable methods in search speed.

Keywords: compressed matching

1 Introduction

With the amount of information available constantly growing, fast information re-
trieval is a key concept in many on-line applications. The string matching problem

is defined as follows: given a pattern P = p1 · · · pm and a text T = t1 · · · tn in an
alphabet Σ, find all the occurrences of P in T . Various good solutions [7] have been
presented for this problem. The most efficient solutions in practice are based on the
Boyer-Moore algorithm [3] or on the BNDM algorithm [21].

The compressed matching problem [1] has gained much attention. In this problem,
string matching is done in a compressed text without decompressing it. Researchers
have proposed several methods [2,19,20,22] based on Huffman coding [15] or the Ziv-
Lempel family [28,29]. Alternatively, indexing methods [11,26] can be used to speed
up string matching. However, in this paper we concentrate on traditional compressed
matching.

One presented idea is to encode whole words by using end-tagged dense code or
(s, c)-dense code [4]. In both the approaches, codewords consist of one or more bytes.
In end-tagged dense code, the first bit of each byte specifies whether the byte is the
last byte of the codeword or not. Thus, there are 128 possible byte values which end
the codeword, called stoppers, and 128 possible values for continuers, which are not
the last byte of the codeword. In (s, c)-dense code, the proportion between stoppers
and continuers can be chosen more freely to minimize the size of the compressed text.
The bytes whose value is less than c are continuers whereas the bytes whose value
is at least c but less than s + c (the number of possible byte values) are stoppers.
String matching in the compressed text is performed by compressing the pattern and
searching for it by using the Boyer-Moore-Horspool algorithm [14]. Brisaboa et al. [5,6]
also present dynamic versions of end-tagged dense code and (s, c)-dense code allowing
fast searching. All these methods use word-based encoding.

Culpepper and Moffat [8,9] present another word-based compression approach
where the value of the first byte of a codeword always specifies the length of the
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codeword. The rest of bytes in the codeword can obtain any of the possible values.
The compressed search can be performed in several different ways, for example using
a Knuth-Morris-Pratt [17] or Boyer-Moore-Horspool type algorithm. However, the
search algorithm requires that a shift never places the byte-level alignment between
codeword boundaries.

The word-based compression methods are poor in the case of highly inflectional
languages like Finnish. In this paper, we will concentrate on character-based compres-
sion. Shibata et al. [25] present a method called BM-BPE which finds text patterns
faster in a compressed text than Agrep [27] finds the same patterns in an uncom-
pressed text. Their search method is based on the Boyer-Moore algorithm and they
employ a restricted version of byte pair encoding (BPE) [13], which replaces common
pairs of characters with unused characters.

Maruyama et al. [18] present a compression method related to BPE using recursive
pairing. However, in their method they select a digram AiBi (Ai and Bi are either
symbols from alphabet Σ or variables presented earlier in the compression process)
that occurs most frequently after ai ∈ Σ and replace the string aiAiBi with the
string aiX where X is a new variable. This is performed for every ai ∈ Σ. Because
the symbol preceding a digram is taken into account, the variable X can be used
to replace different digrams after different symbols. They also present an efficient
pattern matching algorithm for compressed text. The search algorithm is Knuth-
Morris-Pratt [17]. The automaton is modified so that it memorizes the symbol read
previously and its Jump and Output functions are also defined for variables occurring
in the compressed text.

We present a different character-based method which is faster than BM-BPE. In
our method, characters are encoded as variable-length codewords, which consist of base
symbols containing a fixed number of bits. Our encoding approach is a generalization
of that of de Moura et al. [19], where bytes are used as base symbols for coding words.
We present several variants of our encoding scheme and give two methods for string
matching in the compressed text.

Earlier we have presented a search algorithm [23,24] based on Tuned Boyer-
Moore [16], which is a variation of the Boyer-Moore-Horspool algorithm [14]. The
shift function is based on several base symbols in order to enable longer jumps than
the ordinary occurrence heuristic. In this paper, we present a new search algorithm
based on SBNDM2 [10] which is a variation of BNDM, the Backward Nondeterminis-
tic DAWG Matching algorithm [21]. SBNDM2 is a fast bit-parallel algorithm, which
recognizes factors of the pattern by simulating a nondeterministic automaton of the
reversed pattern. Fredriksson and Nikitin [12] have earlier used BNDM to search for
patterns in the text that has been compressed by their own algorithm. However, in
their tests BNDM on compressed text was slower than the Boyer-Moore-Horspool
algorithm on uncompressed text, while in our experiments our SBNDM based search
algorithm was faster.

