Threshold Approximate Matching in Grammar-Compressed Strings

Alexander Tiskin*
Department of Computer Science, University of Warwick, Coventry CV4 7AL, UK
tiskin@dcs.warwick.ac.uk

Abstract

A grammar-compressed (GC) string is a string generated by a context-free grammar. This compression model captures many practical applications, and includes LZ78 and LZW compression as a special case. We give an efficient algorithm for threshold approximate matching on a GC-text against a plain pattern. Our algorithm improves on existing algorithms whenever the pattern is sufficiently long. The algorithm employs the technique of fast unit-Monge matrix distance multiplication, as well as a new technique for implicit unit-Monge matrix searching, which we believe to be of independent interest.

1 Introduction

a standard approach to dealing with massive data sets. From oint, it is natural to ask whether compressed strings can be without decompression. For a recent survey on the topic, see algorithms for compressed strings can also be applied to achieve y string processing algorithms for plain strings that are highly
llowing general model of compression.
Dennition 1. Let t be a string of length n (typically large). String t will be called a grammar-compressed string (GC-string), if it is generated by a context-free grammar, also called a straight-line program (SLP). An SLP of length $\bar{n}, \bar{n} \leq n$, is a sequence of \bar{n} statements. A statement numbered $k, 1 \leq k \leq \bar{n}$, has one of the following forms: $t_{k}=\alpha$, where α is an alphabet character, or t, -t.t. where $1<i j<k$.
We identify every symbol t_{r} with the strir lar, we have $t=t_{\bar{n}}$. In general, the plain string length 1e GC-string length \bar{n}. Grammar compression includes al LZ78 and LZW compression schemes by Ziv, Lempel a

Approximate pattern matching is a natı (exact) pattern matching, and of the align lems. Given a text string t of length n and
the ordinary stance prob, $m \leq n$, the he text that approximate pattern matching problem asks are locally closest to the pattern, i.e. that have the locally highest alignment score (or, equivalently, lowest edit distance) against the pattern. The precise definition of "locally" may vary in different versions of the problem.

Definition 2. The threshold approximate matching problem (often called simply "approximate matching") assumes an alignment score with arbitrary weights, and,

[^0]given a threshold score h, ask $\geq h$ against pattern p.

The substrings asked for by precise definition of "alignmen
ecial case
l the patte ext t that have
alled matching
rill be given in
ited LCS score

local subs
tern matching on compressed tex1
-text of length \bar{n}, an uncompress
old k, the (suitably generalised) al
in time ning tim ne for ac a GC-te ole and] s in time ompressi $n k, k^{4}+$ subsequ and an threshcase of Bille et roximhms by ed into their + output). In the running n a GC-text, lgorithm running is + output). In g time to $O(m \log m$ Yamamoto et ; time still further to $O(m \bar{n}+$ output $)$. the threshold approximate matching problem on a GCWe give an algorithm running in time $O(m \log m \cdot \bar{n}+$ thms whenever the pattern is sufficiently of fast unit-Monge matrix distance mulfor implicit unit-Mor
rage the reader to ref nted in the current 1

2 General tecnnıqu

We recall the framework de

2.1 Preliminaries

For indices, we will use eithe

$\left.-\frac{5}{2},-\frac{3}{2},-\frac{1}{2}, \frac{1}{2}, \frac{3}{2}, \frac{5}{2}, \ldots\right\}$. For ease of reading, half-integer variables will be indicated by hats (e.g. $\hat{\imath}, \hat{\jmath}$). Ordinary variable names (e.g. i, j, with possible subscripts or superscripts), will normally denote integer variables, but can sometimes denote a variable that may be either integer, or half-integer.

It will be convenient to denote $i^{-}=i-\frac{1}{2}, i^{+}=i+\frac{1}{2}$ for any integer or half-integer i. The set of all half-integers can now be written as $\left\{\ldots,(-3)^{+},(-2)^{+},(-1)^{+}, 0^{+}, 1^{+}\right.$, $\left.2^{+}, \ldots\right\}$. We denote integer and half-integer intervals by $[i: j]=\{i, i+1, \ldots, j-1, j\}$, $\langle i: j\rangle=\left\{i^{+}, i+\frac{3}{2}, \ldots, j-\frac{3}{2}, j^{-}\right\}$. In both cases, the interval is defined by integer endpoints.

Given two index ranges I, J, it will be convenient to denote their Cartesian product by $(I \mid J)$. We extend this notation to Cartesian products of intervals:

$$
\left[i_{0}: i_{1} \mid j_{0}: j_{1}\right]=\left(\left[i_{0}: i_{1}\right] \mid\left[j_{0}: j_{1}\right]\right) \quad\left\langle i_{0}: i_{1} \mid j_{0}: j_{1}\right\rangle=\left(\left\langle i_{0}: i_{1}\right\rangle \mid\left\langle j_{0}: j_{1}\right\rangle\right)
$$

Given index ranges I, J, a vector over I is indexed by $i \in I$, and a matrix over $(I \mid J)$ is indexed by $i \in I, j \in J$.

We will use the parenthesis notation for indexing matrices, e.g. $A(i, j)$. We will also use straightforward notation for selecting subvectors and submatrices: for example, given a matrix A over $\left[0: n\left|0 \quad{ }_{1}\right| j_{0}: j_{1}\right]$ the submatrix defined by the given sub-interva at for a particular index, its whole range is being used, $A(*, j)$ and $A(i, *)$ will denote a

We recall the following defini two natural strict partial orders on points, called \ll - and

$$
\left(i_{0}, j_{0}\right) \ll\left(i_{1}, j_{1}\right) \quad \text { if } i_{0}<i_{1}
$$

When visualising points, we will deviate from the standard Cartesian visualisation of the coordinate axes, and will use instead the matrix indexing convention: the first coordinate in a pair increases downwards, and the second coordinate rightwards. Hence, \ll - and \gtrless-dominance correspond respectively to the "above-left" and "belowleft" partial orders. The latter order corresponds to the standard visual convention for dominance in computational geometry.