We present test results of four variations of our algorithms together with two
reference algorithms for compressed texts as well as two other reference algorithms
for uncompressed texts. We are interested only in search speed. The tests were run on
DNA and on English and Finnish texts. Our SBNDM2 based search method was the
fastest among all the tested algorithms for English patterns of at least 9 characters.

The paper has been organized as follows. Section 2 provides an enhanced presenta-
tion of our coding scheme [24]. Our two search algorithms are described in Section 3.
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Then Section 4 reports the results of our practical experiments before the conclusions
in Section 5.

2 Stopper encoding

2.1 Stoppers and continuers

We apply a semi-static encoding scheme called stopper encoding for characters, where
the codes are based on frequencies of characters in the text to be compressed. The
frequencies of characters are gathered in the first pass of the text before the encoding
in the second pass. Alternatively, fixed frequencies based on the language and the
type of the text may be used.

A codeword is a variable-length sequence of base symbols which are represented
as k bits, where k is a parameter of our scheme. The different variants of our scheme
are denoted as SEk, where SE stands for stopper encoding.

Because the length of a code varies, we need a mechanism to recognize where a
new one starts. A simple solution is to reserve some of the base symbols as stoppers
which can only be used as the last base symbol of a code. All other base symbols
are continuers which can be used anywhere but at the end of a code. If u1 · · · uj is a
code, then u1, . . . , uj−1 are continuers and uj is a stopper.

De Moura et al. [19] use a scheme related to our approach. They apply 8-bit base
symbols to encode words where one bit is used to describe whether the base symbol is
a stopper or a continuer. Thus they have 128 stoppers and 128 continuers. Brisaboa
et al. [4] use the optimal number of stoppers.

2.2 Number of stoppers

It is an optimization problem to choose the number of stoppers to achieve the best
compression ratio (the size of the compressed file divided by that of the original file).
The optimal number of stoppers depends on the number of different characters and
the frequencies of the characters. If there are s stoppers of k bits, there are c = 2k− s
continuers of k bits. A codeword of l base symbols consists of l − 1 continuers and
one stopper. Thus, there are scl−1 valid codewords of length l.

Let Σ = {a1, a2, . . . , aq} be the alphabet, and let f(ai) be the frequency of ai. For
simplicity, we assume that the alphabet is ordered according to the frequency, i.e.
f(ai) ≥ f(aj) for i < j.

Now a1, . . . , as are encoded with one base symbol, as+1, . . . , as+cs are encoded with
two base symbols, as+cs+1, . . . , as+c2s are encoded with three base symbols, and so on.
So the number of characters that can be encoded with l or less base symbols is

l∑

j=1

cj−1s =
s(cl − 1)

c− 1
.

From this we can calculate the number of k-bit base symbols l(ai, k, s) needed to
encode the character ai in the case of s stoppers. It must be possible to encode at
least i first characters by using l(ai, k, s) or less base symbols and thus

i ≤
s(cl(ai,k,s) − 1)

c− 1
.
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By solving the inequality, we obtain

l(ai, k, s) ≥ logc(i(c− 1)/s+ 1).

Because l(ai, k, s) must be an integer and we want to choose the smallest possible
integer,

l(ai, k, s) = ⌈logc(i(c− 1)/s+ 1)⌉.

Then the compression ratio C is

C =
q∑

i=1

f(ai)l(ai, k, s)k

8
. (1)

Let us consider 4-bit base symbols as an example. Let us assume that all the
characters are equally frequent. Table 1 shows the optimal numbers of stoppers for
different sizes of the alphabet.

# of characters Stoppers Base symb./char at end
1–31 15 1.55
31–43 14 1.70
43–53 13 1.77
53–61 12 1.82
61–67 11 1.85
67–71 10 1.87
71–73 9 1.89
73–587 8 2.87

Table 1. Optimal stopper selection.