Definition 3. Let D be a matrix over $\left\langle i_{0}: i_{1} \mid j_{0}: j_{1}\right\rangle$. Its distribution matrix D^{Σ} over $\left[i_{0}: i_{1} \mid j_{0}: j_{1}\right]$ is defined by $D^{\Sigma}(i, j)=\sum_{\hat{\imath} \in\left\langle i: i_{1}\right\rangle, \hat{\jmath} \in\left\langle j_{0}: j\right\rangle} D(\hat{\imath}, \hat{\jmath})$ for all $i \in\left[i_{0}: i_{1}\right]$, $j \in\left[j_{0}: j_{1}\right]$.

Definition 4. Let A be a matrix over $\left[i_{0}: i_{1} \mid j_{0}: j_{1}\right]$. Its density matrix A^{\square} over $\left\langle i_{0}: i_{1} \mid j_{0}: j_{1}\right\rangle$ is defined by $A^{\square}(\hat{\imath}, \hat{\jmath})=A\left(\hat{\imath}^{+}, \hat{\jmath}^{-}\right)-A\left(\hat{\imath}^{-}, \hat{\jmath}^{-}\right)-A\left(\hat{\imath}^{+}, \hat{\jmath}^{+}\right)+A\left(\hat{\imath}^{-}, \hat{\jmath}^{+}\right)$ for all $\hat{\imath} \in\left\langle i_{0}: i_{1}\right\rangle, \hat{\jmath} \in\left\langle j_{0}: j_{1}\right\rangle$.

Definition 5. Matrix A over $\left[i_{0}: i_{1} \mid j_{0}: j_{1}\right]$ will be called simple, if $A\left(i_{1}, j\right)=$ $A\left(i, j_{0}\right)=0$ for all i, j. Equivalently, A is simple if $A^{\square \Sigma}=A$.

Definition 6. Matrix A is called totally monotone, if $A(i, j)>A\left(i, j^{\prime}\right) \Rightarrow A\left(i^{\prime}, j\right)>$ $A\left(i^{\prime}, j^{\prime}\right)$ for all $i \leq i^{\prime}, j \leq j^{\prime}$.

Definition 7. Matrix A is called a Monge matrix, if $A(i, j)+A\left(i^{\prime}, j^{\prime}\right) \leq A\left(i, j^{\prime}\right)+$ $A\left(i^{\prime}, j\right)$ for all $i \leq i^{\prime}, j \leq j^{\prime}$. Equivalently, matrix A is a Monge matrix, if A^{\square} is nonnegative. Matrix A is called an anti-Monge matrix, if $-A$ is Monge.

Definition 8. A permutation (respectively, subpermutation) matrix is a zero-one matrix containing exactly one (respectively, at most one) nonzero in every row and every column.

Definition 9. 0 Matrix A is called a unit-Monge (respectively, subunit-Monge) matrix, if A^{\square} is a permutation (respectively, subpermutation) matrix. Matrix A is called a unit-anti-Monge (respectively, subunit-anti-Monge) matrix, if $-A$ is unit-Monge (respectively, subunit-Monge).

A permutation matrix P of size n can be regarded as an implicit representation of the simple unit-Monge matrix P^{Σ}. Geometrically, a value $P^{\Sigma}(i, j)$ is the number of (half-integer) nonzeros in matrix P that are \lessgtr-dominated by the (integer) point (i, j). Matrix P can be preprocessed to allow efficient element queries on $P^{\Sigma}(i, j)$. Here, we consider incremental queries, which are given an element of an implicit simple (sub)unit-Monge matrix, and return the value of an adjacent element. This kind of query can be answered directly from the (sub)permutation matrix, without any preprocessing.
Theorem 10. G $i, j \in[0: n]$, the time $O(1)$.

Proof. Straightfor

matrix P of size n, and the value $P^{\Sigma}(i, j)$, ,$j \pm 1$), where they exist, can be queried in ng algorithm by Aggar lgorithm".
an $n_{1} \times n_{2}$ implicit totally monotone $e q$. The problem of finding the (say, n be solved in time $O(q n)$, where $n=\max \left(n_{1}, n_{2}\right)$.
loss of generality, let A be over $[0: n \mid 0: n]$. Let B be rr $\left[0: \left.\frac{n}{2} \right\rvert\, 0: n\right]$, obtained by taking every other row of ns of B contain a leftmost row minimum. The key idea ate $\frac{n}{2}$ of the remaining columns in an efficient process, city property.
We call a matrix element marked (for elimination), if its column has not (yet) been eliminated, but the element is already known not to be a leftmost row minimum. A column gets eliminated when all its elements become marked.

Initially, both the set of eliminated columns and the set of marked elements are empty. In the process of column elimination, marked elements may only be contained in the i leftmost uneliminated columns; the value of i is initially equal to 1 , and gets either incremented or decremented in every step of the algorithm. The marked elements form a staircase: in the first, second, \ldots, i-th uneliminated column, respectively zero, one, $\ldots, i-1$ topmost elements are marked. In every iteration of the algorithm, two outcomes are possible: either the staircase gets extended to the right to the $i+1$-st uneliminated column, or the whole i-th uneliminated column gets eliminated, and therefore deleted from the staircase.

Let j, j^{\prime} denote respectively the indices of the i-th and $i+1$-st uneliminated column in the original matrix (across both uneliminated and eliminated columns). The
 tion depends on the comparison of element $B(i, j)$, which lement in the i-th uneliminated column, against element uneliminated (and unmarked) element immediately to its comparison and the rest of the elimination procedure are g indices of uneliminated columns in an appropriate dyas a doubly-linked list, a single iteration of this procedure in time $O(q)$. The whole procedure runs in time $O(q n)$,

```
\(i \leftarrow 0 ; j \leftarrow 0 ; j^{\prime} \leftarrow 1\)
while \(j^{\prime} \leq n\) :
    case \(B(i, j) \leq B\left(i, j^{\prime}\right)\) :
    case \(i<\frac{n}{2}\) : \(\quad i \leftarrow i+1 ; j \leftarrow j^{\prime}\)
    case \(i=\frac{n}{2}\) : eliminate column \(j^{\prime}\)
    \(j^{\prime} \leftarrow j^{\prime}+1\)
    case \(B(i, j)>B\left(i, j^{\prime}\right)\) :
    eliminate column \(j\)
    case \(i=0: \quad j \leftarrow j^{\prime} ; j^{\prime} \leftarrow j^{\prime}+1\)
    case \(i>0: \quad i \leftarrow i-1 ; j \leftarrow \max \{k: k\) unelimir
```