To find the optimal number of stoppers, the frequencies of characters need to
be calculated first. After that, formula (1) can be used for all reasonable numbers
of stoppers (8 − 16 for 4-bit base symbols), and the number producing the lowest
compression ratio can be picked. Another possibility is presented by Brisaboa et al.
in [4], where binary search is used to find a minimum compression ratio calculated
by using formula (1). They consider the curve which presents the compression ratio
as a function of the number of stoppers. At each step, it is checked whether the
current point is in the decreasing or increasing part of the curve and the search
moves towards the decreasing direction. Using this strategy demands that there exists
a unique minimum of the curve, but in practice natural language texts usually have
that property.

2.3 Building the encoding table

After the number of stoppers (and with it, the compression ratio) has been decided, an
encoding table can be created. The average search time is smaller if the distribution of
base symbols is as uniform as possible. We use a heuristic algorithm, which produces
comparable results with an optimal solution. With this algorithm, the encoding can
be decided directly from the order of the frequencies of characters.

Base symbols of two and four bits are the easiest cases. In this encoding with
2k different base symbols and s stoppers, the base symbols 0, 1, . . . , s − 1 will act
as stoppers and the base symbols s, . . . , 2k − 1 as continuers. At first, the s most
common characters are assigned their own stopper base symbol, in the inverse order
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of frequency (the most common character receiving the base symbol s−1 and so on).
After that, starting from the s + 1:th common character, each character is assigned
a two-symbol codeword in numerical order (first the ones with the smallest possible
continuer, in the order starting from the smallest stopper). Exactly the same ordering
is used with codewords of three or more base symbols. We call this technique folding,
since the order of the most frequent characters is reversed until a certain folding point.
The aim of folding is to equalize the distribution of base symbols in order to speed
up searching. The resulting encoding of the characters in the KJV Bible is presented
in Table 2.

ch code ch code ch code ch code
d w e1 D e9 N fe1

e c y f1 T f9 P ff1

t b c e2 R ea C ee2

h a g f2 G fa x ef2

a 9 b e3 J eb q fe2

o 8 p f3 S fb Z ff2

n 7 ←֓ e4 B ec Y ee3

s 6 v f4 ? fc K ef3

i 5 . e5 H ed ! fe3

r 4 k f5 M fd U ff3

d 3 A e6 E ee0 ( ee4

l 2 I f6 j ef0 ) ef4

u 1 : e7 W fe0 V fe4

f 0 ; f7 F ff0 - ff4

m e0 L e8 ’ ee1 Q ee5

, f0 O f8 z ef1

Table 2. Encoding table for the King James Bible, 4-bit version, 14 stoppers. The characters have
been sorted by the order of their relative frequencies.

bsym freq bsym freq bsym freq bsym freq
0 4.85% 4 4.58% 8 5.11% c 8.48%
1 4.31% 5 4.62% 9 5.56% d 16.21%
2 4.62% 6 4.38% a 5.96% e 8.03%
3 4.80% 7 4.99% b 6.51% f 7.01

Table 3. Relative frequencies of base symbols in the encoded text (average: 6.25%).

Table 3 shows the relative frequencies of the base symbols in our example. The
frequencies of the first stoppers depend on the frequencies of the most common char-
acters. E.g., the frequency of d depends on the frequency of the space symbol.

2.4 Variant: code splitting

Consider a normal, uncompressed text file, composed of natural-language text. In the
file, most of the information (entropy) in every character is located in the 5–6 lowest
bits. A search algorithm could exploit this by having the fast loop ignore the highest
bits, and take the lower bits of several characters at once. The idea is not usable
as such, because the time required for shift and and operations is too much for a
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fast loop to perform efficiently. However, it is the basis for a technique called code

splitting.
Applying code splitting to SE6 means that each 6-bit base symbol is split into

two parts: the 4-bit low part and the 2-bit high part, which are stored separately. The
search algorithm first works with low parts only, trying to find a match in them. Only
after such a match is found, the high parts are checked. Depending on the alphabet,
it may also be applicable to split the codes into 4-bit high part and 2-bit low part
and to start the search with the high part. We denote a code-split variant as SE6,4 or
SE6,2, where the smaller number is the number of low bits.

Code splitting can also be applied to SE8. SE8,4 is a special case. The characters of
the original text are split as such into two 4-bit arrays. This speeds up search but does
not involve compression. Code splitting is useful in evenly-distributed alphabets where
no compression could be gained, or as an end-coding method for some compression
method, including de Moura [19].

3 String matching

We start with a description of our old searching algorithm [24]. This will help to
understand the details of the new algorithm, which is more complicated.

3.1 Boyer-Moore based algorithm

Let us consider a text with less than 16 different characters. With the SE4 schema,
any character of this text can be represented with a codeword consisting of a single
four-bit base symbol. For effective use, two consecutive base symbols are stored into
each byte of the encoded text, producing an exact compression ratio of 50%.

Instead of searching directly the 4-bit array, which would require expensive shift
and and operations, we use the 8-bit bytes. There are two 8-bit alignments of each
4-bit pattern: one starting from the beginning of a 8-bit character and the other one
from the middle of it, as presented in Table 4. For example, consider the encoded
pattern (in hexadecimal) 618e05. Occurrences of both 61-8e-05 and *6-18-e0-5*1

clearly need to be reported as matches.
The final algorithm works exactly in the same way: by finding an occurrence

of the encoded pattern consisting of longer codewords in the text. One additional
constraint exists: the base symbol directly preceding the presumed match must be a
stopper symbol. Otherwise, the meaning of the first base symbol is altered. It is not
the beginning of a codeword, but it belongs to another codeword which begins before
the presumed match. Thus, the match is not complete.

It is also noteworthy that because positions in the original text are not mapped
one-to-one into positions in the encoded text, an occurrence in the encoded text
cannot be converted to a position in the original text. However, we get the context of
the encoded pattern, and with fast on-line decoding, it can be expanded.

The search algorithm, based on Tuned Boyer-Moore (TBM) [16], is called Boyer-

Moore for Stopper Encoding, or BM-SE. It is a direct extension of TBM allowing
multiple patterns and classes of characters. The algorithm contains a fast loop de-
signed to quickly skip over most of the candidate positions, and a slow loop to verify
possible matches produced by the fast loop.

1 The asterisk * denotes a wild card, i.e. any base symbol.
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. . . 6 1 8 e 0 5 . . .

. . . . . . 6 1 8 e 0 5

Table 4. An example of BM-SE, pattern 618e05.

The last byte of both alignments not containing wild cards, the pointer byte, has a
skip length of 0. The previous bytes have their skip lengths relative to their distances
from the pointer byte. The skip lengths for the example pattern 618e05 are presented
in Table 5. The fast loop operates by reading a character from text, and obtaining its
skip length. If the skip length is 0, the position is examined with a slow loop, otherwise
the algorithm moves forward a number of positions equal to the skip length.

A half-byte (one containing a wild-card) at the end of the pattern is ignored for
the fast loop, whereas one in the beginning sets all 16 variations to have the desired
jump length. This works according to the bad-character, or occurrence, heuristic of
Boyer and Moore [3].

encoded ch skip
05, e0 0
8e, 18 1
61, *6 2

** 3

Table 5. Skip lengths. The symbol * is a wild card.

String matching with 2-bit base symbols works basically in the same way as with
4-bit ones. There are 4 parallel alignments instead of 2, and the number of characters
enabled by wild-cards can vary from 4 to 64. Compression and string matching with
2-bit base symbols and its various extension possibilities are presented in [23].

3.2 SBNDM2 matching

Our new search solution, called SBNDM2-SE, uses the SBNDM2 algorithm [10] for
string matching in SE-coded texts. SBNDM2 is a simplified version of BNDM [21].
The idea of SBNDM2 is to maintain a state vector D, which has a one in each position
where a factor of the pattern starts such that the factor is a suffix of the processed
text string. For example, if the processed text string is “abc” and the pattern is
“pabcabdabc”, the value of D is 0100000100. To make maintaining D possible, table
B which associates each character a with a bit mask expressing its locations in the
pattern is precomputed before searching.