Table 1. Elimination procedure

Let A^{\prime} be the $\frac{n}{2} \times \frac{n}{2}$ matrix obtained from L
 olumns. host row We call the algorithm recursively on A^{\prime}. This minima of A^{\prime}, and therefore also of B. It is now straightforward to fill in the leftmost minima in the remaining rows of A in time $O(q n)$. Thus, the top levol of recurcion runc in time $O(q n)$. The amount of work gets halved with every re

pur attention to implicit unit-Monge sented by an appropriate data struc $\mathrm{g}^{2} n$). A more careful analysis of the t the required matrix elements can les, by the more efficient incremental
in implicit (sub)unit-Monge matrix over $[0$:
$\left.\begin{array}{l}\text { aple } \\ A(*, \\ \square\end{array}\right)$
findi nimum element in every row of A can be solved in time
$O(n$
Proo
oppc
gene $\mathrm{x}\left(n_{1}, n_{2}\right)$.
sserve that vector c has no effect on the positions (as ny row minima. Therefore, we assume without loss of all i (and, in particular, $b(0)=c\left(n_{1}\right)=0$). Further, $P(*, \hat{\jmath})$ is identically zero; then, depending on whether $b\left(\hat{\jmath}^{-}\right)$, we may delete respectively column $A\left(*, \hat{\jmath}^{+}\right)$or $A\left(*, \hat{\jmath}^{-}\right)$ is identically zero; then the minimum value in row $A\left(\hat{\imath}^{-}, *\right)$ lies in the same column as

ence we can delete one of these rows. Therefore, that A is an implicit unit-Monge matrix over itation matrix. na, we adopt the column elimination procedure e modifications outlined below.
trix, obtained by taking a subset of $n^{1 / 2}$ rows of r, at most $n^{1 / 2}$ columns of B contain a leftmost $n-n^{1 / 2}$ of the remaining columns.
ughout the elimination procedure, we maintain a vector $d(i), i \in\left[0: n^{1 / 2}-1\right]$, initialised by zero values. In every iteration, given a current value of the index j^{\prime}, each value $d(i)$ gives the count of nonzeros $P(s, t)=1$ within the rectangle $s \in\left\langle n^{1 / 2} i: n^{1 / 2}(i+1)\right\rangle, t \in\left\langle 0: j^{\prime}\right\rangle$.

Consider an iteration of the column elimination procedure values i, j, j^{\prime}, operating on matrix elements $B(i, j), B\left(i, j^{\prime}\right.$ follows the current one, the following matrix elements may 1

- $B\left(i-1, j^{\prime}\right), B\left(i+1, j^{\prime}\right)$. These values can be obtained resped and $B(i, j)-d(i)$.
- $B\left(i, j^{\prime}+1\right), B\left(i+1, j^{\prime}+1\right)$. These values can be obtained respe $B\left(i+1, j^{\prime}\right)$ by a rowwise incremental query of matrix P^{Σ} vi\& single access to vector b.
- $B(i-1,\{k: k$ uneliminated and $<j\})$. This element was al iteration at which its column was first added to the staircase. such element per column, therefore each of them can be ston queried in constant time.

At the end of the current iteration, index j^{\prime} may be incremented (i.e. the staircase may grow by one column). In this case, we also need to update vector d for the next iteration. Let $s \in\langle 0: n\rangle$ be such that $P\left(s, j^{\prime}-\frac{1}{2}\right)=1$. Let $i=\left\lfloor s / n^{1 / 2}\right\rfloor$; we have $s \in\left\langle n^{1 / 2} i: n^{1 / 2}(i+1)\right\rangle$. The update consists in incrementing $d(i)$ by 1 .

The total number of iterations in the elimination procedure is at most $2 n$. This is because in total, at most n columns are added to the staircase, and at most n (in fact, exactly $n-n^{1 / 2}$) columns are eliminated. Therefore, the elimination procedure
 $k n^{1 / 2}$ matrix obtained from B by deleting the $n-n^{1 / 2}$ eliminated tental queries to matrix P, it is straightforward to obtain matrix m-access memory in time $O(n)$. We now call the algorithm of e the row minima of A^{\prime}, and therefore also of B, in time $O(n)$. l in the remaining row minima of matrix A. The row minima of in of $n^{1 / 2}$ submatrices in A at which these remaining row minima specifically, given two successive row minima of A^{\prime}, all the $n^{1 / 2}$ located between the two corresponding rows in A must also be located between the two corresponding columns. Each of the resulting submatrices has $n^{1 / 2}$ rows; the number of columns may vary from submatrix to submatrix. It is straightforward to eliminate from each submatrix all columns not containing any nonzero of matrix P; therefore, without loss of generality, we may assume that every submatrix is of size $n^{1 / 2} \times n^{1 / 2}$.

We now call the algorithm recursively on each submatrix to fill in the remaining leftmost row minima. The amount of work remains $O(n)$ in every recursion level. There are $\log \log n$ recursion leve is $O(n \log \log n)$.

An even faster algorithm, rus been recently suggested by Gaw thus suboptimal but has weaker r of this paper.

2.3 Semi-local LCS

We will consider strings of characters taken from an alphabet. Two alphabet characters α, β match, if $\alpha=\beta$, and mismatch otherwise. In addition to alphabet characters, we introduce two special extra characters: the guard character ' $\$$ ', which only matches
itself and no other characters, and the wildcard character '?', which matches itself and all other characters.

It will be convenient to index strings by half-integer, rather than integer indices, e.g. string $a=\alpha_{0^{+}} \alpha_{1+} \cdots \alpha_{m^{-}}$. We will index strings as vectors, writing e.g. $a(\hat{\imath})=\alpha_{\hat{\imath}}$, $a\langle i: j\rangle=\alpha_{i^{+}} \cdots \alpha_{j^{-}}$. Given strings a over $\langle i: j\rangle$ and b over $\left\langle i^{\prime}: j^{\prime}\right\rangle$, we will distinguish between string right concatenation $\underline{a} b$, which is over $\left\langle i: j+j^{\prime}-i^{\prime}\right\rangle$ and preserves the indexing within a, and left concatenation $a \underline{b}$, which is over $\left\langle i^{\prime}-j+i: j^{\prime}\right\rangle$ and preserves the indexing within b. We extend this notation to concatenation of more than two strings, e.g. $a \underline{b} c$ is a concatenation of three strings, where the indexing of the second string is preserved. If no string is marked in the concatenation, then right concatenation is assumed by default.