When a new alignment is checked, at first two characters of the text are read
before testing the state vector D. We use a precomputed table F such that for each
pair of characters, F [cicj] = B[ci]&(B[cj]≪ 1).

At each alignment i we check whether D = F [ti, ti+1] is zero. If it is, it means that
the characters ti and ti+1 do not appear successively in the pattern and we can fast
proceed to the next alignment m− 1 positions forward. If D is not zero, we continue
by calculating D ← B[ti−1]&(D ≪ 1) and decrementing the value of i by 1 until D
becomes zero. This happens when either the pattern has been found or the processed
substring does not belong to the pattern. The former case can been distinguished
from the latter by the number of characters processed before D became zero.
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When we apply the SBNDM2 algorithm to an SE-encoded text, we start by en-
coding the pattern with the same algorithm as the text was encoded. If SE4 is used,
the length of the base symbol is 4 bits. This means that the pattern may start either
from the beginning of a 8-bit character or from the middle of it. To find the occurrence
in both cases, we search for two patterns simultaneously: one which starts from the
beginning of the encoded pattern and the other which starts from the second half-
byte of the encoded pattern. In SBNDM2, it is possible to search for two equal length
patterns by searching for the pattern which has been constructed by concatenating
the two patterns. For example, if the encoded pattern (in hexadecimal) is 618e0, we
search for both pattern 61-8e and pattern 18-e0 simultaneously by searching the
pattern 61-8e-18-e0. An extra bit vector (denoted by f in the pseudocode of the al-
gorithm) is used to prevent from finding matches which consist of the end of the first
half and the beginning of the second half like 8e-18 in the example case. If SBNDM2
finds the first or the second half of the longer pattern, it is checked whether this is
the real occurrence of the pattern by matching the bytes of the encoded pattern and
the bytes of the text one by one. It is also checked that the first or last half-byte is
found in the text.

If the length of the encoded pattern is even, for example in the case of the pattern
618e05, the long pattern is constructed by concatenating strings where the first is
formed by dropping the last byte of the encoded string and the latter by dropping
the first and last half-byte of the encoded string. In the case of the example string,
the pattern 61-8e-18-e0 would be searched for by SBNDM2. Again, if the first or
the second half of the longer pattern is found, the match is checked by comparing the
bytes of the text and the pattern one by one. The pseudocode is shown as Algorithm 1.

If SE8,4 encoding is used, SBNDM2 algorithm is applied only to the file containing
the low part (the 4 lowest bits) of each encoded byte. The search is performed similarly
to the search in the case of SE4. If an occurrence is found, the high bits are checked
one by one.

4 Experiments

We tested the stopper encoding schemes against other similar algorithms and each
other. As a reference method for uncompressed texts, we use TBM (uf fwd md2 from
Hume and Sunday’s widely known test bench [16]), and SBNDM2 [10]. As a reference
method for compressed texts, we use BM-BPE [25] and Knuth-Morris-Pratt search
algorithm on recursive-pairing compressed text developed by Maruyama et al. [18].
Their compression algorithm is denoted by BPX and their search algorithm for com-
pressed text by KMP-BPX. The implementation is by courtesy of Maruyama. For
BM-BPE, we used the recommended version with a maximum of 3 original charac-
ters per encoded character. The implementation is by courtesy of Takeda.

As to our own variants, we tested TBM and SBBDM2 based algorithms for SE4

and SE8,4 encoded tests (denoted by BM-SE4 and BM-SE8,4, SBNDM2-SE4, and
SBNDM2-SE8,4, respectively). SE4 is a representative of our compression scheme,
and SE8,4 represents code splitting. Note that SE8,4 offers no compression at all.

The most important properties of these algorithms are search speed and com-
pression ratio, in that order. In this experiment, only these properties are examined.
Encoding and decoding speeds were not considered. In search, we focus on pattern
lengths of 5, 10, 20, and 30. In the case of English and Finnish, the pattern length of
30 was not used, because some of the encoded patterns were too long for the 32-bit
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Algorithm 1 SBNDM2 for SE4-encoded text. (P 2 = p1p2 · · · p2m is a string con-
taining both the alignments of the encoded pattern, T = t1t2 · · · tn is the encoded
text.)