Given a string, we distinguisł bstrings, and not necessarily contiguous subsequences. S of a string. Unless indicated other are a prefix and a suffix and a string b of length n.

We recall the following definit
Definition 13. Given strings a, asks for the length of the longest call this length the LCS score of
Definition 14. Given strings a, b, the semi-local LCS problem asks for the LCS scores as follows: a against every substring of b (the string-substring LCS scores); every prefix of a against every suffix of b (the prefix-suffix LCS scores); symmetrically, the substring-string LCS scores and the suffix-prefix LCS scores, defined as above but with the roles of a and b exchanged. The first three (respectively, the last three) components, taken together, will also be called the extended string-substring (respectively, substring-string) LCS problem.

Definition 15. A grid-diagonal dag is a weighted dag, defined on the set of nodes $v_{l, i}, l \in[0: m], i \in[0: n]$. The edge and path weights are called scores. For all $l \in[0: m], \hat{l} \in\langle 0: m\rangle, i \in[0: n], \hat{\imath} \in\langle 0: n\rangle$, the grid-diagonal dag contains:

- the horizontal edge $v_{l, \hat{\imath}^{-}} \rightarrow v_{l, \hat{i}^{+}}$and the vertical edge $v_{\hat{l}^{-}, i} \rightarrow v_{\hat{l}^{+}, i}$, both with score 0 ;
- the diagonal edge $v_{\hat{l}^{-}, \hat{\imath}^{-}} \rightarrow v_{\hat{l}^{+}, \hat{\imath}^{+}}$with score either 0 or 1 .

Definition 16. An instance of the semi-local LCS problem on strings a, b corresponds to an $m \times n$ grid-diagonal $\operatorname{dag} \mathrm{G}_{a, b}$, called the alignment dag of a and b. A cell indexed by $\hat{l} \in\langle 0: m\rangle, \hat{\imath} \in\langle 0: n\rangle$ is called a match cell, if $a(\hat{l})$ matches $b(\hat{\imath})$, and a mismatch cell otherwise (recall that the strings may contain wildcard characters). The diagonal edges in match cells have score 1, and in mismatch cells score 0 .

Definition 17. Given strings a, b, the corresponding semi-local score matrix is a matrix over $[-m: n \mid 0: m+n]$, defined by $\mathrm{H}_{a, b}(i, j)=\max \operatorname{score}\left(v_{0, i} \rightsquigarrow v_{m, j}\right)$, where $i \in[-m: n], j \in[0: m+n]$, and the maximum is taken across all paths between the given endpoints $v_{0, i}, v_{m, j}$ in the $m \times(2 m+n)$ padded alignment dag $\mathrm{G}_{a, ?^{m} b ?^{m}}$. If $i=j$, we have $\mathrm{H}_{a, b}(i, j)=0$. By convention, if $j<i$, then we let $\mathrm{H}_{a, b}(i, j)=j-i<0$.
Theorem 18. Given strings a, b, the corresponding semi-local score matrix $\mathrm{H}_{a, b}$ is unit-anti-Monge. More precisely, we have $\mathrm{H}_{a, b}(i, j)=j-i-\mathrm{P}_{a, b}^{D}(i, j)=m-\mathrm{P}_{a, b}^{T \Sigma T}(i, j)$, where $\mathrm{P}_{a, b}$ is a permutation matrix over $\langle-m: n \mid 0: m+n\rangle$. In particular, string a is a subsequence of substring $b\langle i: j\rangle$ for some $i, j \in[0: n]$, if and only if $\mathrm{P}_{a, b}^{T \Sigma T}(i, j)=0$.

Definition 19. Given strings a, b, the semi-lo matrix $\mathrm{P}_{a, b}$ over $\langle-m: n \mid 0: m+n\rangle$, defined b

When talking about semi-local score and omit the qualifier "semi-local", as long as it is

2.4 Seaweed submatrix notation

The four individual components of the semi-local LCS problem correspond to a partitioning of both the score matrix $\mathrm{H}_{a, b}$ and the seaweed matrix $\mathrm{P}_{a, b}$ into submatrices. It will be convenient to introduce a special notation for the resulting subranges of their respective index ranges $[-m: n \mid 0: m+n]$ and $\langle-m: n \mid 0: m+n\rangle$. This notation will be used as matrix superscripts, e.g. $\mathrm{H}_{a, b}^{\mathrm{b}}=\mathrm{H}_{a, b}[0: n \mid 0: n]$ denotes the matrix of all string-substring LCS scores for strings a, b. The notation for other subranges is as follows.

	$0: n n: m+n$	
$-m: 0$	$\mathrm{H}_{a, b}^{\bullet}$	$\mathrm{H}_{a, b}^{\mathrm{U}}$
$0: n$	$\mathrm{H}_{a, b}^{\boldsymbol{\rightharpoonup}}$	$\mathrm{H}_{a, b}^{\mathrm{D}}$

and analogously for $\mathrm{P}_{a, b}$. Note that the four defined half-integer subranges of matrix $\mathrm{P}_{a, b}$ are disjoint, but the corresponding four integer subranges of matrix $\mathrm{H}_{a, b}$ overlap by one row/column at the boundaries.

Definition 20. Given strings a, b, the corresponding suffix-prefix, substring-string, string-substring and prefix-suffix score (respectively, seaweed) matrices are the sub-
 submatrices are all disjoint; the defined score submatrices ov at the boundaries. In particular, the global LCS score $\mathrm{H}_{a, b}$ score submatrices.

The nonzeros of each seaweed submatrix introduced in garded as an implicit solution to the corresponding compone problem. Similarly, by considering only three out of the f define an implicit solution to the extended string-substring string) LCS problem.

Definition 21. Given strings a, b, we define the extended string-substring (respectively, substring-string) seaweed matrix over $\langle-m: n \mid 0: m+n\rangle$ as

The extended string-substring seaweed matrix $\mathrm{P}_{a, b}^{\mathbf{D}}$ contains at least n and at most $\min (m+n, 2 n)$ nonzeros. Note that for $m \geq n$, the number of nonzeros in $\mathrm{P}_{a, b}^{\mathbf{L}}$ is at most $2 n$, which is convenient when m is large. Analogously, for $m \leq n$, the number of nonzeros in the extended substring-string matrix $\mathrm{P}_{a, b}^{\mathbf{a}}$ is at most $2 m$, which is convenient when n is large.

Let string a of length m be a concatenation of two fixed strings: $a=a^{\prime} a^{\prime \prime}$, where $a^{\prime}, a^{\prime \prime}$ are nonempty strings of length $m^{\prime}, m^{\prime \prime}$ respectively, and $m=m^{\prime}+m^{\prime \prime}$. A substring of the form $a\left\langle i^{\prime}: i^{\prime \prime}\right\rangle$ with $i^{\prime} \in\left[0: m^{\prime}-1\right], i^{\prime \prime} \in\left[m^{\prime}+1: m\right]$ will be called a cross-substring. In other words, a cross-substring of a consists of a nonempty suffix
of a^{\prime} and a nonempty prefix of $a^{\prime \prime}$. A cross-substring that is a prefix or a suffix of a will be called a cross-prefix and a cross-suffix, respectively. Given string b of length n that is a concatenation of two fixed strings, $b=b^{\prime} b^{\prime \prime}$, cross-substrings of b are defined analogously.
Definition 22. Given strings $a=a^{\prime} a^{\prime \prime}$ and b, the corresponding cross-semi-local score matrix is the submatrix $\mathrm{H}_{a^{\prime}, a^{\prime \prime} ; b}=\mathrm{H}_{a, b}\left[-m^{\prime}: n \mid 0: m^{\prime \prime}+n\right]$. Symmetrically, given strings a and $b=b^{\prime} b^{\prime \prime}$, the corresponding cross-semi-local score matrix is the submatrix $\mathrm{H}_{a ; b^{\prime}, b^{\prime \prime}}=\mathrm{H}_{a, b}\left[-m: n^{\prime} \mid n^{\prime}: m+n\right]$. The cross-semi-local seaweed matrices are defined analogously: $\mathrm{P}_{a^{\prime}, a^{\prime \prime} ; b}=\mathrm{P}_{a, b}\left\langle-m^{\prime}: n \mid 0: m^{\prime \prime}+n\right\rangle, \mathrm{P}_{a ; b^{\prime}, b^{\prime \prime}}=\mathrm{P}_{a, b}\left\langle-m: n^{\prime} \mid n^{\prime}: m+n\right\rangle$.

A cross-semi-local score matrix represents the solution of a restricted version of the semi-local LCS problem. In this version, instead of all substrings (prefixes, suffixes) of string a (respectively, b), we only consider cross-substrings (cross-prefixes, crosssuffixes). At the submatrix boundaries $\mathrm{H}_{a^{\prime}, a^{\prime \prime} ; b}\left(*, m^{\prime \prime}+n\right)$ and $\mathrm{H}_{a^{\prime}, a^{\prime \prime} ; b}\left(-m^{\prime}, *\right)$, crosssubstrings of string a degenerate to suffixes of a^{\prime} and prefixes of $a^{\prime \prime}$; in particular, crossprefixes and cross-suffixes of a degenerate respectively to the whole a^{\prime} and $a^{\prime \prime}$. The submatrix boundaries $\mathrm{H}_{a ; b^{\prime}, b^{\prime \prime}}\left(*, n^{\prime}\right)$ and $\mathrm{H}_{a ; b^{\prime}, b^{\prime \prime}}\left(n^{\prime}, *\right)$ correspond to similar degenerate cross-substrings of string b.

As before, the cross-semi-local seaweed matrix $\mathrm{P}_{a^{\prime}, a^{\prime \prime} ; b}$ (respectively, $\mathrm{P}_{a ; b^{\prime}, b^{\prime \prime}}$) gives an implicit representation for the corresponding score matrix $\mathrm{H}_{a^{\prime}, a^{\prime \prime} ; b}$ (respectively, $\left.\mathrm{H}_{a ; b^{\prime}, b^{\prime \prime}}\right)$.

Occasionally, we will use cross-semi-local score and seaweed matrices in combination with the superscript subrange notation, introduced earlier in this section. In such cases, the range of the resulting matrix will be determined by the intersection of the ranges implied by the superscript and the subscript. For example, matrix $\mathrm{H}_{a ; b^{\prime}, b^{\prime \prime}}^{\square}=\mathrm{H}_{a, b}\left[0: n^{\prime} \mid n^{\prime}: n\right]$ is the matrix of all LCS scores between string a and all cross-substrings of string $b=b^{\prime} b^{\prime \prime}$.

2.5 Weighted scores and edit distances

The concept of LCS score is generalised by that of (weighted) alignment score. An alignment of strings a, b is obtained by putting a subsequence of a into one-toone correspondence with a (not necessarily identical) subsequence of b, character by character and respecting the index order. The corresponding pair of characters, one from a and the other from b, are said to be aligned. A character that is not aligned against a character of another string is said to be aligned against a gap in that string. Each of the resulting character alignments is given a real weight:

- a pair of aligned matching characters has weight $w_{\mathrm{m}} \geq 0$;
- a pair of aligned mismatching characters has weight $w_{\mathrm{x}}<w_{\mathrm{m}}$;
- a gap-character or character-gap pair has weight $w_{\mathrm{g}} \leq \frac{1}{2} w_{\mathrm{x}}$; it is normally assumed that $w_{\mathrm{g}} \leq 0$ (i.e. this weight is in fact a penalty).

The intuition behind the weight inequalities is as follows: aligning a matching pair of characters is always better than aligning a mismatching pair of characters, which in its turn is never worse than leaving both characters unaligned (aligned against a gap).

Definition 23. The (weighted) alignment score for strings a, b is the maximum total weight of character pairs in an alignment of a against b.