/* Preprocessing */

1: for all c ∈ Σ′ do B[c]← 0 /* c is a byte in the compressed text. */
2: for all ci, cj ∈ Σ′ do F [cicj ]← 0
3: for j ← 1 to 2m do

4: B[pj ]← B[pj ] | (1 << (2m− j))
5: for i← 1 to 2m do

6: for j ← 1 to 2m do

7: F [pipj ]← B[pi] & (B[pj ] << 1)
8: f ← a bit vector containing 0s in positions 0 (the least significant bit) and m and otherwise 1s.

/* Searching */
9: j ← m

10: while (true) do
11: while (D ← F [tj−1jtj ]) = 0 do

12: j ← j +m− 1
13: pos ← j

14: while (D ← (D << 1) & f & B[tj−2]) 6= 0 do

15: j ← j − 1
16: j ← j +m− 2
17: if j ≤ pos then
18: if j > n then

19: End of text reached, exit.
20: A possible occurrence ending at pos found, check
21: by matching the bytes one by one.
22: j ← pos +1

bitvector used by SBNDM2-SE4. (Because SBNDM2-SE4 searches for two patterns
at the same time, one which starts from the beginning of the encoded pattern and
the other starting from the second half-byte of the encoded pattern, the maximum
length of the encoded pattern is 34 half-bytes when the 32-bit bitvector is used.)
After the preliminary experiments, we added tests for pattern lenghts of 6, 7, 8 and
9 for English texts and for pattern lengths of 11, 12, 13, 14 and 15 for Finnish texts
to find out where SBNDM2-SE4 becomes faster than SBNDM2.

As a DNA text, we used a 5 MB long part of a DNA of the fruitfly. As an English
text, we used the KJV Bible such that the beginning of the text was concatenated to
the end to lengthen the text to 5 MB. As a Finnish text, we used the Finnish Bible
(1938). Because the original size of the Finnish text was about 4 MB, we concatenated
the beginning of the text to the end to lengthen the text to 5 MB.

The compression ratios for various encoding algorithms are presented in Table 6.
The ratios are given for the original (not extended) text files. For the compression
of natural-language texts, the BPX algorithm is better and BPE slightly better than
SE4. This is true also for DNA text, because SE4 always uses at least four bits for
each symbol.

All experiments were run on a 2.40 GHz Lenovo ThinkPad t400s laptop with
Debian Linux and the Intel R© CoreTM2 Duo CPU P9400 2.40 GHz processor. The
computer had 3851 megabytes of main memory. There were no other users using the
test computer at the same time. The Linux function sched_setaffinity was used to
bind the process to only one core. All the programs were compiled using gcc [version
4.6.3] with the optimization flag -O3 and the flag -m64 to produce 64 bit code. The
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KJV Bible Finnish Bible DNA
BPX 28.0% 32.6% 27.8%
BPE 51.0% 52.1% 34.0%
SE8,4 100.0% 100.0% 100.0%
SE4 58.8% 58.2% 50.0%

Table 6. Compression ratios.

programs were modified to measure their own execution time by using the times()

function similarly to Hume and Sunday’s test bench. The clocked time includes ev-
erything except program argument processing and reading the file containing the
encoded text from disk.

In each test, the set of 200 patterns was searched for. The patterns were randomly
picked from the corresponding text. The searches were performed sequentially one
pattern at a time. The preprocessing was repeated 100 times and the searching 500
times for each pattern. The average times for the whole set are presented in Tables 7,
8, and 9, and graphically in Figures 1, 2, and 3.

For short DNA patterns, KMP-BPX and SBNDM2-SE4 were the fastest. For
longer DNA patterns, all our algorithms were clearly faster than KMP-BPX.
SBNDM2-SE4 was the fastest for longer patterns.

For short English patterns, SBNDM2 was clearly faster than our algorithms, which
were comparable to KMP-BPX. For longer patterns, our algorithms outperformed
KMP-BPX and BM-BPE, but mostly they were comparable to SBNDM2. SBNDM2-
SE4 was faster than SBNDM2 for longer patterns. To be more exact, SBNDM2-SE4

was still slower than SBNDM2 for the pattern length 8, but the fastest among the
tested methods for the pattern length 9.