We define the semi-local (weighted) alignment score problem and (string-substring, etc.) subproblems by straightforward extension of The concepts of alignment dag and score matrix can be naturally gen weighted case. To distinguish between the weighted and unweighted use a script font in the corresponding notation.

The weighted alignment of strings a, b corresponds to a weighted $\mathcal{G}_{a, b}$, where diagonal match edges, diagonal mismatch edges, and horizontal/vertical edges have weight $w_{\mathrm{m}}, w_{\mathrm{x}}, w_{\mathrm{g}}$, respectively. A semi-local alignment score corresponds to a boundary-to-boundary highest-scoring path in $\mathcal{G}_{a, b}$. The complete output of the semi-local alignment score problem is a semi-local (weighted) score matrix $\mathcal{H}_{a, b}$. This matrix is anti-Monge; however, in contrast with the unweighted case, it is not necessarily unit-anti-Monge.

Given an arbitrary set of alignment weights, it is often convenient to normalise them so that $0=w_{\mathrm{g}} \leq w_{\mathrm{x}}<w_{\mathrm{m}}=1$. To obtain such a normalisation, first observe that, given a pair of strings a, b, and arbitrary weights $w_{\mathrm{m}} \geq 0, w_{\times}<w_{\mathrm{m}}, w_{\mathrm{g}} \leq \frac{1}{2} w_{\times}$, we can replace the weights respectively by $w_{\mathrm{m}}+2 x, w_{\mathrm{x}}+2 x, w_{\mathrm{g}}+x$, for any real x. This weight transformation increases the score of every global alignment (top-left to bottom-right) path in $\mathrm{G}_{a, b}$ by ($m+r$ e scores of different global alignment paths do not change. In m global alignment score is attained by the same path as be \quad By taking $x=-w_{\mathrm{g}}$, and dividing the resulting weights by w the desired normalisation. (A similar method is used e.g. by l
Definition 24. Given original we corresponding normalised weights are $w_{m}^{*}=1, w_{x}^{*}=\frac{w_{x}-2 w}{w_{m}-2 u} \quad$ corresponding alignment score the normalised score. The on can be restored from the normalised score h^{*} by reversing the normalisation: $h=h^{*} \cdot\left(w_{m}-2 w_{g}\right)+(m+n) \cdot w_{g}$.

Thus, for fixed string lengths m and n, maximising the normalised global alignment score h^{*} is equivalent to maximising the original score h. However, more care is needed when maximising the alignment score across variable strings of different lengths, e.g. in the context of semi-local alignment. In such cases, an explicit conversion from normalised weights to original weights will be necessary prior to the maximisation.

Definition 25. A set of character alignment weights will be called rational, if all the weights are rational numbers.

Given a rational set of normalised weights, the semi-local alignment score problem on strings a, b can be reduced to the semi-local LCS problem by the following blow-up procedure. Let $w_{\times}=\frac{\mu}{\nu}<1$, where μ, ν are positive natural numbers. We transform input strings a, b of lengths m, n into new blown-up strings \tilde{a}, \tilde{b} of lengths $\tilde{m}=\nu m$, $\tilde{n}=\nu n$. The transformation consists in replacing every character γ in each of the strings by a substring $\$^{\mu} \gamma^{\nu-\mu}$ of length ν (recall that $\$$ is a special guard character, not present in the original strings). We have

$$
\mathcal{H}_{a, b}(i, j)=\frac{1}{\nu} \cdot \mathrm{H}_{\tilde{a}, \tilde{b}}(\nu i, \nu j)
$$

for all $i \in[-m: n], j \in[0: m+n]$, where the matrix $\mathcal{H}_{a, b}$ is defined by the normalised weights on the original strings a, b, and the matrix $\mathrm{H}_{\tilde{a}, \tilde{b}}$ by the LCS weights on the blown-up strings \tilde{a}, \tilde{b}. Therefore, all the techniques of the previous chapters apply
to the rational-weighted semi-local alignment score problem, assuming that ν is a constant.

An important special case of weighted string alignment is the edit distance prob$l e m$. Here, the characters are assumed to match "by default": $w_{\mathrm{m}}=0$. The mismatches and gaps are penalised: $2 w_{\mathrm{g}} \leq w_{\mathrm{x}}<0$. The resulting score is always nonpositive. Equivalently, we regard string a as being transformed into string b by a sequence of weighted character edits:

- character insertion or deletion (indel) has weight $-w_{\mathrm{g}}>0$;
- character substitution has weight $-w_{x}>0$.

Definition 26. The (weighted) edit distance between strings a, b is the minimum total weight of a sequence of character edits transforming a into b. Equivalently, it is the (nonnegative) absolute value of the corresponding (nonpositive) alignment score.

In the rest of this work, the edit distance problem will be treated as a special case of the weighted alignment problem. In particular, all the techniques of the previous sections apply to the semi-local edit distance problem, as long as the character edit weights are rational.

3 Threshold approxima

Given a matrix A and a threshol entries above the threshold by τ_{h} (approximate matching problem $\tau_{h}\left(\mathcal{H}_{p, t}\right)$.
Using the approximate a sufficiently Algorithms 1 score. As in arithmetic, kt used to lift th
Algorithm 1 (Tr
 ompressed strings
ent to denote the subset of $A(i, j) \geq h\}$. The threshold ads to all points in the set ow show how the threshold d more efficiently, assuming n extends alignment ime index cemapping

Parameters: character allgnment welghts w_{m}, tionals.
Input: plain pattern string p of length m; SLP of length n, generating text string t of length n; score threshold h.
Output: locations
Description.
First phase. Recurs
To reduce the p nique described in and define the corr respectively.
Recursion base: $n=$ can be computed by matrix can be used to query the matching, if and only if the corr least h.