The test results for Finnish patterns were rather similar to the results for English
patterns, but the search times of SBNDM2-SE4 and SBNDM2-SE8,4 were nearer
to each other. For some pattern lengths, SBNDM2-SE4 was slightly faster than
SBNDM2-SE8,4, for some other pattern lengths it was the opposite. The smallest
pattern length was 11 where SBNDM2-SE4 and SBNDM2-SE8,4 were faster than SB-
NDM2 and the fastest among the tested methods. Interestingly, most algorithmss
were a bit faster with Finnish data than with English data.

pattern length → 5 10 20 30
algorithm ↓
TBM 2336 1918 1779 1733
SBNDM2 1609 1014 582 407
BM-BPE 1387 728 424 336
KMP-BPX 969 951 952 957
BM-SE4 1548 751 491 416
BM-SE8,4 1562 766 501 425
SBNDM2-SE4 974 397 210 169
SBNDM2-SE8,4 1067 475 277 235

Table 7. Search times of DNA patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.
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pattern length → 5 6 7 8 9 10 20
algorithm ↓
TBM 1072 939 831 756 706 668 465
SBNDM2 542 507 448 399 397 370 295
BM-BPE 1275 1250 923 871 860 701 431
KMP-BPX 960 959 960 959 960 962 966
BM-SE4 925 749 626 543 489 440 239
BM-SE8,4 1040 719 705 522 532 428 240
SBNDM2-SE4 951 726 501 418 354 308 156
SBNDM2-SE8,4 912 949 505 489 362 350 169

Table 8. Search times of English patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.

pattern length → 5 10 11 12 13 14 15 20
algorithm ↓
TBM 1007 630 593 567 540 527 504 439
SBNDM2 473 308 295 286 277 272 260 238
BM-BPE 1240 670 657 645 549 539 534 406
KMP-BPX 1118 1123 1126 1125 1127 1127 1126 1129
BM-SE4 914 428 389 360 335 314 289 226
BM-SE8,4 1000 403 414 345 348 298 301 222
SBNDM2-SE4 969 311 266 240 221 205 189 143
SBNDM2-SE8,4 907 327 254 254 210 212 182 148

Table 9. Search times of Finnish patterns in milliseconds, text size 5 MB. The pattern set contained
200 patterns.
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Figure 1. Search times of DNA patterns in milliseconds.
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Figure 2. Search times of English patterns in milliseconds.
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Figure 3. Search times of Finnish patterns in milliseconds.

5 Concluding remarks

Stopper encoding is a semi-static character-based compression method enabling fast
searches. It is useful in applications where on-line updates and on-line decoding are
needed. Stopper encoding resembles the semi-static Huffman encoding [15] and whole-
word de Moura encoding [19]. Every character of the original text is encoded with
variable-length codewords, which consist of fixed-length base symbols. The base sym-
bols could have 2, 4, 6, or 8 bits. Base symbols of 6 or 8 bits allow code splitting to
be applied, dividing the bits of each base symbol into two parts, which are stored,
respectively, into two arrays in order to speed up searching.
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We presented a new search algorithm for stopper encoding, based on the SBNDM2
algorithm [10]. Stopper encoding is not restricted to exact matching nor to this search
algorithm, but it can be applied to string matching problems of other types as well.

We tested our algorithm experimentally. The running time of the search algorithm
was compared with two reference algorithms for compressed texts as well as two other
reference algorithms for uncompressed texts. Our SBNDM2 based search method
SBNDM2-SE4 was the fastest among all the tested algorithms for English patterns of
at least 9 characters and either SBNDM2-SE4 or SBNDM2-SE8,4 for Finnish patterns
of at least 11 characters. Especially, SBNDM2-SE4 was faster than the standard search
algorithms in uncompressed texts for these patterns.
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for natural language text. Softw: Pract. Exper., 38(13) 2008, pp. 1429–1450.

6. N. R. Brisaboa, A. Fariña, G. Navarro, and J. R. Paramá: Dynamic lightweight text
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