Recursive step:
t. We have $\tilde{t}=\hat{t}$ $=t^{\prime} t^{\prime \prime}$ be the SLP stat

As in Algori blown-up strings.
seaweed matrix
n recursively the exte: of the fast algor

- aweed matrix $\mathrm{P}_{\tilde{p} ;}$
n of unit-Monge
two subpermuta
$2 \nu \mathrm{~m}$ nonzeros, àru \tilde{p};
y sparse: $\mathrm{P}_{\tilde{p}, \tilde{t}}^{\mathbf{R}}$ co
In contrast to Algo
maximal nonzeros of P zeros.
nger sufficient t
sider all its \tilde{m} nc
er independently for each dimension,
the indices of these no by

$$
\begin{equation*}
\hat{\imath}_{0^{+}}<\hat{\imath}_{1+}<\cdots<\hat{\imath}_{\tilde{m}^{-}} \quad \hat{\jmath}_{0^{+}}<\hat{\jmath}_{1^{+}}<\cdots<\hat{\jmath}_{\tilde{m}^{-}} \tag{1}
\end{equation*}
$$

These two index sequences define an $\tilde{m} \times \tilde{m}$ non-contiguous permutation submatrix of $\mathrm{P}_{\tilde{p}, \tilde{t^{\prime}}, \tilde{t}^{\prime \prime}}$:

$$
\begin{equation*}
P(\hat{s}, \hat{t})=\mathrm{P}_{\tilde{p} ; \tilde{t}^{\prime}, \hat{t}^{\prime \prime}}\left(\hat{\imath}_{\hat{s}}, \hat{\jmath}_{\hat{t}}\right) \tag{2}
\end{equation*}
$$

for all $\hat{s}, \hat{t} \in\langle 0: \tilde{m}\rangle$.
Index sequence $\hat{\imath}_{\hat{s}}$ (respectively, $\hat{\jmath}_{\hat{t}}$) partitions the range [$\left.-\tilde{m}: \tilde{n}^{\prime}\right]$ (respectively, $\left.\left[\tilde{n}^{\prime}: \tilde{m}+\tilde{n}\right]\right)$ into $\tilde{m}+1$ disjoint non-empty intervals of varying lengths. Therefore, we have a partitioning of the cross-semi-local score matrix $\mathrm{H}_{\tilde{p} ; \tilde{t}^{\prime}, \tilde{t}^{\prime \prime}}$ into $(\tilde{m}+1)^{2}$ disjoint non-empty rectangular H-blocks of varying dimensions. Consider an arbitrary H block

where the H-block's bottom-left (\gtrless-minimal) point $\left(\hat{\imath}_{u^{+}}^{-}, \hat{\jmath}_{v^{-}}^{+}\right)$is chosen arbitrarily to be its reference point. Since the value of d is constant across the H-block, all its entries have identical value: we have

$$
\begin{equation*}
\mathrm{H}_{\tilde{p} \tilde{t^{\prime}, \tilde{t}^{\prime \prime}}(i, j)=\tilde{m}-d}(i, \tag{5}
\end{equation*}
$$

for all $i \in\left[\hat{\imath}_{u^{-}}^{+}: \hat{\imath}_{u^{+}}^{-}\right], j \in\left[\hat{\jmath}_{v^{-}}^{+}: \hat{\jmath}_{v^{+}}^{-}\right]$.
We now switch our focus from the blown-up strings $\tilde{p}, \tilde{t}^{\prime}$, strings $p, t^{\prime}, t^{\prime \prime}$. The partitioning of the LCS score matrix $\mathrm{H}_{\tilde{p} ; \tilde{t}^{\prime}, \tilde{t}^{\prime \prime}}$ a partitioning of the alignment score matrix $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}$ into $(\tilde{m}+1$ \mathcal{H}-blocks of varying dimensions. The \mathcal{H}-block corresponding ts

$$
\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}\left[\hat{\imath}_{u^{-}}^{(+)}: \hat{\imath}_{u^{+}}^{(-)} \mid \hat{\jmath}_{v^{-}}^{(+)}: \hat{\jmath}_{v^{+}}^{(-)}\right]
$$

where $i \in\left[\hat{\imath}_{u}^{(+}\right.$

by the block's bottom-left (i.e. \gtrless-minimal) entry $\mathcal{H}_{p, t^{\prime}, t^{\prime \prime}}\left(\hat{\imath}_{u^{+}}^{(-)}\right.$ this maximum is strict; otherwise, we have $w_{\mathrm{g}}=0$, and all the have an identical value $\frac{\tilde{\tilde{m}}-d}{\nu} \cdot w_{\mathrm{m}}$.

Without loss of generality, let us now assume that all the empty. We are interested in the bottom-left entries attaining across all the \mathcal{H}-blocks. The leftmost column and the bottor (respectively $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}\left(\hat{\imath}_{u^{+}}^{(-)}, n^{\prime}\right)$ and $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}\left(n^{\prime}, \hat{\jmath}_{v^{-}}^{(+)}\right)$for all $\left.u, v\right)$ matrix $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}$, and correspond to comparing p against respec prefixes of $t^{\prime \prime}$, rather than cross-substrings of t. After excluding such boundary entries, the remaining block maxima form an $\tilde{m} \times \tilde{m}$ non-contiguous submatrix $H(u, v)=$ $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}\left(\hat{\imath}_{u^{+}}^{(-)}, \hat{\jmath}_{v^{-}}^{(+)}\right)$, where $u \in[0: \tilde{m}-1], v \in[1: \tilde{m}]$.

Consider the string-substring submatrix of H (i.e. the submatrix of entries that correspond to the comparison of a string against a cross-substring, as opposed to a prefix against a cross-suffix, or a suffix against a cross-prefix): $H^{\boldsymbol{\square}}=(H(u, v)$: $\left.\left(\hat{\imath}_{u^{+}}^{(-)}, \hat{\jmath}_{v^{-}}^{(+)}\right) \in\left[0: n^{\prime} \mid n^{\prime}: n\right]\right)$. Since matrix $\mathcal{H}_{p ; t^{\prime}, t^{\prime \prime}}$ is anti-Monge, its submatrices H and $H^{\text {v }}$ are also anti-Monge.

We now need to obtain the row maxima of matrix H^{\square}. Let

$$
N(u, v)=\frac{\nu}{2 w_{\mathrm{g}}-w_{\mathrm{m}}} H^{\natural}(u, v)=P^{T \Sigma T}(u, v)-\tilde{m}+\frac{\nu\left(m+\hat{\jmath}_{v}^{(-}\right.}{2 w_{\mathrm{g}}}
$$

Since $2 w_{\mathrm{g}}-w_{\mathrm{m}}<0$, the problem of finding row maxima of $H^{\boldsymbol{v}}$ is row minima of matrix N, or, equivalently, This matrix (and therefore N itself) is sub $P^{T \Sigma}(v, u)+b(u)+c(v)$, where $b(u)=-\frac{\nu \hat{v}}{2 u}$ the column minima of N^{T} can be found column minima by symmetry).

The set $\tau_{h}\left(H^{\mathbf{v}}\right)$ of all entries in $H^{\mathbf{v}}$ sc the set of all matching cross-substrings c in the neighbourhoods of the row maxim Second phase. For every SLP symbol, we imally matching cross-substrings. It is nc locations and/or their cou "minimally matching").
Cost analysis.
First phase. Each seawee $O(m \log m)$. The algorithm

$\frac{\left.\hat{v}_{-}^{(+)}\right) w_{\mathrm{g}}}{-w_{\mathrm{g}}}$. Therefore, row minima with d h, and therefore by a local search of recursive step) cations of its mintain their absolute ing "matching" for

1e $O(\tilde{m} \log \tilde{m})=$
ı) $=O(m \log \log m)$.

Hence, the running time of a recursive step is $O(m \log m)$. There are \bar{n} recursive steps in total, therefore the whole recursion runs in time $O(m \log m \cdot \bar{n})$.
Second phase. For every SLP symbol, there are at most $m-1$ minimally matching

We have obtained a new efficient algorithm for threshold approximate matching between a GC-text and a plain pattern. Our algorithm is of interest not only in its own right, but also as a natural application of fast unit-Monge matrix multiplication, developed in our previous works. We have also demonstrated a new technique for incremental searching in an implicit totally monotone matrix, which which we believe to be of independent interest.

References

1. A. Aggarwal, M. M. Klawe, S. Moran, P. Shor, and R. Wilber: Geometric applications of a matrix-searching algorithm. Algorithmica, 2(1) 1987, pp. 195-208.
2. A. Apostolico and C. Guerra: The longest common subsequence problem revisited. Algorithmica, 2(1) 1987, pp. 315-336.
3. L. Bergroth, H. Hakonen, and T. Raita: A survey of longest common subsequence algorithms, in Proceedings of the 7th SPIRE, 2000, pp. 39-48.
4. P. Bille, R. Fagerberg, and I. L. Gørtz: Improved approximate string matching and regular expression matching on Ziv-Lempel compressed texts. ACM Transactions on Algorithms, 6(1) 2009, pp. 3:1-3:14.
5. P. Bille, G. M. Landau, R. Raman, K. Sadakane, S. R. Satti, and O. Weimann: Random access to grammar-compressed strings, in Proceedings of the 22nd ACM-SIAM SODA, 2011, pp. 373-389.
6. P. Cégielski, I. Guessarian, Y. Lifshits, and Y. Matiyasevich: Window subsequence problems for compressed texts, in Proceedings of CSR, vol. 3967 of Lecture Notes in Computer Science, 2006, pp. 127-136.
7. K.-M. Chao and L. Zhang: Sequence Comparison: Theory and Methods, vol. 7 of Computational Biology Series, Springer, 2009.
8. R. Cole and R. Hariharan: Approximate string matching: A simpler faster algorithm. SIAM Journal on Computing, 31(6) 2002, pp. 1761-1782.
9. P. Gawrychowski: Faster algorithm for computing the edit distance between SLP-compressed strings, in Proceedings of SPIRE, vol. 7608 of Lecture Notes in Computer Science, 2012, pp. 229236.
10. D. Hermelin, G. M. Landau, S. Landau, and O. Weimann: A unified algorithm for accelerating edit-distance computation via text-compression, in Proceedings of the 26th STACS, 2009, pp. 529-540.
11. J. Kärkkäinen, G. Navarro, and E. Ukkonen: Approximate string matching on ZivLempel compressed text. Journal of Discrete Algorithms, 1 2003, pp. 313-338.
12. G. M. Landau and U. Vishkin: Fast parallel and serial approximate string matching. Journal of Algorithms, 10(2) 1989, pp. 157-169.
13. V. Levenshtein: Binary codes capable of correcting spurious insertions and deletions of ones. Problems of Information Transmission, 1 1965, pp. 8-17.
14. M. Lohrey: Algorithmics on SLP-compressed strings: a survey. Groups Complexity Cryptology, 4(2) 2012, pp. 241-299.
15. S. V. Rice, H. Bunke, and T. A. Nartker: Classes of cost functions for string edit distance. Algorithmica, 18 1997, pp. 271-280.
16. A. Tiskin: Fast distance multiplication of unit-Monge matrices. Algorithmica, To appear.
17. A. Tiskin: Semi-local string comparison: Algorithmic techniques and applications, Tech. Rep. 0707.3619, arXiv.
18. A. Tiskin: Semi-local longest common subsequences in subquadratic time. Journal of Discrete Algorithms, 6(4) 2008, pp. 570-581.
19. A. Tiskin: Semi-local string comparison: Algorithmic techniques and applications. Mathematics in Computer Science, 1(4) 2008, pp. 571-603.
20. A. Tiskin: Periodic string comparison, in Proceedings of CPM, vol. 5577 of Lecture Notes in Computer Science, 2009, pp. 193-206.
21. A. Tiskin: Towards approximate matching in compressed strings: Local subsequence recognition, in Proceedings of CSR, vol. 6651 of Lecture Notes in Computer Science, 2011, pp. 401-414.
22. T. A. Welch: A technique for high-performance data compression. Computer, 17(6) 1984, pp. 8-19.
23. T. Yamamoto, H. Bannai, S. Inenaga, and M. Takeda: Faster subsequence and don't-care pattern matching on compressed texts, in Proceedings of CPM, vol. 6661 of Lecture Notes in Computer Science, 2011, pp. 309-322.
24. G. Ziv and A. Lempel: Compression of individual sequences via variable-rate coding. IEEE Transactions on Information Theory, 24 1978, pp. 530-536.

[^0]: * Research supported by the Centre for Discrete Mathematics and its Applications (DIMAP), University of Warwick, EPSRC award EP/D063191/1.

